research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N′-{(E)-[(2E)-1,3-di­phenyl­prop-2-en-1-yl­­idene]amino}-N-ethyl­carbamimido­thio­ato-κ2N′,S)zinc(II): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, bDepartment of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, Department of Chemistry, St Francis Xavier University, PO Box 5000, Antigonish, NS, Canada, B2G 2W5, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 May 2017; accepted 31 May 2017; online 13 June 2017)

The title ZnII complex, [Zn(C18H18N3S)2], (I), features two independent but chemically equivalent mol­ecules in the asymmetric unit. In each, the thio­semicarbazonate monoanion coordinates the ZnII atom via the thiol­ate-S and imine-N atoms, with the resulting N2S2 donor set defining a distorted tetra­hedral geometry. The five-membered ZnSCN2 chelate rings adopt distinct conformations in each independent mol­ecule, i.e. one ring is almost planar while the other is twisted about the Zn—S bond. In the crystal, the two mol­ecules comprising the asymmetric unit are linked by amine-N—H⋯N(imine) and amine-N—H⋯S(thiol­ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C—H⋯S(thiol­ate) inter­actions and are linked into a zigzag supra­molecular chain along the c axis via amine-N—H⋯S(thiol­ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C—H⋯π(phen­yl) and ππ inter­actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter­actions formed by the independent mol­ecules in the crystal and the impact of the ππ inter­actions between chelate and phenyl rings.

1. Chemical context

Thio­semicarbazone mol­ecules, derived from thio­semi­carbazide, H2N—NH—C(=S)—NH2, constitute an important class of mixed hard–soft, nitro­gen–sulfur donor ligands which have been extensively investigated in their coordination chemistry towards both transition metals (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]) and main group elements (Casas et al., 2000[Casas, J. S., Garc\?ía-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). Complexes of thio­semicarbazones, including ZnII complexes (Da Silva et al., 2013[Da Silva, J. G., PerdigÃo, C. C. H., Speziali, N. L. & Beraldo, H. (2013). J. Coord. Chem. 66, 385-401.]), have been evaluated variously as potential anti-cancer (Afrasiabi et al., 2003[Afrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 94 306-314.]), anti-viral (Garoufis et al., 2009[Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397.]) and anti-bacterial (Quiroga & Ranninger, 2004[Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248 119-133.]) therapeutics for over 50 years (Dilworth & Hueting, 2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). The inter­esting properties of their metal complexes, such as structural diversity, accessible redox activities, the ability to fine-tune ligand substitution, access to radical species, catalytic properties, distinct spectroscopic properties, etc. afford them many potential advantages over organic-based drugs (van Rijt & Sadler, 2009[Rijt, S. H. van & Sadler, P. J. (2009). Drug Discovery Today, 14, 1089-1097.]; Meggers, 2009[Meggers, E. (2009). Chem. Commun. pp. 1001-1010.]). Recent studies have focused upon their suitability as single-source precursors for ZnS nanomaterials (Pawar et al., 2017[Pawar, A. S., Mlowe, S., Garje, S. S., Akerman, M. P. & Revaprasadu, N. (2017). Inorg. Chim. Acta, 463, 7-13.]). Thiosemicarbazones can exist as thione–thiol tautomers and can bind to a metal centre in neutral or anionic forms as monodentate, bidentate or bridg­ing ligands (Viñuelas-Zahínos et al., 2011[Viñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. 46, 150-159.]). The presence of additional, suitably positioned donor atoms can increase their coordination ability/denticity, giving rise to different coordin­ation geometries, such as tetra­hedral, octa­hedral and penta­gonal-bipyramidal. (Umamatheswari et al., 2011[Umamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1-9.]). As part of a programme investigating thio­semicarbazones and their metal complexes (Tan et al., 2015[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047-o1048.]), the crystal and mol­ecular structures of the title compound (I)[link] are described, complemented by an analysis of the Hirshfeld surface.

[Scheme 1]

2. Structural commentary

Two independent mol­ecules comprise the asymmetric unit of (I)[link], and these are illustrated in Fig. 1[link]. The mono-anion derived from the thio­semicarbazone ligand is chelating, coordinating the ZnII atom via the thiol­ate-S and imine-N atoms. Referring to Table 1[link], the Zn—S bond lengths in the mol­ecules span a narrow range of just over 0.01 Å, i.e. 2.2688 (5) Å for Zn1—S2, to 2.2827 (6) Å for Zn1—S1, whereas the Zn—N bonds show more variability, spanning a range of over 0.02 Å, i.e. 2.0496 (15) Å for Zn2—N12, to 2.0727 (16) Å for Zn2—N9. The similarity in bond lengths extends to the angles subtended at the ZnII atoms which, for the Zn1-containing mol­ecule range from 87.00 (5)° for S2—Zn1—N6, to 134.00 (5)° for S2—Zn1—N3, i.e. a range of 47°; the acute angle is associated with the chelate angle. A slightly narrower range is noted for the Zn2-containing mol­ecule, i.e. 85.99 (5)° for S3—Zn2—N9, to 131.29 (5)° for S3—Zn2—N12, i.e. about 45°. The assignment of four-coordinate geometries can be qu­anti­fied by the values of τ4, which range from 1.00 for an ideal tetra­hedron to 0.00 for perfect square-planar geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The values of τ4 in (I)[link] compute to 0.70 and 0.74 for the Zn1- and Zn2-containing mol­ecules, respectively, indicating significant distortions from the ideal tetra­hedral angles. The conformation about each of the imine C=N bonds is E, as are the conformations about the ethyl­ene bonds, Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—N6 2.0522 (16) Zn2—N12 2.0496 (15)
Zn1—N3 2.0528 (16) Zn2—N9 2.0727 (16)
Zn1—S2 2.2688 (5) Zn2—S3 2.2707 (6)
Zn1—S1 2.2827 (6) Zn2—S4 2.2823 (5)
N2—C1 1.323 (2) N8—C37 1.311 (3)
N3—C4 1.315 (2) N9—C40 1.307 (3)
N5—C19 1.321 (2) N11—C55 1.309 (2)
N6—C22 1.311 (2) N12—C58 1.308 (2)
C5—C6 1.342 (3) C41—C42 1.339 (3)
C23—C24 1.336 (3) C59—C60 1.344 (3)
       
S1—Zn1—S2 118.67 (2) S3—Zn2—S4 124.97 (2)
S1—Zn1—N3 87.25 (5) S3—Zn2—N9 85.99 (5)
S1—Zn1—N6 126.78 (5) S3—Zn2—N12 131.29 (5)
S2—Zn1—N3 134.00 (5) S4—Zn2—N9 124.42 (5)
S2—Zn1—N6 87.00 (5) S4—Zn2—N12 87.23 (5)
N3—Zn1—N6 107.95 (6) N9—Zn2—N12 105.85 (6)
[Figure 1]
Figure 1
The mol­ecular structures of the two mol­ecules comprising the asymmetric unit of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The thio­semicarbazone ligands chelate the ZnII atoms to form five-membered ZnSCN2 rings. The chelate rings adopt different conformations in each independent mol­ecule. For the Zn1-containing mol­ecule, the Zn1/S1/C1/N2/N3 ring is almost planar (r.m.s. deviation = 0.005 Å) but the Zn1/S2/C19/N5/N6 ring is twisted about the Zn1—S2 bond. A similar situation pertains to the Zn2-containing mol­ecule where there is a small twist about the Zn2—S3 bond in the Zn2/S3/C37/N8/N9 ring and the Zn2/S4/C55/N11/N12 ring is planar to within an r.m.s. deviation of 0.008 Å. To a first approximation, for each thio­semicarbazone ligand, all atoms but the terminal ethyl and central phenyl rings lie in a plane. This is qu­anti­fied in the dihedral angle between each five-membered chelate ring and the central and terminal rings of the prop-2-en-1-yl­idene substituent, as summarized in Table 2[link]. The different conformations of the peripheral groups are highlighted in the overlay diagram, Fig. 2[link].

Table 2
Selected dihedral angles (°) for (I)

Dihedral angle Zn1,S1-ring Zn1,S2-ring Zn2,S3-ring Zn2,S4-ring
Zn,S,C,N2/central phen­yl 74.54 (8) 71.88 (8) 64.79 (9) 64.53 (8)
Zn,S,C,N2/terminal phen­yl 28.13 (8) 20.17 (10) 33.66 (11) 7.89 (9)
Central phen­yl/terminal phen­yl 62.67 (10) 82.41 (11) 84.36 (13) 66.04 (10)
[Figure 2]
Figure 2
Structural overlay diagram of the two independent mol­ecules of (I)[link]: Zn1-containing mol­ecule (red image) and Zn2-containing mol­ecule (blue). The mol­ecules have been overlapped so that the two planar chelate rings are coincident.

Some physical properties for the two independent mol­ecules in (I)[link], calculated in Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), are included in Table 3[link]. These data indicate small but significant differences between the independent mol­ecules, most notably, the Zn1-containing mol­ecule is less spherical than the Zn2-containing mol­ecule.

Table 3
A comparison of some physical properties of the independent mol­ecules comprising the asymmetric unit of (I)

Mol­ecule volume, V3) area, A2) A:V globularity, G asphericity, Ω
Zn1-mol­ecule 847.78 646.01 0.762 0.671 0.062
Zn2-mol­ecule 853.45 615.74 0.722 0.707 0.065

3. Supra­molecular features

The most prominent feature of the mol­ecular packing is the formation of an eight-membered heterosynthon, {⋯HNCN⋯HNCS}, mediated by amine-N—H⋯N(imine) and amine-N—H⋯S(thiol­ate) hydrogen-bonds which occur between the two mol­ecules comprising the asymmetric unit, Fig. 3[link]a and Table 4[link]. Additional benzene-C—H⋯S(thiol­ate) inter­actions stabilize the dimeric aggregate, Table 4[link]. The dimeric aggregates thus formed are connected into a zigzag supra­molecular chain along the c axis via additional amine-N—H⋯S(thiol­ate) hydrogen-bonds, Fig. 3[link]b. Chains are connected via ππ inter­actions occurring between Zn2-containing mol­ecules, involving chelate rings, comprising the Zn2/S4/C55/N11/N12 atoms and phenyl (C61–C66) rings. Precedents for chelate/arene ring inter­actions have been established in the literature (Tomić et al., 2006[Tomić, Z. D., Sredojević, D. & Zarić, S. D. (2006). Cryst. Growth Des. 6, 29-31.]; Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. https://dx.doi.org/10.1016/j.ccr.2017.01.009.]). In the present case, the inter-centroid separation between rings is 3.6873 (11) Å and the angle between rings is 7.89 (9)°; symmetry operation:x, 1 − y, 1 − z. Additional inter­actions between chains are of the type phenyl-C—H⋯π(phen­yl) involving residues of the Zn1-containing mol­ecule exclusively, Table 4[link]. The result of the identified inter­molecular inter­actions is the formation of a three-dimensional architecture, Fig. 3[link]c.

Table 4
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C13—C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S3 0.87 (2) 2.65 (2) 3.5077 (19) 170 (2)
N7—H7N⋯N2 0.87 (2) 2.10 (2) 2.941 (2) 164 (2)
N10—H10N⋯S2i 0.87 (1) 2.59 (2) 3.318 (2) 142 (2)
C11—H11⋯S4 0.95 2.86 3.715 (2) 151
C8—H8⋯Cg1ii 0.95 2.73 3.608 (2) 154
C32—H32⋯Cg2iii 0.95 2.64 3.532 (2) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y-1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular packing in (I)[link]: (a) a view of the supra­molecular dimer sustained by amine-N—H⋯N(imine) and amine-N—H⋯S(thiol­ate) hydrogen bonds between the independent mol­ecules, shown as blue and orange dashed lines, respectively, (b) a view of the supra­molecular chain whereby the dimers in (a) are connected via amine-N—H⋯S(thiol­ate) hydrogen bonds and (c) a view of the unit-cell contents shown in projection down the c axis. The ππ and C—H⋯π inter­actions are shown as purple and pink dashed lines, respectively.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface calculations of (I)[link], and for each of the Zn1- and Zn2-mol­ecules, were performed according to a recent publication on related di­thio­carbamate ligands (Jotani et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]). From the views of the Hirshfeld surfaces mapped over dnorm in Fig. 4[link]a and e, the bright-red spots near the amine-H1N, H7N, H10N, imime-N2 and thiol­ate-S2 and S3 atoms indicate their participation in N—H⋯N and N—H⋯S bonds between the two independent mol­ecules. In the views of the Hirshfeld surfaces mapped over electrostatic potential for the Zn1-mol­ecule in Fig. 4[link]b and c, and for the Zn2-mol­ecule in Fig. 4[link]f and g, the hydrogen-bond donors and acceptors are represented by blue and red regions, respectively. Greater insight into inter­molecular inter­actions in the crystal can be obtained by modifying the mapping range for dnorm, as shown in Fig. 4[link]d and h, which reveals additional characteristic spots on the surface. A pair of red spots near amine-HN4 and near phenyl-C7 and C8 in Fig. 4[link]d indicate the presence of short inter-atomic C⋯H/H⋯C contacts in the crystal, see Table 5[link] for data. The tiny, faint-red spots present near the amine-N1 and N7, phenyl-C32, C66 and C77, thiol­ate-S3, ethene-C5 and H6 atoms reflect the short inter-atomic C⋯N, C⋯S and C⋯H contacts, Table 5[link]. The comparatively weak C—H⋯S inter­action influential between the atoms of the independent mol­ecules is represented by faint-red spots near atoms H11 and S3 in Fig. 4[link]a and e, respectively. The immediate environments about the Zn1- and Zn2-mol­ecules within shape-index-mapped Hirshfeld surfaces highlighting hydrogen-bonding and C—H⋯π inter­actions are illustrated in Fig. 5[link]. The N—H⋯S and N—H⋯N hydrogen bonds linking the independent mol­ecules are shown in Fig. 5[link]a and 5b while the C—H⋯π and their reciprocal, i.e. π⋯H—C, contacts involving phenyl-C8 and C32 atoms as donors and phenyl (C31–C36 and C13–C18) rings as acceptors are shown in Fig. 5[link]c.

Table 5
Summary of short inter-atomic contacts (Å) in (I)

Contact distance symmetry operation
Zn1⋯H17 3.44 [{1\over 2}] − x, − [{1\over 2}] + y, [{1\over 2}] − z
Zn2⋯H12 3.41 x, y, z
Zn2⋯C11 3.942 (2) x, y, z
Zn2⋯C12 3.906 (2) x, y, z
Zn2⋯C65 3.735 (2) x, 1 − y, 1 − z
Zn2⋯C66 3.938 (2) x, 1 − y, 1 − z
H3A⋯H30 2.27 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
H53⋯H53 2.23 x, y, [{1\over 2}] − z
H45⋯H54 2.37 x, 2 − y, 1 − z
C5⋯N7 3.214 (2) x, y, z
C71⋯N1 3.223 (3) x, 1 − y, 1 − z
C66⋯S3 3.415 (2) x, 1 − y, 1 − z
C3⋯H30 2.87 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
C6⋯H4N 2.816 (15) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
C7⋯H4N 2.570 (12) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
C8⋯H4N 2.652 (15) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
C19⋯H18 2.85 [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C32⋯H6 2.74 [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C33⋯H6 2.87 [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C43⋯H3B 2.85 x, 1 + y, z
C44⋯H2B 2.87 x, 1 + y, z
C48⋯H3B 2.82 x, 1 + y, z
C51⋯H70 2.80 x, 2 − y, 1 − z
C60⋯H45 2.87 x, 2 − y, 1 − z
[Figure 4]
Figure 4
Hirshfeld surface plots for the (a)–(d) Zn1-containing mol­ecule and (e)–(h) Zn2-containing mol­ecule, plotted over dnorm in the ranges (a) −0.210 to +1.800 au, (d) −0.055 to +1.800 au, (e) −0.112 to +1.800 au and (h) −0.210 to +1.800 au and plotted over the electrostatic potential in the ranges (b) and (c) −0.118 to +0.058 au and (f) and (g) −0.046 to +0.088 au. In (b), (c), (f) and (g), the donors and acceptors are represented with blue and red regions, respectively.
[Figure 5]
Figure 5
Views of Hirshfeld surface mapped over the shape-index property about a reference (a) Zn1-mol­ecule and (b) Zn2-mol­ecule, showing hydrogen bonds as black dashed lines and (c) Zn2-mol­ecule showing C—H⋯π and its reciprocal π⋯H—C inter­actions as red and black dotted lines, respectively.

The overall two-dimensional fingerprint plots for each of the Zn1- and Zn2-mol­ecules, and for the overall system, i.e. (I)[link], are shown in Fig. 6[link]a. In addition, the fingerprint plots delineated into H⋯H, S⋯H/H⋯S, N⋯H/H⋯N, C⋯H/H⋯C,C⋯N/N⋯C and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bg, respectively; their relative contributions are summarized qu­anti­tatively in Table 6[link]. Owing to their significance upon the mol­ecular packing, the fingerprint plots delineated into C⋯S/S⋯C, Zn⋯C/C⋯Zn and Zn⋯H/H⋯Zn contacts for (I)[link] are also illustrated in Fig. 7[link].

Table 6
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for the Zn1-mol­ecule, Zn2-mol­ecule and (I)

Contact distance symmetry operation  
  Zn1-mol­ecule Zn2-mol­ecule (I)
H⋯H 55.4 63.6 64.5
S⋯H/H⋯S 12.1 11.2 8.5
N⋯H/H⋯N 5.3 2.5 3.0
C⋯H/H⋯C 24.1 17.3 20.5
C⋯N/N⋯C 0.8 2.5 1.2
C⋯C 1.5 1.0 1.1
C⋯S/S⋯C 0.0 0.6 0.3
Zn⋯H/H⋯Zn 0.8 0.6 0.5
Zn⋯C/C⋯Zn 0.0 0.7 0.4
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plots and fingerprint plots delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) N⋯H/H⋯H, (e) C⋯H/H⋯C, (f) C⋯N/N⋯C and (g) C⋯C contacts for the Zn1-and Zn2-mol­ecules and for (I)[link].
[Figure 7]
Figure 7
Fingerprint plots for (I)[link] delineated into (a) S⋯C/C⋯2, (b) Zn⋯H/H⋯Zn and (c) Zn⋯C/C⋯Zn contacts.

The short inter-atomic H⋯H contacts for Zn1- and Zn2-mol­ecules, Table 5[link], results in the peak at de + di ∼2.2 Å, appearing broader for the former and narrower for the latter mol­ecule in Fig. 6[link]b. In the fingerprint plot delineated into S⋯H/H⋯S contacts, Fig. 6[link]c, the distinct distribution of the points such as the well separated donor–acceptor regions for the Zn1-mol­ecule and the adjoining regions for the Zn2-mol­ecule are entirely consistent with the different patterns of contacts formed by these. A pair of thin spikes at de + di ∼2.7 Å in the respective fingerprint plots in the donor and acceptor regions for the Zn1- and Zn2-mol­ecules represents the N—H⋯S hydrogen bond linking the two independent mol­ecules. This pair of spikes disappears in the plot for the overall system. Another N—H⋯S hydrogen bond is recognized in the plots as differently shaped donor–acceptor regions of the Zn1- and Zn2-mol­ecules with their tips at de + di ∼2.6 Å. As the contribution from S⋯H/H⋯S contacts to the Hirshfeld surfaces of the Zn1- and Zn2-mol­ecules involves N—H⋯S hydrogen bonds and comparatively weak C—H⋯S inter­actions, the percentage contribution from these contacts to the Hirshfeld surface of the overall system is reduced to 8.5% due to disappearance of points corresponding to inter­linking N—H⋯S hydrogen bond. In Fig. 6[link]d, a pair of spikes at de + di ∼2.1 Å in the acceptor and donor regions of the Zn1- and Zn2-mol­ecules, respectively, results from the linking N—H⋯N hydrogen bond between the independent mol­ecules; the spikes disappear in the plot for the overall system.

The greater contribution, i.e. 24.1%, from C⋯H/H⋯C contacts to the Hirshfeld surface for the Zn1-mol­ecule cf. 17.3% for the Zn2-mol­ecule is due to the greater involvement of atoms of the Zn1-mol­ecule in C—H⋯π inter­actions and short inter-atomic C⋯H/H⋯C contacts, Table 5[link]. In the fingerprint plot delineated into C⋯H/H⋯C contacts for the Zn1 mol­ecule, Fig. 6[link]e, a pair of forceps-like tips at de + di ∼2.6 Å represent a short inter-atomic C⋯H contact formed between the phenyl-C7 and amino-H7N atoms, Table 5[link]. The other short inter-atomic C⋯H contacts involving the Zn1-mol­ecule are merged within the plot. Similarly, a pair of forceps-like tips in the respective plot for Zn2-mol­ecule at de + di ∼2.8 Å reflect the short inter-atomic C⋯H contact between the phenyl-C51 and -H70 atoms, with the other short contacts merged within the plot. In Fig. 6[link]f, the short inter-atomic C⋯N contacts between atoms of the Zn1- and Zn2-mol­ecules, Table 5[link], appear as a pair of short spikes with their tips at de + di ∼3.2 Å. The small contributions from C⋯C contacts for the Zn1- and Zn2-mol­ecules and for the overall system, Fig. 6[link]g, suggests little impact on the mol­ecular packing.

The presence of a short inter-atomic C⋯S contact between the thiol­ate-S3 and phenyl-C66 atoms is evident from the typical H-shaped plot in Fig. 7[link]a and makes a contribution of 0.6% to the Hirshfeld surface of the Zn2-mol­ecule. In the fingerprint plot delineated into Zn⋯H/H⋯Zn contacts, Fig. 7[link]b, the tips at de + di < 3.45 Å with the shape of a folded sheet with a low density of points indicate the short contacts between these atoms. The presence of ππ stacking between chelate ring Zn2/S4/C55/N11/N12 and phenyl (C61–C66) rings of Zn2-mol­ecules is evident from the presence of short inter-atomic Zn⋯C/C⋯Zn contacts, Table 5[link]. In the fingerprint plot delineated into Zn⋯C/C⋯Zn contacts, Fig. 7[link]c, these contacts are reflected by a pair of points with an S-shaped distribution at around de + di ∼1.9 to 2.1 Å. This ππ stacking is also apparent from the small but effective contributions from Zn⋯C/C⋯Zn and C⋯N/N⋯C contacts to the Hirshfeld surface of the Zn2-mol­ecule, Table 6[link].

5. Database survey

An analysis of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates there are nine literature precedents for the structure of (I)[link], i.e. of general formula Zn[SC(NHR)=NN=CRR′′]2 reflecting the inter­est in this class of compound. All of the structures resemble the mol­ecular geometry described above for (I)[link]. The substituents at the hydrazone-C atom can be equivalent and alkyl, i.e. R′ = R′′ = Me for the R = Ph compound (Tan et al., 2009[Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2009). Acta Cryst. E65, m969.]), or aryl, i.e. R′ = R′′ = Ph for the R = 3-FPh compound (Ferraz et al., 2012[Ferraz, K. S. O., Silva, N. F., Da Silva, J. G., Speziali, N. L., Mendes, I. C. & Beraldo, H. (2012). J. Mol. Struct. 1008, 102-107.]) or mixed alk­yl/aryl, i.e. R′ = Me and R′′ = Ph for the R = Ph compound (Wang et al., 2009[Wang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Struct. Chem. 20, 995-1003.]); the latter structure has two mol­ecules in the asymmetric unit. The R′ and R′′ groups can be part of a ring, e.g. cyclo­hexyl in the structure with R = Me (Vikneswaran et al., 2016[Vikneswaran, R., Eltayeb, N. E., Ramesh, S. & Yahya, R. (2016). Polyhedron, 105, 89-95.]). In most examples, the N-bound group is aryl with the exceptions being the aforementioned structure and the cyclo­pentyl analogue (Vikneswaran et al., 2016[Vikneswaran, R., Eltayeb, N. E., Ramesh, S. & Yahya, R. (2016). Polyhedron, 105, 89-95.]). Clearly, there is immense scope for derivatization of these species which may assist in the optimization of their biological properties.

6. Synthesis and crystallization

Analytical grade reagents were used as procured without further purification. Equimolar qu­anti­ties of 4-ethyl-3-thio­semicarbazide (1.1919 g, 0.01 mol) and 1,3-di­phenyl­prop-2-en-1-one (2.0826 g, 0.01 mol) were dissolved in heated absolute ethanol (30 ml) separately and the mixtures were mixed with stirring. About five drops of concentrated hydro­chloric acid were added to the mixture to catalyse the reaction. The reaction mixture was kept under heating and stirring for about 10 mins, followed by stirring for 1 h at room temperature. The resulting yellow precipitate was filtered off, washed with chilled absolute ethanol and dried in vacuo. The resulting precipitate, N-ethyl-N-(1,3-diphenyl-2-propen-1-one)thio­semi­carbazide (0.3090, 0.01 mol), was used without further purification and was dissolved in heated absolute ethanol (50 ml). Zn(CH3COO)2·2H2O (0.1098 g, 0.50 mmol) was dissolved separately in heated absolute ethanol (30 ml) and then added into an ethano­lic N-ethyl-N-(1,3-diphenyl-2-propen-1-one)thio­semicarbazide solution. The mixture was heated and stirred for about 10 mins, followed by stirring for 1 h at room temperature. The obtained yellow precipitate was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature from the slow evaporation of a solution of di­methyl­formamide and aceto­nitrile (1:1 v/v 20 ml).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitro­gen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Table 7
Experimental details

Crystal data
Chemical formula [Zn(C36H36N6S2)]
Mr 682.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 38.3604 (9), 13.6382 (3), 26.3548 (6)
β (°) 91.069 (2)
V3) 13785.6 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.30 × 0.30 × 0.30
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.782, 0.830
No. of measured, independent and observed [I > 2σ(I)] reflections 37452, 15816, 12855
Rint 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.04
No. of reflections 15816
No. of parameters 827
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.24, −0.48
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(N'-{(E)-[(2E)-1,3-diphenylprop-2-en-1-ylidene]amino}-N-ethylcarbamimidothioato-κ2N',S)zinc(II) top
Crystal data top
[Zn(C36H36N6S2)]F(000) = 5696
Mr = 682.20Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 38.3604 (9) ÅCell parameters from 15819 reflections
b = 13.6382 (3) Åθ = 3.1–27.5°
c = 26.3548 (6) ŵ = 0.87 mm1
β = 91.069 (2)°T = 100 K
V = 13785.6 (5) Å3Cube, yellow
Z = 160.30 × 0.30 × 0.30 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
15816 independent reflections
Radiation source: SuperNova (Mo) X-ray Source12855 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scanh = 4948
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
k = 1714
Tmin = 0.782, Tmax = 0.830l = 3422
37452 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0268P)2 + 19.4617P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.002
S = 1.04Δρmax = 1.24 e Å3
15816 reflectionsΔρmin = 0.48 e Å3
827 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.18173 (2)0.22341 (2)0.28606 (2)0.01520 (6)
S10.15381 (2)0.14511 (4)0.35017 (2)0.02303 (12)
S20.18175 (2)0.15280 (4)0.20811 (2)0.01718 (10)
N10.11691 (5)0.24993 (13)0.41537 (7)0.0209 (4)
H1N0.1105 (6)0.3059 (10)0.4281 (8)0.025*
N20.14118 (4)0.34387 (12)0.35625 (6)0.0167 (3)
N30.16200 (4)0.35198 (12)0.31407 (6)0.0151 (3)
N40.23674 (4)0.17761 (14)0.15053 (6)0.0215 (4)
H4N0.2574 (3)0.2004 (17)0.1460 (9)0.026*
N50.24781 (4)0.22317 (12)0.23164 (6)0.0153 (3)
N60.23457 (4)0.24038 (12)0.27890 (6)0.0138 (3)
C10.13684 (5)0.25411 (15)0.37405 (7)0.0168 (4)
C20.10863 (6)0.16246 (16)0.44418 (8)0.0240 (5)
H2A0.10500.10690.42050.029*
H2B0.08660.17320.46240.029*
C30.13712 (6)0.1363 (2)0.48203 (10)0.0404 (6)
H3A0.15900.12600.46420.061*
H3B0.13080.07610.49990.061*
H3C0.14010.18980.50650.061*
C40.17428 (5)0.44016 (14)0.30504 (7)0.0151 (4)
C50.17094 (5)0.52141 (15)0.34000 (7)0.0163 (4)
H50.16340.50760.37340.020*
C60.17784 (5)0.61502 (15)0.32811 (7)0.0170 (4)
H60.18470.62710.29420.020*
C70.17592 (5)0.70083 (15)0.36164 (8)0.0169 (4)
C80.18236 (5)0.79338 (15)0.34113 (8)0.0194 (4)
H80.18710.79920.30600.023*
C90.18193 (5)0.87665 (16)0.37105 (9)0.0239 (5)
H90.18610.93910.35640.029*
C100.17540 (6)0.86904 (16)0.42231 (9)0.0263 (5)
H100.17530.92600.44300.032*
C110.16894 (6)0.77787 (17)0.44327 (8)0.0274 (5)
H110.16440.77270.47850.033*
C120.16906 (5)0.69427 (16)0.41363 (8)0.0221 (5)
H120.16450.63220.42850.026*
C130.19356 (5)0.45041 (14)0.25683 (7)0.0141 (4)
C140.17819 (5)0.41984 (15)0.21118 (7)0.0177 (4)
H140.15490.39640.21060.021*
C150.19675 (6)0.42343 (15)0.16651 (8)0.0210 (4)
H150.18610.40360.13540.025*
C160.23107 (5)0.45622 (15)0.16752 (8)0.0205 (4)
H160.24410.45690.13720.025*
C170.24639 (5)0.48789 (15)0.21253 (8)0.0188 (4)
H170.26980.51090.21290.023*
C180.22768 (5)0.48614 (14)0.25713 (7)0.0156 (4)
H180.23810.50920.28790.019*
C190.22494 (5)0.18887 (14)0.19800 (7)0.0158 (4)
C200.21685 (6)0.1434 (2)0.10634 (8)0.0307 (5)
H20A0.19580.18470.10160.037*
H20B0.20910.07510.11210.037*
C210.23816 (8)0.1477 (3)0.05985 (9)0.0517 (8)
H21A0.24500.21570.05340.078*
H21B0.22450.12270.03090.078*
H21C0.25910.10730.06470.078*
C220.25651 (5)0.27184 (14)0.31400 (7)0.0159 (4)
C230.24220 (5)0.29792 (15)0.36244 (7)0.0188 (4)
H230.21790.28780.36650.023*
C240.25988 (6)0.33495 (17)0.40216 (8)0.0239 (5)
H240.28430.34320.39900.029*
C250.24426 (6)0.36381 (17)0.45037 (8)0.0261 (5)
C260.20847 (6)0.37796 (18)0.45568 (8)0.0300 (5)
H260.19330.36940.42710.036*
C270.19487 (7)0.4042 (2)0.50186 (9)0.0386 (6)
H270.17050.41390.50480.046*
C280.21669 (7)0.4165 (2)0.54402 (9)0.0422 (7)
H280.20730.43390.57590.051*
C290.25221 (7)0.4033 (2)0.53937 (9)0.0420 (7)
H290.26720.41120.56810.050*
C300.26593 (7)0.3784 (2)0.49281 (9)0.0354 (6)
H300.29040.37130.48970.043*
C310.29471 (5)0.28225 (15)0.30474 (7)0.0174 (4)
C320.31570 (5)0.19919 (16)0.30292 (7)0.0201 (4)
H320.30590.13630.30860.024*
C330.35100 (6)0.20793 (17)0.29278 (8)0.0251 (5)
H330.36520.15100.29190.030*
C340.36554 (6)0.29898 (18)0.28396 (9)0.0297 (5)
H340.38950.30450.27590.036*
C350.34490 (6)0.38236 (18)0.28701 (9)0.0281 (5)
H350.35490.44520.28180.034*
C360.30974 (5)0.37415 (16)0.29771 (8)0.0218 (4)
H360.29580.43150.30030.026*
Zn20.09256 (2)0.62509 (2)0.50259 (2)0.01479 (6)
S30.09646 (2)0.48949 (4)0.45303 (2)0.01870 (11)
S40.13339 (2)0.67287 (4)0.56165 (2)0.01954 (11)
N70.08819 (4)0.49976 (13)0.35350 (6)0.0174 (4)
H7N0.1005 (5)0.4464 (11)0.3560 (8)0.021*
N80.07995 (4)0.64722 (12)0.39142 (6)0.0158 (3)
N90.08139 (4)0.70030 (12)0.43591 (6)0.0154 (3)
N100.11345 (5)0.74709 (17)0.64894 (7)0.0315 (5)
H10N0.1359 (3)0.7553 (19)0.6528 (9)0.038*
N110.06752 (4)0.70684 (13)0.59836 (6)0.0185 (4)
N120.05551 (4)0.66810 (12)0.55301 (6)0.0150 (3)
C370.08771 (5)0.55407 (15)0.39636 (7)0.0151 (4)
C380.08438 (6)0.54449 (17)0.30322 (7)0.0220 (5)
H38A0.09630.50300.27810.026*
H38B0.09590.60950.30350.026*
C390.04633 (6)0.5567 (2)0.28717 (8)0.0317 (5)
H39A0.03510.49220.28550.048*
H39B0.04490.58780.25370.048*
H39C0.03440.59780.31190.048*
C400.07469 (5)0.79387 (15)0.43138 (7)0.0157 (4)
C410.07700 (5)0.85264 (15)0.47690 (7)0.0181 (4)
H410.08900.82510.50530.022*
C420.06363 (5)0.94259 (15)0.48250 (7)0.0191 (4)
H420.05240.97160.45380.023*
C430.06507 (6)0.99939 (16)0.52936 (8)0.0234 (5)
C440.04271 (7)1.07947 (17)0.53472 (9)0.0335 (6)
H440.02701.09610.50780.040*
C450.04319 (10)1.1348 (2)0.57862 (11)0.0568 (9)
H450.02761.18840.58190.068*
C460.06614 (12)1.1125 (2)0.61746 (11)0.0708 (12)
H460.06661.15110.64740.085*
C470.08860 (10)1.0336 (2)0.61298 (10)0.0592 (10)
H470.10441.01820.64000.071*
C480.08810 (7)0.97724 (18)0.56942 (8)0.0348 (6)
H480.10350.92310.56670.042*
C490.06507 (5)0.83867 (15)0.38153 (7)0.0178 (4)
C500.08664 (6)0.90851 (16)0.36002 (8)0.0221 (5)
H500.10710.92980.37770.027*
C510.07828 (7)0.94734 (17)0.31242 (8)0.0307 (5)
H510.09340.99380.29730.037*
C520.04817 (8)0.91847 (19)0.28721 (9)0.0383 (6)
H520.04230.94560.25500.046*
C530.02658 (8)0.8502 (2)0.30887 (10)0.0424 (7)
H530.00570.83110.29170.051*
C540.03516 (6)0.80927 (18)0.35533 (9)0.0299 (5)
H540.02050.76070.36950.036*
C550.10145 (5)0.70964 (16)0.60429 (7)0.0189 (4)
C560.09005 (6)0.7936 (2)0.68573 (9)0.0394 (7)
H56A0.10350.84080.70690.047*
H56B0.07160.83040.66720.047*
C570.07404 (9)0.7204 (2)0.71847 (11)0.0536 (8)
H57A0.06100.67310.69750.080*
H57B0.05810.75300.74180.080*
H57C0.09230.68610.73800.080*
C580.02184 (5)0.67592 (15)0.54521 (7)0.0150 (4)
C590.00695 (5)0.63366 (15)0.49947 (7)0.0163 (4)
H590.02160.59530.47870.020*
C600.02650 (5)0.64535 (15)0.48458 (7)0.0163 (4)
H600.04080.68290.50630.020*
C610.04328 (5)0.60656 (15)0.43862 (7)0.0173 (4)
C620.02457 (5)0.56030 (15)0.40025 (7)0.0202 (4)
H620.00010.55540.40310.024*
C630.04178 (6)0.52170 (17)0.35816 (8)0.0253 (5)
H630.02890.49010.33240.030*
C640.07776 (6)0.52884 (18)0.35333 (8)0.0283 (5)
H640.08950.50130.32460.034*
C650.09651 (6)0.57606 (18)0.39027 (8)0.0266 (5)
H650.12110.58180.38680.032*
C660.07939 (5)0.61493 (16)0.43230 (8)0.0221 (5)
H660.09240.64800.45740.027*
C670.00047 (5)0.72828 (15)0.58235 (7)0.0152 (4)
C680.00366 (5)0.82902 (16)0.58950 (8)0.0201 (4)
H680.02020.86390.57010.024*
C690.01618 (6)0.87864 (16)0.62458 (8)0.0227 (5)
H690.01360.94750.62880.027*
C700.03976 (6)0.82737 (16)0.65346 (8)0.0236 (5)
H700.05300.86090.67810.028*
C710.04412 (5)0.72761 (16)0.64660 (8)0.0222 (5)
H710.06040.69280.66650.027*
C720.02476 (5)0.67807 (15)0.61072 (8)0.0192 (4)
H720.02810.60980.60560.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01408 (11)0.01313 (12)0.01848 (11)0.00079 (9)0.00292 (9)0.00149 (9)
S10.0274 (3)0.0121 (2)0.0300 (3)0.0016 (2)0.0121 (2)0.0022 (2)
S20.0148 (2)0.0176 (2)0.0192 (2)0.00086 (19)0.00143 (19)0.0026 (2)
N10.0240 (9)0.0138 (9)0.0253 (9)0.0008 (7)0.0110 (7)0.0027 (8)
N20.0158 (8)0.0139 (8)0.0206 (8)0.0012 (7)0.0073 (7)0.0008 (7)
N30.0136 (8)0.0138 (8)0.0179 (8)0.0017 (6)0.0039 (6)0.0006 (7)
N40.0153 (9)0.0314 (11)0.0178 (8)0.0006 (8)0.0004 (7)0.0059 (8)
N50.0161 (8)0.0167 (9)0.0130 (8)0.0024 (7)0.0014 (6)0.0020 (7)
N60.0145 (8)0.0132 (8)0.0137 (8)0.0014 (6)0.0011 (6)0.0005 (7)
C10.0154 (9)0.0146 (10)0.0204 (10)0.0002 (8)0.0034 (8)0.0002 (8)
C20.0221 (11)0.0212 (11)0.0289 (11)0.0018 (9)0.0092 (9)0.0069 (10)
C30.0305 (13)0.0499 (17)0.0407 (14)0.0037 (12)0.0011 (11)0.0204 (13)
C40.0116 (9)0.0147 (10)0.0189 (10)0.0018 (7)0.0014 (7)0.0015 (8)
C50.0145 (9)0.0181 (10)0.0165 (9)0.0001 (8)0.0040 (7)0.0001 (8)
C60.0153 (9)0.0190 (10)0.0166 (9)0.0001 (8)0.0021 (8)0.0019 (8)
C70.0126 (9)0.0155 (10)0.0228 (10)0.0000 (8)0.0040 (8)0.0014 (8)
C80.0184 (10)0.0184 (11)0.0214 (10)0.0020 (8)0.0042 (8)0.0001 (9)
C90.0225 (11)0.0145 (10)0.0350 (12)0.0024 (9)0.0058 (9)0.0005 (10)
C100.0243 (11)0.0201 (11)0.0347 (12)0.0018 (9)0.0078 (9)0.0123 (10)
C110.0276 (12)0.0312 (13)0.0236 (11)0.0059 (10)0.0070 (9)0.0064 (10)
C120.0239 (11)0.0191 (11)0.0235 (11)0.0058 (9)0.0065 (9)0.0008 (9)
C130.0163 (9)0.0087 (9)0.0174 (9)0.0012 (7)0.0014 (7)0.0013 (8)
C140.0169 (10)0.0138 (10)0.0225 (10)0.0016 (8)0.0004 (8)0.0017 (8)
C150.0273 (11)0.0178 (11)0.0177 (10)0.0005 (9)0.0030 (8)0.0011 (9)
C160.0254 (11)0.0192 (11)0.0170 (10)0.0019 (9)0.0055 (8)0.0014 (9)
C170.0165 (10)0.0176 (10)0.0222 (10)0.0002 (8)0.0033 (8)0.0023 (9)
C180.0187 (10)0.0130 (10)0.0150 (9)0.0005 (8)0.0004 (8)0.0004 (8)
C190.0152 (9)0.0133 (10)0.0188 (10)0.0034 (8)0.0001 (8)0.0003 (8)
C200.0284 (12)0.0446 (15)0.0190 (10)0.0011 (11)0.0034 (9)0.0063 (11)
C210.0464 (17)0.088 (2)0.0214 (12)0.0107 (16)0.0011 (11)0.0106 (14)
C220.0181 (10)0.0125 (10)0.0171 (9)0.0022 (8)0.0001 (8)0.0006 (8)
C230.0185 (10)0.0207 (11)0.0173 (10)0.0017 (8)0.0004 (8)0.0010 (9)
C240.0213 (11)0.0280 (12)0.0224 (11)0.0044 (9)0.0029 (9)0.0020 (9)
C250.0291 (12)0.0303 (13)0.0188 (10)0.0037 (10)0.0021 (9)0.0071 (10)
C260.0293 (12)0.0386 (14)0.0219 (11)0.0030 (11)0.0036 (9)0.0076 (10)
C270.0323 (14)0.0544 (18)0.0293 (13)0.0014 (12)0.0050 (10)0.0133 (13)
C280.0453 (16)0.0587 (19)0.0228 (12)0.0010 (14)0.0055 (11)0.0167 (13)
C290.0453 (16)0.0574 (18)0.0230 (12)0.0018 (14)0.0090 (11)0.0131 (12)
C300.0309 (13)0.0492 (16)0.0259 (12)0.0036 (12)0.0050 (10)0.0121 (12)
C310.0177 (10)0.0199 (11)0.0144 (9)0.0007 (8)0.0047 (8)0.0005 (8)
C320.0204 (10)0.0201 (11)0.0198 (10)0.0004 (8)0.0037 (8)0.0011 (9)
C330.0200 (11)0.0282 (12)0.0269 (11)0.0085 (9)0.0038 (9)0.0002 (10)
C340.0148 (10)0.0368 (14)0.0376 (13)0.0014 (10)0.0021 (9)0.0004 (11)
C350.0229 (11)0.0263 (12)0.0351 (13)0.0058 (10)0.0039 (10)0.0023 (10)
C360.0184 (10)0.0210 (11)0.0257 (11)0.0011 (9)0.0051 (8)0.0027 (9)
Zn20.01392 (11)0.01808 (12)0.01235 (11)0.00177 (9)0.00010 (8)0.00002 (9)
S30.0247 (3)0.0162 (2)0.0153 (2)0.0031 (2)0.00224 (19)0.0012 (2)
S40.0124 (2)0.0311 (3)0.0151 (2)0.0007 (2)0.00026 (18)0.0001 (2)
N70.0209 (9)0.0161 (9)0.0155 (8)0.0032 (7)0.0034 (7)0.0007 (7)
N80.0176 (8)0.0169 (9)0.0130 (8)0.0020 (7)0.0015 (6)0.0028 (7)
N90.0147 (8)0.0189 (9)0.0125 (7)0.0019 (7)0.0004 (6)0.0019 (7)
N100.0151 (9)0.0583 (14)0.0210 (9)0.0013 (9)0.0034 (8)0.0149 (10)
N110.0154 (8)0.0270 (10)0.0132 (8)0.0012 (7)0.0013 (6)0.0030 (7)
N120.0161 (8)0.0166 (9)0.0122 (7)0.0002 (7)0.0004 (6)0.0010 (7)
C370.0115 (9)0.0182 (10)0.0158 (9)0.0005 (8)0.0028 (7)0.0009 (8)
C380.0265 (11)0.0252 (12)0.0144 (9)0.0023 (9)0.0029 (8)0.0030 (9)
C390.0297 (13)0.0444 (15)0.0208 (11)0.0048 (11)0.0039 (9)0.0037 (11)
C400.0132 (9)0.0185 (10)0.0156 (9)0.0018 (8)0.0010 (7)0.0006 (8)
C410.0201 (10)0.0197 (11)0.0145 (9)0.0012 (8)0.0022 (8)0.0020 (8)
C420.0213 (10)0.0203 (11)0.0155 (9)0.0034 (8)0.0015 (8)0.0018 (9)
C430.0378 (13)0.0163 (11)0.0166 (10)0.0101 (9)0.0087 (9)0.0013 (9)
C440.0567 (16)0.0177 (11)0.0269 (12)0.0043 (11)0.0189 (11)0.0011 (10)
C450.116 (3)0.0187 (13)0.0368 (16)0.0011 (16)0.0347 (17)0.0045 (12)
C460.158 (4)0.0300 (16)0.0247 (14)0.023 (2)0.0151 (19)0.0127 (13)
C470.116 (3)0.0389 (18)0.0225 (13)0.0262 (19)0.0109 (15)0.0036 (13)
C480.0559 (17)0.0258 (13)0.0224 (11)0.0146 (12)0.0042 (11)0.0001 (10)
C490.0235 (10)0.0158 (10)0.0140 (9)0.0056 (8)0.0017 (8)0.0019 (8)
C500.0258 (11)0.0193 (11)0.0213 (10)0.0063 (9)0.0030 (9)0.0003 (9)
C510.0472 (15)0.0202 (12)0.0250 (11)0.0106 (11)0.0119 (11)0.0057 (10)
C520.0688 (19)0.0274 (13)0.0181 (11)0.0112 (13)0.0101 (12)0.0009 (10)
C530.0571 (18)0.0342 (15)0.0349 (14)0.0029 (13)0.0286 (13)0.0050 (12)
C540.0344 (13)0.0257 (12)0.0292 (12)0.0015 (10)0.0114 (10)0.0051 (10)
C550.0170 (10)0.0225 (11)0.0171 (9)0.0009 (8)0.0008 (8)0.0000 (9)
C560.0274 (13)0.0653 (19)0.0252 (12)0.0023 (13)0.0055 (10)0.0137 (13)
C570.066 (2)0.055 (2)0.0391 (16)0.0093 (16)0.0059 (14)0.0032 (15)
C580.0140 (9)0.0160 (10)0.0151 (9)0.0012 (8)0.0009 (7)0.0016 (8)
C590.0173 (10)0.0168 (10)0.0149 (9)0.0005 (8)0.0013 (8)0.0017 (8)
C600.0181 (10)0.0160 (10)0.0148 (9)0.0003 (8)0.0017 (8)0.0010 (8)
C610.0178 (10)0.0163 (10)0.0177 (10)0.0015 (8)0.0020 (8)0.0032 (8)
C620.0195 (10)0.0215 (11)0.0194 (10)0.0002 (9)0.0029 (8)0.0003 (9)
C630.0326 (12)0.0253 (12)0.0179 (10)0.0010 (10)0.0009 (9)0.0035 (9)
C640.0332 (13)0.0322 (13)0.0193 (10)0.0073 (10)0.0105 (9)0.0005 (10)
C650.0205 (11)0.0367 (14)0.0223 (11)0.0051 (10)0.0070 (9)0.0061 (10)
C660.0202 (10)0.0274 (12)0.0187 (10)0.0000 (9)0.0001 (8)0.0038 (9)
C670.0127 (9)0.0197 (10)0.0131 (9)0.0017 (8)0.0026 (7)0.0006 (8)
C680.0177 (10)0.0203 (11)0.0222 (10)0.0014 (8)0.0012 (8)0.0005 (9)
C690.0278 (11)0.0148 (10)0.0254 (11)0.0024 (9)0.0008 (9)0.0028 (9)
C700.0255 (11)0.0242 (12)0.0214 (10)0.0047 (9)0.0060 (9)0.0045 (9)
C710.0212 (11)0.0227 (11)0.0228 (10)0.0010 (9)0.0070 (8)0.0017 (9)
C720.0195 (10)0.0159 (10)0.0222 (10)0.0004 (8)0.0004 (8)0.0018 (9)
Geometric parameters (Å, º) top
Zn1—N62.0522 (16)Zn2—N122.0496 (15)
Zn1—N32.0528 (16)Zn2—N92.0727 (16)
Zn1—S22.2688 (5)Zn2—S32.2707 (6)
Zn1—S12.2827 (6)Zn2—S42.2823 (5)
S1—C11.745 (2)S3—C371.761 (2)
S2—C191.753 (2)S4—C551.751 (2)
N1—C11.344 (2)N7—C371.351 (3)
N1—C21.453 (3)N7—C381.464 (3)
N1—H1N0.871 (10)N7—H7N0.870 (9)
N2—C11.323 (2)N8—C371.311 (3)
N2—N31.385 (2)N8—N91.378 (2)
N3—C41.315 (2)N9—C401.307 (3)
N4—C191.347 (2)N10—C551.356 (3)
N4—C201.457 (3)N10—C561.477 (3)
N4—H4N0.863 (9)N10—H10N0.874 (10)
N5—C191.321 (2)N11—C551.309 (2)
N5—N61.374 (2)N11—N121.378 (2)
N6—C221.311 (2)N12—C581.308 (2)
C2—C31.508 (3)C38—C391.521 (3)
C2—H2A0.9900C38—H38A0.9900
C2—H2B0.9900C38—H38B0.9900
C3—H3A0.9800C39—H39A0.9800
C3—H3B0.9800C39—H39B0.9800
C3—H3C0.9800C39—H39C0.9800
C4—C51.448 (3)C40—C411.444 (3)
C4—C131.489 (3)C40—C491.489 (3)
C5—C61.342 (3)C41—C421.339 (3)
C5—H50.9500C41—H410.9500
C6—C71.469 (3)C42—C431.458 (3)
C6—H60.9500C42—H420.9500
C7—C81.397 (3)C43—C481.397 (3)
C7—C121.403 (3)C43—C441.398 (3)
C8—C91.383 (3)C44—C451.381 (4)
C8—H80.9500C44—H440.9500
C9—C101.383 (3)C45—C461.372 (5)
C9—H90.9500C45—H450.9500
C10—C111.385 (3)C46—C471.385 (5)
C10—H100.9500C46—H460.9500
C11—C121.382 (3)C47—C481.382 (4)
C11—H110.9500C47—H470.9500
C12—H120.9500C48—H480.9500
C13—C141.394 (3)C49—C541.387 (3)
C13—C181.397 (3)C49—C501.389 (3)
C14—C151.388 (3)C50—C511.394 (3)
C14—H140.9500C50—H500.9500
C15—C161.390 (3)C51—C521.379 (4)
C15—H150.9500C51—H510.9500
C16—C171.383 (3)C52—C531.377 (4)
C16—H160.9500C52—H520.9500
C17—C181.389 (3)C53—C541.380 (3)
C17—H170.9500C53—H530.9500
C18—H180.9500C54—H540.9500
C20—C211.487 (3)C56—C571.462 (4)
C20—H20A0.9900C56—H56A0.9900
C20—H20B0.9900C56—H56B0.9900
C21—H21A0.9800C57—H57A0.9800
C21—H21B0.9800C57—H57B0.9800
C21—H21C0.9800C57—H57C0.9800
C22—C231.443 (3)C58—C591.444 (3)
C22—C311.497 (3)C58—C671.494 (3)
C23—C241.336 (3)C59—C601.344 (3)
C23—H230.9500C59—H590.9500
C24—C251.469 (3)C60—C611.460 (3)
C24—H240.9500C60—H600.9500
C25—C261.396 (3)C61—C661.397 (3)
C25—C301.395 (3)C61—C621.401 (3)
C26—C271.380 (3)C62—C631.384 (3)
C26—H260.9500C62—H620.9500
C27—C281.389 (3)C63—C641.387 (3)
C27—H270.9500C63—H630.9500
C28—C291.382 (4)C64—C651.380 (3)
C28—H280.9500C64—H640.9500
C29—C301.386 (3)C65—C661.383 (3)
C29—H290.9500C65—H650.9500
C30—H300.9500C66—H660.9500
C31—C321.391 (3)C67—C721.386 (3)
C31—C361.393 (3)C67—C681.395 (3)
C32—C331.391 (3)C68—C691.385 (3)
C32—H320.9500C68—H680.9500
C33—C341.383 (3)C69—C701.383 (3)
C33—H330.9500C69—H690.9500
C34—C351.389 (3)C70—C711.382 (3)
C34—H340.9500C70—H700.9500
C35—C361.388 (3)C71—C721.389 (3)
C35—H350.9500C71—H710.9500
C36—H360.9500C72—H720.9500
S1—Zn1—S2118.67 (2)S3—Zn2—S4124.97 (2)
S1—Zn1—N387.25 (5)S3—Zn2—N985.99 (5)
S1—Zn1—N6126.78 (5)S3—Zn2—N12131.29 (5)
S2—Zn1—N3134.00 (5)S4—Zn2—N9124.42 (5)
S2—Zn1—N687.00 (5)S4—Zn2—N1287.23 (5)
N3—Zn1—N6107.95 (6)N9—Zn2—N12105.85 (6)
C1—S1—Zn192.96 (7)C37—S3—Zn293.84 (7)
C19—S2—Zn191.99 (7)C55—S4—Zn292.29 (7)
C1—N1—C2126.29 (18)C37—N7—C38121.72 (18)
C1—N1—H1N116.4 (15)C37—N7—H7N114.2 (15)
C2—N1—H1N116.8 (15)C38—N7—H7N117.6 (15)
C1—N2—N3115.89 (16)C37—N8—N9114.79 (16)
C4—N3—N2115.61 (16)C40—N9—N8115.50 (16)
C4—N3—Zn1125.47 (12)C40—N9—Zn2126.72 (13)
N2—N3—Zn1116.26 (12)N8—N9—Zn2117.76 (12)
C19—N4—C20126.77 (18)C55—N10—C56122.08 (18)
C19—N4—H4N114.5 (16)C55—N10—H10N117.9 (17)
C20—N4—H4N118.2 (16)C56—N10—H10N118.7 (17)
C19—N5—N6114.62 (16)C55—N11—N12115.50 (16)
C22—N6—N5116.88 (16)C58—N12—N11114.72 (15)
C22—N6—Zn1126.45 (13)C58—N12—Zn2128.03 (13)
N5—N6—Zn1116.52 (12)N11—N12—Zn2116.56 (12)
N2—C1—N1113.83 (17)N8—C37—N7117.06 (18)
N2—C1—S1127.62 (15)N8—C37—S3127.47 (15)
N1—C1—S1118.55 (15)N7—C37—S3115.44 (15)
N1—C2—C3112.14 (19)N7—C38—C39112.11 (17)
N1—C2—H2A109.2N7—C38—H38A109.2
C3—C2—H2A109.2C39—C38—H38A109.2
N1—C2—H2B109.2N7—C38—H38B109.2
C3—C2—H2B109.2C39—C38—H38B109.2
H2A—C2—H2B107.9H38A—C38—H38B107.9
C2—C3—H3A109.5C38—C39—H39A109.5
C2—C3—H3B109.5C38—C39—H39B109.5
H3A—C3—H3B109.5H39A—C39—H39B109.5
C2—C3—H3C109.5C38—C39—H39C109.5
H3A—C3—H3C109.5H39A—C39—H39C109.5
H3B—C3—H3C109.5H39B—C39—H39C109.5
N3—C4—C5123.26 (17)N9—C40—C41117.21 (18)
N3—C4—C13115.20 (17)N9—C40—C49121.76 (18)
C5—C4—C13121.49 (17)C41—C40—C49121.04 (18)
C6—C5—C4124.01 (18)C42—C41—C40125.62 (19)
C6—C5—H5118.0C42—C41—H41117.2
C4—C5—H5118.0C40—C41—H41117.2
C5—C6—C7127.24 (18)C41—C42—C43124.9 (2)
C5—C6—H6116.4C41—C42—H42117.6
C7—C6—H6116.4C43—C42—H42117.6
C8—C7—C12118.24 (18)C48—C43—C44118.2 (2)
C8—C7—C6118.42 (17)C48—C43—C42122.6 (2)
C12—C7—C6123.30 (18)C44—C43—C42119.2 (2)
C9—C8—C7121.16 (19)C45—C44—C43120.8 (3)
C9—C8—H8119.4C45—C44—H44119.6
C7—C8—H8119.4C43—C44—H44119.6
C10—C9—C8120.0 (2)C46—C45—C44120.2 (3)
C10—C9—H9120.0C46—C45—H45119.9
C8—C9—H9120.0C44—C45—H45119.9
C9—C10—C11119.6 (2)C45—C46—C47120.0 (3)
C9—C10—H10120.2C45—C46—H46120.0
C11—C10—H10120.2C47—C46—H46120.0
C12—C11—C10120.9 (2)C48—C47—C46120.3 (3)
C12—C11—H11119.6C48—C47—H47119.9
C10—C11—H11119.6C46—C47—H47119.9
C11—C12—C7120.1 (2)C47—C48—C43120.4 (3)
C11—C12—H12119.9C47—C48—H48119.8
C7—C12—H12119.9C43—C48—H48119.8
C14—C13—C18119.38 (17)C54—C49—C50119.25 (19)
C14—C13—C4120.00 (17)C54—C49—C40120.62 (19)
C18—C13—C4120.55 (17)C50—C49—C40120.10 (18)
C15—C14—C13120.42 (19)C49—C50—C51119.9 (2)
C15—C14—H14119.8C49—C50—H50120.0
C13—C14—H14119.8C51—C50—H50120.0
C14—C15—C16119.71 (19)C52—C51—C50120.1 (2)
C14—C15—H15120.1C52—C51—H51119.9
C16—C15—H15120.1C50—C51—H51119.9
C17—C16—C15120.26 (18)C53—C52—C51119.9 (2)
C17—C16—H16119.9C53—C52—H52120.1
C15—C16—H16119.9C51—C52—H52120.1
C16—C17—C18120.16 (19)C52—C53—C54120.4 (2)
C16—C17—H17119.9C52—C53—H53119.8
C18—C17—H17119.9C54—C53—H53119.8
C17—C18—C13120.02 (18)C53—C54—C49120.4 (2)
C17—C18—H18120.0C53—C54—H54119.8
C13—C18—H18120.0C49—C54—H54119.8
N5—C19—N4115.66 (17)N11—C55—N10115.82 (18)
N5—C19—S2127.95 (15)N11—C55—S4128.40 (15)
N4—C19—S2116.36 (15)N10—C55—S4115.77 (15)
N4—C20—C21111.0 (2)C57—C56—N10111.2 (2)
N4—C20—H20A109.4C57—C56—H56A109.4
C21—C20—H20A109.4N10—C56—H56A109.4
N4—C20—H20B109.4C57—C56—H56B109.4
C21—C20—H20B109.4N10—C56—H56B109.4
H20A—C20—H20B108.0H56A—C56—H56B108.0
C20—C21—H21A109.5C56—C57—H57A109.5
C20—C21—H21B109.5C56—C57—H57B109.5
H21A—C21—H21B109.5H57A—C57—H57B109.5
C20—C21—H21C109.5C56—C57—H57C109.5
H21A—C21—H21C109.5H57A—C57—H57C109.5
H21B—C21—H21C109.5H57B—C57—H57C109.5
N6—C22—C23117.06 (17)N12—C58—C59118.20 (17)
N6—C22—C31122.24 (17)N12—C58—C67120.79 (17)
C23—C22—C31120.69 (17)C59—C58—C67121.00 (17)
C24—C23—C22126.2 (2)C60—C59—C58123.84 (18)
C24—C23—H23116.9C60—C59—H59118.1
C22—C23—H23116.9C58—C59—H59118.1
C23—C24—C25124.7 (2)C59—C60—C61127.06 (18)
C23—C24—H24117.6C59—C60—H60116.5
C25—C24—H24117.6C61—C60—H60116.5
C26—C25—C30118.2 (2)C66—C61—C62118.10 (18)
C26—C25—C24122.8 (2)C66—C61—C60119.34 (18)
C30—C25—C24119.0 (2)C62—C61—C60122.56 (18)
C27—C26—C25120.9 (2)C63—C62—C61120.5 (2)
C27—C26—H26119.6C63—C62—H62119.8
C25—C26—H26119.6C61—C62—H62119.8
C26—C27—C28120.3 (2)C62—C63—C64120.4 (2)
C26—C27—H27119.9C62—C63—H63119.8
C28—C27—H27119.9C64—C63—H63119.8
C29—C28—C27119.6 (2)C65—C64—C63119.9 (2)
C29—C28—H28120.2C65—C64—H64120.0
C27—C28—H28120.2C63—C64—H64120.0
C28—C29—C30120.1 (2)C64—C65—C66119.9 (2)
C28—C29—H29119.9C64—C65—H65120.1
C30—C29—H29119.9C66—C65—H65120.1
C29—C30—C25120.9 (2)C65—C66—C61121.3 (2)
C29—C30—H30119.5C65—C66—H66119.4
C25—C30—H30119.5C61—C66—H66119.4
C32—C31—C36119.14 (19)C72—C67—C68119.29 (18)
C32—C31—C22119.82 (18)C72—C67—C58121.08 (18)
C36—C31—C22121.04 (18)C68—C67—C58119.61 (18)
C33—C32—C31120.2 (2)C69—C68—C67120.59 (19)
C33—C32—H32119.9C69—C68—H68119.7
C31—C32—H32119.9C67—C68—H68119.7
C34—C33—C32120.4 (2)C70—C69—C68119.6 (2)
C34—C33—H33119.8C70—C69—H69120.2
C32—C33—H33119.8C68—C69—H69120.2
C33—C34—C35119.6 (2)C71—C70—C69120.3 (2)
C33—C34—H34120.2C71—C70—H70119.8
C35—C34—H34120.2C69—C70—H70119.8
C36—C35—C34120.2 (2)C70—C71—C72120.2 (2)
C36—C35—H35119.9C70—C71—H71119.9
C34—C35—H35119.9C72—C71—H71119.9
C35—C36—C31120.4 (2)C67—C72—C71120.02 (19)
C35—C36—H36119.8C67—C72—H72120.0
C31—C36—H36119.8C71—C72—H72120.0
C1—N2—N3—C4161.61 (18)C37—N8—N9—C40178.13 (17)
C1—N2—N3—Zn10.9 (2)C37—N8—N9—Zn23.3 (2)
C19—N5—N6—C22178.11 (17)C55—N11—N12—C58172.63 (18)
C19—N5—N6—Zn16.0 (2)C55—N11—N12—Zn21.4 (2)
N3—N2—C1—N1179.06 (17)N9—N8—C37—N7177.12 (16)
N3—N2—C1—S10.8 (3)N9—N8—C37—S34.9 (3)
C2—N1—C1—N2177.69 (19)C38—N7—C37—N87.1 (3)
C2—N1—C1—S12.2 (3)C38—N7—C37—S3174.65 (14)
Zn1—S1—C1—N20.30 (19)Zn2—S3—C37—N83.59 (18)
Zn1—S1—C1—N1179.60 (16)Zn2—S3—C37—N7178.41 (14)
C1—N1—C2—C382.8 (3)C37—N7—C38—C3986.1 (2)
N2—N3—C4—C58.6 (3)N8—N9—C40—C41178.13 (16)
Zn1—N3—C4—C5152.08 (15)Zn2—N9—C40—C413.5 (3)
N2—N3—C4—C13173.99 (16)N8—N9—C40—C491.8 (3)
Zn1—N3—C4—C1325.3 (2)Zn2—N9—C40—C49176.55 (14)
N3—C4—C5—C6168.14 (19)N9—C40—C41—C42163.6 (2)
C13—C4—C5—C614.6 (3)C49—C40—C41—C4216.4 (3)
C4—C5—C6—C7178.40 (18)C40—C41—C42—C43177.55 (19)
C5—C6—C7—C8176.6 (2)C41—C42—C43—C4817.1 (3)
C5—C6—C7—C125.6 (3)C41—C42—C43—C44163.1 (2)
C12—C7—C8—C90.2 (3)C48—C43—C44—C450.5 (3)
C6—C7—C8—C9178.13 (19)C42—C43—C44—C45179.7 (2)
C7—C8—C9—C100.7 (3)C43—C44—C45—C461.0 (4)
C8—C9—C10—C110.7 (3)C44—C45—C46—C470.8 (5)
C9—C10—C11—C120.2 (3)C45—C46—C47—C480.2 (5)
C10—C11—C12—C70.3 (3)C46—C47—C48—C430.3 (4)
C8—C7—C12—C110.3 (3)C44—C43—C48—C470.2 (4)
C6—C7—C12—C11177.55 (19)C42—C43—C48—C47179.7 (2)
N3—C4—C13—C1452.5 (2)N9—C40—C49—C5461.8 (3)
C5—C4—C13—C14130.1 (2)C41—C40—C49—C54118.2 (2)
N3—C4—C13—C18124.4 (2)N9—C40—C49—C50116.2 (2)
C5—C4—C13—C1853.0 (3)C41—C40—C49—C5063.7 (3)
C18—C13—C14—C151.0 (3)C54—C49—C50—C510.7 (3)
C4—C13—C14—C15175.98 (18)C40—C49—C50—C51177.40 (19)
C13—C14—C15—C161.1 (3)C49—C50—C51—C521.7 (3)
C14—C15—C16—C171.9 (3)C50—C51—C52—C530.8 (4)
C15—C16—C17—C180.7 (3)C51—C52—C53—C541.0 (4)
C16—C17—C18—C131.4 (3)C52—C53—C54—C492.0 (4)
C14—C13—C18—C172.2 (3)C50—C49—C54—C531.2 (3)
C4—C13—C18—C17174.75 (18)C40—C49—C54—C53179.2 (2)
N6—N5—C19—N4175.76 (16)N12—N11—C55—N10179.60 (19)
N6—N5—C19—S26.5 (3)N12—N11—C55—S41.4 (3)
C20—N4—C19—N5178.6 (2)C56—N10—C55—N117.7 (3)
C20—N4—C19—S23.4 (3)C56—N10—C55—S4171.4 (2)
Zn1—S2—C19—N513.04 (19)Zn2—S4—C55—N110.6 (2)
Zn1—S2—C19—N4169.19 (15)Zn2—S4—C55—N10179.63 (17)
C19—N4—C20—C21175.9 (2)C55—N10—C56—C5784.5 (3)
N5—N6—C22—C23174.90 (16)N11—N12—C58—C59177.58 (17)
Zn1—N6—C22—C230.5 (3)Zn2—N12—C58—C5912.4 (3)
N5—N6—C22—C314.2 (3)N11—N12—C58—C673.2 (3)
Zn1—N6—C22—C31179.56 (14)Zn2—N12—C58—C67166.85 (14)
N6—C22—C23—C24177.1 (2)N12—C58—C59—C60172.94 (19)
C31—C22—C23—C241.9 (3)C67—C58—C59—C606.3 (3)
C22—C23—C24—C25177.8 (2)C58—C59—C60—C61178.86 (19)
C23—C24—C25—C2616.0 (4)C59—C60—C61—C66171.7 (2)
C23—C24—C25—C30164.3 (2)C59—C60—C61—C628.0 (3)
C30—C25—C26—C271.0 (4)C66—C61—C62—C631.9 (3)
C24—C25—C26—C27179.4 (2)C60—C61—C62—C63177.8 (2)
C25—C26—C27—C280.3 (4)C61—C62—C63—C640.3 (3)
C26—C27—C28—C290.7 (5)C62—C63—C64—C651.0 (3)
C27—C28—C29—C300.4 (5)C63—C64—C65—C660.9 (3)
C28—C29—C30—C251.7 (4)C64—C65—C66—C610.7 (3)
C26—C25—C30—C292.0 (4)C62—C61—C66—C652.0 (3)
C24—C25—C30—C29178.3 (2)C60—C61—C66—C65177.6 (2)
N6—C22—C31—C3274.8 (3)N12—C58—C67—C72112.5 (2)
C23—C22—C31—C32106.1 (2)C59—C58—C67—C7268.2 (3)
N6—C22—C31—C36105.0 (2)N12—C58—C67—C6866.0 (3)
C23—C22—C31—C3674.1 (3)C59—C58—C67—C68113.2 (2)
C36—C31—C32—C331.8 (3)C72—C67—C68—C690.1 (3)
C22—C31—C32—C33178.02 (18)C58—C67—C68—C69178.50 (19)
C31—C32—C33—C340.6 (3)C67—C68—C69—C701.3 (3)
C32—C33—C34—C352.2 (3)C68—C69—C70—C711.5 (3)
C33—C34—C35—C361.4 (3)C69—C70—C71—C720.2 (3)
C34—C35—C36—C311.0 (3)C68—C67—C72—C711.4 (3)
C32—C31—C36—C352.6 (3)C58—C67—C72—C71177.18 (19)
C22—C31—C36—C35177.24 (19)C70—C71—C72—C671.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C13—C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S30.87 (2)2.65 (2)3.5077 (19)170 (2)
N7—H7N···N20.87 (2)2.10 (2)2.941 (2)164 (2)
N10—H10N···S2i0.87 (1)2.59 (2)3.318 (2)142 (2)
C11—H11···S40.952.863.715 (2)151
C8—H8···Cg1ii0.952.733.608 (2)154
C32—H32···Cg2iii0.952.643.532 (2)157
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y, z1/2; (iii) x, y1, z1/2.
Selected dihedral angles (°) for (I) top
Dihedral angleZn1,S1-ringZn1,S2-ringZn2,S3-ringZn2,S4-ring
Zn,S,C,N2/central phenyl74.54 (8)71.88 (8)64.79 (9)64.53 (8)
Zn,S,C,N2/terminal phenyl28.13 (8)20.17 (10)33.66 (11)7.89 (9)
Central phenyl/terminal phenyl62.67 (10)82.41 (11)84.36 (13)66.04 (10)
A comparison of some physical properties between the independent molecules comprising the asymmetric unit of (I) top
Moleculevolume, V3)area, A2)A:Vglobularity, Gasphericity, Ω
Zn1-molecule847.78646.010.7620.6710.062
Zn2-molecule853.45615.740.7220.7070.065
Summary of short inter-atomic contacts (Å) in (I) top
Contactdistancesymmetry operation
Zn1···H173.441/2 - x, - 1/2 + y, 1/2 - z
Zn2···H123.41x, y, z
Zn2···C113.942 (2)x, y, z
Zn2···C123.906 (2)x, y, z
Zn2···C653.735 (2)-x, 1 - y, 1 - z
Zn2···C663.938 (2)-x, 1 - y, 1 - z
H3A···H302.271/2 - x, 1/2 - y, 1 - z
H53···H532.23-x, y, 1/2 - z
H45···H542.37-x, 2 - y, 1 - z
C5···N73.214 (2)x, y, z
C71···N13.223 (3)-x, 1 - y, 1 - z
C66···S33.415 (2)x, 1 - y, 1 - z
C3···H302.871/2 - x, 1/2 - y, 1 - z
C6···H4N2.816 (15)1/2 - x, 1/2 + y, 1/2 - z
C7···H4N2.570 (12)1/2 - x, 1/2 + y, 1/2 - z
C8···H4N2.652 (15)1/2 - x, 1/2 + y, 1/2 - z
C19···H182.851/2 - x, -1/2 + y, 1/2 - z
C32···H62.741/2 - x, -1/2 + y, 1/2 - z
C33···H62.871/2 - x, -1/2 + y, 1/2 - z
C43···H3B2.85x, 1 + y, z
C44···H2B2.87x, 1 + y, z
C48···H3B2.82x, 1 + y, z
C51···H702.80-x, 2 - y, 1 - z
C60···H452.87-x, 2 - y, 1 - z
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for the Zn1-molecule, Zn2-molecule and (I) top
ContactPercentage contribution
Zn1-moleculeZn2-molecule(I)
H···H55.463.664.5
S···H/H···S12.111.28.5
N···H/H···N5.32.53.0
C···H/H···C24.117.320.5
C···N/N···C0.82.51.2
C···C1.51.01.1
C···S/S···C0.00.60.3
Zn···H/H···Zn0.80.60.5
Zn···C/C···Zn0.00.70.4
 

Footnotes

Additional correspondence author, e-mail: thahira@upm.edu.my.

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection. The authors are also grateful to Sunway University (INT-RRO-2017-096) for supporting this research.

References

First citationAfrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 94 306–314.  Web of Science CSD CrossRef Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasas, J. S., Garc\?ía-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Google Scholar
First citationDa Silva, J. G., PerdigÃo, C. C. H., Speziali, N. L. & Beraldo, H. (2013). J. Coord. Chem. 66, 385–401.  Web of Science CSD CrossRef CAS Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerraz, K. S. O., Silva, N. F., Da Silva, J. G., Speziali, N. L., Mendes, I. C. & Beraldo, H. (2012). J. Mol. Struct. 1008, 102–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeggers, E. (2009). Chem. Commun. pp. 1001–1010.  Web of Science CrossRef Google Scholar
First citationPawar, A. S., Mlowe, S., Garje, S. S., Akerman, M. P. & Revaprasadu, N. (2017). Inorg. Chim. Acta, 463, 7–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248 119–133.  Web of Science CrossRef CAS Google Scholar
First citationRijt, S. H. van & Sadler, P. J. (2009). Drug Discovery Today, 14, 1089–1097.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047–o1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2009). Acta Cryst. E65, m969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. https://dx.doi.org/10.1016/j.ccr.2017.01.009Google Scholar
First citationTomić, Z. D., Sredojević, D. & Zarić, S. D. (2006). Cryst. Growth Des. 6, 29–31.  Google Scholar
First citationUmamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationVikneswaran, R., Eltayeb, N. E., Ramesh, S. & Yahya, R. (2016). Polyhedron, 105, 89–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationViñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. 46, 150–159.  Web of Science PubMed Google Scholar
First citationWang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Struct. Chem. 20, 995–1003.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.  Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds