research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(N-{bis­­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)lanthanum(III)

aNational Taras Shevchenko University of Kyiv, Department of Chemistry, 12 Lva Tolstogo str., 01033 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", 60 Nauki ave., Kharkiv 61072, Ukraine
*Correspondence e-mail: AngelinaPritula@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 10 May 2017; accepted 15 June 2017; online 27 June 2017)

The asymmetric unit of [La(C20H21N3O3PS)3(C12H8N2)] is created by one LaIII ion, three deprotonated N-{bis­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidate (L) ligands and one 1,10-phenanthroline (Phen) mol­ecule. Each LaIII ion is eight-coordinated (6O+2N) by three phosphoryl O atoms, three sulfonyl O atoms of three L ligands and two N atoms of the chelating Phen ligand, leading to the formation of six- and five-membered metallacycles, respectively. The lanthanum coordination polyhedron has a bicapped trigonal–prismatic geometry. `Sandwich-like' intra­molecular ππ stacking inter­actions are observed between the 1,10-phenanthroline ligand and two benzene rings of two different L ligands. The phenyl rings of L that are not involved in the stacking inter­actions show minor positional disorder. Mol­ecules form layers parallel to the (010) plane due to weak C—H⋯O inter­molecular hydrogen bonds. Unidentified highly disordered solvate mol­ecules that occupy ca 400 Å3 large voids have been omitted from the refinement model.

1. Chemical context

β-Diketone derivatives have been the topic of investigations in many different branches of the chemical science, such as organic, coordination, bio- and theoretical chemistry. Of special inter­est have been carbacyl­amido­phosphates (CAPh), containing the functional fragment C(O)NHP(O), because of their properties as extractants (Morgalyuk et al., 2005[Morgalyuk, V. P., Safiulina, A. M., Tananaev, I. G., Goryunov, E. I., Goryunova, I. B., Molchanova, G. N., Baulina, T. V., Nifant'ev, E. E. & Myasoedov, B. F. (2005). Dokl. Chem. 403, 126-128.]; Safiulina et al., 2015[Safiulina, A. M., Matveeva, A. G., Lizunov, A. V., Bodrin, G. V., Goryunov, E. I., Grigor'ev, M. S., Semenov, A. A., Brel, V. K. & Nifant'ev, E. E. (2015). Dokl. Chem. 460, 57-60.]), urease inhibitors (Jaroslav & Swerdloff, 1985[Jaroslav, K. & Swerdloff, F. (1985). US Patent 4 517 003.]), enzyme inhibitors (Grimes et al., 2008[Grimes, K. D., Lu, Y.-J., Zhang, Y.-M., Luna, V. A., Hurdle, J. G., Carson, E. I., Qi, J., Sucheta Kudrimoti, S., Rock, C. O. & Lee, R. E. (2008). ChemMedChem, 12, 1936-1945.]; Adams et al., 2002[Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004-2005.]), their anti­bacterial properties (Oroujzadeh et al., 2017[Oroujzadeh, N., Gholivand, K. & Jamalabadi, N. R. (2017). Polyhedron, 122, 29-38.]) and anti­cancer activity (Kovalchyk et al., 1991[Kovalchyk, T. V., Kudryavtseva, I. G., Sharykina, N. I. & Arzyaeva, E. A. (1991). Khim. Farm. Zh. 6, 63-64.]; Amirkhanov et al., 1995[Amirkhanov, V., Janczak, C., Macalik, L., Hanuza, J. & Legendziewicz, J. (1995). J. Appl. Spectrosc. 62, 613-624.]). The presence of the phosphoryl group gives them a high affinity towards highly charged metal ions, and these types of compounds are used in the coordination chemistry of lanthanides and actinides (Litsis et al., 2010[Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426-m427.], 2017[Litsis, O. O., Sliva, T. Y., Amirkhanov, V. M., Kolomzarov, Y. V. & Minakova, I. E. (2017). Proc. Int. Conf. Adv. Optoelectronics and Lasers, CAOL., Article number 7851409, 151-153.]; Kariaka et al., 2013[Kariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143.]). Many efforts have been devoted to the synthesis of another type of structural analogs of β-diketones – sulfonyl­amido­phosphates (SAPh) with the structural fragment S(O)2NHP(O). These types of compounds were first synthesized by Kirsanov (Kirsanov & Shevchenko, 1954[Kirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. pp. 1980-1993.]) and some have since been used as bactericidal agents in medicine and toxicology (Xu & Angell, 2000[Xu, K. & Angell, C. A. (2000). Inorg. Chim. Acta, 298, 16-23.]), while others have found use as pesticides (Kishino & Saito, 1979[Kishino, S. & Saito, S. (1979). US Patent 4 161 524.]). In addition, these compounds are potentially bidentate O,O-donor chelating ligands for metal ions, similar to other deprotonated phospho­rylic ligand derivatives (Znovjyak et al., 2015[Znovjyak, K. O., Seredyuk, M., Kusz, J., Nowak, M., Moroz, O. V., Sliva, T. Yu. & Amirkhanov, V. M. (2015). J. Mol. Struct. 1100, 145-149.]; Amirkhanov et al., 2014[Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Sliva, T. Y., Penkova, L. V., Yushchenko, T., Szyrwiel, L., Konovalova, I. S., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). Eur. J. Inorg. Chem. 2014, 3720-3730.]; Litsis et al., 2016[Litsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341-355.]; Shatrava et al., 2016a[Shatrava, I., Gubina, K., Ovchynnikov, V., Dyakonenko, V. & Amirkhanov, V. (2016a). Acta Cryst. E72, 1683-1686.]). For details of the coordination chemistry of phospho­rylic ligands in mol­ecular form, see Gholivand et al. (2012[Gholivand, K., Oroujzadeh, N. & Rajabi, M. (2012). J. Iran. Chem. Soc. 9, 865-876.], 2014[Gholivand, K., Molaei, F., Oroujzadeh, N., Mobasseri, R. & Naderi-Manesh, H. (2014). Inorg. Chim. Acta, 423, 107-116.]), Yizhak et al. (2013[Yizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). Polyhedron, 62, 293-299.]) and Shatrava et al. (2016b[Shatrava, I., Ovchynnikov, V., Gubina, K., Shishkina, S., Shishkin, O. & Amirkhanov, V. (2016b). Struct. Chem. 27, 1413-1425.]).

Recently, we reported the preparation and study of the coordination properties of several representatives of sulfonyl­amido­phosphates: meth­yl(phenyl­sulfon­yl)amido­phosphate [PhSO2NHP(O)(OMe)2] (Moroz et al., 2007[Moroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175-m3176.]) and particularly the photophysical properties of a series of NIR-emitting lanthanide complexes (Kulesza et al., 2010[Kulesza, D., Sobczyk, M., Legendziewicz, J., Moroz, O. & Amirkhanov, V. (2010). Struct. Chem. 21, 425-438.]). It was shown that the solid-state decay time for the ytterbium complex is one of the longest of all known YbIII complexes with organic ligands. It is expected that depending on the nature of substituents attached to the phospho­rus and sulfur atoms, these organic compounds and their complexes might demonstrate unique specific physicochemical properties. Optical studies of the etheric type SAPh ligands dimeth­yl(4-methyl­phenyl­sulfon­yl)amido­phosphate [(Me)PhSO2NHP(O)(OMe)2] and dimethyl 2-naphthyl­sulfonyl­amido­phosphate [(C10H7)SO2NHP(O)(OMe)2] indicate that the ligand first excited singlet state plays a dominant role in intra­molecular energy transfer processes in these Ln complexes (Kasprzycka et al., 2016[Kasprzycka, E., Trush, V. A., Amirkhanov, V. M., Jerzykiewicz, L., Malta, O. L., Legendziewicz, J. & Gawryszewska, P. (2016). Chem. Eur. J. 22, 1-14.]).

Knowledge of the crystal structure is an essential part of understanding the luminescent properties of these types of lanthanide complexes. In this paper we would therefore like to report the mol­ecular and crystal structure of a lanthanum coordination compound based on the amidic type SAPh ligand N-(meth­yl(phenyl­amino)­phosphor­yl)benzene­sulfon­amide (HL) [PhSO2NHP(O)(N(Me)Ph)2] with the general formula La(L)3Phen.

[Scheme 1]

2. Structural commentary

The title compound La(L)3Phen crystallizes with one mol­ecule in the asymmetric unit (Fig. 1[link]). The coordination environment of the La atom consists of two nitro­gen atoms of 1,10-phenanthroline and six oxygen atoms from the three acido-SAPh ligands.

[Figure 1]
Figure 1
Structural representation of LaL3Phen with partial atom-numbering scheme. Displacement ellipsoid are drawn at the 50% probability level and H atoms have been omitted for clarity.

The La—O(S) bond lengths [2.516 (2)–2.541 (2) Å] are all longer than those of their La—O(P) counterparts [2.424 (2)–2.463 (2) Å], with mean values of 2.435 and 2.456 Å, respectively. The mean average of all La—O bond lengths is 2.476 Å. The La—N distances are with 2.699 (3) and 2.700 (3) Å (mean value 2.693 Å) shorter than those previously obtained for a 1,10-phenanthrolinate lanthanum (III) complex with hexa­fluoro­acetyl­acetonate (2.747–2.782 Å; Rogachev et al., 2005[Rogachev, A., Minacheva, L., Sergienko, V., Malkerova, I., Alikhanyan, A., Stryapan, V. & Kuzmina, N. (2005). Polyhedron, 24, 723-729.]) and longer than La—N bonds in a carbacyl­amido­phosphate ligand complex (2.601–2.635 Å; Litsis et al., 2015[Litsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). Dalton Trans. 44, 15508-15522.]; Sokolnicki et al., 1999[Sokolnicki, J., Legendziewicz, J., Amirkhanov, W., Ovchinnikov, V., Macalik, L. & Hanuza, J. (1999). Spectrochim. Acta A, 55, 349-367.]).

The SAPh ligands coordinate to the lanthanide atom in the acido form in a bidentate manner with formation of six-membered metallocycles with partial delocalization of π-electron density. The values of the S—O and P—O bonds are at 1.462 (3)–1.474 (2) Å and 1.491 (2)–1.494 (2) Å in their expected ranges. The mean values are 1.468 and 1.492 Å, respectively. The corresponding bond lengths in the related neutral ligands are around 1.42 Å (Moroz et al., 2012[Moroz, O., Trush, V., Znovjyak, K., Konovalova, I., Omelchenko, I., Sliva, T., Shishkin, O. & Amirkhanov, V. (2012). J. Mol. Struct. 1017, 109-114.]) and 1.48 Å (Znovjyak et al., 2009[Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V. & Amirkhanov, V. M. (2009). Acta Cryst. E65, o2812.]). The S—O bonds of the SAPh ligands of the non-coordinating oxygen atom are systematically shorter [1.432 (3)–1.437 (3) Å], indicating more S=O double-bond character than for the coordinating O atoms.

The six-membered metallocyclic rings with the chelate (O)PNS(O) fragments are all non-planar. The La1–O1–P1–N1–S1–O1 (A) and La1–O3–P3–N3–S3–O9 (B) rings both adopt twist-boat conformations (puckering parameters are: S = 0.61, ψ = 22.11°, θ = 79.68° for A and S = 0.75, ψ = 24.44°, θ = 87.28° for B, respectively (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.])). The deviations of the N1 and O1 atoms from the mean plane through the remaining atoms of A (r.m.s.deviation = 0.06 Å) are 0.78 and 0.41 Å, respectively. The deviations of the La1 and O3 atoms from the mean plane through the remaining atoms of B (r.m.s.deviation = 0.06 Å) are 0.9 and 0.88 Å, respectively. The La1–O2–P2–N2–S2–O7 (C) ring adopts a flattened half-chair conformation (puckering parameters are: S = 0.71, ψ = 16.51°, θ = 20.43°). The deviation of the La1 atom from the mean plane carried through the remaining atoms of ring C (r.m.s.deviation 0.02 Å) is 0.36  Å.

The δ-criterions were used to characterize the lanthanum ion eight-apical coordination polyhedron (Porai-Koshits & Aslanov, 1972[Porai-Koshits, M. & Aslanov, L. (1972). Zh. Strukt. Khim. 13, 266-276.]). The set of the angles δ between pairs of the faces inter­secting along the type b edges (shown in Fig. 2[link]) allows us to assign a distorted bicapped trigonal–prismatic environment (δ1 = 9.48°, δ2 = 18.48°, δ3 = 43.57°, δ4 = 44.89°, φ1 = 12.47°, φ2 = 16.05°) similar to that of the Tb(Pip)3(Phen) mixed-ligand complex with 2,2,2-tri­chloro-N-(dipiperidin-1-yl-phosphor­yl)acetamide, HPip (Litsis et al., 2015[Litsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). Dalton Trans. 44, 15508-15522.]).

[Figure 2]
Figure 2
The coordination polyhedron around the central LaIII atom in LaL3Phen with b parameters indicated.

Intra­molecular `sandwich-like' ππ-stacking inter­actions are observed between the 1.10-phenanthroline fragments and two phenyl rings of the two SAPh ligands of the title mol­ecule. The central ring C66(π)⋯C69(π) of the 1,10-phenanthroline mol­ecule inter­acts with the C41(π)⋯C46(π) phenyl ring at the sulfonyl group from another ligand [inter­planar angle 2.8 (1)°, inter­centroid distance 3.646 (2) Å, inter­planar separation 3.38–3.41 Å, plane shift 1.29–1.36 Å], and with the C8(π)⋯C13(π) ring at the phosphoryl group from the other ligand [inter­planar angle 2.5 (2)°, inter­centroid distance 3.879 (3) Å, inter­planar separation 3.49–3.52 Å, plane shift 1.62–1.69 Å]. A similar intra­molecular organization was described previously for related compounds (Beloso et al., 2003[Beloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2003). Polyhedron, 22, 1099-1111.]).

3. Supra­molecular features

In the crystal phase, the La(L)3Phen mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]), forming double layers parallel to the (010) plane (Fig. 3[link]). There are solvent-accessible voids with a total volume of 380 Å3. The content of the voids is not resolved in difference-density maps, with the largest residual electron density peak being only 0.66 electrons per Å3. A SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) analysis indicated an overall electron count matching approximately three mol­ecules of the solvent (2-propanol) per unit cell, but did not improve R values or other quality indicators (see Refinement section).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C70—H70⋯O4i 0.93 2.67 3.444 (6) 139
C56—H56⋯O4ii 0.93 2.71 3.448 (5) 136
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal packing of LaL3Phen. The view is along the crystallographic a axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for SAPh ligand analogues with derivatives of the N-(bis­(di­amino)­phosphor­yl)sulfonamide fragments yielded five hits, with only one metal complex structure with a neodymium metal atom among them (Shatrava et al., 2010[Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397-m398.]). In this mol­ecule, the neodymium atom is also octa­coordinated, with a highly symmetrical NdO8 polyhedron and no coordinating N atoms.

A search for phenanthrolinate REE complexes with other SAPh-type ligands returned one entry for tris­(dimethyl (phenyl­sulfon­yl)phospho­ramidato-O,O′)-(1,10-phenanthroline-N,N′)-erbium(III) (SAPHICP; Gawryszewska et al., 2011[Gawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. Chem. 217, 1-9.]).

A search for octa­coordinated La complexes with an LaN2O6 environment yielded 20 hits, with average La—O and La—N bond lengths of 2.476 and 2.693 Å, respectively. 11 complex structures with different lanthanoid metals (Ln) containing Ln–O–P–N–S–O metallocycles were found in the database, all with octa­coordinated metal atoms. Most of those metallacyclic rings are non-planar with mean deviations of the O and N atoms of 0.329 and 0.434 Å, respectively.

5. Synthesis and crystallization

1H and 31P NMR spectra in DMSO-d6 solutions were recorded on a Varian 400 NMR spectrometer at room temperature. 1H chemical shifts were determined relative to the inter­nal standard TMS whereas 31P chemical shifts were determined relative to 85% H3PO4 as an external standard. Infrared (FTIR) spectra were recorded on a Perkin–Elmer Spectrum BX spectrometer using KBr pellets. The resolution of the FTIR spectra is 1 cm−1.

Sulfonyl­amido­phosphate ligand N-(meth­yl(phenyl­amino)­phosphor­yl)benzene­sulfonamide (HL) was synthesized via a three-step procedure based on the Kirsanov reaction (Kirsanov & Shevchenko, 1954[Kirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. pp. 1980-1993.]). 1H NMR (400 MHz, DMSO-d6, 293 K) δ 2.95 (d, J = 7.6, 6H, CH3), 7.05 (t, J = 5.6, 2H, γ-CHphenyl­amino), 7.14 (d, J = 6.4, 4H, α-CHphenyl­amino), 7.21 (t, J = 6.2, 4H, β-CHphenyl­amino), 7.56 (t, J = 6.2, 2H, β-CH), 7.65 (t, J = 6.2, 1H, γ-CH), 7.91 (d, J = 6.0, 2H, α-CH).

IR (KBr pellet, cm−1): 3062 [m, ν (C—Haliph)], 2948 [m, ν (C—Harom)], 2780 [m, ν(N—H)], 2705 [m, ν(C—Harom)], 2655 [w, ν(C—Harom)], 1594 [s, ν(S=N)], 1495 (s), 1446 (m), 1400 (m), 1330 [s, ν(S=O2)], 1279 (m), 1220 [ws, ν(P=O)], 1168 [s, ρ(CH3)], 1084 (m), 1069 (m), 1028 (m), 920 [ws, ν(P—N)], 887 (ws), 765 (s), 758 (s), 723 (m), 696 (s), 685 (s), 602 (m), 573 (m), 558 (m), 551 (m), 542 (m), 508 (s), 490 (m), 442 (w).

The sodium salt (NaL) was prepared by the reaction between equimolar amounts of sodium methano­late (0.069 g, 3 mmol of Na was dissolved in 20 ml of methanol) and HL (1.39 g, 3 mmol) in an methanol medium (20 ml). The mixture was heated with magnetic stirring at 337 K for 10 min. The resulting solution was evaporated and the fine crystalline powder was isolated (yield 83%) and washed with 2-propanol. Dry product NaL was used for the preparation of the complexes. 1H NMR (400 MHz, DMSO-d6, 290 K) δ 3.46 (s, 3H, CH3), 3.48 (s, 3H, CH3), 7.26 (t, J = 7.2, 2H, γ-CHphenyl­amino), 7.53 (t, J = 8, 4H, β-CHphenyl­amino), 7.6 (d, J = 8.4, 4H, α-CHphenyl­amino), 7.77 (m, 5H, CH). 31P NMR (400 MHz, DMSO-d6, 290 K) δ 54.01.

IR (KBr pellet, cm−1): 3068 [m, ν (C—Haliph)], 2944 [m, ν(C—Harom.)], 2704 [m, ν(C—Harom)], 2660 [w, ν(C—Harom)], 1581 [s, ν(S=N)], 1490 (s), 1410 [m, ν(C=C)], 1263 [s, ν(S=O2)], 1271 (m), 1173 [ws, ν(P=O)], 1165 [s, ρ(CH3)], 1080 (m), 1031 (m), 891 [ws, ν(P—N], 870 (ws), 761 (s), 747 (s), 720 (m), 695 (s), 680 (s), 573 (m), 551 (m), 540 (m), 503 (s), 485 (m), 432 (w).

Preparation of La(L)3Phen. NaL (0.728 g, 1.5 mmol) was dissolved in 7 ml of 2-propanol and was added to a solution of 1,10-phenanthroline monohydrate (0.0991 g, 0.5 mmol) in 2 ml of 2-propanol. Then the mixture was heated to 340 K and poured into a solution of La(NO3)3·6H2O (0.216 g, 0.5 mmol) in 5 ml of 2-propanol heated to 340 K. After 10 minutes, the resulting mixture was filtered from sodium nitrate and the filtrate was left in a desiccator above CaCl2 at room temperature. Similar compounds were obtained for Ln3+ = Pr, Nd, Eu, Ho, Tb and Lu.

Crystals of the complexes formed after 1–2 days, were filtered and washed with cooled 2-propanol and dried in air (yield 82-86%). The complexes, as prepared, are soluble in non-polar aprotic solvents, and are less soluble in acetone and alcohols. Crystalline powder of La(L)3Phen was recrystallized from a 2-propanol/methanol mixture (5:1, v/v) to give colourless prisms (0.65 g, 0.5 mmol, 84%). 1H NMR (400 MHz, DMSO-d6, 293 K) δ 2.87 (s, 9H, CH3), 2.9 (s, 9H, CH3), 7.32 (t, J = 7.2, 6H, γ-CHphenyl­amino), 7.57 (t, J = 8, 12H, β-CHphenyl­amino), 7.62 (d, J = 8.4, 12H, α-CHphenyl­amino), 7.74 (m, 15H, CH),7.69 (m, 2H, Phen), 7.89 (m, 2H, Phen), 8.41 (d, 2H, Phen), 9.12 (d, 2H, Phen). 31P NMR (400 MHz, DMSO-d6, 290 K) δ 45.1.

IR (KBr pellet, cm−1): 3067 [m, ν (C—Haliph)], 2943 [m, ν (C—Harom)], 2704 [m, ν(C-Harom)], 2660 [w, ν(C—Harom)], 1564 [m, ν(C=N], 1572 [s, ν(S=N)], 1490 (s), 1413 [m, ν(C=C)], 1252 [s, ν(S=O2)], 1243 [m, ν(C—N] + ν(C—C)], 1270 (m), 1164 [ws, ν(P=O)], 1165 [s, ρ(CH3)], 1082 (m), 1030 (m), 990 [m, δ(CCNamine)], 892 [ws, ν(P—N], 874 (ws), 763 (s), 747 (s), 720 (m), 678 (s), 682 (s), 564 (m), 547 (m), 534 (m), 502 (s), 485 (m), 427 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating-group model was applied for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula [La(C20H21N3O3PS)3(C12H8N2)]
Mr 1562.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.2213 (2), 42.2455 (7), 15.5956 (3)
β (°) 108.222 (2)
V3) 7648.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2016[Agilent (2016). CrysAlis PRO. Agilent Technologies Inc., Yarnton, England.])
Tmin, Tmax 0.963, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 43241, 16526, 13120
Rint 0.027
(sin θ/λ)max−1) 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.08
No. of reflections 16526
No. of parameters 1015
No. of restraints 576
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.48
Computer programs: CrysAlis PRO (Agilent, 2016[Agilent (2016). CrysAlis PRO. Agilent Technologies Inc., Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Phenyl ring C1–C6 was refined as disordered over two positions A and B with refined occupancies of 0.50 (3) for both disorder components. The phenyl rings C15–C20, C21–C26 were refined as disordered over two positions with refined occupancies of 0.555 (17) and 0.445 (17), respectively. The bond lenghts C21A—C22A, C22A—C23A, C23A—C24A, C24A—C25A, C25A—C26A, C26A—C21A, C21—C22, C22—C23, C23—C24, C24—C25, C25—C26 and C26—C21 were restrained to have a value of 1.38 (1) Å (using a DFIX restraint). The ring carbon atoms C21A, C26A, C25A, C24A, C23A, C22A as well as C21, C22, C23, C24, C25, C26 were restrained to have planar geometries (within 0.01 Å, using a FLAT restraint). Anisotropic parameters of all C atoms of disordered rings were restrained to have approximately similar values to within 0.01 Å2 (using a SIMU restraint).

During the refinement, several small isolated electron-density peaks were located in solvent-accessible voids that were believed to be solvent mol­ecules. The largest residual electron peak accounted to 0.66 e Å3. Satisfactory results (R1 = 5.01%) were obtained modeling disordered C and O atoms, but very large displacement parameters for them were observed. The SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) implemented in PLATON indicated two solvent cavities each of volume 380 A3, each containing approximately 52 electrons, which corresponds to approximately three mol­ecules of the solvent (2-propanol) per cell. However, the difference in R1 values for the structures with and without the SQUEEZE procedure implemented was rather small (0.5%). In the final refinement, the isolated peaks in the solvent-accessible voids were ignored.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2016); cell refinement: CrysAlis PRO (Agilent, 2016); data reduction: CrysAlis PRO (Agilent, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(N-{bis[methyl(phenyl)amino]phosphoryl}benzenesulfonamidato-κ2O,O')(1,10-phenanthroline-κ2N,N')lanthanum(III) top
Crystal data top
[La(C20H21N3O3PS)3(C12H8N2)]F(000) = 3208
Mr = 1562.39Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2213 (2) ÅCell parameters from 14527 reflections
b = 42.2455 (7) Åθ = 2.9–27.6°
c = 15.5956 (3) ŵ = 0.76 mm1
β = 108.222 (2)°T = 293 K
V = 7648.1 (2) Å3Block, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
16526 independent reflections
Radiation source: Enhance (Mo) X-ray Source13120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1827 pixels mm-1θmax = 27.7°, θmin = 2.9°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2016)
k = 4955
Tmin = 0.963, Tmax = 1.000l = 1619
43241 measured reflections
Refinement top
Refinement on F2576 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0547P)2 + 4.2326P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
16526 reflectionsΔρmax = 0.66 e Å3
1015 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.09120 (2)0.35503 (2)0.43119 (2)0.03134 (6)
S10.21614 (8)0.34454 (2)0.28067 (7)0.0450 (2)
S20.00520 (9)0.42066 (2)0.55977 (7)0.0483 (2)
S30.33083 (7)0.31661 (2)0.61269 (6)0.0430 (2)
P10.06748 (9)0.36460 (2)0.18902 (6)0.0439 (2)
P20.15801 (9)0.44041 (2)0.47608 (7)0.0480 (2)
P30.11147 (8)0.30133 (2)0.61951 (6)0.0378 (2)
O10.0235 (2)0.37287 (6)0.27530 (15)0.0435 (6)
O20.1744 (2)0.40764 (5)0.44636 (17)0.0432 (6)
O30.05751 (19)0.31109 (5)0.52365 (15)0.0393 (5)
O40.2988 (2)0.31980 (6)0.2749 (2)0.0610 (8)
O50.1245 (2)0.34570 (6)0.36742 (17)0.0475 (6)
O60.1236 (3)0.43021 (9)0.5311 (2)0.0824 (10)
O70.0112 (2)0.38806 (6)0.53354 (18)0.0522 (7)
O80.4363 (2)0.32486 (7)0.68112 (19)0.0567 (7)
O90.27345 (19)0.34382 (6)0.55776 (17)0.0434 (6)
N10.1691 (3)0.34263 (8)0.1991 (2)0.0484 (8)
N20.0722 (4)0.44426 (8)0.5338 (3)0.0708 (11)
N30.2496 (2)0.29808 (7)0.6524 (2)0.0441 (7)
N40.0168 (3)0.34447 (8)0.1181 (2)0.0544 (8)
N50.1155 (3)0.39885 (8)0.1385 (2)0.0544 (8)
N60.1081 (3)0.46540 (7)0.3910 (2)0.0550 (8)
N70.2845 (3)0.45430 (7)0.5354 (2)0.0581 (9)
N80.0813 (3)0.32513 (7)0.6930 (2)0.0453 (7)
N90.0579 (2)0.26692 (7)0.63781 (19)0.0424 (7)
N100.0939 (3)0.30261 (7)0.3329 (2)0.0427 (7)
N110.2631 (2)0.34687 (7)0.3593 (2)0.0405 (7)
C10.2863 (19)0.3812 (3)0.2737 (14)0.052 (2)0.50 (3)
C20.3688 (18)0.3912 (4)0.1948 (12)0.061 (2)0.50 (3)
H20.3925240.3777310.1452580.074*0.50 (3)
C30.4157 (13)0.4214 (4)0.1900 (12)0.069 (3)0.50 (3)
H30.4708640.4280820.1372920.083*0.50 (3)
C40.3802 (13)0.4415 (3)0.2641 (14)0.069 (3)0.50 (3)
H40.4116010.4616760.2609140.083*0.50 (3)
C50.2978 (14)0.4315 (3)0.3429 (12)0.068 (3)0.50 (3)
H50.2739980.4449190.3925010.081*0.50 (3)
C60.2508 (16)0.4013 (4)0.3477 (12)0.059 (2)0.50 (3)
H60.1956570.3945680.4004680.070*0.50 (3)
C70.0699 (4)0.31454 (12)0.0784 (3)0.0752 (14)
H7A0.1044190.3171090.0144350.113*
H7B0.1280130.3085910.1049010.113*
H7C0.0120790.2983270.0898990.113*
C80.0783 (4)0.35548 (12)0.0932 (3)0.0619 (12)
C90.1344 (4)0.38299 (14)0.1247 (3)0.0779 (14)
H90.1088450.3956820.1632890.094*
C100.2290 (5)0.39237 (18)0.1001 (4)0.104 (2)
H100.2653000.4113990.1219040.124*
C110.2698 (6)0.3743 (2)0.0446 (5)0.117 (3)
H110.3331530.3808650.0282540.140*
C120.2173 (6)0.3471 (2)0.0142 (4)0.116 (3)
H120.2456070.3343650.0227790.139*
C130.1217 (5)0.33734 (15)0.0363 (3)0.0872 (17)
H130.0856880.3184260.0129070.105*
C140.0865 (5)0.42850 (10)0.1906 (3)0.0755 (14)
H14A0.0266210.4393430.1746860.113*
H14B0.0604920.4237030.2539860.113*
H14C0.1535770.4417580.1772170.113*
C150.1910 (9)0.4014 (3)0.0472 (7)0.068 (2)0.555 (17)
C200.2460 (12)0.3743 (3)0.0040 (9)0.083 (2)0.555 (17)
H200.2314490.3548760.0332880.100*0.555 (17)
C190.3227 (11)0.3763 (2)0.0830 (9)0.096 (2)0.555 (17)
H190.3594680.3581980.1119610.115*0.555 (17)
C180.3444 (10)0.4054 (3)0.1268 (6)0.107 (3)0.555 (17)
H180.3957340.4067260.1850360.128*0.555 (17)
C170.2894 (13)0.4325 (2)0.0836 (6)0.109 (3)0.555 (17)
H170.3039830.4519340.1128630.131*0.555 (17)
C160.2127 (11)0.4305 (3)0.0035 (6)0.095 (3)0.555 (17)
H160.1759630.4486130.0323860.114*0.555 (17)
C210.0248 (11)0.4209 (3)0.6771 (10)0.068 (2)0.566 (10)
C220.1270 (12)0.4307 (3)0.7356 (7)0.090 (2)0.566 (10)
H220.1844820.4380130.7131440.108*0.566 (10)
C230.1468 (12)0.4301 (3)0.8282 (7)0.107 (3)0.566 (10)
H230.2168460.4369440.8676070.129*0.566 (10)
C240.0619 (11)0.4193 (3)0.8606 (8)0.104 (3)0.566 (10)
H240.0743030.4186700.9225280.125*0.566 (10)
C250.0430 (11)0.4093 (2)0.8014 (6)0.090 (3)0.566 (10)
H250.1007270.4020680.8237590.108*0.566 (10)
C260.0615 (11)0.4100 (3)0.7091 (6)0.073 (2)0.566 (10)
H260.1312920.4032550.6691710.087*0.566 (10)
C270.0007 (4)0.48296 (11)0.3751 (4)0.0812 (15)
H27A0.0131790.5017050.4117760.122*
H27B0.0557230.4698280.3906650.122*
H27C0.0302580.4887950.3126120.122*
C280.1839 (4)0.47542 (10)0.3434 (3)0.0586 (11)
C290.2027 (6)0.50751 (12)0.3317 (4)0.0901 (18)
H290.1625590.5228550.3524670.108*
C300.2813 (7)0.51618 (15)0.2891 (4)0.113 (2)
H300.2936040.5375520.2810540.136*
C310.3408 (6)0.49438 (18)0.2589 (4)0.107 (2)
H310.3947050.5007240.2314590.128*
C320.3219 (5)0.46320 (14)0.2685 (4)0.0903 (17)
H320.3621440.4481450.2468370.108*
C330.2442 (4)0.45371 (11)0.3099 (3)0.0692 (13)
H330.2316810.4322080.3155570.083*
C340.2921 (5)0.48750 (10)0.5680 (4)0.0888 (17)
H34A0.2264850.4922180.5870970.133*
H34B0.2934940.5015750.5200060.133*
H34C0.3612920.4901710.6178800.133*
C350.3906 (4)0.43815 (9)0.5492 (3)0.0551 (10)
C360.4730 (5)0.44964 (13)0.5137 (4)0.0835 (15)
H360.4598420.4681950.4798940.100*
C370.5769 (5)0.43299 (18)0.5291 (5)0.112 (2)
H370.6327230.4407430.5054870.134*
C380.5972 (5)0.40600 (15)0.5775 (5)0.106 (2)
H380.6665820.3952850.5877850.127*
C390.5164 (5)0.39483 (12)0.6105 (4)0.0897 (18)
H390.5298420.3759390.6427040.108*
C400.4136 (4)0.41046 (10)0.5981 (3)0.0666 (12)
H400.3595870.4022680.6229540.080*
C410.3684 (2)0.29128 (6)0.53707 (17)0.0500 (9)
C460.4646 (2)0.29880 (7)0.5116 (2)0.0720 (13)
H460.5083730.3165660.5357330.086*
C450.4954 (3)0.27976 (10)0.4502 (2)0.097 (2)
H450.5597690.2847940.4331800.117*
C440.4300 (4)0.25321 (9)0.4142 (2)0.095 (2)
H440.4506030.2404720.3730760.114*
C430.3338 (3)0.24569 (6)0.4396 (2)0.0822 (16)
H430.2900400.2279220.4155240.099*
C420.3030 (2)0.26472 (6)0.5011 (2)0.0619 (11)
H420.2386430.2596930.5180780.074*
C470.1695 (4)0.34395 (13)0.7563 (4)0.0796 (15)
H47A0.2028040.3320590.8106800.119*
H47B0.1358220.3630290.7701680.119*
H47C0.2283740.3492360.7298990.119*
C480.0333 (3)0.32679 (9)0.6974 (3)0.0494 (9)
C490.0540 (4)0.32713 (12)0.7796 (3)0.0724 (13)
H490.0076020.3266560.8327780.087*
C500.1649 (5)0.32817 (13)0.7834 (4)0.0881 (18)
H500.1775110.3279550.8392060.106*
C510.2559 (5)0.32950 (13)0.7070 (5)0.0880 (17)
H510.3306610.3304330.7100340.106*
C520.2367 (4)0.32944 (12)0.6257 (4)0.0796 (15)
H520.2989560.3300680.5729210.096*
C530.1264 (3)0.32847 (11)0.6202 (3)0.0609 (11)
H530.1148140.3289550.5640680.073*
C540.1050 (4)0.25407 (10)0.7293 (3)0.0606 (11)
H54A0.1113910.2706990.7725540.091*
H54B0.1798220.2452230.7369020.091*
H54C0.0547220.2378550.7384220.091*
C550.0178 (3)0.24399 (9)0.5675 (3)0.0476 (9)
C560.0768 (4)0.21643 (11)0.5693 (3)0.0686 (12)
H560.1439710.2126390.6165640.082*
C570.0383 (6)0.19425 (14)0.5025 (4)0.102 (2)
H570.0791990.1755410.5046960.123*
C580.0584 (7)0.19952 (16)0.4338 (5)0.106 (2)
H580.0830210.1845670.3879850.127*
C590.1203 (5)0.22615 (16)0.4302 (4)0.098 (2)
H590.1877950.2293740.3827250.118*
C600.0821 (4)0.24920 (12)0.4990 (3)0.0752 (14)
H600.1244090.2676030.4975800.090*
C610.0147 (3)0.28047 (9)0.3229 (3)0.0513 (10)
H610.0397450.2829370.3528040.062*
C620.0086 (4)0.25364 (10)0.2700 (3)0.0646 (12)
H620.0477290.2383660.2655930.077*
C630.0863 (4)0.25026 (10)0.2250 (3)0.0667 (12)
H630.0831680.2325400.1889120.080*
C640.1706 (4)0.27301 (9)0.2323 (3)0.0527 (10)
C650.1723 (3)0.29913 (8)0.2882 (2)0.0410 (8)
C660.2602 (3)0.32280 (8)0.3012 (2)0.0411 (8)
C670.2540 (4)0.27103 (11)0.1862 (3)0.0675 (13)
H670.2526590.2538580.1486140.081*
C680.3341 (4)0.29336 (12)0.1960 (3)0.0654 (12)
H680.3860270.2917790.1635060.078*
C690.3421 (3)0.31963 (10)0.2552 (3)0.0529 (10)
C700.4295 (4)0.34229 (12)0.2727 (3)0.0643 (12)
H700.4853260.3410810.2437430.077*
C710.4331 (4)0.36611 (12)0.3321 (3)0.0668 (12)
H710.4915210.3811510.3447380.080*
C720.3477 (3)0.36758 (10)0.3734 (3)0.0513 (9)
H720.3502450.3841250.4133560.062*
C21A0.0465 (16)0.4224 (4)0.6769 (14)0.071 (3)0.434 (10)
C26A0.0189 (15)0.4148 (4)0.7314 (9)0.083 (3)0.434 (10)
H26A0.0946910.4083650.7049100.099*0.434 (10)
C25A0.0245 (15)0.4165 (3)0.8243 (9)0.097 (3)0.434 (10)
H25A0.0206090.4113800.8604860.117*0.434 (10)
C24A0.1374 (15)0.4262 (4)0.8614 (10)0.104 (3)0.434 (10)
H24A0.1687150.4274790.9238170.124*0.434 (10)
C23A0.2057 (15)0.4341 (3)0.8077 (8)0.108 (3)0.434 (10)
H23A0.2814720.4406050.8343700.130*0.434 (10)
C22A0.1601 (16)0.4321 (4)0.7136 (9)0.090 (3)0.434 (10)
H22A0.2045490.4372060.6768400.108*0.434 (10)
C15A0.1797 (13)0.4014 (4)0.0492 (9)0.071 (2)0.445 (17)
C20A0.2576 (15)0.3789 (4)0.0009 (12)0.082 (3)0.445 (17)
H20A0.2695920.3604040.0291880.098*0.445 (17)
C19A0.3177 (13)0.3839 (4)0.0897 (11)0.095 (3)0.445 (17)
H19A0.3698850.3688630.1220030.113*0.445 (17)
C18A0.2999 (14)0.4115 (3)0.1320 (8)0.104 (3)0.445 (17)
H18A0.3400840.4149290.1925860.125*0.445 (17)
C17A0.2219 (17)0.4341 (3)0.0837 (8)0.110 (3)0.445 (17)
H17A0.2099910.4525370.1119780.132*0.445 (17)
C16A0.1618 (13)0.4290 (4)0.0069 (8)0.094 (3)0.445 (17)
H16A0.1096970.4440790.0392140.113*0.445 (17)
C1A0.291 (2)0.3812 (4)0.2667 (15)0.051 (2)0.50 (3)
C6A0.2696 (17)0.4040 (4)0.3311 (14)0.059 (2)0.50 (3)
H6A0.2168180.4002030.3876860.071*0.50 (3)
C5A0.3249 (16)0.4326 (4)0.3136 (14)0.066 (2)0.50 (3)
H5A0.3090910.4484190.3572980.080*0.50 (3)
C4A0.4013 (14)0.4374 (4)0.2331 (14)0.068 (3)0.50 (3)
H4A0.4361120.4571510.2203620.082*0.50 (3)
C3A0.4318 (15)0.4140 (4)0.1668 (13)0.069 (3)0.50 (3)
H3A0.4895620.4174910.1123370.083*0.50 (3)
C2A0.372 (2)0.3851 (4)0.1848 (14)0.062 (2)0.50 (3)
H2A0.3883450.3689950.1419590.074*0.50 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.03289 (10)0.02525 (10)0.03624 (11)0.00223 (8)0.01132 (8)0.00094 (8)
S10.0369 (5)0.0413 (5)0.0531 (6)0.0020 (4)0.0089 (4)0.0040 (4)
S20.0538 (6)0.0428 (5)0.0527 (6)0.0047 (4)0.0232 (5)0.0101 (4)
S30.0305 (4)0.0448 (5)0.0506 (5)0.0031 (4)0.0085 (4)0.0091 (4)
P10.0468 (5)0.0455 (5)0.0374 (5)0.0072 (4)0.0104 (4)0.0001 (4)
P20.0597 (6)0.0269 (5)0.0628 (6)0.0005 (4)0.0270 (5)0.0064 (4)
P30.0339 (5)0.0373 (5)0.0417 (5)0.0020 (4)0.0113 (4)0.0071 (4)
O10.0478 (14)0.0413 (14)0.0395 (13)0.0019 (11)0.0110 (11)0.0003 (11)
O20.0473 (14)0.0270 (12)0.0589 (16)0.0004 (10)0.0217 (12)0.0065 (11)
O30.0356 (12)0.0389 (13)0.0425 (13)0.0003 (10)0.0111 (11)0.0057 (10)
O40.0507 (16)0.0509 (16)0.078 (2)0.0143 (13)0.0146 (15)0.0070 (14)
O50.0393 (14)0.0527 (15)0.0485 (15)0.0005 (12)0.0110 (12)0.0003 (12)
O60.0582 (19)0.100 (3)0.086 (2)0.0177 (18)0.0180 (17)0.026 (2)
O70.0659 (17)0.0373 (14)0.0642 (17)0.0069 (12)0.0358 (15)0.0131 (12)
O80.0359 (14)0.0627 (17)0.0627 (17)0.0036 (13)0.0027 (12)0.0090 (14)
O90.0346 (13)0.0367 (13)0.0556 (15)0.0004 (10)0.0092 (11)0.0087 (11)
N10.0459 (18)0.0477 (18)0.0462 (18)0.0001 (15)0.0069 (14)0.0087 (15)
N20.102 (3)0.0347 (18)0.102 (3)0.0026 (19)0.069 (3)0.0153 (18)
N30.0335 (15)0.0462 (17)0.0520 (18)0.0058 (13)0.0121 (14)0.0142 (14)
N40.055 (2)0.063 (2)0.0438 (18)0.0096 (17)0.0137 (16)0.0091 (16)
N50.064 (2)0.0495 (19)0.0467 (19)0.0114 (16)0.0126 (16)0.0059 (15)
N60.062 (2)0.0361 (17)0.073 (2)0.0105 (15)0.0307 (19)0.0024 (16)
N70.068 (2)0.0290 (16)0.073 (2)0.0048 (16)0.0157 (19)0.0116 (15)
N80.0380 (16)0.0492 (18)0.0479 (18)0.0010 (14)0.0123 (14)0.0002 (14)
N90.0407 (16)0.0418 (17)0.0419 (17)0.0041 (13)0.0089 (13)0.0083 (13)
N100.0463 (17)0.0323 (15)0.0506 (18)0.0006 (13)0.0167 (15)0.0064 (13)
N110.0360 (16)0.0400 (16)0.0474 (17)0.0050 (13)0.0155 (13)0.0001 (13)
C10.039 (4)0.051 (4)0.065 (5)0.001 (3)0.013 (4)0.001 (4)
C20.052 (4)0.053 (5)0.071 (5)0.007 (4)0.008 (4)0.004 (4)
C30.058 (4)0.058 (5)0.075 (6)0.010 (4)0.001 (4)0.008 (4)
C40.061 (5)0.055 (4)0.078 (6)0.016 (4)0.003 (5)0.017 (4)
C50.054 (5)0.061 (4)0.072 (6)0.013 (4)0.002 (4)0.008 (4)
C60.047 (5)0.052 (4)0.067 (5)0.015 (3)0.004 (4)0.008 (4)
C70.086 (4)0.072 (3)0.063 (3)0.011 (3)0.017 (3)0.025 (2)
C80.058 (3)0.089 (3)0.037 (2)0.019 (2)0.0115 (19)0.001 (2)
C90.075 (3)0.099 (4)0.071 (3)0.001 (3)0.039 (3)0.003 (3)
C100.085 (4)0.151 (6)0.086 (4)0.012 (4)0.043 (3)0.004 (4)
C110.084 (5)0.201 (9)0.077 (4)0.008 (5)0.043 (4)0.006 (5)
C120.096 (5)0.196 (8)0.066 (4)0.035 (5)0.039 (4)0.007 (5)
C130.085 (4)0.124 (5)0.053 (3)0.028 (3)0.023 (3)0.008 (3)
C140.097 (4)0.047 (3)0.078 (3)0.011 (3)0.022 (3)0.004 (2)
C150.074 (4)0.083 (4)0.047 (3)0.020 (4)0.021 (3)0.020 (3)
C200.081 (4)0.103 (5)0.055 (4)0.027 (4)0.007 (3)0.012 (4)
C190.097 (4)0.118 (5)0.059 (4)0.020 (4)0.005 (4)0.016 (4)
C180.105 (5)0.132 (5)0.066 (4)0.006 (5)0.002 (4)0.032 (4)
C170.109 (6)0.123 (5)0.075 (4)0.010 (5)0.001 (5)0.044 (4)
C160.097 (5)0.104 (4)0.068 (4)0.012 (5)0.001 (4)0.036 (4)
C210.096 (5)0.059 (4)0.050 (3)0.010 (4)0.025 (4)0.010 (3)
C220.117 (6)0.096 (4)0.056 (4)0.001 (4)0.024 (4)0.013 (4)
C230.135 (6)0.119 (4)0.064 (5)0.006 (5)0.026 (4)0.011 (4)
C240.131 (6)0.111 (5)0.066 (4)0.001 (5)0.024 (4)0.012 (4)
C250.120 (6)0.092 (5)0.066 (5)0.007 (5)0.041 (4)0.005 (4)
C260.105 (6)0.069 (4)0.053 (4)0.009 (4)0.038 (4)0.010 (3)
C270.081 (3)0.057 (3)0.109 (4)0.028 (3)0.033 (3)0.004 (3)
C280.073 (3)0.044 (2)0.061 (3)0.009 (2)0.024 (2)0.0064 (19)
C290.143 (5)0.052 (3)0.093 (4)0.007 (3)0.062 (4)0.013 (3)
C300.188 (7)0.068 (4)0.108 (5)0.018 (4)0.081 (5)0.017 (3)
C310.131 (6)0.113 (5)0.100 (5)0.008 (5)0.069 (4)0.013 (4)
C320.107 (4)0.084 (4)0.097 (4)0.012 (3)0.058 (4)0.014 (3)
C330.082 (3)0.050 (3)0.086 (3)0.011 (2)0.041 (3)0.010 (2)
C340.109 (4)0.039 (2)0.111 (4)0.013 (3)0.025 (4)0.032 (3)
C350.059 (3)0.041 (2)0.061 (3)0.0118 (19)0.012 (2)0.0073 (18)
C360.079 (4)0.073 (3)0.098 (4)0.018 (3)0.028 (3)0.012 (3)
C370.075 (4)0.123 (6)0.147 (6)0.034 (4)0.050 (4)0.022 (5)
C380.060 (3)0.073 (4)0.167 (7)0.006 (3)0.010 (4)0.018 (4)
C390.067 (3)0.058 (3)0.118 (5)0.005 (3)0.008 (3)0.004 (3)
C400.064 (3)0.049 (3)0.078 (3)0.013 (2)0.009 (2)0.003 (2)
C410.045 (2)0.053 (2)0.053 (2)0.0169 (18)0.0167 (18)0.0167 (19)
C460.053 (3)0.094 (4)0.074 (3)0.016 (3)0.027 (2)0.014 (3)
C450.083 (4)0.134 (6)0.089 (4)0.051 (4)0.049 (3)0.029 (4)
C440.126 (5)0.088 (4)0.079 (4)0.061 (4)0.043 (4)0.017 (3)
C430.111 (4)0.058 (3)0.074 (3)0.032 (3)0.023 (3)0.008 (3)
C420.072 (3)0.046 (2)0.069 (3)0.015 (2)0.024 (2)0.009 (2)
C470.067 (3)0.085 (3)0.080 (3)0.004 (3)0.014 (3)0.036 (3)
C480.050 (2)0.045 (2)0.057 (2)0.0090 (18)0.0228 (19)0.0061 (18)
C490.075 (3)0.085 (3)0.066 (3)0.023 (3)0.035 (3)0.016 (3)
C500.099 (4)0.097 (4)0.094 (4)0.035 (3)0.068 (4)0.031 (3)
C510.076 (4)0.086 (4)0.124 (5)0.016 (3)0.063 (4)0.021 (4)
C520.046 (3)0.089 (4)0.106 (4)0.011 (3)0.027 (3)0.004 (3)
C530.045 (2)0.074 (3)0.066 (3)0.008 (2)0.020 (2)0.005 (2)
C540.074 (3)0.055 (2)0.045 (2)0.013 (2)0.007 (2)0.0161 (19)
C550.045 (2)0.048 (2)0.048 (2)0.0138 (18)0.0132 (18)0.0088 (17)
C560.082 (3)0.052 (3)0.066 (3)0.007 (2)0.015 (3)0.006 (2)
C570.139 (6)0.065 (4)0.094 (5)0.010 (4)0.024 (4)0.017 (3)
C580.136 (6)0.078 (4)0.088 (5)0.045 (4)0.013 (4)0.008 (3)
C590.087 (4)0.109 (5)0.069 (3)0.043 (4)0.019 (3)0.020 (3)
C600.062 (3)0.077 (3)0.071 (3)0.024 (3)0.001 (2)0.018 (3)
C610.057 (2)0.038 (2)0.060 (2)0.0045 (18)0.020 (2)0.0070 (18)
C620.072 (3)0.045 (2)0.073 (3)0.015 (2)0.018 (2)0.019 (2)
C630.081 (3)0.047 (2)0.068 (3)0.003 (2)0.016 (3)0.021 (2)
C640.059 (2)0.046 (2)0.052 (2)0.0152 (19)0.014 (2)0.0069 (18)
C650.044 (2)0.0394 (19)0.0393 (19)0.0107 (16)0.0125 (16)0.0010 (15)
C660.0388 (19)0.045 (2)0.0416 (19)0.0129 (16)0.0157 (16)0.0020 (16)
C670.077 (3)0.064 (3)0.063 (3)0.017 (3)0.024 (2)0.019 (2)
C680.063 (3)0.084 (3)0.056 (3)0.025 (3)0.029 (2)0.007 (2)
C690.047 (2)0.063 (3)0.051 (2)0.016 (2)0.0197 (19)0.004 (2)
C700.048 (2)0.080 (3)0.073 (3)0.010 (2)0.031 (2)0.004 (3)
C710.045 (2)0.074 (3)0.086 (3)0.006 (2)0.026 (2)0.002 (3)
C720.042 (2)0.049 (2)0.065 (3)0.0010 (18)0.0197 (19)0.0051 (19)
C21A0.102 (6)0.063 (4)0.051 (4)0.012 (4)0.027 (4)0.012 (4)
C26A0.114 (6)0.082 (4)0.056 (4)0.011 (4)0.031 (4)0.010 (4)
C25A0.128 (6)0.101 (5)0.061 (5)0.003 (5)0.028 (5)0.013 (4)
C24A0.134 (6)0.116 (5)0.061 (5)0.006 (5)0.031 (5)0.006 (4)
C23A0.132 (7)0.119 (5)0.067 (5)0.009 (6)0.024 (5)0.013 (5)
C22A0.119 (6)0.095 (5)0.051 (5)0.002 (5)0.021 (4)0.013 (4)
C15A0.076 (4)0.086 (4)0.051 (4)0.020 (4)0.017 (4)0.019 (4)
C20A0.083 (4)0.098 (5)0.054 (4)0.024 (4)0.007 (4)0.018 (4)
C19A0.096 (4)0.113 (5)0.059 (4)0.019 (5)0.002 (4)0.020 (4)
C18A0.108 (5)0.128 (5)0.062 (4)0.006 (5)0.006 (5)0.032 (4)
C17A0.108 (6)0.127 (5)0.077 (4)0.006 (5)0.003 (5)0.038 (4)
C16A0.093 (5)0.109 (5)0.067 (4)0.010 (5)0.006 (5)0.033 (4)
C1A0.039 (4)0.050 (4)0.063 (4)0.002 (3)0.015 (4)0.003 (3)
C6A0.049 (5)0.057 (4)0.065 (5)0.009 (4)0.009 (4)0.005 (4)
C5A0.056 (5)0.061 (4)0.069 (6)0.015 (4)0.000 (4)0.012 (4)
C4A0.061 (5)0.058 (4)0.076 (6)0.015 (4)0.008 (5)0.012 (4)
C3A0.060 (4)0.056 (5)0.079 (6)0.013 (4)0.003 (4)0.005 (4)
C2A0.052 (4)0.054 (4)0.071 (5)0.009 (4)0.008 (4)0.002 (4)
Geometric parameters (Å, º) top
La1—O12.430 (2)C31—C321.354 (8)
La1—O22.424 (2)C32—H320.9300
La1—O32.463 (2)C32—C331.364 (7)
La1—O52.541 (2)C33—H330.9300
La1—O72.535 (2)C34—H34A0.9600
La1—O92.516 (2)C34—H34B0.9600
La1—N102.699 (3)C34—H34C0.9600
La1—N112.695 (3)C35—C361.380 (6)
S1—O41.436 (3)C35—C401.377 (6)
S1—O51.462 (3)C36—H360.9300
S1—N11.553 (3)C36—C371.406 (8)
S1—C11.756 (10)C37—H370.9300
S1—C1A1.778 (13)C37—C381.347 (9)
S2—O61.432 (3)C38—H380.9300
S2—O71.468 (2)C38—C391.334 (8)
S2—N21.514 (4)C39—H390.9300
S2—C211.751 (16)C39—C401.379 (7)
S2—C21A1.74 (2)C40—H400.9300
S3—O81.436 (3)C41—C461.3900
S3—O91.474 (2)C41—C421.3900
S3—N31.538 (3)C46—H460.9300
S3—C411.756 (2)C46—C451.3900
P1—O11.494 (2)C45—H450.9300
P1—N11.597 (3)C45—C441.3900
P1—N41.661 (3)C44—H440.9300
P1—N51.664 (3)C44—C431.3900
P2—O21.493 (2)C43—H430.9300
P2—N21.590 (4)C43—C421.3900
P2—N61.656 (3)C42—H420.9300
P2—N71.642 (4)C47—H47A0.9600
P3—O31.491 (2)C47—H47B0.9600
P3—N31.610 (3)C47—H47C0.9600
P3—N81.651 (3)C48—C491.382 (6)
P3—N91.655 (3)C48—C531.375 (5)
N4—C71.467 (6)C49—H490.9300
N4—C81.414 (6)C49—C501.376 (7)
N5—C141.475 (5)C50—H500.9300
N5—C151.437 (9)C50—C511.353 (8)
N5—C15A1.372 (11)C51—H510.9300
N6—C271.474 (5)C51—C521.360 (7)
N6—C281.421 (5)C52—H520.9300
N7—C341.484 (5)C52—C531.378 (6)
N7—C351.421 (5)C53—H530.9300
N8—C471.451 (5)C54—H54A0.9600
N8—C481.424 (5)C54—H54B0.9600
N9—C541.466 (4)C54—H54C0.9600
N9—C551.430 (5)C55—C561.365 (6)
N10—C611.320 (4)C55—C601.365 (5)
N10—C651.358 (4)C56—H560.9300
N11—C661.355 (4)C56—C571.371 (7)
N11—C721.319 (5)C57—H570.9300
C1—C21.3900C57—C581.342 (8)
C1—C61.3900C58—H580.9300
C2—H20.9300C58—C591.347 (9)
C2—C31.3900C59—H590.9300
C3—H30.9300C59—C601.416 (7)
C3—C41.3900C60—H600.9300
C4—H40.9300C61—H610.9300
C4—C51.3900C61—C621.390 (5)
C5—H50.9300C62—H620.9300
C5—C61.3900C62—C631.354 (6)
C6—H60.9300C63—H630.9300
C7—H7A0.9600C63—C641.387 (6)
C7—H7B0.9600C64—C651.402 (5)
C7—H7C0.9600C64—C671.421 (6)
C8—C91.360 (7)C65—C661.435 (5)
C8—C131.398 (6)C66—C691.408 (5)
C9—H90.9300C67—H670.9300
C9—C101.385 (7)C67—C681.334 (6)
C10—H100.9300C68—H680.9300
C10—C111.360 (9)C68—C691.427 (6)
C11—H110.9300C69—C701.396 (6)
C11—C121.330 (10)C70—H700.9300
C12—H120.9300C70—C711.359 (6)
C12—C131.380 (9)C71—H710.9300
C13—H130.9300C71—C721.389 (6)
C14—H14A0.9600C72—H720.9300
C14—H14B0.9600C21A—C26A1.373 (9)
C14—H14C0.9600C21A—C22A1.389 (9)
C15—C201.3900C26A—H26A0.9300
C15—C161.3900C26A—C25A1.379 (9)
C20—H200.9300C25A—H25A0.9300
C20—C191.3900C25A—C24A1.380 (9)
C19—H190.9300C24A—H24A0.9300
C19—C181.3900C24A—C23A1.396 (9)
C18—H180.9300C23A—H23A0.9300
C18—C171.3900C23A—C22A1.399 (9)
C17—H170.9300C22A—H22A0.9300
C17—C161.3900C15A—C20A1.3900
C16—H160.9300C15A—C16A1.3900
C21—C221.361 (9)C20A—H20A0.9300
C21—C261.379 (8)C20A—C19A1.3900
C22—H220.9300C19A—H19A0.9300
C22—C231.387 (8)C19A—C18A1.3900
C23—H230.9300C18A—H18A0.9300
C23—C241.367 (9)C18A—C17A1.3900
C24—H240.9300C17A—H17A0.9300
C24—C251.391 (9)C17A—C16A1.3900
C25—H250.9300C16A—H16A0.9300
C25—C261.386 (8)C1A—C6A1.358 (12)
C26—H260.9300C1A—C2A1.360 (12)
C27—H27A0.9600C6A—H6A0.9300
C27—H27B0.9600C6A—C5A1.370 (14)
C27—H27C0.9600C5A—H5A0.9300
C28—C291.396 (6)C5A—C4A1.324 (14)
C28—C331.377 (6)C4A—H4A0.9300
C29—H290.9300C4A—C3A1.394 (14)
C29—C301.378 (8)C3A—H3A0.9300
C30—H300.9300C3A—C2A1.405 (14)
C30—C311.346 (8)C2A—H2A0.9300
C31—H310.9300
O1—La1—O3138.81 (8)C33—C28—C29117.9 (5)
O1—La1—O570.70 (8)C28—C29—H29120.4
O1—La1—O7112.43 (9)C30—C29—C28119.3 (5)
O1—La1—O9141.64 (8)C30—C29—H29120.4
O1—La1—N1075.35 (8)C29—C30—H30119.3
O1—La1—N1171.91 (8)C31—C30—C29121.4 (6)
O2—La1—O179.32 (8)C31—C30—H30119.3
O2—La1—O3140.85 (8)C30—C31—H31120.1
O2—La1—O5122.18 (8)C30—C31—C32119.8 (6)
O2—La1—O770.52 (8)C32—C31—H31120.1
O2—La1—O981.65 (8)C31—C32—H32119.8
O2—La1—N10136.74 (8)C31—C32—C33120.4 (5)
O2—La1—N1178.48 (8)C33—C32—H32119.8
O3—La1—O576.66 (8)C28—C33—H33119.4
O3—La1—O783.00 (8)C32—C33—C28121.2 (5)
O3—La1—O970.60 (7)C32—C33—H33119.4
O3—La1—N1075.41 (9)N7—C34—H34A109.5
O3—La1—N11116.22 (8)N7—C34—H34B109.5
O5—La1—N1081.14 (9)N7—C34—H34C109.5
O5—La1—N11131.75 (8)H34A—C34—H34B109.5
O7—La1—O576.97 (8)H34A—C34—H34C109.5
O7—La1—N10152.22 (9)H34B—C34—H34C109.5
O7—La1—N11146.79 (9)C36—C35—N7121.1 (4)
O9—La1—O5146.45 (8)C40—C35—N7120.7 (4)
O9—La1—O791.76 (9)C40—C35—C36118.3 (5)
O9—La1—N1097.23 (9)C35—C36—H36120.4
O9—La1—N1171.83 (8)C35—C36—C37119.3 (5)
N11—La1—N1060.60 (9)C37—C36—H36120.4
O4—S1—O5113.73 (17)C36—C37—H37119.4
O4—S1—N1110.09 (18)C38—C37—C36121.2 (6)
O4—S1—C1108.5 (9)C38—C37—H37119.4
O4—S1—C1A107.5 (9)C37—C38—H38120.4
O5—S1—N1112.78 (16)C39—C38—C37119.2 (6)
O5—S1—C1104.2 (6)C39—C38—H38120.4
O5—S1—C1A107.5 (7)C38—C39—H39119.0
N1—S1—C1107.1 (9)C38—C39—C40121.9 (5)
N1—S1—C1A104.7 (9)C40—C39—H39119.0
O6—S2—O7112.93 (19)C35—C40—C39120.2 (5)
O6—S2—N2112.7 (2)C35—C40—H40119.9
O6—S2—C21100.7 (5)C39—C40—H40119.9
O6—S2—C21A108.4 (6)C46—C41—S3118.33 (18)
O7—S2—N2113.08 (17)C46—C41—C42120.0
O7—S2—C21107.1 (5)C42—C41—S3121.66 (18)
O7—S2—C21A107.2 (6)C41—C46—H46120.0
N2—S2—C21109.4 (5)C45—C46—C41120.0
N2—S2—C21A101.6 (6)C45—C46—H46120.0
O8—S3—O9113.33 (16)C46—C45—H45120.0
O8—S3—N3111.49 (17)C46—C45—C44120.0
O8—S3—C41106.54 (16)C44—C45—H45120.0
O9—S3—N3112.43 (15)C45—C44—H44120.0
O9—S3—C41105.18 (14)C43—C44—C45120.0
N3—S3—C41107.32 (16)C43—C44—H44120.0
O1—P1—N1115.44 (15)C44—C43—H43120.0
O1—P1—N4113.08 (16)C44—C43—C42120.0
O1—P1—N5106.05 (16)C42—C43—H43120.0
N1—P1—N4103.39 (18)C41—C42—H42120.0
N1—P1—N5112.44 (18)C43—C42—C41120.0
N4—P1—N5106.21 (17)C43—C42—H42120.0
O2—P2—N2116.54 (16)N8—C47—H47A109.5
O2—P2—N6113.21 (16)N8—C47—H47B109.5
O2—P2—N7108.21 (16)N8—C47—H47C109.5
N2—P2—N6104.24 (19)H47A—C47—H47B109.5
N2—P2—N7108.4 (2)H47A—C47—H47C109.5
N7—P2—N6105.63 (18)H47B—C47—H47C109.5
O3—P3—N3115.74 (15)C49—C48—N8120.8 (4)
O3—P3—N8113.77 (15)C53—C48—N8121.2 (4)
O3—P3—N9109.94 (14)C53—C48—C49118.0 (4)
N3—P3—N8105.68 (16)C48—C49—H49119.7
N3—P3—N9107.60 (15)C50—C49—C48120.6 (5)
N8—P3—N9103.20 (16)C50—C49—H49119.7
P1—O1—La1138.87 (14)C49—C50—H50119.6
P2—O2—La1141.94 (14)C51—C50—C49120.8 (5)
P3—O3—La1133.87 (13)C51—C50—H50119.6
S1—O5—La1140.15 (15)C50—C51—H51120.4
S2—O7—La1143.59 (15)C50—C51—C52119.1 (5)
S3—O9—La1138.28 (14)C52—C51—H51120.4
S1—N1—P1123.3 (2)C51—C52—H52119.5
S2—N2—P2131.5 (2)C51—C52—C53121.0 (5)
S3—N3—P3124.93 (19)C53—C52—H52119.5
C7—N4—P1120.9 (3)C48—C53—C52120.4 (4)
C8—N4—P1121.6 (3)C48—C53—H53119.8
C8—N4—C7117.5 (4)C52—C53—H53119.8
C14—N5—P1119.2 (3)N9—C54—H54A109.5
C15—N5—P1123.8 (6)N9—C54—H54B109.5
C15—N5—C14116.8 (6)N9—C54—H54C109.5
C15A—N5—P1123.7 (8)H54A—C54—H54B109.5
C15A—N5—C14117.1 (8)H54A—C54—H54C109.5
C27—N6—P2122.8 (3)H54B—C54—H54C109.5
C28—N6—P2118.2 (3)C56—C55—N9120.7 (4)
C28—N6—C27117.6 (4)C56—C55—C60119.4 (4)
C34—N7—P2118.5 (3)C60—C55—N9119.9 (4)
C35—N7—P2124.6 (3)C55—C56—H56119.5
C35—N7—C34116.5 (4)C55—C56—C57120.9 (5)
C47—N8—P3121.7 (3)C57—C56—H56119.5
C48—N8—P3120.0 (3)C56—C57—H57120.0
C48—N8—C47118.3 (3)C58—C57—C56120.0 (6)
C54—N9—P3115.9 (2)C58—C57—H57120.0
C55—N9—P3121.4 (2)C57—C58—H58119.5
C55—N9—C54115.6 (3)C57—C58—C59121.0 (6)
C61—N10—La1120.6 (2)C59—C58—H58119.5
C61—N10—C65118.2 (3)C58—C59—H59120.2
C65—N10—La1121.1 (2)C58—C59—C60119.7 (5)
C66—N11—La1120.9 (2)C60—C59—H59120.2
C72—N11—La1121.2 (2)C55—C60—C59119.0 (5)
C72—N11—C66117.7 (3)C55—C60—H60120.5
C2—C1—S1121.9 (10)C59—C60—H60120.5
C2—C1—C6120.0N10—C61—H61118.3
C6—C1—S1117.9 (10)N10—C61—C62123.3 (4)
C1—C2—H2120.0C62—C61—H61118.3
C3—C2—C1120.0C61—C62—H62120.7
C3—C2—H2120.0C63—C62—C61118.5 (4)
C2—C3—H3120.0C63—C62—H62120.7
C4—C3—C2120.0C62—C63—H63119.7
C4—C3—H3120.0C62—C63—C64120.5 (4)
C3—C4—H4120.0C64—C63—H63119.7
C3—C4—C5120.0C63—C64—C65117.6 (4)
C5—C4—H4120.0C63—C64—C67123.3 (4)
C4—C5—H5120.0C65—C64—C67119.1 (4)
C4—C5—C6120.0N10—C65—C64121.9 (3)
C6—C5—H5120.0N10—C65—C66118.0 (3)
C1—C6—H6120.0C64—C65—C66120.1 (3)
C5—C6—C1120.0N11—C66—C65118.6 (3)
C5—C6—H6120.0N11—C66—C69122.5 (3)
N4—C7—H7A109.5C69—C66—C65118.8 (3)
N4—C7—H7B109.5C64—C67—H67119.4
N4—C7—H7C109.5C68—C67—C64121.2 (4)
H7A—C7—H7B109.5C68—C67—H67119.4
H7A—C7—H7C109.5C67—C68—H68119.2
H7B—C7—H7C109.5C67—C68—C69121.5 (4)
C9—C8—N4123.2 (4)C69—C68—H68119.2
C9—C8—C13116.7 (5)C66—C69—C68119.2 (4)
C13—C8—N4120.1 (5)C70—C69—C66117.2 (4)
C8—C9—H9119.5C70—C69—C68123.6 (4)
C8—C9—C10121.0 (5)C69—C70—H70120.0
C10—C9—H9119.5C71—C70—C69120.0 (4)
C9—C10—H10119.3C71—C70—H70120.0
C11—C10—C9121.3 (7)C70—C71—H71120.6
C11—C10—H10119.3C70—C71—C72118.7 (4)
C10—C11—H11120.6C72—C71—H71120.6
C12—C11—C10118.7 (7)N11—C72—C71123.8 (4)
C12—C11—H11120.6N11—C72—H72118.1
C11—C12—H12119.3C71—C72—H72118.1
C11—C12—C13121.3 (7)C26A—C21A—S2123.4 (13)
C13—C12—H12119.3C26A—C21A—C22A120.9 (17)
C8—C13—H13119.5C22A—C21A—S2115.7 (12)
C12—C13—C8121.0 (6)C21A—C26A—H26A119.0
C12—C13—H13119.5C21A—C26A—C25A122.1 (16)
N5—C14—H14A109.5C25A—C26A—H26A119.0
N5—C14—H14B109.5C26A—C25A—H25A121.3
N5—C14—H14C109.5C26A—C25A—C24A117.4 (15)
H14A—C14—H14B109.5C24A—C25A—H25A121.3
H14A—C14—H14C109.5C25A—C24A—H24A119.1
H14B—C14—H14C109.5C25A—C24A—C23A121.8 (15)
C20—C15—N5118.8 (8)C23A—C24A—H24A119.1
C20—C15—C16120.0C24A—C23A—H23A120.1
C16—C15—N5121.2 (8)C24A—C23A—C22A119.9 (15)
C15—C20—H20120.0C22A—C23A—H23A120.1
C15—C20—C19120.0C21A—C22A—C23A118.0 (16)
C19—C20—H20120.0C21A—C22A—H22A121.0
C20—C19—H19120.0C23A—C22A—H22A121.0
C18—C19—C20120.0N5—C15A—C20A125.0 (11)
C18—C19—H19120.0N5—C15A—C16A115.0 (11)
C19—C18—H18120.0C20A—C15A—C16A120.0
C17—C18—C19120.0C15A—C20A—H20A120.0
C17—C18—H18120.0C19A—C20A—C15A120.0
C18—C17—H17120.0C19A—C20A—H20A120.0
C18—C17—C16120.0C20A—C19A—H19A120.0
C16—C17—H17120.0C20A—C19A—C18A120.0
C15—C16—H16120.0C18A—C19A—H19A120.0
C17—C16—C15120.0C19A—C18A—H18A120.0
C17—C16—H16120.0C17A—C18A—C19A120.0
C22—C21—S2123.4 (10)C17A—C18A—H18A120.0
C22—C21—C26120.3 (13)C18A—C17A—H17A120.0
C26—C21—S2116.2 (9)C18A—C17A—C16A120.0
C21—C22—H22119.5C16A—C17A—H17A120.0
C21—C22—C23121.1 (12)C15A—C16A—H16A120.0
C23—C22—H22119.5C17A—C16A—C15A120.0
C22—C23—H23120.5C17A—C16A—H16A120.0
C24—C23—C22119.0 (12)C6A—C1A—S1123.7 (13)
C24—C23—H23120.5C6A—C1A—C2A121.6 (9)
C23—C24—H24119.8C2A—C1A—S1114.7 (12)
C23—C24—C25120.3 (12)C1A—C6A—H6A119.7
C25—C24—H24119.8C1A—C6A—C5A120.6 (10)
C24—C25—H25120.0C5A—C6A—H6A119.7
C26—C25—C24119.9 (11)C6A—C5A—H5A120.6
C26—C25—H25120.0C4A—C5A—C6A118.7 (10)
C21—C26—C25119.3 (11)C4A—C5A—H5A120.6
C21—C26—H26120.4C5A—C4A—H4A118.6
C25—C26—H26120.4C5A—C4A—C3A122.8 (11)
N6—C27—H27A109.5C3A—C4A—H4A118.6
N6—C27—H27B109.5C4A—C3A—H3A121.1
N6—C27—H27C109.5C4A—C3A—C2A117.8 (10)
H27A—C27—H27B109.5C2A—C3A—H3A121.1
H27A—C27—H27C109.5C1A—C2A—C3A118.2 (10)
H27B—C27—H27C109.5C1A—C2A—H2A120.9
C29—C28—N6121.2 (4)C3A—C2A—H2A120.9
C33—C28—N6120.9 (4)
La1—N10—C61—C62177.1 (3)N8—C48—C49—C50178.8 (4)
La1—N10—C65—C64175.9 (3)N8—C48—C53—C52178.7 (4)
La1—N10—C65—C665.5 (4)N9—P3—O3—La1174.03 (17)
La1—N11—C66—C658.6 (4)N9—P3—N3—S3150.9 (2)
La1—N11—C66—C69173.4 (3)N9—P3—N8—C47126.7 (4)
La1—N11—C72—C71174.2 (3)N9—P3—N8—C4851.4 (3)
S1—C1—C2—C3175.0 (18)N9—C55—C56—C57179.5 (4)
S1—C1—C6—C5175.2 (17)N9—C55—C60—C59179.9 (4)
S1—C1A—C6A—C5A175.3 (19)N10—C61—C62—C631.3 (7)
S1—C1A—C2A—C3A177.0 (18)N10—C65—C66—N112.1 (5)
S2—C21—C22—C23179.3 (10)N10—C65—C66—C69179.9 (3)
S2—C21—C26—C25179.4 (9)N11—C66—C69—C68179.1 (4)
S2—C21A—C26A—C25A179.8 (14)N11—C66—C69—C700.9 (6)
S2—C21A—C22A—C23A179.7 (13)C1—S1—O5—La1101.7 (10)
S3—C41—C46—C45178.4 (2)C1—S1—N1—P168.0 (8)
S3—C41—C42—C43178.3 (2)C1—C2—C3—C40.0
P1—N4—C8—C90.3 (6)C2—C1—C6—C50.0
P1—N4—C8—C13177.4 (3)C2—C3—C4—C50.0
P1—N5—C15—C2013.4 (9)C3—C4—C5—C60.0
P1—N5—C15—C16168.9 (6)C4—C5—C6—C10.0
P1—N5—C15A—C20A32.4 (12)C6—C1—C2—C30.0
P1—N5—C15A—C16A147.3 (8)C7—N4—C8—C9179.4 (4)
P2—N6—C28—C29126.1 (4)C7—N4—C8—C132.9 (6)
P2—N6—C28—C3351.6 (6)C8—C9—C10—C110.7 (9)
P2—N7—C35—C36113.6 (4)C9—C8—C13—C120.4 (8)
P2—N7—C35—C4066.0 (5)C9—C10—C11—C120.3 (11)
P3—N8—C48—C49136.6 (4)C10—C11—C12—C131.4 (12)
P3—N8—C48—C5344.2 (5)C11—C12—C13—C81.5 (10)
P3—N9—C55—C56110.1 (4)C13—C8—C9—C100.6 (8)
P3—N9—C55—C6071.8 (4)C14—N5—C15—C20162.4 (6)
O1—P1—N1—S134.3 (3)C14—N5—C15—C1615.2 (11)
O1—P1—N4—C7128.0 (3)C14—N5—C15A—C20A149.0 (7)
O1—P1—N4—C852.3 (4)C14—N5—C15A—C16A31.3 (13)
O1—P1—N5—C1414.2 (4)C15—C20—C19—C180.0
O1—P1—N5—C15170.0 (7)C20—C15—C16—C170.0
O1—P1—N5—C15A164.4 (9)C20—C19—C18—C170.0
O2—P2—N2—S25.2 (5)C19—C18—C17—C160.0
O2—P2—N6—C27121.4 (3)C18—C17—C16—C150.0
O2—P2—N6—C2872.4 (3)C16—C15—C20—C190.0
O2—P2—N7—C34176.2 (3)C21—S2—O7—La1139.0 (5)
O2—P2—N7—C354.2 (4)C21—S2—N2—P2125.8 (6)
O3—P3—N3—S327.6 (3)C21—C22—C23—C240.1 (3)
O3—P3—N8—C47114.3 (4)C22—C21—C26—C250.0 (6)
O3—P3—N8—C4867.7 (3)C22—C23—C24—C250.4 (6)
O3—P3—N9—C54178.8 (3)C23—C24—C25—C260.4 (8)
O3—P3—N9—C5529.6 (3)C24—C25—C26—C210.2 (8)
O4—S1—O5—La1140.4 (2)C26—C21—C22—C230.0 (3)
O4—S1—N1—P1174.3 (2)C27—N6—C28—C2940.8 (6)
O4—S1—C1—C267.9 (11)C27—N6—C28—C33141.4 (5)
O4—S1—C1—C6116.9 (9)C28—C29—C30—C310.3 (11)
O4—S1—C1A—C6A117.5 (13)C29—C28—C33—C321.6 (8)
O4—S1—C1A—C2A63.3 (12)C29—C30—C31—C321.4 (11)
O5—S1—N1—P146.1 (3)C30—C31—C32—C331.0 (10)
O5—S1—C1—C2170.6 (8)C31—C32—C33—C280.5 (9)
O5—S1—C1—C64.6 (12)C33—C28—C29—C301.1 (8)
O5—S1—C1A—C6A5.3 (17)C34—N7—C35—C3658.5 (6)
O5—S1—C1A—C2A173.9 (9)C34—N7—C35—C40121.8 (5)
O6—S2—O7—La1111.0 (3)C35—C36—C37—C380.3 (10)
O6—S2—N2—P2123.1 (4)C36—C35—C40—C390.2 (7)
O6—S2—C21—C22142.0 (6)C36—C37—C38—C390.6 (10)
O6—S2—C21—C2638.7 (7)C37—C38—C39—C401.4 (10)
O6—S2—C21A—C26A36.0 (11)C38—C39—C40—C351.2 (8)
O6—S2—C21A—C22A143.9 (7)C40—C35—C36—C370.5 (8)
O7—S2—N2—P26.5 (5)C41—S3—O9—La166.7 (2)
O7—S2—C21—C2299.8 (7)C41—S3—N3—P3100.0 (2)
O7—S2—C21—C2679.6 (7)C41—C46—C45—C440.0
O7—S2—C21A—C26A86.3 (10)C46—C41—C42—C430.0
O7—S2—C21A—C22A93.9 (8)C46—C45—C44—C430.0
O8—S3—O9—La1177.3 (2)C45—C44—C43—C420.0
O8—S3—N3—P3143.7 (2)C44—C43—C42—C410.0
O8—S3—C41—C4642.6 (2)C42—C41—C46—C450.0
O8—S3—C41—C42139.03 (19)C47—N8—C48—C4941.5 (6)
O9—S3—N3—P315.2 (3)C47—N8—C48—C53137.7 (5)
O9—S3—C41—C4677.96 (18)C48—C49—C50—C511.3 (9)
O9—S3—C41—C42100.41 (19)C49—C48—C53—C522.0 (7)
N1—S1—O5—La114.1 (3)C49—C50—C51—C520.7 (9)
N1—S1—C1—C250.8 (12)C50—C51—C52—C530.8 (9)
N1—S1—C1—C6124.3 (9)C51—C52—C53—C481.5 (8)
N1—S1—C1A—C6A125.4 (13)C53—C48—C49—C501.9 (7)
N1—S1—C1A—C2A53.8 (12)C54—N9—C55—C5639.3 (5)
N1—P1—O1—La116.2 (3)C54—N9—C55—C60138.9 (4)
N1—P1—N4—C72.5 (4)C55—C56—C57—C580.2 (9)
N1—P1—N4—C8177.8 (3)C56—C55—C60—C591.7 (7)
N1—P1—N5—C14112.8 (3)C56—C57—C58—C591.4 (10)
N1—P1—N5—C1563.0 (7)C57—C58—C59—C601.0 (10)
N1—P1—N5—C15A68.6 (9)C58—C59—C60—C550.6 (8)
N2—S2—O7—La118.5 (4)C60—C55—C56—C571.3 (7)
N2—S2—C21—C2223.1 (8)C61—N10—C65—C640.2 (5)
N2—S2—C21—C26157.5 (5)C61—N10—C65—C66178.3 (3)
N2—S2—C21A—C26A154.9 (8)C61—C62—C63—C640.5 (7)
N2—S2—C21A—C22A24.9 (8)C62—C63—C64—C650.6 (7)
N2—P2—O2—La114.7 (3)C62—C63—C64—C67179.4 (4)
N2—P2—N6—C276.2 (4)C63—C64—C65—N101.0 (6)
N2—P2—N6—C28160.0 (3)C63—C64—C65—C66177.6 (4)
N2—P2—N7—C3456.6 (4)C63—C64—C67—C68179.4 (4)
N2—P2—N7—C35131.4 (4)C64—C65—C66—N11176.5 (3)
N3—S3—O9—La149.8 (3)C64—C65—C66—C691.5 (5)
N3—S3—C41—C46162.13 (17)C64—C67—C68—C692.1 (7)
N3—S3—C41—C4219.5 (2)C65—N10—C61—C620.9 (6)
N3—P3—O3—La151.9 (2)C65—C64—C67—C680.7 (7)
N3—P3—N8—C4713.8 (4)C65—C66—C69—C681.1 (5)
N3—P3—N8—C48164.2 (3)C65—C66—C69—C70177.1 (4)
N3—P3—N9—C5452.0 (3)C66—N11—C72—C710.1 (6)
N3—P3—N9—C5597.3 (3)C66—C69—C70—C710.1 (6)
N4—P1—O1—La1102.5 (2)C67—C64—C65—N10179.0 (4)
N4—P1—N1—S1158.3 (2)C67—C64—C65—C662.5 (6)
N4—P1—N5—C14134.8 (3)C67—C68—C69—C663.0 (7)
N4—P1—N5—C1549.4 (7)C67—C68—C69—C70175.1 (4)
N4—P1—N5—C15A43.8 (9)C68—C69—C70—C71178.1 (4)
N4—C8—C9—C10178.4 (5)C69—C70—C71—C720.9 (7)
N4—C8—C13—C12177.4 (5)C70—C71—C72—N110.8 (7)
N5—P1—O1—La1141.5 (2)C72—N11—C66—C65177.0 (3)
N5—P1—N1—S187.6 (3)C72—N11—C66—C691.0 (5)
N5—P1—N4—C7116.1 (3)C21A—S2—O7—La1129.7 (7)
N5—P1—N4—C863.6 (3)C21A—S2—N2—P2121.1 (7)
N5—C15—C20—C19177.6 (10)C21A—C26A—C25A—C24A0.1 (3)
N5—C15—C16—C17177.6 (10)C26A—C21A—C22A—C23A0.1 (6)
N5—C15A—C20A—C19A179.7 (14)C26A—C25A—C24A—C23A0.2 (7)
N5—C15A—C16A—C17A179.8 (12)C25A—C24A—C23A—C22A0.3 (9)
N6—P2—O2—La1106.2 (3)C24A—C23A—C22A—C21A0.3 (8)
N6—P2—N2—S2120.4 (4)C22A—C21A—C26A—C25A0.0 (3)
N6—P2—N7—C3454.7 (4)C15A—C20A—C19A—C18A0.0
N6—P2—N7—C35117.3 (4)C20A—C15A—C16A—C17A0.0
N6—C28—C29—C30176.7 (5)C20A—C19A—C18A—C17A0.0
N6—C28—C33—C32176.3 (5)C19A—C18A—C17A—C16A0.0
N7—P2—O2—La1137.1 (2)C18A—C17A—C16A—C15A0.0
N7—P2—N2—S2127.5 (4)C16A—C15A—C20A—C19A0.0
N7—P2—N6—C27120.4 (4)C1A—S1—O5—La1100.8 (10)
N7—P2—N6—C2845.8 (3)C1A—S1—N1—P170.5 (8)
N7—C35—C36—C37179.8 (5)C1A—C6A—C5A—C4A1.2 (16)
N7—C35—C40—C39179.5 (4)C6A—C1A—C2A—C3A2.2 (15)
N8—P3—O3—La170.8 (2)C6A—C5A—C4A—C3A3.0 (18)
N8—P3—N3—S399.3 (3)C5A—C4A—C3A—C2A4.5 (18)
N8—P3—N9—C5459.5 (3)C4A—C3A—C2A—C1A1.8 (16)
N8—P3—N9—C55151.3 (3)C2A—C1A—C6A—C5A3.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C70—H70···O4i0.932.673.444 (6)139
C56—H56···O4ii0.932.713.448 (5)136
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Svitlana V. Shishkina, head of the Department of X-ray Diffraction Study and Quantum Chemistry, STC `Institute for Single Crystals' for the data collection.

References

First citationAdams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004–2005.  Web of Science CrossRef Google Scholar
First citationAgilent (2016). CrysAlis PRO. Agilent Technologies Inc., Yarnton, England.  Google Scholar
First citationAmirkhanov, V., Janczak, C., Macalik, L., Hanuza, J. & Legendziewicz, J. (1995). J. Appl. Spectrosc. 62, 613–624.  CrossRef Google Scholar
First citationAmirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Sliva, T. Y., Penkova, L. V., Yushchenko, T., Szyrwiel, L., Konovalova, I. S., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). Eur. J. Inorg. Chem. 2014, 3720–3730.  CSD CrossRef CAS Google Scholar
First citationBeloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2003). Polyhedron, 22, 1099–1111.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. Chem. 217, 1–9.  CSD CrossRef CAS Google Scholar
First citationGholivand, K., Molaei, F., Oroujzadeh, N., Mobasseri, R. & Naderi-Manesh, H. (2014). Inorg. Chim. Acta, 423, 107–116.  CSD CrossRef CAS Google Scholar
First citationGholivand, K., Oroujzadeh, N. & Rajabi, M. (2012). J. Iran. Chem. Soc. 9, 865–876.  CSD CrossRef CAS Google Scholar
First citationGrimes, K. D., Lu, Y.-J., Zhang, Y.-M., Luna, V. A., Hurdle, J. G., Carson, E. I., Qi, J., Sucheta Kudrimoti, S., Rock, C. O. & Lee, R. E. (2008). ChemMedChem, 12, 1936–1945.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaroslav, K. & Swerdloff, F. (1985). US Patent 4 517 003.  Google Scholar
First citationKariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143.  CSD CrossRef IUCr Journals Google Scholar
First citationKasprzycka, E., Trush, V. A., Amirkhanov, V. M., Jerzykiewicz, L., Malta, O. L., Legendziewicz, J. & Gawryszewska, P. (2016). Chem. Eur. J. 22, 1–14.  Google Scholar
First citationKirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. pp. 1980–1993.  Google Scholar
First citationKishino, S. & Saito, S. (1979). US Patent 4 161 524.  Google Scholar
First citationKovalchyk, T. V., Kudryavtseva, I. G., Sharykina, N. I. & Arzyaeva, E. A. (1991). Khim. Farm. Zh. 6, 63–64.  Google Scholar
First citationKulesza, D., Sobczyk, M., Legendziewicz, J., Moroz, O. & Amirkhanov, V. (2010). Struct. Chem. 21, 425–438.  CrossRef CAS Google Scholar
First citationLitsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). Dalton Trans. 44, 15508–15522.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLitsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426–m427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLitsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341–355.  CSD CrossRef CAS Google Scholar
First citationLitsis, O. O., Sliva, T. Y., Amirkhanov, V. M., Kolomzarov, Y. V. & Minakova, I. E. (2017). Proc. Int. Conf. Adv. Optoelectronics and Lasers, CAOL., Article number 7851409, 151-153.  Google Scholar
First citationMorgalyuk, V. P., Safiulina, A. M., Tananaev, I. G., Goryunov, E. I., Goryunova, I. B., Molchanova, G. N., Baulina, T. V., Nifant'ev, E. E. & Myasoedov, B. F. (2005). Dokl. Chem. 403, 126–128.  Web of Science CrossRef CAS Google Scholar
First citationMoroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175–m3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoroz, O., Trush, V., Znovjyak, K., Konovalova, I., Omelchenko, I., Sliva, T., Shishkin, O. & Amirkhanov, V. (2012). J. Mol. Struct. 1017, 109–114.  CSD CrossRef CAS Google Scholar
First citationOroujzadeh, N., Gholivand, K. & Jamalabadi, N. R. (2017). Polyhedron, 122, 29–38.  CSD CrossRef CAS Google Scholar
First citationPorai-Koshits, M. & Aslanov, L. (1972). Zh. Strukt. Khim. 13, 266–276.  CAS Google Scholar
First citationRogachev, A., Minacheva, L., Sergienko, V., Malkerova, I., Alikhanyan, A., Stryapan, V. & Kuzmina, N. (2005). Polyhedron, 24, 723–729.  CSD CrossRef CAS Google Scholar
First citationSafiulina, A. M., Matveeva, A. G., Lizunov, A. V., Bodrin, G. V., Goryunov, E. I., Grigor'ev, M. S., Semenov, A. A., Brel, V. K. & Nifant'ev, E. E. (2015). Dokl. Chem. 460, 57–60.  CSD CrossRef CAS Google Scholar
First citationShatrava, I., Gubina, K., Ovchynnikov, V., Dyakonenko, V. & Amirkhanov, V. (2016a). Acta Cryst. E72, 1683–1686.  CSD CrossRef IUCr Journals Google Scholar
First citationShatrava, I., Ovchynnikov, V., Gubina, K., Shishkina, S., Shishkin, O. & Amirkhanov, V. (2016b). Struct. Chem. 27, 1413–1425.  CSD CrossRef CAS Google Scholar
First citationShatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokolnicki, J., Legendziewicz, J., Amirkhanov, W., Ovchinnikov, V., Macalik, L. & Hanuza, J. (1999). Spectrochim. Acta A, 55, 349–367.  CrossRef Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, K. & Angell, C. A. (2000). Inorg. Chim. Acta, 298, 16–23.  CrossRef CAS Google Scholar
First citationYizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). Polyhedron, 62, 293–299.  CSD CrossRef CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZnovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V. & Amirkhanov, V. M. (2009). Acta Cryst. E65, o2812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZnovjyak, K. O., Seredyuk, M., Kusz, J., Nowak, M., Moroz, O. V., Sliva, T. Yu. & Amirkhanov, V. M. (2015). J. Mol. Struct. 1100, 145–149.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds