research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A temperature-dependent phase transformation of (E)-2-[(4-chloro­phen­yl)imino]­ace­naphthylen-1-one

CROSSMARK_Color_square_no_text.svg

aSchool of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China, and bDepartment of Chemistry, University of California, Davis, CA 95616, USA
*Correspondence e-mail: mmolmstead@ucdavis.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 July 2017; accepted 18 July 2017; online 25 July 2017)

The crystal structure determination based on 90 K data of the title imine ligand, C18H10ClNO, revealed non-merohedral twinning with three twin domains. In our experience, this is an indication of an ordering phase transition. Consequently, the structure was redetermined with higher temperature data, and a reversible phase transition was discovered. The higher temperature phase is indeed an ordered structure. At the higher temperature, the 4-chloro­phenyl group has rotated by ca 7° into a crystallographic mirror plane. Warming the crystal from 90 K to 250 K changes the space group from triclinic P-1, to monoclinic P21/m. Diverse non-classical inter­actions are present in the crystal packing, and these are described for the phase change reported in this work. The crystal structure of the title imine ligand, measured at 100 K, has been reported on previously [Kovach et al. (2011[Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33-38.]). J. Mol. Struct. 992, 33–38].

1. Chemical context

Transition metal complexes that can photochemically release carbon monoxide upon exposure to visible light have been reported recently (Chakraborty et al., 2014[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603-2611.]; Stenger-Smith et al., 2017[Stenger-Smith, J., Chakraborty, I., Carrington, S. & Mascharak, P. (2017). Acta Cryst. C73, 357-361.]). Facile release of carbon monoxide has been observed in manganese carbonyls containing ace­naphthalene derivatives (Carrington et al., 2015[Carrington, S. J., Chakraborty, I. & Mascharak, P. K. (2015). Dalton Trans. 44, 13828-13834.]) including the ligand MIAN {2-[(4-chloro­phen­yl)imino]­acenapthylen-1-one}, the subject of this study, shown in the Scheme. Our crystal structure determination of MIAN at 90 K agrees with the structure reported by Kovach et al. (2011[Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33-38.]) at 100 K. In particular, the structure occurs in the triclinic space group P[\overline{1}] and it is found to be a twin. In the NMR study of MIAN by Kovach et al., major and minor species were detected in CDCl3 at room temperature and a single species at 388 K in DMSO-d6. They suggested that an E to Z equilibration with the E form dominant takes place at the elevated temperature. The occurrence of a low-symmetry space group and twinning are indicative of a solid–solid phase change, and we were curious about the structure at higher temperatures. While a change of conformation from E to Z would be a very large solid-state change, an alternative structural change would be possible. At 250 K, a small solid-state change was indicated and the new space group is P21/m (α phase). The only difference, aside from small differences in unit-cell dimensions, is a rotation of the imino­acenapthylen-1-one group into a crystallographic mirror plane. In each phase, the mol­ecule remains in the E conformation.

[Scheme 1]

2. Structural commentary

The crystal structure was initially determined at 90 K. Three twin domains were found, with relative contributions of 0.441 (2), 0.058 (3), 0.060 (3). Redetermination of the structure at higher temperatures validated our suspicion that the structure was temperature-sensitive. In order to more easily compare the low-temperature and room-temperature crystal structures, a non-standard setting for the triclinic form was selected. In this setting the shortest axis is the b axis. The b axis is then the unique axis in the monoclinic setting of P21/m. Since minor changes in unit-cell dimensions occur, the exact temperature of the phase change was difficult to determine, but examination of the diffraction images revealed obvious twinning between 90 and 208 K, coalescence of diffraction spots occurring at 230 K, and by 250 K it was clear that the twinning had vanished and the space-group symmetry had changed. Solution of the two structures showed that the structural effect of the temperature change goes from triclinic, P[\overline{1}] with Z = 2 (Z′ = 1) to monoclinic, P21/m with Z = 2 (Z′ = 0.5). The most obvious structural change involves rotation and a change in the dihedral angle between the two mol­ecular planes that brings the acenapthyl group into the crystallographic mirror plane. At 250 K the dihedral angle is 90° while at 90 K it is 83.16 (4)°. The unit-cell volume is 2.5% larger at the higher temperature. As would be expected, thermal motion is greater at high temperature, with Ueq averaging 0.047 Å2 vs 0.017 Å2 at low temperature. Thermal motion in the 4-chloro­phenyl ring is slightly greater than the acenapthyl group at both temperatures, 13.5% greater in the α-phase (90 K) and 10.0% in the β-phase (250 K). Figs. 1[link] and 2[link], depict the high (α-phase) and low (β-phase) temperature structures, respectively. The similarity in the packing is evident from Figs. 3[link] and 4[link].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound at 250 K (α-phase), showing 50% thermal displacement parameters and the atom-numbering scheme. Atoms C14 and C15 are related related to atoms C14A and C15A, respectively, by mirror symmetry.
[Figure 2]
Figure 2
Mol­ecular structure of the title compound at 90 K (β-phase), showing 50% thermal displacement parameters and the atom-numbering scheme.
[Figure 3]
Figure 3
A view of the packing of the room temperature structure (α-phase). The crystallographic mirror planes are shown in blue. Orange dots indicate the crystallographic centers of inversion.
[Figure 4]
Figure 4
A view of the packing of the low temperature structure (β-phase). Orange dots indicate the crystallographic centers of inversion.

3. Supra­molecular features

The two rings are perpendicular within each polymorph, likely due to a steric effect between H9, bonded to C9, and one of the ortho hydrogen atoms on the 4-chloro­phenyl ring (with centroid Cg). As a result of the perpendicular arrangement of the two ring systems, there is an intra­molecular H9⋯Cg distance of 2.90 Å in the 250 K structure and 2.85 Å in the 90 K structure (Tables 1[link] and 2[link]). Neither structure has solvent-accessible voids. We looked for intra- and inter­molecular inter­actions that might be influential in the structural change. The only significant non-classical hydrogen bond of the C—H⋯A type present is found in the crystal structure of the low-temperature structure (β-phase), with a C—H⋯Cli hydrogen bond linking neighbouring mol­ecules to form chains along the c-axis direction (Table 2[link]). There is, however, ππ stacking between the acenapthyl groups in each case: the inter­planar distance is 3.438 Å at 250 K and 3.409 Å at 90 K. In both phases there is a C—H⋯π inter­action on both sides of the phenyl ring, one intra­molecular and one inter­molecular (Tables 1[link] and 2[link], and Fig. 5[link]). Temperature-driven phase changes such as this one that occur without major structural reorganization or ordering transitions have been reported in many cases: see, for example, Takahashi & Ito (2010[Takahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628-1634.]) and Takanabe et al. (2017[Takanabe, A., Katsufuji, T., Johmoto, K., Uekusa, H., Shiro, M., Koshima, H. & Asahi, T. (2017). Crystals, 7, 7; doi:10.3390/cryst7010007.]) and references therein.

Table 1
Hydrogen-bond geometry (Å, °) for the α-phase[link]

Cg is the centroid of the 4-chloro­phenyl ring (C13–C16/C14A/C15A).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 0.94 2.86 3.803 (2) 177
C9—H9⋯Cg 0.94 2.88 3.668 (11) 128
Symmetry code: (i) x+1, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °) for the β-phase[link]

Cg is the centroid of the 4-chloro­phenyl ring (C13–C18).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1i 0.95 2.80 3.748 (2) 179
C6—H6⋯Cgii 0.95 2.75 3.698 (4) 177
C9—H9⋯Cg 0.95 2.87 3.644 (4) 142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
[Figure 5]
Figure 5
A view of the C—H⋯π inter­action linking mol­ecules together in the low temperature structure (β-phase). A similar inter­action occurs in the room-temperature structure (α-phase). Symmetry code: (iii) x, y, z − 1.

4. Synthesis and crystallization

(E)-2-[(4-Chloro­phen­yl)imino]­ace­naphthylen-1-one (MIAN) was synthesized following a reported procedure (Kovach et al., 2011[Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33-38.]). Yellow block-like crystals were obtained by layering technical grade mixed hexa­nes over a solution of the compound in CH2Cl2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both polymorphs, H atoms were included in calculated positions and treated as riding: C—H = 0.94 Å in the high temperature α-phase and 0.95 Å in the low temperature β-phase, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  α-phase β-phase
Crystal data
Chemical formula C18H10ClNO C18H10ClNO
Mr 291.72 291.72
Crystal system, space group Monoclinic, P21/m Triclinic, P[\overline{1}]
Temperature (K) 250 90
a, b, c (Å) 9.0447 (12), 6.8764 (9), 10.9021 (14) 9.0764 (10), 6.8187 (8), 10.7450 (12)
α, β, γ (°) 90, 92.959 (2), 90 90.880 (2), 92.780 (2), 96.259 (2)
V3) 677.15 (15) 660.12 (13)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.28 0.29
Crystal size (mm) 0.30 × 0.20 × 0.20 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.745 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5458, 1496, 1227 34083, 2949, 2726
Rint 0.022 0.023
(sin θ/λ)max−1) 0.625 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.04 0.031, 0.092, 1.08
No. of reflections 1496 2949
No. of parameters 121 193
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.38 0.33, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015b).

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha) top
Crystal data top
C18H10ClNOF(000) = 300
Mr = 291.72Dx = 1.431 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 9.0447 (12) ÅCell parameters from 1908 reflections
b = 6.8764 (9) Åθ = 5.7–52.3°
c = 10.9021 (14) ŵ = 0.28 mm1
β = 92.959 (2)°T = 250 K
V = 677.15 (15) Å3Block, yellow
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
1496 independent reflections
Radiation source: fine focus sealed tube1227 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.022
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1011
Tmin = 0.684, Tmax = 0.745k = 88
5458 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2756P]
where P = (Fo2 + 2Fc2)/3
1496 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05474 (8)0.2500000.19593 (6)0.0739 (3)
O10.75377 (18)0.2500000.29014 (16)0.0547 (5)
N10.4932 (2)0.2500000.12642 (17)0.0442 (5)
C10.4858 (2)0.2500000.2426 (2)0.0366 (5)
C20.6292 (2)0.2500000.3259 (2)0.0395 (5)
C30.5810 (2)0.2500000.4537 (2)0.0366 (5)
C40.6571 (3)0.2500000.5661 (2)0.0440 (6)
H40.7611420.2500000.5718810.053*
C50.5750 (3)0.2500000.6722 (2)0.0475 (6)
H50.6261140.2500000.7494600.057*
C60.4230 (3)0.2500000.6670 (2)0.0473 (6)
H60.3725120.2500000.7402350.057*
C70.1855 (3)0.2500000.5310 (2)0.0564 (7)
H70.1241530.2500000.5980290.068*
C80.1232 (3)0.2500000.4135 (2)0.0584 (7)
H80.0195010.2500000.4021690.070*
C90.2096 (2)0.2500000.3087 (2)0.0455 (6)
H90.1641530.2500000.2292060.055*
C100.3610 (2)0.2500000.32570 (19)0.0361 (5)
C110.4247 (2)0.2500000.44731 (19)0.0347 (5)
C120.3414 (3)0.2500000.5522 (2)0.0419 (5)
C130.3601 (2)0.2500000.05083 (19)0.0398 (5)
C140.29812 (19)0.0762 (3)0.00977 (15)0.0479 (4)
H140.3427740.0422080.0337290.058*
C150.17066 (19)0.0757 (3)0.06642 (15)0.0514 (5)
H150.1279100.0422850.0935240.062*
C160.1076 (3)0.2500000.1018 (2)0.0471 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0487 (4)0.1311 (8)0.0411 (4)0.0000.0069 (3)0.000
O10.0345 (9)0.0793 (13)0.0506 (10)0.0000.0053 (7)0.000
N10.0405 (10)0.0580 (13)0.0342 (10)0.0000.0025 (8)0.000
C10.0366 (11)0.0376 (12)0.0357 (12)0.0000.0026 (9)0.000
C20.0357 (12)0.0408 (13)0.0420 (12)0.0000.0007 (9)0.000
C30.0395 (12)0.0338 (11)0.0364 (11)0.0000.0005 (9)0.000
C40.0430 (13)0.0447 (14)0.0433 (13)0.0000.0084 (10)0.000
C50.0613 (16)0.0465 (14)0.0335 (12)0.0000.0088 (11)0.000
C60.0611 (16)0.0473 (14)0.0337 (12)0.0000.0060 (11)0.000
C70.0450 (14)0.081 (2)0.0442 (14)0.0000.0130 (11)0.000
C80.0350 (12)0.089 (2)0.0517 (15)0.0000.0075 (11)0.000
C90.0361 (12)0.0619 (16)0.0383 (12)0.0000.0010 (9)0.000
C100.0369 (11)0.0374 (12)0.0340 (11)0.0000.0025 (9)0.000
C110.0379 (11)0.0312 (11)0.0350 (11)0.0000.0005 (9)0.000
C120.0458 (13)0.0424 (13)0.0377 (12)0.0000.0056 (10)0.000
C130.0396 (12)0.0523 (14)0.0280 (10)0.0000.0072 (9)0.000
C140.0494 (9)0.0480 (10)0.0465 (9)0.0010 (8)0.0034 (7)0.0022 (8)
C150.0499 (10)0.0593 (12)0.0452 (9)0.0073 (9)0.0038 (8)0.0108 (9)
C160.0401 (12)0.0743 (18)0.0269 (11)0.0000.0028 (9)0.000
Geometric parameters (Å, º) top
Cl1—C161.747 (2)C7—C81.372 (4)
O1—C21.211 (3)C7—C121.417 (3)
N1—C11.272 (3)C7—H70.9400
N1—C131.423 (3)C8—C91.417 (3)
C1—C101.484 (3)C8—H80.9400
C1—C21.545 (3)C9—C101.372 (3)
C2—C31.481 (3)C9—H90.9400
C3—C41.373 (3)C10—C111.418 (3)
C3—C111.413 (3)C11—C121.402 (3)
C4—C51.406 (3)C13—C141.385 (2)
C4—H40.9400C13—C14i1.385 (2)
C5—C61.373 (4)C14—C151.386 (2)
C5—H50.9400C14—H140.9400
C6—C121.420 (3)C15—C161.374 (2)
C6—H60.9400C15—H150.9400
C1—N1—C13119.39 (19)C10—C9—C8118.6 (2)
N1—C1—C10133.5 (2)C10—C9—H9120.7
N1—C1—C2120.02 (19)C8—C9—H9120.7
C10—C1—C2106.45 (17)C9—C10—C11118.7 (2)
O1—C2—C3128.8 (2)C9—C10—C1134.7 (2)
O1—C2—C1125.3 (2)C11—C10—C1106.63 (18)
C3—C2—C1105.91 (18)C12—C11—C3122.6 (2)
C4—C3—C11119.9 (2)C12—C11—C10123.6 (2)
C4—C3—C2132.9 (2)C3—C11—C10113.79 (19)
C11—C3—C2107.22 (19)C11—C12—C7116.0 (2)
C3—C4—C5118.2 (2)C11—C12—C6116.3 (2)
C3—C4—H4120.9C7—C12—C6127.7 (2)
C5—C4—H4120.9C14—C13—C14i119.3 (2)
C6—C5—C4122.4 (2)C14—C13—N1120.24 (11)
C6—C5—H5118.8C14i—C13—N1120.24 (11)
C4—C5—H5118.8C13—C14—C15120.43 (18)
C5—C6—C12120.7 (2)C13—C14—H14119.8
C5—C6—H6119.7C15—C14—H14119.8
C12—C6—H6119.7C16—C15—C14119.13 (18)
C8—C7—C12120.6 (2)C16—C15—H15120.4
C8—C7—H7119.7C14—C15—H15120.4
C12—C7—H7119.7C15i—C16—C15121.4 (2)
C7—C8—C9122.4 (2)C15i—C16—Cl1119.28 (11)
C7—C8—H8118.8C15—C16—Cl1119.28 (11)
C9—C8—H8118.8
C13—N1—C1—C100.000 (1)C2—C3—C11—C12180.000 (1)
C13—N1—C1—C2180.000 (1)C4—C3—C11—C10180.000 (1)
N1—C1—C2—O10.000 (1)C2—C3—C11—C100.000 (1)
C10—C1—C2—O1180.000 (1)C9—C10—C11—C120.000 (1)
N1—C1—C2—C3180.000 (1)C1—C10—C11—C12180.000 (1)
C10—C1—C2—C30.000 (1)C9—C10—C11—C3180.000 (1)
O1—C2—C3—C40.000 (1)C1—C10—C11—C30.000 (1)
C1—C2—C3—C4180.000 (1)C3—C11—C12—C7180.000 (1)
O1—C2—C3—C11180.000 (1)C10—C11—C12—C70.000 (1)
C1—C2—C3—C110.000 (1)C3—C11—C12—C60.000 (1)
C11—C3—C4—C50.000 (1)C10—C11—C12—C6180.000 (1)
C2—C3—C4—C5180.000 (1)C8—C7—C12—C110.000 (1)
C3—C4—C5—C60.000 (1)C8—C7—C12—C6180.000 (1)
C4—C5—C6—C120.000 (1)C5—C6—C12—C110.000 (1)
C12—C7—C8—C90.000 (1)C5—C6—C12—C7180.000 (1)
C7—C8—C9—C100.000 (1)C1—N1—C13—C1492.57 (18)
C8—C9—C10—C110.000 (1)C1—N1—C13—C14i92.57 (18)
C8—C9—C10—C1180.000 (1)C14i—C13—C14—C153.4 (3)
N1—C1—C10—C90.000 (1)N1—C13—C14—C15178.35 (17)
C2—C1—C10—C9180.000 (1)C13—C14—C15—C160.7 (3)
N1—C1—C10—C11180.000 (1)C14—C15—C16—C15i2.0 (3)
C2—C1—C10—C110.000 (1)C14—C15—C16—Cl1179.01 (14)
C4—C3—C11—C120.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the 4-chlorophenyl ring (C13–C16/C14A/C15A).
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgii0.942.863.803 (2)177
C9—H9···Cg0.942.883.668 (11)128
Symmetry code: (ii) x+1, y, z+1.
(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta) top
Crystal data top
C18H10ClNOZ = 2
Mr = 291.72F(000) = 300
Triclinic, P1Dx = 1.468 Mg m3
a = 9.0764 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8187 (8) ÅCell parameters from 9928 reflections
c = 10.7450 (12) Åθ = 4.5–55.2°
α = 90.880 (2)°µ = 0.29 mm1
β = 92.780 (2)°T = 90 K
γ = 96.259 (2)°Block, yellow
V = 660.12 (13) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
2949 independent reflections
Radiation source: fine focus sealed tube2726 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.023
ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(TWINABS; Bruker, 2014)
h = 1111
Tmin = 0.629, Tmax = 0.746k = 88
34083 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1518P]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 4-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06705 (4)0.27235 (6)0.20019 (3)0.02295 (12)
O10.74526 (11)0.24307 (17)0.28273 (9)0.0189 (2)
N10.48366 (13)0.23262 (19)0.11662 (11)0.0160 (3)
C10.47710 (15)0.2430 (2)0.23456 (13)0.0132 (3)
C20.62087 (15)0.2429 (2)0.31934 (13)0.0138 (3)
C30.57248 (15)0.2463 (2)0.44935 (13)0.0136 (3)
C40.64841 (16)0.2421 (2)0.56328 (13)0.0160 (3)
H40.7527140.2371520.5688270.019*
C50.56597 (16)0.2455 (2)0.67222 (13)0.0172 (3)
H50.6169290.2426530.7514020.021*
C60.41399 (16)0.2527 (2)0.66699 (13)0.0171 (3)
H60.3630470.2561110.7420370.021*
C70.17740 (16)0.2579 (2)0.52922 (14)0.0200 (3)
H70.1158710.2607230.5981220.024*
C80.11510 (16)0.2563 (3)0.40886 (14)0.0212 (3)
H80.0107920.2575250.3971120.025*
C90.20184 (15)0.2531 (2)0.30235 (13)0.0165 (3)
H90.1562810.2520260.2208220.020*
C100.35329 (15)0.2514 (2)0.31941 (12)0.0136 (3)
C110.41694 (15)0.2523 (2)0.44327 (13)0.0132 (3)
C120.33329 (16)0.2552 (2)0.55003 (13)0.0156 (3)
C130.35083 (15)0.2411 (2)0.04076 (12)0.0148 (3)
C140.27646 (16)0.0687 (2)0.01417 (13)0.0173 (3)
H140.3137780.0545840.0009520.021*
C150.14723 (16)0.0784 (2)0.08846 (14)0.0184 (3)
H150.0947400.0383080.1248080.022*
C160.09615 (15)0.2603 (2)0.10873 (12)0.0167 (3)
C170.17291 (16)0.4341 (2)0.05980 (13)0.0178 (3)
H170.1387490.5580050.0775200.021*
C180.30080 (16)0.4234 (2)0.01565 (13)0.0170 (3)
H180.3542300.5407770.0501930.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01595 (18)0.0391 (2)0.01433 (17)0.00712 (15)0.00253 (11)0.00184 (15)
O10.0136 (5)0.0254 (6)0.0180 (5)0.0036 (4)0.0023 (4)0.0018 (4)
N10.0151 (6)0.0200 (6)0.0133 (5)0.0039 (5)0.0001 (4)0.0016 (5)
C10.0122 (6)0.0124 (6)0.0152 (6)0.0022 (5)0.0006 (5)0.0013 (5)
C20.0146 (6)0.0129 (7)0.0139 (6)0.0023 (5)0.0007 (5)0.0012 (5)
C30.0153 (7)0.0105 (7)0.0148 (6)0.0011 (5)0.0006 (5)0.0000 (5)
C40.0166 (7)0.0153 (7)0.0159 (6)0.0022 (5)0.0012 (5)0.0007 (5)
C50.0232 (7)0.0160 (7)0.0123 (6)0.0023 (5)0.0024 (5)0.0008 (5)
C60.0226 (7)0.0163 (7)0.0125 (6)0.0008 (5)0.0034 (5)0.0006 (5)
C70.0173 (7)0.0261 (8)0.0167 (7)0.0011 (6)0.0051 (5)0.0005 (6)
C80.0124 (6)0.0307 (9)0.0207 (7)0.0022 (6)0.0026 (5)0.0019 (6)
C90.0154 (7)0.0203 (7)0.0136 (6)0.0011 (5)0.0002 (5)0.0009 (5)
C100.0159 (7)0.0122 (7)0.0128 (6)0.0013 (5)0.0019 (5)0.0011 (5)
C110.0151 (6)0.0104 (6)0.0140 (6)0.0007 (5)0.0006 (5)0.0012 (5)
C120.0185 (7)0.0140 (7)0.0140 (6)0.0007 (5)0.0015 (5)0.0007 (5)
C130.0129 (6)0.0225 (8)0.0098 (6)0.0035 (5)0.0024 (5)0.0019 (5)
C140.0181 (7)0.0189 (7)0.0157 (7)0.0047 (5)0.0036 (5)0.0014 (6)
C150.0157 (7)0.0220 (8)0.0173 (7)0.0014 (5)0.0020 (5)0.0035 (6)
C160.0123 (6)0.0287 (8)0.0097 (6)0.0046 (6)0.0011 (5)0.0015 (6)
C170.0191 (7)0.0211 (8)0.0144 (6)0.0066 (6)0.0023 (5)0.0024 (6)
C180.0180 (7)0.0181 (7)0.0149 (6)0.0025 (5)0.0006 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cl1—C161.7478 (14)C7—H70.9500
O1—C21.2133 (17)C8—C91.4214 (19)
N1—C11.2728 (18)C8—H80.9500
N1—C131.4292 (17)C9—C101.3793 (19)
C1—C101.4863 (18)C9—H90.9500
C1—C21.5548 (18)C10—C111.4246 (18)
C2—C31.4851 (19)C11—C121.4070 (19)
C3—C41.3777 (19)C13—C181.394 (2)
C3—C111.4151 (19)C13—C141.398 (2)
C4—C51.421 (2)C14—C151.395 (2)
C4—H40.9500C14—H140.9500
C5—C61.384 (2)C15—C161.387 (2)
C5—H50.9500C15—H150.9500
C6—C121.4249 (19)C16—C171.390 (2)
C6—H60.9500C17—C181.393 (2)
C7—C81.385 (2)C17—H170.9500
C7—C121.424 (2)C18—H180.9500
C1—N1—C13118.79 (12)C9—C10—C11118.72 (12)
N1—C1—C10133.62 (13)C9—C10—C1134.58 (12)
N1—C1—C2119.95 (12)C11—C10—C1106.67 (11)
C10—C1—C2106.41 (11)C12—C11—C3122.84 (13)
O1—C2—C3128.96 (13)C12—C11—C10123.41 (13)
O1—C2—C1125.29 (12)C3—C11—C10113.74 (12)
C3—C2—C1105.75 (11)C11—C12—C7116.47 (13)
C4—C3—C11120.05 (13)C11—C12—C6116.28 (13)
C4—C3—C2132.53 (13)C7—C12—C6127.25 (13)
C11—C3—C2107.41 (12)C18—C13—C14120.11 (13)
C3—C4—C5117.97 (13)C18—C13—N1119.71 (13)
C3—C4—H4121.0C14—C13—N1120.07 (13)
C5—C4—H4121.0C15—C14—C13119.71 (14)
C6—C5—C4122.29 (13)C15—C14—H14120.1
C6—C5—H5118.9C13—C14—H14120.1
C4—C5—H5118.9C16—C15—C14119.29 (14)
C5—C6—C12120.57 (13)C16—C15—H15120.4
C5—C6—H6119.7C14—C15—H15120.4
C12—C6—H6119.7C15—C16—C17121.63 (13)
C8—C7—C12120.26 (13)C15—C16—Cl1119.34 (12)
C8—C7—H7119.9C17—C16—Cl1119.02 (12)
C12—C7—H7119.9C16—C17—C18118.81 (14)
C7—C8—C9122.29 (13)C16—C17—H17120.6
C7—C8—H8118.9C18—C17—H17120.6
C9—C8—H8118.9C17—C18—C13120.32 (14)
C10—C9—C8118.85 (13)C17—C18—H18119.8
C10—C9—H9120.6C13—C18—H18119.8
C8—C9—H9120.6
C13—N1—C1—C104.4 (2)C2—C3—C11—C100.57 (17)
C13—N1—C1—C2177.46 (12)C9—C10—C11—C120.1 (2)
N1—C1—C2—O13.7 (2)C1—C10—C11—C12178.59 (13)
C10—C1—C2—O1177.65 (14)C9—C10—C11—C3178.77 (13)
N1—C1—C2—C3177.25 (13)C1—C10—C11—C30.33 (17)
C10—C1—C2—C31.36 (14)C3—C11—C12—C7178.99 (13)
O1—C2—C3—C43.2 (3)C10—C11—C12—C70.2 (2)
C1—C2—C3—C4177.87 (15)C3—C11—C12—C60.3 (2)
O1—C2—C3—C11177.79 (15)C10—C11—C12—C6179.11 (13)
C1—C2—C3—C111.18 (15)C8—C7—C12—C110.4 (2)
C11—C3—C4—C50.4 (2)C8—C7—C12—C6178.80 (16)
C2—C3—C4—C5179.39 (14)C5—C6—C12—C110.7 (2)
C3—C4—C5—C60.0 (2)C5—C6—C12—C7178.45 (15)
C4—C5—C6—C120.6 (2)C1—N1—C13—C1881.00 (18)
C12—C7—C8—C90.3 (3)C1—N1—C13—C14102.89 (16)
C7—C8—C9—C100.0 (2)C18—C13—C14—C153.6 (2)
C8—C9—C10—C110.2 (2)N1—C13—C14—C15179.75 (12)
C8—C9—C10—C1178.14 (16)C13—C14—C15—C161.3 (2)
N1—C1—C10—C90.8 (3)C14—C15—C16—C171.9 (2)
C2—C1—C10—C9179.12 (16)C14—C15—C16—Cl1179.20 (10)
N1—C1—C10—C11177.30 (16)C15—C16—C17—C182.7 (2)
C2—C1—C10—C111.04 (15)Cl1—C16—C17—C18178.37 (10)
C4—C3—C11—C120.3 (2)C16—C17—C18—C130.3 (2)
C2—C3—C11—C12179.49 (13)C14—C13—C18—C172.8 (2)
C4—C3—C11—C10178.61 (13)N1—C13—C18—C17178.94 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the 4-chlorophenyl ring (C13–C18).
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.952.803.748 (2)179
C6—H6···Cgii0.952.753.698 (4)177
C9—H9···Cg0.952.873.644 (4)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to Samantha Carrington for a sample of MIAN. LB thanks the China Scholarship Council for support of a joint PhD visit.

References

First citationBruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCarrington, S. J., Chakraborty, I. & Mascharak, P. K. (2015). Dalton Trans. 44, 13828–13834.  CSD CrossRef CAS PubMed Google Scholar
First citationChakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603–2611.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStenger-Smith, J., Chakraborty, I., Carrington, S. & Mascharak, P. (2017). Acta Cryst. C73, 357–361.  CSD CrossRef IUCr Journals Google Scholar
First citationTakahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628–1634.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakanabe, A., Katsufuji, T., Johmoto, K., Uekusa, H., Shiro, M., Koshima, H. & Asahi, T. (2017). Crystals, 7, 7; doi:10.3390/cryst7010007.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds