research communications
A new solvate of epalerstat, a drug for diabetic neuropathy
aSchool of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo 145-8501, Japan
*Correspondence e-mail: e-yonemochi@hoshi.ac.jp
Epalerstat {systematic name: (5Z)-5-[(2E)-2-methyl-3-phenylprop-2-en-1-ylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidine-3-acetic acid} crystallized as an acetone monosolvate, C15H13NO3S2·C3H6O. In the epalerstat molecule, the methylpropylenediene moiety is inclined to the phenyl ring and the five-membered rhodamine ring by 21.4 (4) and 4.7 (4)°, respectively. In addition, the acetic acid moiety is found to be almost normal to the rhodamine ring, making a dihedral angle of 85.1 (2)°. In the crystal, a pair of O—H⋯O hydrogen bonds between the carboxylic acid groups of epalerstat molecules form inversion dimers with an R22(8) loop. The dimers are linked by pairs of C—H⋯O hydrogen bonds, enclosing R22(20) loops, forming chains propagating along the [101] direction. In addition, the acetone molecules are linked to the chain by a C—H⋯O hydrogen bond. Epalerstat acetone monosolvate was found to be isotypic with epalerstat tertrahydrofuran solvate [Umeda et al. (2017). Acta Cryst. E73, 941–944].
Keywords: crystal structure; epalerstat; acetone; monosolvate; isotypic; hydrogen bonding.
CCDC reference: 1563705
1. Chemical context
Investigation of solid forms of pharmaceuticals has attracted a great deal of attention as different crystal forms may imply different physicochemical properties (Putra et al., 2016a,b). Moreover, pharmaceutical processing stages during manufacturing, such as crystallization, can lead to the unexpected occurrence of new crystalline phases (Putra et al., 2016c). One of the important classes of pharmaceutical solids that can occur during crystallization is solvates. Solvates are defined as multi-component crystalline systems in which solvent molecules are included within the in either a stoichiometric or non-stoichiometric manner (Griesser, 2006). It has been estimated statistically that around 33% of organic compounds have the ability to form solvates with organic solvents (Clarke et al., 2010).
Herein, we report on the Z)-5-[(2E)-2-methyl-3-phenylprop-2-en-1-ylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidine-3-acetic acid), is an aldose reductase inhibitor and is used for the treatment of diabetic neuropathy, a complication symptom in diabetes mellitus (Miyamoto, 2002). Pharmacologically, epalerstat acts to inhibit the synthesis of sorbitol from glucose (Ramirez & Borja, 2008). The abundant occurrences of solvates in epalerstat itself is not surprising because of the imbalance between the hydrogen-bond donors and acceptors in its molecular structure. Previously, the crystal structures of the methanol mono- and disolvate (Igarashi et al., 2015; Nagase et al., 2016), the ethanol monosolvate (Ishida et al., 1989, 1990), the dimethylformamide monosolvate (Putra et al., 2017), the dimethylsulfoxide disolvate (Putra et al., 2017) and the tetrahydrofuran monosolvate (Umeda et al., 2017) have been reported.
of a new solvate form of epalerstat, namely epalerstat acetone monosolvate. Epalerstat [systematic name: (52. Structural commentary
The molecular structure of epalerstat acetone monosolvate is illustrated in Fig. 1. The values of the bond distances, bond angles and dihedral angles are normal according the Mogul geometry check within the CSD software (Bruno et al., 2004; Groom et al., 2016). The mean plane of the methylpropylenediene (C7–C10) moiety is inclined to the phenyl ring (C1–C6) and the five-membered rhodamine ring (S1/S2/O1/N1/C11–C13) by 21.4 (4) and 4.7 (4)°, respectively. The mean plane of the acetic acid moiety (O2/O3/C14/C15) is almost normal to the rhodamine ring, making a dihedral angle of 85.1 (2) °.
3. Supramolecular features
In the crystal, the epalerstat molecule is connected to two adjacent epalerstat molecules and one solvent molecule via both conventional and non-conventional hydrogen bonds. The details of the hydrogen bonds and hydrogen bonding architecture are listed and presented in Table 1 and Fig. 2, respectively. A pair of O3—H3A⋯O2ii hydrogen bonds is observed between two carboxylic acid moieties forming an inversion dimer with an R22(8) loop. This dimer is linked to adjacent dimers by a pair of C6—H6⋯O1ii hydrogen bonds, which enclose R22(20) loops, and form chains along direction [101]. In addition, acetone molecules are linked to the chain by a C1—H1⋯O4iii hydrogen bond (Table 1 and Fig. 2).
3.1. Discussion
Interestingly, the new solvate reported here is isotypic with epalerstat tetrahydrofuran monosolvate (Umeda et al., 2017). Both solvates crystallize in the triclinic system with the same P. As illustrated in Fig. 3, they have a similar molecular arrangement and the solvent molecules are located in similar pockets in the The similarity index (Π) and the mean elongation (∊) values were calculated (Fábián & Kálmán, 1999) and found to be Π = 0.0016 and ∊ = 0.0005. As the Π and ∊ values are nearly zero, epalerstat acetone monosolvate and tetrahydrofuran monosolvate have The solvent-occupied spaces, in which the solvent molecules were deleted from the and the voids were calculated using the contact surface method with probe radius and approximate grid spacing set equal to 1.2 and 0.7 Å, respectively (Putra et al., 2016d; Macrae et al., 2008). The solvent occupied spaces for the acetone and tetrahydrofuran solvates are 199.86 and 221.89 Å3, respectively. As expected, the larger occupied space in epalerstat tetrahydrofuran solvate corresponds to the larger solvent molecule. Interestingly, both solvents occupy nearly the same percentage of the total volume of the the acetone and tetrahydrofuran molecules occupy 22.2 and 23.8%, respectively.
4. Database survey
A search of the Cambridge Structural Database (CSD, V5.38, last update July 2017; Groom et al., 2016) for epalerstat yielded 16 hits. They include the ethanol monosolvate (Ishida et al., 1989, 1990), the methanol monosolvate (Igarashi et al., 2015), the methanol disolvate (Nagase et al., 2016), the dimethylformamide monosolvate (Putra et al., 2017), the dimethylsulfoxide disolvate (Putra et al., 2017), the tetrahydrofuran monosolvate (Umeda et al., 2017), Form I: triclinic, P (Igarashi et al., 2013; Swapna et al., 2016), Form II: monoclinic, C2/c (Swapna et al., 2016), Form III: monoclinic, P21/n (Swapna et al., 2016), the with caffeine (Putra et al., 2017), a series of salt co-crystals with cytosine (Swapna & Nangia, 2017) and the Z,Z isomer (Swapna et al., 2016).
5. Synthesis and crystallization
Epalerstat Form I (700 mg) was dissolved in 10 ml acetone and the clear solution was then kept for three days at room temperature. Epalerstat acetone monosolvate appeared concomitantly with epalerstat Form I and they could be distinguished visually based on their
In this case, the title compound, epalerstat acetone monosolvate, and Form I appeared as yellow blocks and orange needle-like crystals, respectively.6. details
Crystal data, data collection and structure . The hydrogen atom attached to an oxygen atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated using riding model: C—H = 0.9–1.0 Å with Uiso(H) = 1.5Uiso(C-methyl) and 1.2Uiso(C) for other H atoms. Initially the site occupancy factor of the acetone molecule was refined and determined to be 1.005 (4). In the final cycles of the occupancy of the acetone molecule was fixed at 1.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1563705
https://doi.org/10.1107/S2056989017010751/su5385sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010751/su5385Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010751/su5385Isup3.cml
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).C15H13NO3S2·C3H6O | Z = 2 |
Mr = 377.46 | F(000) = 396 |
Triclinic, P1 | Dx = 1.390 Mg m−3 |
a = 7.9623 (1) Å | Cu Kα radiation, λ = 1.54187 Å |
b = 8.1806 (2) Å | Cell parameters from 10593 reflections |
c = 15.6919 (3) Å | θ = 5.9–68.2° |
α = 97.852 (7)° | µ = 2.87 mm−1 |
β = 99.837 (7)° | T = 93 K |
γ = 113.206 (8)° | Block, yellow |
V = 901.83 (6) Å3 | 0.35 × 0.24 × 0.10 mm |
Rigaku R-AXIS RAPID II diffractometer | 3235 independent reflections |
Radiation source: rotating anode X-ray, RIGAKU | 2790 reflections with I > 2σ(I) |
Detector resolution: 10.0 pixels mm-1 | Rint = 0.045 |
ω scan | θmax = 68.2°, θmin = 5.9° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.378, Tmax = 0.750 | k = −9→9 |
10593 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0886P)2] where P = (Fo2 + 2Fc2)/3 |
3235 reflections | (Δ/σ)max < 0.001 |
233 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
S1 | 0.32326 (7) | 0.22776 (7) | 0.40775 (3) | 0.0232 (2) | |
S2 | 0.53005 (7) | 0.15013 (8) | 0.27814 (4) | 0.0290 (2) | |
O1 | −0.15383 (19) | −0.1417 (2) | 0.26694 (9) | 0.0270 (5) | |
O2 | 0.0245 (2) | 0.0465 (2) | 0.10793 (9) | 0.0257 (5) | |
O3 | 0.0821 (2) | −0.1687 (2) | 0.02943 (10) | 0.0304 (5) | |
N1 | 0.1578 (2) | −0.0247 (2) | 0.26497 (11) | 0.0214 (5) | |
C1 | −0.2491 (3) | 0.5295 (3) | 0.76805 (14) | 0.0256 (7) | |
C2 | −0.0768 (3) | 0.6025 (3) | 0.74641 (14) | 0.0252 (7) | |
C3 | −0.0449 (3) | 0.5163 (3) | 0.67266 (13) | 0.0232 (6) | |
C4 | −0.1877 (3) | 0.3532 (3) | 0.61713 (14) | 0.0214 (6) | |
O4 | 0.3463 (2) | 0.3068 (2) | 0.03521 (11) | 0.0438 (6) | |
C5 | −0.3632 (3) | 0.2835 (3) | 0.63920 (14) | 0.0235 (6) | |
C6 | −0.3931 (3) | 0.3700 (3) | 0.71326 (14) | 0.0252 (7) | |
C7 | −0.1685 (3) | 0.2516 (3) | 0.53833 (13) | 0.0216 (6) | |
C8 | −0.0128 (3) | 0.2508 (3) | 0.51367 (13) | 0.0215 (6) | |
C9 | 0.1858 (3) | 0.3596 (3) | 0.56879 (14) | 0.0242 (6) | |
C10 | −0.0467 (3) | 0.1284 (3) | 0.43048 (13) | 0.0218 (6) | |
C11 | 0.0769 (3) | 0.1067 (3) | 0.38588 (13) | 0.0211 (6) | |
C12 | 0.0075 (3) | −0.0322 (3) | 0.30199 (13) | 0.0220 (7) | |
C13 | 0.3343 (3) | 0.1078 (3) | 0.30963 (14) | 0.0226 (6) | |
C14 | 0.1251 (3) | −0.1486 (3) | 0.18203 (13) | 0.0234 (6) | |
C15 | 0.0718 (3) | −0.0778 (3) | 0.10282 (14) | 0.0230 (6) | |
C16 | 0.6721 (4) | 0.3855 (4) | 0.08636 (16) | 0.0463 (9) | |
C17 | 0.4865 (3) | 0.2987 (3) | 0.01874 (15) | 0.0306 (7) | |
C18 | 0.4837 (4) | 0.2023 (4) | −0.07037 (16) | 0.0397 (8) | |
H1 | −0.26853 | 0.58768 | 0.81968 | 0.0310* | |
H2 | 0.02089 | 0.71326 | 0.78271 | 0.0300* | |
H3 | 0.07467 | 0.56789 | 0.65942 | 0.0280* | |
H3A | 0.034 (4) | −0.130 (4) | −0.016 (2) | 0.066 (10)* | |
H5 | −0.46298 | 0.17474 | 0.60237 | 0.0280* | |
H6 | −0.51254 | 0.32025 | 0.72678 | 0.0300* | |
H7 | −0.28463 | 0.17230 | 0.49709 | 0.0260* | |
H9A | 0.24324 | 0.47371 | 0.54951 | 0.0360* | |
H9B | 0.25903 | 0.28868 | 0.56141 | 0.0360* | |
H9C | 0.18490 | 0.38731 | 0.63143 | 0.0360* | |
H10 | −0.17563 | 0.05124 | 0.40288 | 0.0260* | |
H14A | 0.02271 | −0.26889 | 0.17941 | 0.0280* | |
H14B | 0.24067 | −0.16584 | 0.17988 | 0.0280* | |
H16A | 0.66246 | 0.45979 | 0.13819 | 0.0690* | |
H16B | 0.76964 | 0.46315 | 0.06051 | 0.0690* | |
H16C | 0.70570 | 0.29014 | 0.10460 | 0.0690* | |
H18A | 0.35396 | 0.14160 | −0.10715 | 0.0590* | |
H18B | 0.53261 | 0.11105 | −0.06269 | 0.0590* | |
H18C | 0.56266 | 0.29111 | −0.09945 | 0.0590* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0185 (3) | 0.0257 (3) | 0.0223 (3) | 0.0072 (2) | 0.0049 (2) | 0.0033 (2) |
S2 | 0.0207 (3) | 0.0327 (4) | 0.0313 (3) | 0.0088 (3) | 0.0094 (2) | 0.0041 (3) |
O1 | 0.0193 (8) | 0.0290 (9) | 0.0267 (8) | 0.0060 (7) | 0.0039 (6) | 0.0033 (7) |
O2 | 0.0287 (8) | 0.0273 (9) | 0.0227 (8) | 0.0147 (7) | 0.0057 (6) | 0.0029 (6) |
O3 | 0.0355 (9) | 0.0386 (10) | 0.0221 (8) | 0.0233 (8) | 0.0047 (7) | 0.0020 (7) |
N1 | 0.0205 (9) | 0.0223 (10) | 0.0204 (9) | 0.0082 (8) | 0.0056 (7) | 0.0036 (7) |
C1 | 0.0304 (12) | 0.0290 (13) | 0.0238 (11) | 0.0168 (10) | 0.0099 (9) | 0.0091 (9) |
C2 | 0.0251 (11) | 0.0242 (12) | 0.0267 (11) | 0.0115 (9) | 0.0049 (9) | 0.0056 (9) |
C3 | 0.0196 (10) | 0.0233 (12) | 0.0266 (11) | 0.0081 (9) | 0.0064 (9) | 0.0074 (9) |
C4 | 0.0221 (11) | 0.0232 (11) | 0.0232 (11) | 0.0123 (9) | 0.0066 (9) | 0.0091 (9) |
O4 | 0.0331 (10) | 0.0508 (11) | 0.0447 (11) | 0.0144 (8) | 0.0180 (8) | 0.0027 (9) |
C5 | 0.0192 (10) | 0.0248 (12) | 0.0268 (11) | 0.0099 (9) | 0.0038 (9) | 0.0073 (9) |
C6 | 0.0205 (11) | 0.0300 (13) | 0.0281 (11) | 0.0119 (9) | 0.0082 (9) | 0.0096 (10) |
C7 | 0.0208 (11) | 0.0199 (11) | 0.0238 (11) | 0.0083 (9) | 0.0037 (9) | 0.0073 (9) |
C8 | 0.0231 (11) | 0.0223 (11) | 0.0217 (10) | 0.0106 (9) | 0.0074 (9) | 0.0079 (9) |
C9 | 0.0213 (11) | 0.0293 (12) | 0.0227 (10) | 0.0122 (9) | 0.0054 (9) | 0.0040 (9) |
C10 | 0.0205 (10) | 0.0220 (11) | 0.0232 (11) | 0.0085 (9) | 0.0052 (9) | 0.0081 (9) |
C11 | 0.0211 (11) | 0.0212 (11) | 0.0212 (10) | 0.0085 (9) | 0.0051 (8) | 0.0077 (9) |
C12 | 0.0216 (11) | 0.0236 (12) | 0.0226 (11) | 0.0101 (9) | 0.0056 (9) | 0.0091 (9) |
C13 | 0.0197 (11) | 0.0227 (11) | 0.0260 (11) | 0.0089 (9) | 0.0051 (9) | 0.0082 (9) |
C14 | 0.0251 (11) | 0.0215 (11) | 0.0230 (11) | 0.0095 (9) | 0.0084 (9) | 0.0012 (9) |
C15 | 0.0146 (10) | 0.0261 (12) | 0.0234 (11) | 0.0058 (9) | 0.0040 (8) | 0.0000 (9) |
C16 | 0.0394 (15) | 0.0540 (18) | 0.0356 (14) | 0.0151 (13) | 0.0027 (12) | 0.0022 (13) |
C17 | 0.0282 (13) | 0.0318 (13) | 0.0308 (12) | 0.0100 (10) | 0.0100 (10) | 0.0089 (10) |
C18 | 0.0330 (13) | 0.0541 (17) | 0.0317 (13) | 0.0211 (12) | 0.0078 (11) | 0.0016 (12) |
S1—C11 | 1.759 (3) | C11—C12 | 1.476 (3) |
S1—C13 | 1.744 (2) | C14—C15 | 1.507 (3) |
S2—C13 | 1.636 (3) | C1—H1 | 0.9500 |
O1—C12 | 1.213 (3) | C2—H2 | 0.9500 |
O2—C15 | 1.213 (3) | C3—H3 | 0.9500 |
O3—C15 | 1.316 (3) | C5—H5 | 0.9500 |
N1—C12 | 1.401 (3) | C6—H6 | 0.9500 |
N1—C13 | 1.377 (3) | C7—H7 | 0.9500 |
N1—C14 | 1.451 (3) | C9—H9B | 0.9800 |
O3—H3A | 0.91 (3) | C9—H9C | 0.9800 |
C1—C6 | 1.391 (3) | C9—H9A | 0.9800 |
C1—C2 | 1.387 (4) | C10—H10 | 0.9500 |
C2—C3 | 1.386 (3) | C14—H14A | 0.9900 |
C3—C4 | 1.407 (3) | C14—H14B | 0.9900 |
C4—C5 | 1.410 (4) | C16—C17 | 1.499 (4) |
C4—C7 | 1.459 (3) | C17—C18 | 1.501 (3) |
O4—C17 | 1.212 (3) | C16—H16A | 0.9800 |
C5—C6 | 1.382 (3) | C16—H16B | 0.9800 |
C7—C8 | 1.363 (4) | C16—H16C | 0.9800 |
C8—C10 | 1.445 (3) | C18—H18A | 0.9800 |
C8—C9 | 1.501 (3) | C18—H18B | 0.9800 |
C10—C11 | 1.352 (3) | C18—H18C | 0.9800 |
C11—S1—C13 | 93.02 (11) | C4—C3—H3 | 120.00 |
C12—N1—C13 | 116.89 (18) | C4—C5—H5 | 119.00 |
C12—N1—C14 | 120.69 (18) | C6—C5—H5 | 119.00 |
C13—N1—C14 | 122.41 (19) | C1—C6—H6 | 120.00 |
C15—O3—H3A | 107 (2) | C5—C6—H6 | 120.00 |
C2—C1—C6 | 119.2 (2) | C4—C7—H7 | 114.00 |
C1—C2—C3 | 121.0 (2) | C8—C7—H7 | 114.00 |
C2—C3—C4 | 120.7 (2) | C8—C9—H9A | 109.00 |
C3—C4—C5 | 117.4 (2) | C8—C9—H9B | 109.00 |
C5—C4—C7 | 117.6 (2) | C8—C9—H9C | 109.00 |
C3—C4—C7 | 125.1 (2) | H9A—C9—H9B | 109.00 |
C4—C5—C6 | 121.4 (2) | H9A—C9—H9C | 109.00 |
C1—C6—C5 | 120.3 (2) | H9B—C9—H9C | 109.00 |
C4—C7—C8 | 131.1 (2) | C8—C10—H10 | 115.00 |
C7—C8—C9 | 124.49 (19) | C11—C10—H10 | 115.00 |
C7—C8—C10 | 116.2 (2) | N1—C14—H14A | 109.00 |
C9—C8—C10 | 119.2 (2) | N1—C14—H14B | 109.00 |
C8—C10—C11 | 129.9 (2) | C15—C14—H14A | 109.00 |
S1—C11—C12 | 109.41 (17) | C15—C14—H14B | 109.00 |
C10—C11—C12 | 119.9 (2) | H14A—C14—H14B | 108.00 |
S1—C11—C10 | 130.59 (17) | O4—C17—C16 | 121.6 (2) |
O1—C12—C11 | 127.7 (2) | O4—C17—C18 | 121.9 (2) |
N1—C12—C11 | 110.3 (2) | C16—C17—C18 | 116.5 (2) |
O1—C12—N1 | 122.00 (19) | C17—C16—H16A | 110.00 |
S1—C13—N1 | 110.27 (17) | C17—C16—H16B | 109.00 |
S2—C13—N1 | 126.30 (17) | C17—C16—H16C | 109.00 |
S1—C13—S2 | 123.43 (14) | H16A—C16—H16B | 109.00 |
N1—C14—C15 | 111.81 (19) | H16A—C16—H16C | 109.00 |
O2—C15—C14 | 123.1 (2) | H16B—C16—H16C | 109.00 |
O3—C15—C14 | 111.3 (2) | C17—C18—H18A | 109.00 |
O2—C15—O3 | 125.6 (2) | C17—C18—H18B | 109.00 |
C2—C1—H1 | 120.00 | C17—C18—H18C | 110.00 |
C6—C1—H1 | 120.00 | H18A—C18—H18B | 109.00 |
C1—C2—H2 | 120.00 | H18A—C18—H18C | 109.00 |
C3—C2—H2 | 119.00 | H18B—C18—H18C | 109.00 |
C2—C3—H3 | 120.00 | ||
C13—S1—C11—C10 | −175.1 (2) | C2—C3—C4—C7 | −179.8 (2) |
C13—S1—C11—C12 | 1.91 (17) | C7—C4—C5—C6 | 179.3 (2) |
C11—S1—C13—S2 | 177.60 (16) | C5—C4—C7—C8 | −159.0 (2) |
C11—S1—C13—N1 | −2.90 (17) | C3—C4—C5—C6 | −1.1 (3) |
C14—N1—C13—S2 | 1.0 (3) | C3—C4—C7—C8 | 21.4 (4) |
C14—N1—C12—C11 | 179.93 (18) | C4—C5—C6—C1 | 0.1 (4) |
C12—N1—C13—S1 | 3.3 (2) | C4—C7—C8—C9 | 2.0 (4) |
C13—N1—C12—O1 | 178.6 (2) | C4—C7—C8—C10 | 178.8 (2) |
C14—N1—C12—O1 | 0.4 (3) | C9—C8—C10—C11 | −8.4 (4) |
C13—N1—C12—C11 | −1.8 (3) | C7—C8—C10—C11 | 174.7 (2) |
C13—N1—C14—C15 | −93.1 (3) | C8—C10—C11—C12 | 178.6 (2) |
C14—N1—C13—S1 | −178.51 (15) | C8—C10—C11—S1 | −4.7 (4) |
C12—N1—C13—S2 | −177.26 (17) | C10—C11—C12—O1 | −3.6 (4) |
C12—N1—C14—C15 | 85.1 (2) | C10—C11—C12—N1 | 176.9 (2) |
C2—C1—C6—C5 | 1.3 (3) | S1—C11—C12—N1 | −0.5 (2) |
C6—C1—C2—C3 | −1.8 (4) | S1—C11—C12—O1 | 179.0 (2) |
C1—C2—C3—C4 | 0.8 (4) | N1—C14—C15—O2 | −14.2 (3) |
C2—C3—C4—C5 | 0.7 (3) | N1—C14—C15—O3 | 166.38 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.91 (3) | 1.75 (3) | 2.645 (2) | 171 (3) |
C6—H6···O1ii | 0.95 | 2.50 | 3.440 (3) | 168 |
C1—H1···O4iii | 0.95 | 2.58 | 3.525 (3) | 171 |
Symmetry codes: (i) −x, −y, −z; (ii) −x−1, −y, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
We wish to thank for Professor Hiromasa Nagase (Hoshi University) for technical support during the single-crystal X-ray measurements.
References
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Clarke, H. D., Arora, K. K., Bass, H., Kavuru, P., Ong, T. T., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 2152–2167. Web of Science CSD CrossRef CAS Google Scholar
Fábián, L. & Kálmán, A. (1999). Acta Cryst. B55, 1099–1108. Web of Science CrossRef IUCr Journals Google Scholar
Griesser, U. J. (2006). Polymorphism: In the Pharmaceutical Industry, edited by R. Hilfiker, pp. 211–233. Weinheim: Wiley-Vch Verlag GmbH & Co. KGaA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Igarashi, R., Nagase, H., Furuishi, T., Endo, T., Tomono, K. & Ueda, H. (2013). X-ray Struct. Anal. Online, 29, 23–24. CSD CrossRef Google Scholar
Igarashi, R., Nagase, H., Furuishi, T., Tomono, K., Endo, T. & Ueda, H. (2015). X-ray Struct. Anal. Online, 31, 1–2. CSD CrossRef Google Scholar
Ishida, T., In, Y., Inoue, M., Tanaka, C. & Hamanaka, N. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 1085–1091. CSD CrossRef Web of Science Google Scholar
Ishida, T., In, Y., Inoue, M., Ueno, Y., Tanaka, C. & Hamanaka, N. (1989). Tetrahedron Lett. 30, 959–962. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miyamoto, S. (2002). Chem. Bio. Info. J, 2, 74–85. Google Scholar
Nagase, H., Kobayashi, M., Ueda, H., Furuishi, T., Gunji, M., Endo, T. & Yonemochi, E. (2016). X-ray Struct. Anal. Online, 32, 7–9. CSD CrossRef CAS Google Scholar
Putra, O. D., Yonemochi, E. & Uekusa, H. (2016d). Cryst. Growth Des. 16, 6568–6573. Google Scholar
Putra, O. D., Furuishi, T., Yonemochi, E., Terada, K. & Uekusa, H. (2016a). Cryst. Growth Des. 16, 3577–3581. CrossRef CAS Google Scholar
Putra, O. D., Umeda, D., Nugraha, Y. P., Furuishi, T., Nagase, H., Fukuzawa, K., Uekusa, H. & Yonemochi, E. (2017). CrystEngComm, 19, 2614–2622. Web of Science CSD CrossRef CAS Google Scholar
Putra, O. D., Yoshida, T., Umeda, D., Gunji, M., Uekusa, H. & Yonemochi, E. (2016c). Cryst. Growth Des. 16, 6714–6718. CrossRef CAS Google Scholar
Putra, O. D., Yoshida, T., Umeda, D., Higashi, K., Uekusa, H. & Yonemochi, E. (2016b). Cryst. Growth Des. 16, 5223–5229. Web of Science CSD CrossRef CAS Google Scholar
Ramirez, M. A. & Borja, N. L. (2008). Pharmacotherapy, 28, 646–655. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swapna, B. & Nangia, A. (2017). Cryst. Growth Des. 17, 3350–3360. CrossRef CAS Google Scholar
Swapna, B., Suresh, K. & Nangia, A. (2016). Chem. Commun. 52, 4037–4040. Web of Science CSD CrossRef CAS Google Scholar
Umeda, D., Putra, O. D., Gunji, M., Fukuzawa, K. & Yonemochi, E. (2017). Acta Cryst. E73, 941–944. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.