research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Coordination compounds containing bis-di­thiol­ene-chelated molybdenum(IV) and oxalate: comparison of terminal with bridging oxalate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, 80 St George St., Toronto, ON, M5S 3H6, Canada
*Correspondence e-mail: alough@chem.utoronto.ca, ulrich.fekl@utoronto.ca

Edited by M. Zeller, Purdue University, USA (Received 20 June 2017; accepted 10 July 2017; online 18 July 2017)

Two coordination compounds containing tetra-n-butyl­ammonium cations and bis-tfd-chelated molybdenum(IV) [tfd2− = S2C2(CF3)22−] and oxalate (ox2−, C2O42−) in complex anions are reported, namely bis­(tetra-n-butyl­ammonium) bis­(1,1,1,4,4,4-hexa­fluoro­but-2-ene-2,3-di­thiol­ato)oxalatomolybdate(IV)–chloro­form–oxalic acid (1/1/1), (C16H36N)2[Mo(C4F6S2)2(C2O4)]·CHCl3·C2H2O4 or (NnBu4)2[Mo(tfd)2(ox)]·CHCl3·C2H2O4, and bis­(tetra-n-butyl­ammonium) μ-oxalato-bis­[bis­(1,1,1,4,4,4-hexa­fluoro­but-2-ene-2,3-di­thiol­ato)molybdate(IV)], (C16H36N)2[Mo2(C4F6S2)4(C2O4)] or (NnBu4)2[(tfd)2Mo(μ-ox)Mo(tfd)2]. They contain a terminal oxalate ligand in the first compound and a bridging oxalate ligand in the second compound. Anion 12− is [Mo(tfd)2(ox)]2− and anion 22−, formally generated by adding a Mo(tfd)2 fragment onto 12−, is [(tfd)2Mo(μ-ox)Mo(tfd)2]2−. The crystalline material containing 12− is (NnBu4)2-1·CHCl3·oxH2, while the material containing 22− is (NnBu4)2-2. Anion 22− lies across an inversion centre. The complex anions afford a rare opportunity to compare terminal oxalate with bridging oxalate, coordinated to the same metal fragment, here (tfd)2MoIV. C—O bond-length alternation is observed for the terminal oxalate ligand in 12−: the difference between the C—O bond length involving the metal-coordinating O atom and the C—O bond length involving the uncoordinating O atom is 0.044 (12) Å. This bond-length alternation is significant but is smaller than the bond-length alternation observed for oxalic acid in the co-crystallized oxalic acid in (NnBu4)2-1·CHCl3·oxH2, where a difference (for C=O versus C—OH) of 0.117 (14) Å was observed. In the bridging oxalate ligand in 22−, the C—O bond lengths are equalized, within the error margin of one bond-length determination (0.006 Å). It is concluded that oxalic acid contains a localized π-system in its carb­oxy­lic acid groups, that the bridging oxalate ligand in 22− contains a delocalized π-system and that the terminal oxalate ligand in 12− contains an only partially localized π-system. In (NnBu4)2-1·CHCl3·oxH2, the F atoms of two of the –CF3 groups in 12− are disordered over two sets of sites, as are the N and eight of the C atoms of one of the NnBu4 cations. In (NnBu4)2-2, the whole of the unique NnBu4+ cation is disordered over two sets of sites. Also, in (NnBu4)2-2, a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18].

1. Chemical context

The oxalate (ox2−, C2O42−) ion is a very useful ligand in transition metal chemistry. Its usefulness stems in part from its ability to act as a chelate ligand toward a metal cation while retaining two more O atoms with the ability to donate to another metal cation. Thus, while coordination compounds containing terminal oxalate are known, oxalates can easily act as bridging ligands to allow for the synthesis of dimetallic and multimetallic mol­ecular compounds, as well as extended coordination polymers (Clemente-León et al., 2011[Clemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473-497.]; Gruselle et al., 2006[Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491-2500.]). Most of the work has involved V, Cr, Mn, Fe, Co, Ni and Cu, as well as Ru and Rh. Compounds where oxalate coordinates to molybdenum are rare, although some examples have been synthesized, mostly in the context of nitro­genase models, where oxalate was deemed a model for homocitrate (Demadis & Coucouvanis, 1995[Demadis, K. D. & Coucouvanis, D. (1995). Inorg. Chem. 34, 436-448.]). Stimulated by our previous results on the molybdenum(IV) di­thiol­ene fragment Mo(tfd)2 [tfd2− = S2C2(CF3)22−] with a labile `cap' (Harrison et al., 2007[Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644-7647.]; Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]), we added oxalate to the Mo(tfd)2 fragment, as described in the `Synthesis and crystallization' section (§5[link]). The [Mo(tfd)2(ox)]2− (12−) and [(tfd)2Mo(μ-ox)Mo(tfd)2]2− (22−) anions were indeed obtained, offering an opportunity for a structural comparison.

2. Structural commentary

The counter-cation for both complex molybdate anions was tetra-n-butyl­ammonium. 12− was obtained as (NnBu4)2-1·CHCl3·oxH2, while 22− was obtained as (NnBu4)2-2. The mol­ecular structure of 12− is shown in Fig. 1[link], where NnBu4+ counter-ions and co-crystallized oxalic acid, as well as chloro­form solvent mol­ecules, are not shown. Only one orientiation is shown for the disordered tri­fluoro­methyl groups involving atoms C7 and C8. The charge on the molybdenum-containing moiety, which is identified as 12−, is unambiguous, due to the tetra-n-butyl­ammonium cations. While tfd can be redox-non-innocent (Hosking et al., 2009[Hosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759-m760.]), it is redox-innocent here. The C—C bond lengths in the two tfd ligand backbones [1.349 (8) Å for C1—C2 and 1.353 (8) Å for C5—C6] are a clear indication of fully reduced (dianionic) ene–di­thiol­ate (tfd2−), such that the oxidation state of the metal is +IV. The Mo—S bond lengths, ranging from 2.3265 (14) to 2.3390 (15) Å, are as expected for tfd complexes of MoIV (Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]). Regarding the bonded oxalate, the average Mo—O bond length is 2.12 Å [Mo1—O1 = 2.104 (3) Å and Mo1—O2 = 2.135 (3) Å]. Within the oxalate unit, the chemically distinct O atoms (coordinating to molybdenum versus uncoordinating) show different bond lengths to the directly bonded C atom. The C—O bond length involving the metal-coordinating O atom is 1.276 (6) Å (average of two values), with the C—O bond length involving the uncoordinating O atom is 1.232 (6) Å (average of two values), for a difference of 0.044 (12) Å. While it may be tempting to describe the longer C—O bond as a single bond and the shorter C—O bond as a double bond, such a description would not be fully accurate since the bond-length alternation is only partial and less pronounced than for oxalic acid. The oxalic acid (oxH2) mol­ecule found in the structure of (NnBu4)2-1·CHCl3·oxH2 is shown in Fig. 2[link]. This oxalic acid mol­ecule exhibits stronger bond-length alternation: a difference (for C=O versus C—OH) of 0.117 (14) Å is observed. For further comparison, the structure of 22−, in (NnBu4)2-2, is valuable. Both 22− and the (disordered) tetra-n-butyl­ammonium ion in the structure of (NnBu4)2-2 are shown in Fig. 3[link]. For the bridging oxalate ligand in 22−, bond-length equalization is observed, within the error margin of one bond-length determination (0.006 Å). The details of the oxalate substructure are shown in Fig. 4[link], where Fig. 4[link](a) highlights the bond-length changes on going from a terminal oxalate in 12− to a bridging oxalate in 22−, where parameters related to chemically equivalent bonds are averaged for clarity, and Fig. 4[link](b) shows all data before averaging. Fig. 4[link](c) shows the bond lengths in the free oxalic acid mol­ecule in (NnBu4)2-1·CHCl3·oxH2. Fig. 4[link](d) summarizes the findings: oxalic acid contains a localized π-system in its carb­oxy­lic acid groups, the bridging oxalate in 22− contains a delocalized π-system and terminal oxalate in 12− contains a partially localized π-system. While only marginally significant (ca 1σ), an effect involving the C—C bonds of oxalate can be seen: upon becoming bridging, the oxalate C—C bond shortens from 1.528 (7) Å to 1.51 (1) Å (Figs. 4[link]a and 4b). While this bond shortening may initially be surprising, it is actually theoretically expected: the π-system in a localized butadiene-like system is anti­bonding with respect to the central C—C bond. When oxalate becomes bridging, due to delocalization in the π-system, the electronic structure is no longer butadiene-like but rather resembles two allyl anions linked at the central C atom, where the π-overlap at the central C atoms is not anti­bonding but just nonbonding. Apart from the specifics of the oxalate substructure in 22−, there are no dramatic changes in the coordination sphere of molybdenum on going from 12− to 22−. The points made above for 12− related to Mo—S bond lengths (normal) and C—C bond lengths in the tfd ligand (double bond) typically apply also to 22−. Also, both metal centres much more closely resemble a trigonal prismatic structure than an octa­hedral structure, as is expected for d2 tris-chelates involving di­thiol­enes. Using the XMXtrans criterion (Beswick et al., 2004[Beswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55-110.]; Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]), the geometry around molybdenum in 12− is 88% trigonal-prismatic. Using the same method, the geometry around molybdenum in 22− analyzes as 99% trigonal-prismatic.

[Scheme 1]
[Figure 1]
Figure 1
A view of the mol­ecular structure of 12− in (NnBu4)2-1·CHCl3·oxH2. Anisotropic displacement ellipsoids are shown at the 30% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of the oxalic acid (oxH2) mol­ecule in (NnBu4)2-1·CHCl3·oxH2. Anisotropic displacement ellipsoids are shown at the 30% probability level.
[Figure 3]
Figure 3
A view showing the 22− anion and the (disordered) NnBu4+ cation in (NnBu4)2-2. Anisotropic displacement ellipsoids are shown at the 30% probability level. The minor component of disorder is shown with dashed bonds. Unlabelled atoms are related by a crystallographic inversion centre (symmetry code: −x + 2, −y, −z + 1).
[Figure 4]
Figure 4
Bond-length changes on going from terminal to bridging oxalate, summarized (a) and in detail (b), as well as bond lengths in the oxalic acid mol­ecule observed (c) and concluding resonance description (d).

3. Supra­molecular features

The oxalic acid solvent molecule and the metal-coordinating oxalate ligand in (NnBu4)2-1·CHCl3·oxH2 form a hydrogen-bonded network (Table 1[link]). The oxalate O atoms of 12− that are not metal coordinating act as hydrogen-bond acceptors. Oxalic acid acts as a hydrogen-bond donor: both of its OH functionalities hydrogen bond to two different mol­ecules of 12−, such that infinite chains along [100] of the type `—12−—HOOC-COOH—12−—, etc' are formed. The (NnBu4)2+ cations (one of them containing disorder) are packed around the 12− anion, along with a CHCl3 solvent mol­ecule that forms part of the structure. A plot showing anisotropic displacement ellipsoids for all non-H atoms (including disordered ones) in (NnBu4)2-1·CHCl3·oxH2 is shown in Fig. 5[link]. In contrast, there are no hydrogen bonds or notable close contacts in the structure of (NnBu4)2-2, which consists of a packing of 22− anions and NnBu4+ cations, both of which are shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °) for (NnBu4)2-1·CHCl3·oxH2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O3i 0.88 (7) 1.76 (7) 2.633 (5) 170 (7)
O8—H8O⋯O4 0.85 (8) 1.75 (8) 2.587 (5) 174 (9)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 5]
Figure 5
Anisotropic displacement plot (30% probability level) showing all non-H atoms (including disordered ones and those of chloro­form solvent) in (NnBu4)2-1·CHCl3·oxH2. The minor component of disorder is shown with dashed bonds. Atom N2 is disordered over two sites and the major component is obscured by the minor component.

4. Database survey

Relevant coordination compounds containing di­thiol­enes are discussed above, where review articles for coordinating oxalate are also referenced. A search of the Cambridge Structural Database (Version 5.38, including updates up to May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals no reports of molybdenum dithiolene complexes that contain oxalate.

5. Synthesis and crystallization

5.1. General specifications

All manipulations involving metal-containing compounds were carried out under an inert (N2) atmosphere using standard glove-box (M. Braun UniLab) and Schlenk techniques. Solvents were purified prior to use by vacuum distillation from mol­ecular sieves. Organic and inorganic starting materials were obtained from Sigma–Aldrich. Mo(tfd)2(tht)2 (tht = tetra­hydro­thio­phene) was synthesized from Mo(tfd)2(bdt) (bdt = S2C6H4) as in Nguyen et al. (2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]). Mo(tfd)2(bdt) was synthesized as in Harrison et al. (2007[Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644-7647.]). Tetra-n-butyl­ammonium oxalate was prepared by neutralizing oxalic acid with aqueous tetra­butyl­ammonium hydroxide, followed by drying under vacuum at 333 K.

5.2. Synthesis of (NnBu4)2-1.CHCl3·oxH2

We were unable to obtain 12− as the only molybdenum product produced in a reaction. Attempts always led to significant decomposition to form a blue material, almost certainly molybdenum that is reduced below the oxidation state +IV due to the reducing power of oxalate. However, 12− can be obtained as crystals (co-crystals with oxalic acid and chloro­form) in the form of brown blocks. 2 mg of Mo(tfd)2(bdt) (2.9 µmol) were dissolved in a small amount of chloro­form in a glass vial. In a second glass vial, 16.7 mg (29 µmol) of tetra-n-butyl­ammonium oxalate were dissolved in the amount of chloro­form needed to create a clear solution. The contents of the two vials were mixed and 3.3 µl (14.6 µmol) of bis­(tri­methyl­sil­yl)acetyl­ene, needed to labilize the bdt fragment (Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]), were added via microlitre syringe. The initially dark (blue–green) solution became lighter, and small brown particles began to form. After 72 h, the solvent was reduced under vacuum, and orange–brown crystals grew. Blue–green needles (not of X-ray quality) of a different (likely reduced) molybdenum product were also growing. The orange–brown blocks were manually separated and chosen for X-ray crystallography.

5.3. Synthesis of (NnBu4)2-2

2 mg (2.8 µmol) of Mo(tfd)2(tht)2 were dissolved in a minimal amount of chloro­form. A solution of 16 mg (28 µmol) of tetra-n-butyl­ammonium oxalate in 2 ml of chloro­form was added. The solution turned red and, after 2 h, thin pink rectangular crystals had formed. The liquid was deca­nted and the crystals were washed twice with chloro­form and dried under vacuum. X-ray-quality crystals were grown using vapour diffusion. In a small vial, the product was dissolved in di­chloro­methane. The small vial was placed uncapped into a larger vial with chloro­form. The larger vial was capped, and over a period of 2 d, the di­chloro­methane solvent had evaporated from the small vial and dissolved in the chloro­form in the larger vial, leaving pink crystals in the smaller vial. The crystals were found to be very air-sensitive, and exposure to air leads to decomposition to form a liquid that colours the surface of the crystals initially green and later blue.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In (NnBu4)2-1·CHCl3·oxH2, H atoms bonded to C atoms were placed in calculated positions and included in a riding-motion approximation, while H atoms bonded to O atoms were refined independently with isotropic displacement parameters. In the anion 12−, atoms F7/F8/F9 were included as disordered over two sets of sites, with refined occupancies of 0.58 (2) and 0.42 (2). Atoms F10/F11/F12 were included as disordered, with refined occupancies of 0.502 (10) and 0.498 (10). The C—F bond lengths and F⋯F distances were restrained using the SADI command in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and the anisotropic displacement parameters of the disordered F atoms and bonded C atoms were restrained using the SIMU command. In addition, the N and 8 C atoms (C29–C36) of one of the independent NnBu4+ cations were refined as disordered over two sets of sites, with refined occupancies of 0.676 (9) and 0.324 (9). The SAME command in SHELXL was used to restrain the geometry of the disordered C-atom chains to those of the ordered NnBu4+ cation and the SIMU command was used to restrain anisotropic displacement parameters of the disordered atoms. In (NnBu4)2-2, all H atoms were placed in calculated positions and refined in a riding-motion approximation. During the refinement of the structure of (NnBu4)2-2, electron-density peaks were located that were believed to be highly disordered solvent mol­ecules (crystallization solvents were CH2Cl2/CHCl3). Attempts made to model the solvent mol­ecule were not successful. The SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) option in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated that there was a large solvent cavity of 156 Å. In the final cycles of refinement, this contribution of 62.6 electrons to the electron density was removed from the observed data. The density, the F(000) value, the mol­ecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option. Similar treatments of disordered solvent mol­ecules were carried out by Stähler et al. (2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]), Cox et al. (2003[Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975-o977.]), Mohamed et al. (2003[Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.]) and Athimoolam et al. (2005[Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014-m2017.]). Also in (NnBu4)2-2, the whole mol­ecule of the unique NnBu4+ cation was included as disordered over two sets of sites, with refined occupancies of 0.589 (6) and 0.411 (6). The same command in SHELXL was used to restrain the geometry of the minor component of disorder to that of the major component and the SIMU command was used to restrain all anisotropic diplacement parameters of the disordered atoms.

Table 2
Experimental details

  (NnBu4)2-1·CHCl3·C2H2O4 (NnBu4)2-2
Crystal data
Chemical formula (C16H36N)2[Mo(C4F6S2)2(C2O4)]·C2H2O4·CHCl3 (C16H36N)[Mo2(C4F6S2)4(C2O4)]
Mr 1330.60 1669.45
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 15.3879 (2), 17.8733 (5), 22.2895 (6) 14.2347 (15), 19.4940 (19), 14.4056 (14)
α, β, γ (°) 90, 90, 90 90, 103.159 (5), 90
V3) 6130.3 (3) 3892.5 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.56 0.63
Crystal size (mm) 0.15 × 0.12 × 0.10 0.18 × 0.18 × 0.06
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.759, 0.869 0.720, 0.931
No. of measured, independent and observed [I > 2σ(I)] reflections 40314, 13841, 9858 18527, 7278, 4243
Rint 0.065 0.066
(sin θ/λ)max−1) 0.650 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.105, 1.02 0.065, 0.164, 1.01
No. of reflections 13841 7278
No. of parameters 816 560
No. of restraints 465 520
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.66 0.59, −0.65
Absolute structure Flack x determined using 3456 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.036 (18)
Computer programs: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(tetra-n-butylammonium) bis(1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)oxalatomolybdate(IV)–chloroform–oxalic acid (1/1/1), (k10131) top
Crystal data top
(C16H36N)2[Mo(C4F6S2)2(C2O4)]·C2H2O4·CHCl3Dx = 1.442 Mg m3
Mr = 1330.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 31375 reflections
a = 15.3879 (2) Åθ = 2.6–27.5°
b = 17.8733 (5) ŵ = 0.56 mm1
c = 22.2895 (6) ÅT = 150 K
V = 6130.3 (3) Å3Block, brown
Z = 40.15 × 0.12 × 0.10 mm
F(000) = 2752
Data collection top
Nonius KappaCCD
diffractometer
13841 independent reflections
Radiation source: fine-focus sealed tube9858 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.065
φ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
h = 1919
Tmin = 0.759, Tmax = 0.869k = 2323
40314 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.6697P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.61 e Å3
13841 reflectionsΔρmin = 0.66 e Å3
816 parametersAbsolute structure: Flack x determined using 3456 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
465 restraintsAbsolute structure parameter: 0.036 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.53960 (3)0.43946 (2)0.51037 (2)0.02584 (12)
S10.66590 (8)0.46380 (8)0.45643 (7)0.0323 (3)
S20.52665 (9)0.34333 (8)0.44027 (7)0.0337 (3)
S30.47571 (9)0.35062 (8)0.57355 (7)0.0340 (3)
S40.63308 (8)0.45238 (8)0.59206 (6)0.0322 (3)
F10.8097 (2)0.3630 (2)0.3621 (2)0.0635 (12)
F20.7261 (3)0.4127 (2)0.29583 (17)0.0606 (11)
F30.7876 (2)0.4809 (2)0.36285 (18)0.0591 (11)
F40.6817 (3)0.2702 (2)0.31926 (18)0.0577 (10)
F50.5674 (3)0.3269 (2)0.28819 (16)0.0606 (11)
F60.5567 (2)0.23584 (19)0.34988 (16)0.0507 (9)
F70.4324 (9)0.2510 (8)0.6659 (5)0.091 (4)0.58 (2)
F80.5560 (6)0.2515 (6)0.7082 (6)0.062 (3)0.58 (2)
F90.4584 (10)0.3280 (6)0.7376 (4)0.066 (3)0.58 (2)
F7A0.4066 (4)0.2880 (9)0.6787 (6)0.061 (4)0.42 (2)
F8A0.5269 (10)0.2300 (5)0.6931 (7)0.061 (4)0.42 (2)
F9A0.4962 (10)0.3283 (8)0.7436 (4)0.054 (4)0.42 (2)
F100.6162 (7)0.3786 (8)0.7546 (4)0.083 (4)0.502 (10)
F110.7244 (7)0.3497 (7)0.6994 (5)0.079 (4)0.502 (10)
F120.6920 (8)0.4619 (5)0.7150 (5)0.061 (3)0.502 (10)
F10A0.6267 (8)0.4412 (7)0.7472 (4)0.084 (4)0.498 (10)
F11A0.6637 (7)0.3297 (5)0.7316 (4)0.059 (3)0.498 (10)
F12A0.7358 (7)0.4176 (9)0.6927 (5)0.084 (4)0.498 (10)
O10.4106 (2)0.46339 (18)0.48554 (18)0.0313 (8)
O20.52764 (19)0.55847 (17)0.51231 (16)0.0296 (7)
O30.3096 (2)0.5499 (2)0.46934 (17)0.0339 (9)
O40.4395 (2)0.65521 (19)0.4943 (2)0.0452 (11)
C10.6717 (3)0.4035 (3)0.3947 (3)0.0335 (13)
C20.6103 (3)0.3501 (3)0.3889 (3)0.0313 (13)
C30.7484 (4)0.4144 (4)0.3540 (3)0.0480 (17)
C40.6037 (4)0.2963 (4)0.3374 (3)0.0423 (15)
C50.5288 (4)0.3503 (3)0.6422 (3)0.0341 (13)
C60.5997 (3)0.3938 (3)0.6504 (3)0.0335 (13)
C70.4924 (3)0.2977 (3)0.6884 (3)0.0517 (17)
C80.6569 (4)0.3958 (4)0.7050 (3)0.0452 (15)
C90.3838 (3)0.5309 (3)0.4828 (3)0.0282 (12)
C100.4552 (3)0.5876 (3)0.4974 (2)0.0305 (12)
O50.6031 (3)0.9245 (2)0.4773 (3)0.0739 (17)
O60.7088 (3)0.8409 (2)0.4927 (2)0.0486 (12)
H6O0.748 (4)0.874 (4)0.504 (4)0.07 (2)*
O70.5404 (3)0.7847 (3)0.4176 (2)0.0660 (13)
O80.5587 (3)0.7544 (2)0.5137 (2)0.0496 (12)
H8O0.521 (5)0.720 (4)0.509 (4)0.09 (3)*
C110.6297 (4)0.8623 (3)0.4796 (3)0.0411 (15)
C120.5716 (4)0.7956 (3)0.4660 (3)0.0392 (15)
N10.2406 (3)0.1717 (2)0.8798 (2)0.0330 (11)
C130.1512 (3)0.1525 (3)0.8555 (3)0.0403 (15)
H13A0.10770.18340.87690.048*
H13B0.14920.16710.81260.048*
C140.1240 (3)0.0719 (3)0.8603 (3)0.0450 (16)
H14A0.11720.05850.90310.054*
H14B0.17010.03970.84310.054*
C150.0400 (4)0.0572 (4)0.8279 (3)0.0608 (18)
H15A0.00410.09300.84280.073*
H15B0.04890.06770.78470.073*
C160.0044 (5)0.0205 (4)0.8341 (4)0.075 (2)
H16A0.05010.02450.81160.113*
H16B0.04650.05650.81830.113*
H16C0.00660.03120.87660.113*
C170.3091 (3)0.1358 (3)0.8406 (3)0.0373 (14)
H17A0.30070.08090.84230.045*
H17B0.29820.15150.79860.045*
C180.4029 (4)0.1520 (3)0.8548 (3)0.0434 (15)
H18A0.41690.13330.89550.052*
H18B0.41290.20670.85420.052*
C190.4612 (4)0.1146 (3)0.8095 (3)0.0482 (16)
H19A0.44850.13560.76930.058*
H19B0.44720.06060.80830.058*
C200.5571 (4)0.1237 (5)0.8221 (4)0.073 (2)
H20A0.59070.09810.79090.109*
H20B0.57200.17700.82230.109*
H20C0.57070.10190.86130.109*
C210.2504 (4)0.1446 (3)0.9443 (3)0.0390 (14)
H21A0.24860.08930.94410.047*
H21B0.30860.15970.95880.047*
C220.1836 (4)0.1725 (4)0.9886 (3)0.0456 (15)
H22A0.17840.22750.98490.055*
H22B0.12640.15030.97880.055*
C230.2072 (5)0.1529 (5)1.0519 (3)0.071 (2)
H23A0.26870.16681.05900.085*
H23B0.20210.09811.05720.085*
C240.1512 (6)0.1912 (5)1.0982 (4)0.090 (3)
H24A0.16990.17611.13840.135*
H24B0.15700.24561.09400.135*
H24C0.09040.17681.09210.135*
C250.2505 (4)0.2567 (3)0.8801 (3)0.0383 (15)
H25A0.20090.27790.90270.046*
H25B0.30390.26900.90280.046*
C260.2553 (4)0.2964 (3)0.8206 (3)0.0393 (14)
H26A0.20220.28560.79710.047*
H26B0.30590.27780.79760.047*
C270.2637 (5)0.3796 (3)0.8299 (3)0.0517 (18)
H27A0.21450.39700.85490.062*
H27B0.31800.38970.85230.062*
C280.2649 (5)0.4242 (3)0.7727 (3)0.061 (2)
H28A0.27040.47750.78230.092*
H28B0.31420.40840.74800.092*
H28C0.21070.41570.75070.092*
N20.7148 (8)0.1623 (6)0.5600 (15)0.040 (2)0.676 (9)
C290.6227 (6)0.1461 (5)0.5812 (8)0.047 (2)0.676 (9)
H29A0.61240.17380.61890.056*0.676 (9)
H29B0.58150.16560.55090.056*0.676 (9)
C300.6027 (6)0.0649 (6)0.5918 (7)0.059 (3)0.676 (9)
H30A0.65120.04240.61470.071*0.676 (9)
H30B0.59960.03920.55250.071*0.676 (9)
C310.5193 (6)0.0509 (6)0.6252 (6)0.068 (3)0.676 (9)
H31A0.47120.07710.60440.082*0.676 (9)
H31B0.52410.07210.66610.082*0.676 (9)
C320.4978 (8)0.0321 (6)0.6296 (7)0.093 (4)0.676 (9)
H32A0.44310.03850.65170.139*0.676 (9)
H32B0.49170.05310.58920.139*0.676 (9)
H32C0.54460.05810.65090.139*0.676 (9)
C330.7243 (6)0.2474 (5)0.5539 (6)0.052 (2)0.676 (9)
H33A0.67470.26630.53000.062*0.676 (9)
H33B0.71970.26980.59440.062*0.676 (9)
C340.8069 (8)0.2748 (5)0.5254 (6)0.060 (3)0.676 (9)
H34A0.85360.23800.53320.072*0.676 (9)
H34B0.79840.27770.48140.072*0.676 (9)
C350.8359 (6)0.3499 (6)0.5477 (6)0.067 (3)0.676 (9)
H35A0.84750.34660.59130.081*0.676 (9)
H35B0.78830.38650.54170.081*0.676 (9)
C360.9162 (9)0.3777 (9)0.5164 (7)0.075 (3)0.676 (9)
H36A0.93240.42670.53260.112*0.676 (9)
H36B0.96390.34230.52300.112*0.676 (9)
H36C0.90470.38210.47330.112*0.676 (9)
N2B0.7037 (17)0.1560 (12)0.559 (3)0.043 (3)0.324 (9)
C29B0.6174 (13)0.1228 (10)0.5788 (19)0.047 (4)0.324 (9)
H29C0.59870.14870.61590.056*0.324 (9)
H29D0.57370.13380.54750.056*0.324 (9)
C30B0.6165 (12)0.0401 (10)0.5906 (15)0.059 (4)0.324 (9)
H30C0.65460.02900.62520.071*0.324 (9)
H30D0.64020.01360.55520.071*0.324 (9)
C31B0.5264 (13)0.0112 (13)0.6035 (10)0.073 (4)0.324 (9)
H31C0.52130.04030.58750.088*0.324 (9)
H31D0.48370.04280.58210.088*0.324 (9)
C32B0.5037 (18)0.010 (2)0.6694 (11)0.115 (8)0.324 (9)
H32D0.44450.00900.67460.173*0.324 (9)
H32E0.54470.02200.69090.173*0.324 (9)
H32F0.50710.06120.68550.173*0.324 (9)
C33B0.6899 (11)0.2402 (9)0.5501 (12)0.044 (3)0.324 (9)
H33C0.63550.24710.52690.053*0.324 (9)
H33D0.68070.26320.59000.053*0.324 (9)
C34B0.7607 (11)0.2829 (10)0.5188 (8)0.048 (3)0.324 (9)
H34C0.73560.32910.50150.058*0.324 (9)
H34D0.78310.25220.48520.058*0.324 (9)
C35B0.8356 (10)0.3040 (14)0.5587 (9)0.053 (4)0.324 (9)
H35C0.86780.25820.57010.063*0.324 (9)
H35D0.81270.32690.59600.063*0.324 (9)
C36B0.897 (2)0.358 (2)0.5291 (15)0.075 (3)0.324 (9)
H36D0.94470.37000.55680.112*0.324 (9)
H36E0.92110.33520.49270.112*0.324 (9)
H36F0.86610.40390.51850.112*0.324 (9)
C370.7786 (4)0.1361 (3)0.6058 (3)0.0390 (15)
H37A0.83710.15380.59380.047*
H37B0.77980.08070.60510.047*
C380.7617 (4)0.1612 (4)0.6693 (3)0.0515 (18)
H38A0.75240.21600.66980.062*
H38B0.70800.13700.68420.062*
C390.8358 (4)0.1420 (4)0.7105 (3)0.059 (2)
H39A0.88870.16830.69660.070*
H39B0.84720.08760.70800.070*
C400.8188 (5)0.1628 (5)0.7757 (4)0.072 (2)
H40A0.86930.14900.80010.107*
H40B0.80890.21680.77870.107*
H40C0.76740.13600.79010.107*
C410.7343 (4)0.1213 (3)0.5013 (3)0.0406 (15)
H41A0.79410.13460.48890.049*
H41B0.73380.06690.50970.049*
C420.6744 (4)0.1355 (4)0.4483 (3)0.058 (2)
H42A0.61920.10810.45440.069*
H42B0.66070.18960.44610.069*
C430.7156 (5)0.1107 (4)0.3897 (3)0.0543 (18)
H43A0.67330.11890.35690.065*
H43B0.76650.14310.38160.065*
C440.7451 (5)0.0299 (4)0.3876 (3)0.062 (2)
H44A0.77070.01920.34820.093*
H44B0.78860.02120.41890.093*
H44C0.69520.00310.39420.093*
Cl10.35534 (12)0.10693 (14)0.18122 (13)0.0926 (8)
Cl20.51265 (14)0.18119 (11)0.21396 (11)0.0774 (6)
Cl30.51834 (11)0.03822 (10)0.15306 (9)0.0622 (5)
C1S0.4624 (4)0.1240 (4)0.1603 (3)0.0525 (16)
H1SA0.46270.15040.12070.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0273 (2)0.0249 (2)0.0253 (2)0.00135 (19)0.00003 (19)0.0008 (2)
S10.0311 (7)0.0373 (8)0.0287 (8)0.0002 (6)0.0041 (6)0.0022 (7)
S20.0380 (8)0.0321 (7)0.0308 (8)0.0003 (6)0.0001 (6)0.0057 (6)
S30.0365 (8)0.0338 (8)0.0315 (9)0.0040 (6)0.0015 (6)0.0032 (6)
S40.0373 (7)0.0339 (8)0.0254 (8)0.0024 (6)0.0040 (6)0.0013 (7)
F10.049 (2)0.072 (3)0.069 (3)0.0229 (19)0.020 (2)0.002 (2)
F20.077 (3)0.076 (3)0.029 (2)0.002 (2)0.0148 (19)0.001 (2)
F30.057 (2)0.065 (3)0.056 (3)0.0097 (19)0.0256 (19)0.007 (2)
F40.073 (3)0.051 (2)0.049 (3)0.0162 (19)0.016 (2)0.013 (2)
F50.098 (3)0.058 (2)0.026 (2)0.009 (2)0.0160 (19)0.0038 (19)
F60.076 (3)0.037 (2)0.040 (2)0.0028 (17)0.0008 (19)0.0134 (17)
F70.112 (8)0.087 (8)0.075 (7)0.073 (6)0.024 (6)0.044 (6)
F80.077 (6)0.026 (5)0.083 (7)0.002 (4)0.013 (5)0.024 (5)
F90.068 (8)0.068 (5)0.063 (6)0.009 (5)0.046 (5)0.010 (4)
F7A0.068 (6)0.052 (8)0.063 (7)0.007 (5)0.019 (5)0.013 (6)
F8A0.094 (8)0.012 (5)0.077 (8)0.008 (5)0.041 (7)0.008 (5)
F9A0.052 (8)0.072 (7)0.038 (6)0.001 (6)0.029 (5)0.013 (5)
F100.111 (7)0.113 (9)0.026 (5)0.038 (7)0.005 (5)0.015 (6)
F110.089 (7)0.085 (7)0.062 (7)0.051 (6)0.043 (6)0.035 (6)
F120.102 (8)0.036 (5)0.045 (6)0.014 (5)0.035 (5)0.004 (4)
F10A0.139 (9)0.074 (7)0.038 (6)0.027 (7)0.028 (6)0.021 (6)
F11A0.077 (6)0.058 (6)0.043 (6)0.014 (5)0.023 (5)0.019 (5)
F12A0.075 (6)0.127 (10)0.049 (6)0.039 (7)0.027 (5)0.033 (7)
O10.0303 (18)0.0242 (19)0.039 (2)0.0030 (14)0.0042 (17)0.0043 (18)
O20.0271 (17)0.0253 (16)0.037 (2)0.0000 (15)0.0035 (16)0.0018 (19)
O30.0251 (18)0.033 (2)0.043 (2)0.0038 (15)0.0028 (15)0.0037 (19)
O40.037 (2)0.025 (2)0.074 (3)0.0002 (14)0.007 (2)0.003 (2)
C10.040 (3)0.039 (3)0.022 (3)0.010 (3)0.000 (2)0.002 (3)
C20.033 (3)0.031 (3)0.029 (3)0.009 (2)0.004 (2)0.001 (3)
C30.046 (4)0.059 (5)0.039 (4)0.008 (3)0.015 (3)0.002 (3)
C40.056 (4)0.040 (4)0.031 (4)0.008 (3)0.004 (3)0.003 (3)
C50.042 (3)0.034 (3)0.027 (3)0.006 (3)0.005 (3)0.000 (3)
C60.039 (3)0.035 (3)0.026 (3)0.008 (3)0.001 (2)0.003 (3)
C70.066 (4)0.051 (4)0.039 (4)0.004 (3)0.007 (3)0.009 (3)
C80.059 (4)0.046 (4)0.031 (4)0.002 (3)0.002 (3)0.005 (3)
C90.029 (3)0.029 (3)0.026 (3)0.002 (2)0.003 (2)0.003 (3)
C100.032 (3)0.028 (3)0.031 (3)0.002 (2)0.005 (2)0.001 (2)
O50.053 (3)0.037 (3)0.131 (5)0.001 (2)0.015 (3)0.014 (3)
O60.042 (2)0.036 (2)0.068 (3)0.0088 (18)0.013 (2)0.006 (2)
O70.067 (3)0.082 (4)0.049 (3)0.024 (3)0.017 (3)0.006 (3)
O80.054 (3)0.040 (2)0.055 (3)0.019 (2)0.013 (2)0.016 (3)
C110.040 (3)0.042 (4)0.041 (4)0.004 (3)0.005 (3)0.012 (3)
C120.036 (3)0.036 (3)0.045 (4)0.001 (2)0.004 (3)0.005 (3)
N10.039 (3)0.037 (3)0.023 (3)0.003 (2)0.003 (2)0.004 (2)
C130.037 (3)0.048 (4)0.036 (4)0.001 (3)0.004 (3)0.000 (3)
C140.042 (3)0.050 (4)0.043 (4)0.005 (3)0.003 (3)0.000 (3)
C150.060 (4)0.066 (4)0.057 (5)0.023 (4)0.010 (4)0.004 (4)
C160.077 (5)0.081 (6)0.068 (6)0.031 (4)0.001 (4)0.006 (5)
C170.045 (3)0.037 (3)0.030 (4)0.000 (3)0.005 (3)0.001 (3)
C180.048 (4)0.040 (4)0.042 (4)0.001 (3)0.001 (3)0.007 (3)
C190.048 (4)0.048 (4)0.049 (4)0.004 (3)0.016 (3)0.005 (3)
C200.049 (5)0.101 (6)0.068 (6)0.007 (4)0.008 (4)0.005 (5)
C210.047 (3)0.040 (3)0.030 (4)0.004 (3)0.002 (3)0.000 (3)
C220.053 (4)0.048 (4)0.036 (4)0.003 (3)0.001 (3)0.004 (3)
C230.086 (5)0.085 (6)0.041 (5)0.037 (5)0.017 (4)0.014 (4)
C240.107 (7)0.123 (8)0.040 (5)0.051 (6)0.012 (5)0.002 (5)
C250.043 (3)0.036 (3)0.035 (4)0.004 (3)0.006 (3)0.000 (3)
C260.042 (3)0.041 (4)0.035 (4)0.003 (3)0.003 (3)0.003 (3)
C270.069 (4)0.037 (4)0.049 (5)0.004 (3)0.002 (3)0.000 (3)
C280.084 (5)0.041 (4)0.059 (5)0.006 (3)0.003 (4)0.009 (4)
N20.034 (4)0.044 (4)0.042 (4)0.014 (3)0.009 (5)0.005 (4)
C290.033 (4)0.059 (6)0.049 (5)0.013 (4)0.007 (4)0.000 (6)
C300.038 (4)0.070 (6)0.069 (5)0.000 (5)0.008 (4)0.003 (6)
C310.044 (5)0.085 (7)0.075 (7)0.005 (5)0.012 (5)0.017 (6)
C320.059 (6)0.129 (11)0.090 (10)0.025 (7)0.021 (7)0.011 (8)
C330.055 (5)0.048 (5)0.052 (5)0.018 (4)0.014 (5)0.001 (4)
C340.065 (6)0.050 (5)0.065 (6)0.004 (5)0.010 (5)0.001 (5)
C350.051 (5)0.070 (6)0.081 (7)0.003 (5)0.005 (5)0.011 (6)
C360.060 (7)0.078 (9)0.087 (8)0.013 (5)0.017 (6)0.005 (7)
N2B0.039 (6)0.045 (6)0.046 (6)0.015 (6)0.008 (6)0.004 (6)
C29B0.033 (6)0.058 (7)0.050 (6)0.008 (6)0.009 (6)0.004 (7)
C30B0.039 (6)0.071 (8)0.067 (6)0.002 (6)0.003 (6)0.009 (7)
C31B0.056 (7)0.090 (9)0.074 (8)0.006 (8)0.011 (7)0.005 (8)
C32B0.090 (13)0.156 (16)0.099 (15)0.004 (14)0.024 (13)0.010 (14)
C33B0.041 (7)0.041 (6)0.050 (6)0.014 (6)0.010 (7)0.004 (6)
C34B0.043 (7)0.043 (6)0.060 (7)0.014 (6)0.011 (7)0.000 (6)
C35B0.047 (6)0.047 (7)0.064 (7)0.003 (7)0.009 (6)0.004 (7)
C36B0.060 (7)0.078 (9)0.087 (8)0.013 (5)0.017 (6)0.005 (7)
C370.034 (3)0.041 (4)0.042 (4)0.006 (3)0.007 (3)0.001 (3)
C380.050 (4)0.054 (4)0.051 (5)0.008 (3)0.003 (3)0.013 (4)
C390.044 (4)0.077 (5)0.055 (5)0.004 (3)0.002 (3)0.017 (4)
C400.060 (5)0.098 (6)0.056 (6)0.004 (4)0.013 (4)0.014 (5)
C410.042 (3)0.042 (3)0.038 (4)0.015 (2)0.007 (3)0.003 (3)
C420.051 (4)0.071 (5)0.052 (5)0.020 (3)0.005 (3)0.008 (4)
C430.066 (4)0.055 (4)0.042 (4)0.014 (3)0.006 (3)0.000 (4)
C440.086 (5)0.057 (5)0.043 (5)0.011 (4)0.005 (4)0.000 (4)
Cl10.0468 (11)0.1084 (18)0.123 (2)0.0053 (10)0.0036 (11)0.0458 (17)
Cl20.0895 (15)0.0661 (13)0.0767 (16)0.0212 (10)0.0209 (11)0.0111 (11)
Cl30.0676 (11)0.0700 (12)0.0491 (11)0.0132 (9)0.0020 (8)0.0076 (9)
C1S0.047 (3)0.065 (4)0.045 (4)0.005 (3)0.005 (4)0.000 (3)
Geometric parameters (Å, º) top
Mo1—O12.104 (3)C26—H26B0.9900
Mo1—O22.135 (3)C27—C281.501 (8)
Mo1—S12.3265 (14)C27—H27A0.9900
Mo1—S22.3309 (15)C27—H27B0.9900
Mo1—S42.3320 (14)C28—H28A0.9800
Mo1—S32.3390 (15)C28—H28B0.9800
S1—C11.750 (6)C28—H28C0.9800
S2—C21.727 (6)N2—C371.49 (3)
S3—C51.734 (6)N2—C291.521 (7)
S4—C61.746 (6)N2—C411.53 (3)
F1—C31.330 (7)N2—C331.535 (7)
F2—C31.342 (8)C29—C301.501 (8)
F3—C31.347 (7)C29—H29A0.9900
F4—C41.350 (7)C29—H29B0.9900
F5—C41.346 (7)C30—C311.505 (8)
F6—C41.329 (7)C30—H30A0.9900
F7—C71.342 (6)C30—H30B0.9900
F8—C71.355 (6)C31—C321.524 (9)
F9—C71.330 (6)C31—H31A0.9900
F7A—C71.349 (6)C31—H31B0.9900
F8A—C71.326 (6)C32—H32A0.9800
F9A—C71.349 (6)C32—H32B0.9800
F10—C81.306 (11)C32—H32C0.9800
F11—C81.332 (11)C33—C341.504 (8)
F12—C81.318 (10)C33—H33A0.9900
F10A—C81.326 (11)C33—H33B0.9900
F11A—C81.325 (10)C34—C351.499 (8)
F12A—C81.304 (11)C34—H34A0.9900
O1—C91.276 (6)C34—H34B0.9900
O2—C101.275 (6)C35—C361.504 (9)
O3—C91.229 (6)C35—H35A0.9900
O4—C101.235 (6)C35—H35B0.9900
C1—C21.349 (8)C36—H36A0.9800
C1—C31.500 (8)C36—H36B0.9800
C2—C41.502 (8)C36—H36C0.9800
C5—C61.353 (8)N2B—C411.51 (7)
C5—C71.502 (8)N2B—C29B1.519 (7)
C6—C81.502 (8)N2B—C33B1.533 (8)
C9—C101.528 (7)N2B—C371.59 (6)
O5—C111.185 (7)C29B—C30B1.502 (9)
O6—C111.310 (7)C29B—H29C0.9900
O6—H6O0.88 (7)C29B—H29D0.9900
O7—C121.198 (7)C30B—C31B1.507 (9)
O8—C121.308 (8)C30B—H30C0.9900
O8—H8O0.85 (8)C30B—H30D0.9900
C11—C121.520 (8)C31B—C32B1.510 (10)
N1—C171.513 (7)C31B—H31C0.9900
N1—C131.519 (6)C31B—H31D0.9900
N1—C211.524 (8)C32B—H32D0.9800
N1—C251.527 (6)C32B—H32E0.9800
C13—C141.503 (7)C32B—H32F0.9800
C13—H13A0.9900C33B—C34B1.502 (9)
C13—H13B0.9900C33B—H33C0.9900
C14—C151.504 (7)C33B—H33D0.9900
C14—H14A0.9900C34B—C35B1.503 (9)
C14—H14B0.9900C34B—H34C0.9900
C15—C161.500 (8)C34B—H34D0.9900
C15—H15A0.9900C35B—C36B1.507 (10)
C15—H15B0.9900C35B—H35C0.9900
C16—H16A0.9800C35B—H35D0.9900
C16—H16B0.9800C36B—H36D0.9800
C16—H16C0.9800C36B—H36E0.9800
C17—C181.506 (8)C36B—H36F0.9800
C17—H17A0.9900C37—C381.508 (9)
C17—H17B0.9900C37—H37A0.9900
C18—C191.506 (8)C37—H37B0.9900
C18—H18A0.9900C38—C391.504 (9)
C18—H18B0.9900C38—H38A0.9900
C19—C201.511 (9)C38—H38B0.9900
C19—H19A0.9900C39—C401.522 (10)
C19—H19B0.9900C39—H39A0.9900
C20—H20A0.9800C39—H39B0.9900
C20—H20B0.9800C40—H40A0.9800
C20—H20C0.9800C40—H40B0.9800
C21—C221.511 (8)C40—H40C0.9800
C21—H21A0.9900C41—C421.520 (9)
C21—H21B0.9900C41—H41A0.9900
C22—C231.499 (10)C41—H41B0.9900
C22—H22A0.9900C42—C431.519 (9)
C22—H22B0.9900C42—H42A0.9900
C23—C241.507 (10)C42—H42B0.9900
C23—H23A0.9900C43—C441.515 (9)
C23—H23B0.9900C43—H43A0.9900
C24—H24A0.9800C43—H43B0.9900
C24—H24B0.9800C44—H44A0.9800
C24—H24C0.9800C44—H44B0.9800
C25—C261.506 (7)C44—H44C0.9800
C25—H25A0.9900Cl1—C1S1.739 (7)
C25—H25B0.9900Cl2—C1S1.754 (7)
C26—C271.507 (7)Cl3—C1S1.767 (7)
C26—H26A0.9900C1S—H1SA1.0000
O1—Mo1—O273.83 (12)C26—C27—H27A108.7
O1—Mo1—S1127.88 (12)C28—C27—H27B108.7
O2—Mo1—S184.04 (9)C26—C27—H27B108.7
O1—Mo1—S283.86 (10)H27A—C27—H27B107.6
O2—Mo1—S2137.77 (10)C27—C28—H28A109.5
S1—Mo1—S282.12 (5)C27—C28—H28B109.5
O1—Mo1—S4140.08 (11)H28A—C28—H28B109.5
O2—Mo1—S486.48 (10)C27—C28—H28C109.5
S1—Mo1—S482.51 (5)H28A—C28—H28C109.5
S2—Mo1—S4130.47 (5)H28B—C28—H28C109.5
O1—Mo1—S384.26 (11)C37—N2—C29110.0 (16)
O2—Mo1—S3128.89 (10)C37—N2—C41107.8 (7)
S1—Mo1—S3142.11 (5)C29—N2—C41110.9 (16)
S2—Mo1—S382.37 (5)C37—N2—C33108.0 (16)
S4—Mo1—S381.74 (5)C29—N2—C33107.8 (6)
C1—S1—Mo1109.50 (19)C41—N2—C33112.3 (14)
C2—S2—Mo1109.2 (2)C30—C29—N2115.1 (6)
C5—S3—Mo1109.61 (19)C30—C29—H29A108.5
C6—S4—Mo1109.9 (2)N2—C29—H29A108.5
C9—O1—Mo1120.6 (3)C30—C29—H29B108.5
C10—O2—Mo1118.5 (3)N2—C29—H29B108.5
C2—C1—C3125.8 (5)H29A—C29—H29B107.5
C2—C1—S1118.4 (4)C29—C30—C31114.4 (7)
C3—C1—S1115.8 (4)C29—C30—H30A108.7
C1—C2—C4125.0 (5)C31—C30—H30A108.7
C1—C2—S2120.6 (4)C29—C30—H30B108.7
C4—C2—S2114.3 (4)C31—C30—H30B108.7
F1—C3—F2107.2 (5)H30A—C30—H30B107.6
F1—C3—F3105.8 (5)C30—C31—C32112.3 (8)
F2—C3—F3106.0 (5)C30—C31—H31A109.1
F1—C3—C1112.7 (5)C32—C31—H31A109.1
F2—C3—C1112.4 (5)C30—C31—H31B109.1
F3—C3—C1112.3 (5)C32—C31—H31B109.1
F6—C4—F5106.0 (5)H31A—C31—H31B107.9
F6—C4—F4105.4 (5)C31—C32—H32A109.5
F5—C4—F4105.4 (5)C31—C32—H32B109.5
F6—C4—C2113.4 (5)H32A—C32—H32B109.5
F5—C4—C2112.9 (5)C31—C32—H32C109.5
F4—C4—C2112.9 (5)H32A—C32—H32C109.5
C6—C5—C7124.6 (5)H32B—C32—H32C109.5
C6—C5—S3119.8 (4)C34—C33—N2116.2 (6)
C7—C5—S3115.6 (4)C34—C33—H33A108.2
C5—C6—C8126.6 (5)N2—C33—H33A108.2
C5—C6—S4118.7 (4)C34—C33—H33B108.2
C8—C6—S4114.7 (4)N2—C33—H33B108.2
F9—C7—F7106.8 (5)H33A—C33—H33B107.4
F8A—C7—F9A106.3 (6)C35—C34—C33113.8 (7)
F8A—C7—F7A106.7 (5)C35—C34—H34A108.8
F9A—C7—F7A103.9 (5)C33—C34—H34A108.8
F9—C7—F8105.3 (5)C35—C34—H34B108.8
F7—C7—F8103.8 (5)C33—C34—H34B108.8
F8A—C7—C5118.5 (7)H34A—C34—H34B107.7
F9—C7—C5117.2 (7)C34—C35—C36112.7 (8)
F7—C7—C5112.9 (6)C34—C35—H35A109.1
F9A—C7—C5110.9 (8)C36—C35—H35A109.1
F7A—C7—C5109.6 (7)C34—C35—H35B109.1
F8—C7—C5109.6 (6)C36—C35—H35B109.1
F10—C8—F12105.3 (9)H35A—C35—H35B107.8
F12A—C8—F11A106.7 (9)C35—C36—H36A109.5
F12A—C8—F10A107.0 (10)C35—C36—H36B109.5
F11A—C8—F10A104.8 (9)H36A—C36—H36B109.5
F10—C8—F11107.9 (10)C35—C36—H36C109.5
F12—C8—F11104.5 (9)H36A—C36—H36C109.5
F12A—C8—C6112.4 (7)H36B—C36—H36C109.5
F10—C8—C6113.6 (7)C41—N2B—C29B111 (4)
F12—C8—C6113.4 (6)C41—N2B—C33B110 (3)
F11A—C8—C6112.8 (6)C29B—N2B—C33B107.5 (8)
F10A—C8—C6112.5 (6)C41—N2B—C37103.9 (11)
F11—C8—C6111.5 (6)C29B—N2B—C37111 (3)
O3—C9—O1124.9 (5)C33B—N2B—C37114 (4)
O3—C9—C10122.4 (4)C30B—C29B—N2B116.3 (9)
O1—C9—C10112.6 (4)C30B—C29B—H29C108.2
O4—C10—O2125.8 (5)N2B—C29B—H29C108.2
O4—C10—C9119.8 (4)C30B—C29B—H29D108.2
O2—C10—C9114.4 (4)N2B—C29B—H29D108.2
C11—O6—H6O120 (4)H29C—C29B—H29D107.4
C12—O8—H8O115 (6)C29B—C30B—C31B112.3 (10)
O5—C11—O6127.2 (6)C29B—C30B—H30C109.1
O5—C11—C12121.6 (5)C31B—C30B—H30C109.1
O6—C11—C12111.2 (5)C29B—C30B—H30D109.1
O7—C12—O8125.4 (6)C31B—C30B—H30D109.1
O7—C12—C11122.9 (6)H30C—C30B—H30D107.9
O8—C12—C11111.7 (6)C30B—C31B—C32B113.7 (10)
C17—N1—C13109.2 (4)C30B—C31B—H31C108.8
C17—N1—C21110.0 (4)C32B—C31B—H31C108.8
C13—N1—C21110.8 (4)C30B—C31B—H31D108.8
C17—N1—C25110.8 (4)C32B—C31B—H31D108.8
C13—N1—C25108.5 (4)H31C—C31B—H31D107.7
C21—N1—C25107.6 (4)C31B—C32B—H32D109.5
C14—C13—N1116.3 (4)C31B—C32B—H32E109.5
C14—C13—H13A108.2H32D—C32B—H32E109.5
N1—C13—H13A108.2C31B—C32B—H32F109.5
C14—C13—H13B108.2H32D—C32B—H32F109.5
N1—C13—H13B108.2H32E—C32B—H32F109.5
H13A—C13—H13B107.4C34B—C33B—N2B117.3 (9)
C13—C14—C15111.8 (5)C34B—C33B—H33C108.0
C13—C14—H14A109.3N2B—C33B—H33C108.0
C15—C14—H14A109.3C34B—C33B—H33D108.0
C13—C14—H14B109.3N2B—C33B—H33D108.0
C15—C14—H14B109.3H33C—C33B—H33D107.2
H14A—C14—H14B107.9C33B—C34B—C35B114.2 (10)
C16—C15—C14115.6 (6)C33B—C34B—H34C108.7
C16—C15—H15A108.4C35B—C34B—H34C108.7
C14—C15—H15A108.4C33B—C34B—H34D108.7
C16—C15—H15B108.4C35B—C34B—H34D108.7
C14—C15—H15B108.4H34C—C34B—H34D107.6
H15A—C15—H15B107.5C34B—C35B—C36B112.6 (10)
C15—C16—H16A109.5C34B—C35B—H35C109.1
C15—C16—H16B109.5C36B—C35B—H35C109.1
H16A—C16—H16B109.5C34B—C35B—H35D109.1
C15—C16—H16C109.5C36B—C35B—H35D109.1
H16A—C16—H16C109.5H35C—C35B—H35D107.8
H16B—C16—H16C109.5C35B—C36B—H36D109.5
C18—C17—N1117.7 (5)C35B—C36B—H36E109.5
C18—C17—H17A107.9H36D—C36B—H36E109.5
N1—C17—H17A107.9C35B—C36B—H36F109.5
C18—C17—H17B107.9H36D—C36B—H36F109.5
N1—C17—H17B107.9H36E—C36B—H36F109.5
H17A—C17—H17B107.2N2—C37—C38115.8 (10)
C17—C18—C19110.1 (5)C38—C37—N2B115 (2)
C17—C18—H18A109.6N2—C37—H37A108.3
C19—C18—H18A109.6C38—C37—H37A108.3
C17—C18—H18B109.6N2—C37—H37B108.3
C19—C18—H18B109.6C38—C37—H37B108.3
H18A—C18—H18B108.2H37A—C37—H37B107.4
C18—C19—C20114.1 (6)C39—C38—C37112.0 (5)
C18—C19—H19A108.7C39—C38—H38A109.2
C20—C19—H19A108.7C37—C38—H38A109.2
C18—C19—H19B108.7C39—C38—H38B109.2
C20—C19—H19B108.7C37—C38—H38B109.2
H19A—C19—H19B107.6H38A—C38—H38B107.9
C19—C20—H20A109.5C38—C39—C40113.4 (6)
C19—C20—H20B109.5C38—C39—H39A108.9
H20A—C20—H20B109.5C40—C39—H39A108.9
C19—C20—H20C109.5C38—C39—H39B108.9
H20A—C20—H20C109.5C40—C39—H39B108.9
H20B—C20—H20C109.5H39A—C39—H39B107.7
C22—C21—N1116.4 (5)C39—C40—H40A109.5
C22—C21—H21A108.2C39—C40—H40B109.5
N1—C21—H21A108.2H40A—C40—H40B109.5
C22—C21—H21B108.2C39—C40—H40C109.5
N1—C21—H21B108.2H40A—C40—H40C109.5
H21A—C21—H21B107.3H40B—C40—H40C109.5
C23—C22—C21111.9 (5)N2B—C41—C42114.0 (19)
C23—C22—H22A109.2C42—C41—N2117.8 (9)
C21—C22—H22A109.2C42—C41—H41A107.9
C23—C22—H22B109.2N2—C41—H41A107.9
C21—C22—H22B109.2C42—C41—H41B107.9
H22A—C22—H22B107.9N2—C41—H41B107.9
C22—C23—C24113.5 (6)H41A—C41—H41B107.2
C22—C23—H23A108.9C43—C42—C41111.5 (5)
C24—C23—H23A108.9C43—C42—H42A109.3
C22—C23—H23B108.9C41—C42—H42A109.3
C24—C23—H23B108.9C43—C42—H42B109.3
H23A—C23—H23B107.7C41—C42—H42B109.3
C23—C24—H24A109.5H42A—C42—H42B108.0
C23—C24—H24B109.5C44—C43—C42115.5 (6)
H24A—C24—H24B109.5C44—C43—H43A108.4
C23—C24—H24C109.5C42—C43—H43A108.4
H24A—C24—H24C109.5C44—C43—H43B108.4
H24B—C24—H24C109.5C42—C43—H43B108.4
C26—C25—N1118.0 (4)H43A—C43—H43B107.5
C26—C25—H25A107.8C43—C44—H44A109.5
N1—C25—H25A107.8C43—C44—H44B109.5
C26—C25—H25B107.8H44A—C44—H44B109.5
N1—C25—H25B107.8C43—C44—H44C109.5
H25A—C25—H25B107.1H44A—C44—H44C109.5
C25—C26—C27110.4 (5)H44B—C44—H44C109.5
C25—C26—H26A109.6Cl1—C1S—Cl2109.7 (4)
C27—C26—H26A109.6Cl1—C1S—Cl3109.5 (4)
C25—C26—H26B109.6Cl2—C1S—Cl3110.6 (4)
C27—C26—H26B109.6Cl1—C1S—H1SA109.0
H26A—C26—H26B108.1Cl2—C1S—H1SA109.0
C28—C27—C26114.1 (5)Cl3—C1S—H1SA109.0
C28—C27—H27A108.7
Mo1—S1—C1—C24.8 (5)O6—C11—C12—O7114.9 (7)
Mo1—S1—C1—C3177.8 (4)O5—C11—C12—O8113.7 (7)
C3—C1—C2—C45.6 (9)O6—C11—C12—O867.0 (7)
S1—C1—C2—C4177.2 (4)C17—N1—C13—C1468.0 (6)
C3—C1—C2—S2178.7 (5)C21—N1—C13—C1453.2 (6)
S1—C1—C2—S21.5 (6)C25—N1—C13—C14171.2 (5)
Mo1—S2—C2—C12.5 (5)N1—C13—C14—C15172.6 (5)
Mo1—S2—C2—C4173.7 (4)C13—C14—C15—C16175.6 (6)
C2—C1—C3—F174.2 (8)C13—N1—C17—C18176.3 (5)
S1—C1—C3—F1103.1 (6)C21—N1—C17—C1862.0 (6)
C2—C1—C3—F247.1 (8)C25—N1—C17—C1856.9 (6)
S1—C1—C3—F2135.6 (5)N1—C17—C18—C19177.3 (5)
C2—C1—C3—F3166.5 (6)C17—C18—C19—C20176.4 (6)
S1—C1—C3—F316.2 (7)C17—N1—C21—C22177.0 (5)
C1—C2—C4—F6160.3 (5)C13—N1—C21—C2256.2 (6)
S2—C2—C4—F623.8 (6)C25—N1—C21—C2262.3 (6)
C1—C2—C4—F579.1 (7)N1—C21—C22—C23170.7 (6)
S2—C2—C4—F596.8 (5)C21—C22—C23—C24169.7 (7)
C1—C2—C4—F440.4 (8)C17—N1—C25—C2651.8 (6)
S2—C2—C4—F4143.7 (4)C13—N1—C25—C2668.0 (6)
Mo1—S3—C5—C64.3 (5)C21—N1—C25—C26172.1 (5)
Mo1—S3—C5—C7177.7 (3)N1—C25—C26—C27179.2 (5)
C7—C5—C6—C82.7 (9)C25—C26—C27—C28177.4 (6)
S3—C5—C6—C8175.0 (5)C37—N2—C29—C3060 (2)
C7—C5—C6—S4179.6 (4)C41—N2—C29—C3058.8 (19)
S3—C5—C6—S42.6 (6)C33—N2—C29—C30177.9 (17)
Mo1—S4—C6—C50.4 (5)N2—C29—C30—C31167.2 (18)
Mo1—S4—C6—C8178.3 (4)C29—C30—C31—C32174.7 (13)
C6—C5—C7—F8A83.8 (11)C37—N2—C33—C3469.2 (18)
S3—C5—C7—F8A94.1 (10)C29—N2—C33—C34172.0 (16)
C6—C5—C7—F966.9 (10)C41—N2—C33—C3449.5 (18)
S3—C5—C7—F9115.3 (8)N2—C33—C34—C35149.6 (17)
C6—C5—C7—F7168.3 (10)C33—C34—C35—C36177.2 (11)
S3—C5—C7—F79.6 (10)C41—N2B—C29B—C30B60 (4)
C6—C5—C7—F9A39.4 (10)C33B—N2B—C29B—C30B180 (4)
S3—C5—C7—F9A142.7 (8)C37—N2B—C29B—C30B55 (5)
C6—C5—C7—F7A153.6 (9)N2B—C29B—C30B—C31B174 (4)
S3—C5—C7—F7A28.6 (8)C29B—C30B—C31B—C32B92 (3)
C6—C5—C7—F853.0 (9)C41—N2B—C33B—C34B47 (4)
S3—C5—C7—F8124.8 (8)C29B—N2B—C33B—C34B168 (3)
C5—C6—C8—F12A154.0 (10)C37—N2B—C33B—C34B69 (4)
S4—C6—C8—F12A23.8 (11)N2B—C33B—C34B—C35B81 (3)
C5—C6—C8—F1028.9 (12)C33B—C34B—C35B—C36B170 (2)
S4—C6—C8—F10153.4 (9)C29—N2—C37—C3850.0 (13)
C5—C6—C8—F12149.1 (9)C41—N2—C37—C38171.0 (5)
S4—C6—C8—F1233.2 (10)C33—N2—C37—C3867.4 (11)
C5—C6—C8—F11A33.3 (10)C41—N2B—C37—C38176.8 (7)
S4—C6—C8—F11A144.5 (7)C29B—N2B—C37—C3857 (3)
C5—C6—C8—F10A85.1 (11)C33B—N2B—C37—C3864 (2)
S4—C6—C8—F10A97.1 (9)N2—C37—C38—C39171.5 (6)
C5—C6—C8—F1193.3 (10)N2B—C37—C38—C39178.8 (8)
S4—C6—C8—F1184.4 (10)C37—C38—C39—C40176.9 (6)
Mo1—O1—C9—O3179.3 (4)C29B—N2B—C41—C4263 (2)
Mo1—O1—C9—C101.6 (6)C33B—N2B—C41—C4255 (3)
Mo1—O2—C10—O4177.2 (4)C37—N2B—C41—C42177.7 (6)
Mo1—O2—C10—C92.9 (6)C37—N2—C41—C42176.8 (6)
O3—C9—C10—O42.0 (8)C29—N2—C41—C4256.3 (12)
O1—C9—C10—O4177.1 (5)C33—N2—C41—C4264.4 (12)
O3—C9—C10—O2178.0 (5)N2B—C41—C42—C43170.5 (8)
O1—C9—C10—O22.9 (7)N2—C41—C42—C43163.0 (6)
O5—C11—C12—O764.5 (10)C41—C42—C43—C4455.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O3i0.88 (7)1.76 (7)2.633 (5)170 (7)
O8—H8O···O40.85 (8)1.75 (8)2.587 (5)174 (9)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Bis(tetra-n-butylammonium) µ-oxalato-bis[bis(1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)molybdate(IV)] (k10171_sq) top
Crystal data top
(C16H36N)[Mo2(C4F6S2)4(C2O4)]F(000) = 1692
Mr = 1669.45Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.2347 (15) ÅCell parameters from 18892 reflections
b = 19.4940 (19) Åθ = 2.6–25.7°
c = 14.4056 (14) ŵ = 0.63 mm1
β = 103.159 (5)°T = 150 K
V = 3892.5 (7) Å3Plate, green
Z = 20.18 × 0.18 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
7278 independent reflections
Radiation source: fine-focus sealed tube4243 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.066
φ scan and ω scans with κ offsetsθmax = 25.8°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1716
Tmin = 0.720, Tmax = 0.931k = 2123
18527 measured reflectionsl = 1417
Refinement top
Refinement on F2520 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0589P)2 + 6.741P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7278 reflectionsΔρmax = 0.59 e Å3
560 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.87109 (4)0.08321 (2)0.36570 (4)0.05150 (18)
S10.89301 (13)0.07056 (8)0.21225 (13)0.0659 (5)
S20.93704 (12)0.19051 (8)0.35112 (13)0.0678 (5)
S30.77245 (12)0.14498 (8)0.44228 (12)0.0633 (4)
S40.72826 (11)0.02567 (7)0.30266 (12)0.0591 (4)
F10.9664 (5)0.0777 (3)0.0486 (4)0.1268 (19)
F20.9059 (5)0.1775 (3)0.0199 (4)0.139 (2)
F31.0559 (4)0.1657 (3)0.0798 (5)0.141 (2)
F41.1100 (4)0.2576 (3)0.2483 (6)0.203 (4)
F50.9905 (5)0.3134 (3)0.2739 (4)0.132 (2)
F60.9926 (4)0.2848 (2)0.1371 (4)0.1192 (18)
F70.6143 (4)0.2064 (3)0.4933 (5)0.155 (3)
F80.5004 (4)0.1532 (3)0.4101 (4)0.138 (2)
F90.5744 (4)0.1101 (3)0.5375 (4)0.131 (2)
F100.4944 (4)0.0160 (3)0.3889 (5)0.146 (2)
F110.5485 (3)0.0406 (2)0.2910 (4)0.1217 (19)
F120.4847 (3)0.0548 (3)0.2499 (4)0.130 (2)
O10.9309 (3)0.01919 (18)0.3874 (3)0.0557 (10)
O21.0310 (3)0.08488 (18)0.4949 (3)0.0573 (10)
C10.9504 (5)0.1439 (4)0.1820 (6)0.075 (2)
C20.9686 (5)0.1961 (3)0.2414 (6)0.0709 (19)
C30.9702 (7)0.1418 (5)0.0815 (7)0.102 (3)
C41.0177 (6)0.2622 (4)0.2255 (8)0.099 (3)
C50.6576 (5)0.1110 (3)0.4153 (5)0.0640 (17)
C60.6378 (4)0.0580 (3)0.3530 (5)0.0636 (17)
C70.5880 (6)0.1450 (4)0.4666 (7)0.085 (2)
C80.5414 (5)0.0231 (4)0.3193 (7)0.084 (2)
C90.9890 (4)0.0297 (3)0.4657 (4)0.0516 (15)
N10.6284 (10)0.2680 (7)0.1575 (11)0.0755 (19)0.589 (6)
C100.5205 (11)0.2799 (9)0.1500 (13)0.082 (3)0.589 (6)
H10A0.50950.32990.15300.099*0.589 (6)
H10B0.48500.26390.08640.099*0.589 (6)
C110.4765 (9)0.2454 (7)0.2247 (11)0.093 (3)0.589 (6)
H11A0.50430.26570.28800.111*0.589 (6)
H11B0.49270.19590.22760.111*0.589 (6)
C120.3656 (10)0.2541 (8)0.2012 (13)0.103 (4)0.589 (6)
H12A0.34230.25470.26090.124*0.589 (6)
H12B0.34770.29810.16770.124*0.589 (6)
C130.3202 (13)0.1967 (10)0.1402 (14)0.133 (5)0.589 (6)
H13A0.25000.20230.12540.199*0.589 (6)
H13B0.34300.19660.08100.199*0.589 (6)
H13C0.33760.15330.17400.199*0.589 (6)
C140.6590 (13)0.3140 (12)0.085 (2)0.077 (2)0.589 (6)
H14A0.62870.35950.08810.093*0.589 (6)
H14B0.63250.29480.02120.093*0.589 (6)
C150.7680 (12)0.3248 (10)0.0967 (12)0.084 (3)0.589 (6)
H15A0.79600.34280.16130.101*0.589 (6)
H15B0.79890.28000.09030.101*0.589 (6)
C160.7904 (11)0.3743 (7)0.0232 (9)0.085 (3)0.589 (6)
H16A0.86060.38310.03620.101*0.589 (6)
H16B0.75690.41850.02630.101*0.589 (6)
C170.7553 (12)0.3416 (8)0.0780 (10)0.106 (4)0.589 (6)
H17A0.76920.37300.12620.159*0.589 (6)
H17B0.78900.29810.08060.159*0.589 (6)
H17C0.68560.33330.09040.159*0.589 (6)
C180.6467 (12)0.1923 (8)0.1431 (11)0.085 (3)0.589 (6)
H18A0.60540.16470.17570.102*0.589 (6)
H18B0.71470.18160.17350.102*0.589 (6)
C190.6260 (11)0.1704 (7)0.0352 (11)0.094 (3)0.589 (6)
H19A0.55680.17710.00530.113*0.589 (6)
H19B0.66420.19940.00090.113*0.589 (6)
C200.6534 (11)0.0941 (7)0.0276 (13)0.103 (4)0.589 (6)
H20A0.65890.07140.09010.123*0.589 (6)
H20B0.71680.09100.01060.123*0.589 (6)
C210.5731 (13)0.0556 (9)0.0519 (14)0.123 (6)0.589 (6)
H21A0.59140.00740.05580.185*0.589 (6)
H21B0.51050.05820.03440.185*0.589 (6)
H21C0.56840.07780.11380.185*0.589 (6)
C220.6825 (19)0.2873 (10)0.2593 (14)0.082 (3)0.589 (6)
H22A0.66360.25450.30430.099*0.589 (6)
H22B0.75250.28140.26400.099*0.589 (6)
C230.666 (3)0.3588 (11)0.2913 (16)0.090 (3)0.589 (6)
H23A0.59550.36630.28120.108*0.589 (6)
H23B0.69050.39170.25010.108*0.589 (6)
C240.7128 (13)0.3750 (9)0.3947 (13)0.103 (3)0.589 (6)
H24A0.68940.42000.41180.123*0.589 (6)
H24B0.69360.33980.43640.123*0.589 (6)
C250.8214 (11)0.3767 (8)0.4118 (12)0.120 (5)0.589 (6)
H25A0.84920.38720.47890.180*0.589 (6)
H25B0.84490.33190.39600.180*0.589 (6)
H25C0.84070.41210.37150.180*0.589 (6)
N1A0.6310 (15)0.2661 (10)0.1504 (15)0.077 (2)0.411 (6)
C10A0.5216 (14)0.2704 (13)0.1279 (19)0.082 (3)0.411 (6)
H10C0.50330.31710.14430.098*0.411 (6)
H10D0.49740.26450.05830.098*0.411 (6)
C11A0.4713 (12)0.2192 (10)0.1781 (16)0.090 (3)0.411 (6)
H11C0.49480.22380.24800.108*0.411 (6)
H11D0.48530.17200.15980.108*0.411 (6)
C12A0.3619 (13)0.2325 (13)0.1502 (17)0.095 (4)0.411 (6)
H12C0.34910.28250.14820.114*0.411 (6)
H12D0.33440.21320.08620.114*0.411 (6)
C13A0.3161 (15)0.1988 (14)0.2233 (19)0.122 (6)0.411 (6)
H13D0.24630.20680.20640.183*0.411 (6)
H13E0.32880.14930.22450.183*0.411 (6)
H13F0.34340.21830.28630.183*0.411 (6)
C14A0.6599 (19)0.3197 (17)0.086 (3)0.078 (3)0.411 (6)
H14C0.65080.36590.11140.094*0.411 (6)
H14D0.61740.31590.02180.094*0.411 (6)
C15A0.7649 (17)0.3117 (14)0.0793 (17)0.086 (3)0.411 (6)
H15C0.80740.33130.13730.103*0.411 (6)
H15D0.78000.26220.07750.103*0.411 (6)
C16A0.7871 (17)0.3454 (12)0.0055 (18)0.096 (4)0.411 (6)
H16C0.77990.31050.05660.116*0.411 (6)
H16D0.85590.35890.01120.116*0.411 (6)
C17A0.7295 (17)0.4075 (11)0.0469 (17)0.122 (6)0.411 (6)
H17D0.75220.42390.10220.182*0.411 (6)
H17E0.66110.39510.06680.182*0.411 (6)
H17F0.73760.44370.00140.182*0.411 (6)
C18A0.6668 (17)0.1949 (11)0.1299 (17)0.085 (3)0.411 (6)
H18C0.67480.16570.18750.101*0.411 (6)
H18D0.73030.19890.11310.101*0.411 (6)
C19A0.5922 (15)0.1613 (10)0.0455 (16)0.093 (4)0.411 (6)
H19C0.52610.16800.05510.112*0.411 (6)
H19D0.59620.18370.01510.112*0.411 (6)
C20A0.6129 (17)0.0838 (10)0.0397 (16)0.100 (4)0.411 (6)
H20C0.55920.05660.05410.119*0.411 (6)
H20D0.67300.07150.08630.119*0.411 (6)
C21A0.6239 (17)0.0679 (13)0.0686 (16)0.119 (7)0.411 (6)
H21D0.63710.01900.07480.179*0.411 (6)
H21E0.56400.08020.11410.179*0.411 (6)
H21F0.67730.09500.08200.179*0.411 (6)
C22A0.676 (3)0.2786 (15)0.2551 (19)0.082 (3)0.411 (6)
H22C0.64830.24510.29280.099*0.411 (6)
H22D0.74610.26820.26580.099*0.411 (6)
C23A0.666 (4)0.3485 (15)0.295 (2)0.090 (3)0.411 (6)
H23C0.59810.35760.29500.108*0.411 (6)
H23D0.68840.38380.25520.108*0.411 (6)
C24A0.728 (2)0.3515 (10)0.3967 (19)0.100 (4)0.411 (6)
H24C0.70680.31530.43560.120*0.411 (6)
H24D0.79630.34280.39610.120*0.411 (6)
C25A0.7188 (16)0.4207 (9)0.4402 (15)0.102 (5)0.411 (6)
H25D0.75860.42190.50540.153*0.411 (6)
H25E0.74060.45640.40200.153*0.411 (6)
H25F0.65120.42890.44160.153*0.411 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0487 (3)0.0358 (3)0.0643 (3)0.0027 (2)0.0008 (2)0.0017 (2)
S10.0684 (10)0.0535 (9)0.0773 (11)0.0068 (8)0.0199 (9)0.0045 (8)
S20.0624 (10)0.0432 (8)0.0890 (13)0.0048 (8)0.0006 (9)0.0076 (8)
S30.0642 (10)0.0487 (9)0.0731 (11)0.0066 (8)0.0075 (9)0.0029 (8)
S40.0544 (9)0.0455 (8)0.0722 (11)0.0018 (7)0.0037 (8)0.0027 (8)
F10.178 (5)0.104 (4)0.122 (4)0.017 (4)0.085 (4)0.010 (3)
F20.174 (5)0.151 (5)0.109 (4)0.072 (4)0.067 (4)0.053 (4)
F30.121 (4)0.136 (5)0.198 (6)0.014 (4)0.102 (4)0.039 (4)
F40.060 (3)0.134 (5)0.384 (11)0.021 (3)0.014 (4)0.136 (6)
F50.170 (5)0.069 (3)0.153 (5)0.045 (3)0.031 (4)0.017 (3)
F60.106 (4)0.095 (3)0.167 (5)0.004 (3)0.053 (3)0.058 (4)
F70.159 (5)0.079 (3)0.270 (8)0.004 (3)0.141 (5)0.048 (4)
F80.106 (4)0.177 (6)0.145 (5)0.062 (4)0.060 (4)0.034 (4)
F90.194 (6)0.100 (3)0.134 (4)0.045 (4)0.106 (4)0.038 (3)
F100.108 (4)0.167 (6)0.174 (6)0.052 (4)0.057 (4)0.002 (4)
F110.073 (3)0.067 (3)0.208 (6)0.018 (2)0.005 (3)0.008 (3)
F120.077 (3)0.096 (3)0.187 (5)0.022 (3)0.033 (3)0.049 (4)
O10.054 (2)0.038 (2)0.066 (3)0.0067 (18)0.005 (2)0.0040 (19)
O20.056 (2)0.032 (2)0.073 (3)0.0048 (19)0.007 (2)0.0031 (19)
C10.061 (4)0.070 (5)0.098 (6)0.011 (4)0.029 (4)0.027 (4)
C20.055 (4)0.055 (4)0.100 (6)0.001 (3)0.012 (4)0.019 (4)
C30.107 (7)0.088 (6)0.129 (8)0.022 (6)0.064 (6)0.028 (6)
C40.074 (6)0.068 (5)0.146 (9)0.004 (4)0.009 (5)0.038 (6)
C50.064 (4)0.054 (4)0.077 (5)0.009 (3)0.022 (4)0.015 (3)
C60.055 (4)0.050 (3)0.083 (5)0.001 (3)0.010 (3)0.014 (3)
C70.094 (6)0.063 (5)0.110 (7)0.017 (4)0.049 (5)0.018 (5)
C80.056 (4)0.069 (5)0.126 (7)0.003 (4)0.018 (5)0.013 (5)
C90.042 (3)0.038 (3)0.072 (4)0.001 (3)0.006 (3)0.000 (3)
N10.056 (3)0.057 (3)0.104 (4)0.003 (3)0.003 (3)0.023 (3)
C100.060 (4)0.066 (5)0.112 (6)0.002 (4)0.000 (4)0.023 (5)
C110.069 (4)0.076 (6)0.125 (7)0.010 (5)0.005 (5)0.021 (5)
C120.075 (5)0.095 (7)0.132 (8)0.014 (5)0.006 (6)0.020 (6)
C130.098 (9)0.139 (10)0.145 (11)0.017 (8)0.008 (10)0.022 (10)
C140.062 (4)0.066 (5)0.100 (5)0.007 (4)0.012 (4)0.015 (4)
C150.073 (4)0.076 (6)0.102 (5)0.011 (4)0.019 (5)0.001 (5)
C160.077 (5)0.079 (6)0.098 (6)0.008 (5)0.023 (5)0.012 (5)
C170.112 (9)0.117 (9)0.091 (9)0.016 (8)0.025 (8)0.019 (8)
C180.066 (5)0.060 (4)0.114 (5)0.006 (4)0.011 (4)0.013 (4)
C190.068 (6)0.068 (5)0.125 (5)0.001 (5)0.023 (5)0.005 (5)
C200.079 (7)0.074 (6)0.131 (6)0.001 (6)0.025 (6)0.004 (5)
C210.104 (11)0.094 (9)0.147 (10)0.005 (9)0.021 (9)0.012 (8)
C220.071 (4)0.064 (5)0.102 (5)0.003 (4)0.003 (4)0.024 (4)
C230.086 (5)0.072 (6)0.101 (5)0.008 (5)0.001 (4)0.021 (5)
C240.103 (6)0.080 (7)0.111 (6)0.012 (6)0.003 (5)0.021 (6)
C250.128 (9)0.098 (9)0.121 (9)0.001 (8)0.001 (9)0.009 (8)
N1A0.057 (3)0.059 (4)0.104 (4)0.003 (3)0.002 (3)0.021 (3)
C10A0.059 (4)0.065 (5)0.113 (6)0.000 (4)0.001 (5)0.024 (5)
C11A0.066 (5)0.076 (6)0.118 (7)0.008 (5)0.003 (6)0.023 (5)
C12A0.069 (6)0.082 (7)0.126 (8)0.010 (6)0.005 (7)0.015 (7)
C13A0.087 (10)0.129 (11)0.144 (12)0.005 (9)0.015 (11)0.026 (11)
C14A0.063 (4)0.066 (5)0.101 (5)0.006 (4)0.010 (4)0.016 (5)
C15A0.073 (5)0.078 (6)0.105 (6)0.010 (5)0.019 (5)0.005 (5)
C16A0.085 (6)0.094 (7)0.110 (7)0.012 (6)0.021 (6)0.005 (6)
C17A0.122 (11)0.126 (11)0.119 (11)0.002 (10)0.032 (10)0.012 (10)
C18A0.065 (5)0.058 (5)0.114 (5)0.004 (5)0.012 (5)0.014 (5)
C19A0.072 (7)0.066 (5)0.122 (6)0.000 (5)0.019 (6)0.008 (5)
C20A0.074 (8)0.073 (6)0.128 (7)0.001 (6)0.025 (7)0.000 (6)
C21A0.080 (12)0.099 (10)0.153 (11)0.006 (10)0.026 (11)0.015 (10)
C22A0.071 (5)0.064 (5)0.102 (5)0.005 (5)0.002 (4)0.022 (5)
C23A0.086 (5)0.071 (6)0.103 (5)0.007 (6)0.000 (5)0.022 (5)
C24A0.101 (6)0.077 (7)0.111 (6)0.009 (6)0.002 (6)0.020 (7)
C25A0.127 (11)0.069 (9)0.101 (10)0.001 (9)0.008 (9)0.002 (9)
Geometric parameters (Å, º) top
Mo1—O12.165 (4)C20—H20B0.9900
Mo1—O2i2.168 (4)C21—H21A0.9800
Mo1—S32.3116 (18)C21—H21B0.9800
Mo1—S12.3148 (19)C21—H21C0.9800
Mo1—S42.3186 (16)C22—C231.503 (13)
Mo1—S22.3216 (16)C22—H22A0.9900
S1—C11.749 (7)C22—H22B0.9900
S2—C21.742 (8)C23—C241.520 (14)
S3—C51.724 (7)C23—H23A0.9900
S4—C61.734 (7)C23—H23B0.9900
F1—C31.333 (10)C24—C251.51 (2)
F2—C31.319 (10)C24—H24A0.9900
F3—C31.312 (10)C24—H24B0.9900
F4—C41.283 (9)C25—H25A0.9800
F5—C41.325 (10)C25—H25B0.9800
F6—C41.318 (10)C25—H25C0.9800
F7—C71.288 (9)N1A—C14A1.512 (14)
F8—C71.335 (9)N1A—C10A1.519 (14)
F9—C71.277 (8)N1A—C22A1.519 (14)
F10—C81.333 (9)N1A—C18A1.530 (14)
F11—C81.320 (9)C10A—C11A1.507 (16)
F12—C81.290 (9)C10A—H10C0.9900
O1—C91.254 (6)C10A—H10D0.9900
O2—C91.255 (6)C11A—C12A1.538 (16)
O2—Mo1i2.168 (4)C11A—H11C0.9900
C1—C21.318 (10)C11A—H11D0.9900
C1—C31.537 (11)C12A—C13A1.510 (19)
C2—C41.507 (10)C12A—H12C0.9900
C5—C61.357 (9)C12A—H12D0.9900
C5—C71.517 (10)C13A—H13D0.9800
C6—C81.508 (9)C13A—H13E0.9800
C9—C9i1.509 (11)C13A—H13F0.9800
N1—C141.509 (11)C14A—C15A1.529 (16)
N1—C181.522 (12)C14A—H14C0.9900
N1—C101.532 (11)C14A—H14D0.9900
N1—C221.539 (12)C15A—C16A1.483 (17)
C10—C111.519 (13)C15A—H15C0.9900
C10—H10A0.9900C15A—H15D0.9900
C10—H10B0.9900C16A—C17A1.506 (18)
C11—C121.547 (14)C16A—H16C0.9900
C11—H11A0.9900C16A—H16D0.9900
C11—H11B0.9900C17A—H17D0.9800
C12—C131.476 (16)C17A—H17E0.9800
C12—H12A0.9900C17A—H17F0.9800
C12—H12B0.9900C18A—C19A1.564 (17)
C13—H13A0.9800C18A—H18C0.9900
C13—H13B0.9800C18A—H18D0.9900
C13—H13C0.9800C19A—C20A1.544 (16)
C14—C151.538 (14)C19A—H19C0.9900
C14—H14A0.9900C19A—H19D0.9900
C14—H14B0.9900C20A—C21A1.633 (19)
C15—C161.518 (14)C20A—H20C0.9900
C15—H15A0.9900C20A—H20D0.9900
C15—H15B0.9900C21A—H21D0.9800
C16—C171.564 (15)C21A—H21E0.9800
C16—H16A0.9900C21A—H21F0.9800
C16—H16B0.9900C22A—C23A1.498 (16)
C17—H17A0.9800C22A—H22C0.9900
C17—H17B0.9800C22A—H22D0.9900
C17—H17C0.9800C23A—C24A1.527 (17)
C18—C191.574 (15)C23A—H23C0.9900
C18—H18A0.9900C23A—H23D0.9900
C18—H18B0.9900C24A—C25A1.51 (2)
C19—C201.548 (13)C24A—H24C0.9900
C19—H19A0.9900C24A—H24D0.9900
C19—H19B0.9900C25A—H25D0.9800
C20—C211.608 (15)C25A—H25E0.9800
C20—H20A0.9900C25A—H25F0.9800
O1—Mo1—O2i74.40 (14)C20—C21—H21A109.5
O1—Mo1—S3132.28 (12)C20—C21—H21B109.5
O2i—Mo1—S383.24 (11)H21A—C21—H21B109.5
O1—Mo1—S184.60 (12)C20—C21—H21C109.5
O2i—Mo1—S1133.48 (12)H21A—C21—H21C109.5
S3—Mo1—S1137.72 (6)H21B—C21—H21C109.5
O1—Mo1—S483.76 (11)C23—C22—N1116.1 (11)
O2i—Mo1—S4133.74 (12)C23—C22—H22A108.3
S3—Mo1—S482.25 (6)N1—C22—H22A108.3
S1—Mo1—S482.60 (6)C23—C22—H22B108.3
O1—Mo1—S2133.64 (11)N1—C22—H22B108.3
O2i—Mo1—S283.25 (11)H22A—C22—H22B107.4
S3—Mo1—S282.88 (6)C22—C23—C24115.3 (12)
S1—Mo1—S282.21 (7)C22—C23—H23A108.4
S4—Mo1—S2137.48 (6)C24—C23—H23A108.4
C1—S1—Mo1108.8 (3)C22—C23—H23B108.4
C2—S2—Mo1109.4 (2)C24—C23—H23B108.4
C5—S3—Mo1109.9 (2)H23A—C23—H23B107.5
C6—S4—Mo1109.2 (2)C25—C24—C23111.7 (19)
C9—O1—Mo1116.0 (3)C25—C24—H24A109.3
C9—O2—Mo1i117.0 (3)C23—C24—H24A109.3
C2—C1—C3125.5 (7)C25—C24—H24B109.3
C2—C1—S1120.3 (6)C23—C24—H24B109.3
C3—C1—S1114.2 (6)H24A—C24—H24B107.9
C1—C2—C4126.2 (8)C24—C25—H25A109.5
C1—C2—S2119.1 (5)C24—C25—H25B109.5
C4—C2—S2114.6 (7)H25A—C25—H25B109.5
F3—C3—F2107.7 (8)C24—C25—H25C109.5
F3—C3—F1106.8 (7)H25A—C25—H25C109.5
F2—C3—F1106.9 (9)H25B—C25—H25C109.5
F3—C3—C1112.3 (9)C14A—N1A—C10A103.8 (13)
F2—C3—C1111.8 (7)C14A—N1A—C22A112.4 (16)
F1—C3—C1111.0 (7)C10A—N1A—C22A112.7 (16)
F4—C4—F6108.0 (8)C14A—N1A—C18A111.1 (15)
F4—C4—F5108.8 (9)C10A—N1A—C18A112.3 (14)
F6—C4—F5102.0 (7)C22A—N1A—C18A104.6 (14)
F4—C4—C2112.7 (7)C11A—C10A—N1A115.9 (14)
F6—C4—C2113.6 (8)C11A—C10A—H10C108.3
F5—C4—C2111.2 (8)N1A—C10A—H10C108.3
C6—C5—C7126.5 (6)C11A—C10A—H10D108.3
C6—C5—S3119.1 (5)N1A—C10A—H10D108.3
C7—C5—S3114.5 (5)H10C—C10A—H10D107.4
C5—C6—C8126.4 (7)C10A—C11A—C12A109.1 (13)
C5—C6—S4119.4 (5)C10A—C11A—H11C109.9
C8—C6—S4114.2 (5)C12A—C11A—H11C109.9
F9—C7—F7110.1 (8)C10A—C11A—H11D109.9
F9—C7—F8105.1 (7)C12A—C11A—H11D109.9
F7—C7—F8103.7 (7)H11C—C11A—H11D108.3
F9—C7—C5113.1 (6)C13A—C12A—C11A108.5 (15)
F7—C7—C5111.9 (7)C13A—C12A—H12C110.0
F8—C7—C5112.3 (7)C11A—C12A—H12C110.0
F12—C8—F11106.8 (8)C13A—C12A—H12D110.0
F12—C8—F10107.5 (7)C11A—C12A—H12D110.0
F11—C8—F10102.8 (7)H12C—C12A—H12D108.4
F12—C8—C6113.4 (6)C12A—C13A—H13D109.5
F11—C8—C6113.3 (6)C12A—C13A—H13E109.5
F10—C8—C6112.4 (7)H13D—C13A—H13E109.5
O1—C9—O2127.5 (5)C12A—C13A—H13F109.5
O1—C9—C9i117.3 (6)H13D—C13A—H13F109.5
O2—C9—C9i115.3 (6)H13E—C13A—H13F109.5
C14—N1—C18113.4 (12)N1A—C14A—C15A112.1 (16)
C14—N1—C10107.7 (10)N1A—C14A—H14C109.2
C18—N1—C10109.6 (10)C15A—C14A—H14C109.2
C14—N1—C22110.5 (11)N1A—C14A—H14D109.2
C18—N1—C22107.6 (10)C15A—C14A—H14D109.2
C10—N1—C22107.9 (11)H14C—C14A—H14D107.9
C11—C10—N1116.8 (11)C16A—C15A—C14A113.8 (16)
C11—C10—H10A108.1C16A—C15A—H15C108.8
N1—C10—H10A108.1C14A—C15A—H15C108.8
C11—C10—H10B108.1C16A—C15A—H15D108.8
N1—C10—H10B108.1C14A—C15A—H15D108.8
H10A—C10—H10B107.3H15C—C15A—H15D107.7
C10—C11—C12111.2 (11)C15A—C16A—C17A118.9 (18)
C10—C11—H11A109.4C15A—C16A—H16C107.6
C12—C11—H11A109.4C17A—C16A—H16C107.6
C10—C11—H11B109.4C15A—C16A—H16D107.6
C12—C11—H11B109.4C17A—C16A—H16D107.6
H11A—C11—H11B108.0H16C—C16A—H16D107.0
C13—C12—C11109.5 (13)C16A—C17A—H17D109.5
C13—C12—H12A109.8C16A—C17A—H17E109.5
C11—C12—H12A109.8H17D—C17A—H17E109.5
C13—C12—H12B109.8C16A—C17A—H17F109.5
C11—C12—H12B109.8H17D—C17A—H17F109.5
H12A—C12—H12B108.2H17E—C17A—H17F109.5
C12—C13—H13A109.5N1A—C18A—C19A109.4 (14)
C12—C13—H13B109.5N1A—C18A—H18C109.8
H13A—C13—H13B109.5C19A—C18A—H18C109.8
C12—C13—H13C109.5N1A—C18A—H18D109.8
H13A—C13—H13C109.5C19A—C18A—H18D109.8
H13B—C13—H13C109.5H18C—C18A—H18D108.2
N1—C14—C15116.8 (13)C20A—C19A—C18A110.4 (14)
N1—C14—H14A108.1C20A—C19A—H19C109.6
C15—C14—H14A108.1C18A—C19A—H19C109.6
N1—C14—H14B108.1C20A—C19A—H19D109.6
C15—C14—H14B108.1C18A—C19A—H19D109.6
H14A—C14—H14B107.3H19C—C19A—H19D108.1
C16—C15—C14112.3 (11)C19A—C20A—C21A107.4 (16)
C16—C15—H15A109.1C19A—C20A—H20C110.2
C14—C15—H15A109.1C21A—C20A—H20C110.2
C16—C15—H15B109.1C19A—C20A—H20D110.2
C14—C15—H15B109.1C21A—C20A—H20D110.2
H15A—C15—H15B107.9H20C—C20A—H20D108.5
C15—C16—C17108.5 (12)C20A—C21A—H21D109.5
C15—C16—H16A110.0C20A—C21A—H21E109.5
C17—C16—H16A110.0H21D—C21A—H21E109.5
C15—C16—H16B110.0C20A—C21A—H21F109.5
C17—C16—H16B110.0H21D—C21A—H21F109.5
H16A—C16—H16B108.4H21E—C21A—H21F109.5
C16—C17—H17A109.5C23A—C22A—N1A118.1 (16)
C16—C17—H17B109.5C23A—C22A—H22C107.8
H17A—C17—H17B109.5N1A—C22A—H22C107.8
C16—C17—H17C109.5C23A—C22A—H22D107.8
H17A—C17—H17C109.5N1A—C22A—H22D107.8
H17B—C17—H17C109.5H22C—C22A—H22D107.1
N1—C18—C19113.4 (11)C22A—C23A—C24A108.6 (16)
N1—C18—H18A108.9C22A—C23A—H23C110.0
C19—C18—H18A108.9C24A—C23A—H23C110.0
N1—C18—H18B108.9C22A—C23A—H23D110.0
C19—C18—H18B108.9C24A—C23A—H23D110.0
H18A—C18—H18B107.7H23C—C23A—H23D108.4
C20—C19—C18109.6 (11)C25A—C24A—C23A110.4 (17)
C20—C19—H19A109.7C25A—C24A—H24C109.6
C18—C19—H19A109.7C23A—C24A—H24C109.6
C20—C19—H19B109.7C25A—C24A—H24D109.6
C18—C19—H19B109.7C23A—C24A—H24D109.6
H19A—C19—H19B108.2H24C—C24A—H24D108.1
C19—C20—C21110.4 (11)C24A—C25A—H25D109.5
C19—C20—H20A109.6C24A—C25A—H25E109.5
C21—C20—H20A109.6H25D—C25A—H25E109.5
C19—C20—H20B109.6C24A—C25A—H25F109.5
C21—C20—H20B109.6H25D—C25A—H25F109.5
H20A—C20—H20B108.1H25E—C25A—H25F109.5
Mo1—S1—C1—C23.8 (6)Mo1i—O2—C9—O1179.0 (5)
Mo1—S1—C1—C3179.4 (5)Mo1i—O2—C9—C9i1.7 (8)
C3—C1—C2—C44.0 (12)C14—N1—C10—C11172.6 (18)
S1—C1—C2—C4179.7 (6)C18—N1—C10—C1163.6 (18)
C3—C1—C2—S2177.6 (6)C22—N1—C10—C1153.3 (18)
S1—C1—C2—S21.3 (8)N1—C10—C11—C12172.9 (13)
Mo1—S2—C2—C11.9 (6)C10—C11—C12—C1389 (2)
Mo1—S2—C2—C4176.6 (5)C18—N1—C14—C1574 (3)
C2—C1—C3—F345.3 (11)C10—N1—C14—C15165 (2)
S1—C1—C3—F3138.2 (6)C22—N1—C14—C1547 (3)
C2—C1—C3—F276.0 (11)N1—C14—C15—C16177.5 (16)
S1—C1—C3—F2100.6 (8)C14—C15—C16—C1765 (2)
C2—C1—C3—F1164.8 (8)C14—N1—C18—C1938.5 (19)
S1—C1—C3—F118.6 (10)C10—N1—C18—C1981.9 (17)
C1—C2—C4—F484.2 (12)C22—N1—C18—C19161.0 (17)
S2—C2—C4—F494.3 (10)N1—C18—C19—C20176.0 (12)
C1—C2—C4—F639.0 (11)C18—C19—C20—C21137.9 (18)
S2—C2—C4—F6142.6 (7)C14—N1—C22—C2361 (3)
C1—C2—C4—F5153.4 (8)C18—N1—C22—C23174 (2)
S2—C2—C4—F528.2 (9)C10—N1—C22—C2356 (3)
Mo1—S3—C5—C63.1 (6)N1—C22—C23—C24175 (2)
Mo1—S3—C5—C7176.5 (4)C22—C23—C24—C2568 (3)
C7—C5—C6—C82.0 (11)C14A—N1A—C10A—C11A177 (3)
S3—C5—C6—C8178.4 (6)C22A—N1A—C10A—C11A61 (3)
C7—C5—C6—S4179.3 (5)C18A—N1A—C10A—C11A57 (3)
S3—C5—C6—S40.3 (8)N1A—C10A—C11A—C12A178 (2)
Mo1—S4—C6—C52.7 (6)C10A—C11A—C12A—C13A161 (2)
Mo1—S4—C6—C8178.5 (5)C10A—N1A—C14A—C15A166 (3)
C6—C5—C7—F977.8 (10)C22A—N1A—C14A—C15A72 (4)
S3—C5—C7—F9101.8 (7)C18A—N1A—C14A—C15A45 (3)
C6—C5—C7—F7157.1 (8)N1A—C14A—C15A—C16A160 (2)
S3—C5—C7—F723.3 (9)C14A—C15A—C16A—C17A29 (4)
C6—C5—C7—F840.9 (10)C14A—N1A—C18A—C19A85 (3)
S3—C5—C7—F8139.5 (6)C10A—N1A—C18A—C19A31 (3)
C5—C6—C8—F1283.2 (10)C22A—N1A—C18A—C19A153 (3)
S4—C6—C8—F1295.5 (7)N1A—C18A—C19A—C20A165.9 (18)
C5—C6—C8—F11154.9 (7)C18A—C19A—C20A—C21A126 (2)
S4—C6—C8—F1126.4 (9)C14A—N1A—C22A—C23A51 (4)
C5—C6—C8—F1038.9 (10)C10A—N1A—C22A—C23A66 (4)
S4—C6—C8—F10142.4 (6)C18A—N1A—C22A—C23A172 (4)
Mo1—O1—C9—O2178.5 (5)N1A—C22A—C23A—C24A173 (3)
Mo1—O1—C9—C9i0.7 (8)C22A—C23A—C24A—C25A179 (4)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

We thank Daniel J. Harrison and Neilson Nguyen (U of T) for providing Mo(tfd)2(bdt) and Mo(tfd)2(tht)2.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; University of Toronto.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAthimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55–110.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473–497.  Web of Science PubMed Google Scholar
First citationCox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemadis, K. D. & Coucouvanis, D. (1995). Inorg. Chem. 34, 436–448.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491–2500.  Web of Science CrossRef CAS Google Scholar
First citationHarrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644–7647.  CSD CrossRef CAS Google Scholar
First citationHosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759–m760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577–3585.  CSD CrossRef Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds