research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 2,3-di­ethyl­naphtho­[2,3-g]quinoxaline-6,11-dione derivatives

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Monash University, Clayton Victoria 3800, Australia, and bBiomedical Synthetic Chemistry Group, CSIRO, Clayton, Victoria 3169, Australia
*Correspondence e-mail: craig.forsyth@monash.edu, craig.francis@csiro.au

Edited by G. Smith, Queensland University of Technology, Australia (Received 1 June 2017; accepted 30 June 2017; online 7 July 2017)

Two new 5,12-disubstituted 2,3-di­ethyl­naphtho­[2,3-g]quinoxaline-6,11-dione compounds were readily synthesized from the commercial dye quinizarin. For 2,3-diethyl-5,12-di­hydroxy­naphtho­[2,3-g]quinoxaline-6,11-dione, (II), C20H16N2O4, the mol­ecule displays a near planar conformation and both hy­droxy groups participate in intra­molecular O—H⋯O(carbon­yl) hydrogen bonds. In the crystal, ππ ring inter­actions [minimum ring centroid separation = 3.5493 (9) Å] form stacks of co-planar mol­ecules down the c axis, while only minor inter­molecular C—H⋯O inter­actions are present. In contrast, in 2,3-diethyl-5,12-bis­(piperidin-1-yl)naphtho­[2,3-g]quinoxaline-6,11-dione, (IV), C30H34N4O2, which contains two independent, but similar, mol­ecules in the asymmetric unit, the polycyclic cores have a significant twist, with dihedral angles of 29.79 (6) and 29.31 (7)° between the terminal rings and only minor inter­molecular C—H⋯O hydrogen-bonding inter­actions are present. Electron density associated with additional solvent mol­ecules disordered about a fourfold axis was accounted for using the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18].

1. Chemical context

As part of a program aimed at the identification of new heterocyclic compounds for organic electronic applications, we sought new or uncommon ring systems that could be synthesized conveniently from cheap, readily available starting materials. In this context, we noted that 2,3-di­amino-1,4-di­hydroxy­anthracene-9,10-dione (I) had been prepared from the inexpensive dye quinizarin (1,4-di­hydroxy­anthra­quinone) (Shchekotikhin et al., 2005[Shchekotikhin, A. E., Makarov, I. G., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). Chem. Heterocycl. Compd. 41, 914-920.]). The di­amine (I) appeared to us to be a convenient synthetic building block for fusion of di­aza-heterocycles onto the anthra­quinone core. Our reaction of the di­amine (I) with hexane-3,4-dione in dioxane afforded the 2,3-diethyl-5,12-di­hydroxy­naphtho­[2,3-g]quinoxaline-6,11-dione (II)[link]. In exploring the chemistry of compound (II)[link], we found that conversion of the hy­droxy groups to the corresponding tosyl­ates gave (III) and subsequent reaction with an excess of piperidine afforded 2,3-diethyl-5,12-bis­(piperidin-1-yl)naphtho­[2,3-g]quinoxaline-6,11-dione (IV)[link]. The reaction scheme for the total synthesis is shown in Fig. 1[link] and the crystal structures of both the inter­mediate compound (II)[link] and compound (IV)[link] are reported herein.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of compound (IV)[link] via inter­mediate compound (II)[link].

2. Structural commentary

The mol­ecular structure of compound (II)[link] is shown in Fig. 2[link]. The naphtho­quinoxaline core is essentially planar [maximum deviation 0.0739 (11) Å for N1], with a dihedral angle of 4.60 (8)° between the terminal rings of the mol­ecule. Present in the mol­ecule are two intra­molecular O—H⋯O hydrogen-bonded ring systems formed by the hy­droxy and carbonyl substituents (Table 1[link]). The two ethyl groups are approximately coplanar with the polycyclic core [torsion angles: N1—C16—C19—C20, 14.3 (2)° and N2—C15—C17—C18, −1.9 (2)°].

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.97 (3) 1.62 (3) 2.5270 (16) 155 (2)
O3—H3⋯O4 1.00 (3) 1.58 (3) 2.5225 (17) 154 (2)
C8—H8⋯O1i 0.95 2.57 3.227 (2) 126
C19—H19A⋯O4ii 0.99 2.59 3.418 (2) 142
Symmetry codes: (i) [-y+{\script{3\over 2}}, x, z+1]; (ii) [-y+1, x-{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
Mol­ecular conformation and atom-numbering scheme for (II)[link], with displacement ellipsoids shown at the 50% probability level. Intra­molecular hydrogen bonds shown as dashed lines.

The mol­ecular structure of compound (IV)[link] contains two independent, but conformationally very similar mol­ecules (mol­ecule 1 and mol­ecule 2) (Fig. 3[link]). In contrast to (II)[link], the naphtho­quinoxaline core of (IV)[link] is significantly twisted, as shown by the dihedral angles between the mean planes of the two terminal six-membered rings [29.79 (6) and 29.31 (7)°]. There is a corresponding twisting of the two central six-membered rings, presumably resulting from repulsion between neighbouring piperidin-1-yl and carbonyl moieties. The C—N bonds form angles of between 32.3 and 44.5° relative to the neighbouring C=O bonds.

[Figure 3]
Figure 3
Mol­ecular conformation and atom-numbering scheme for the two independent mol­ecules [(a) mol­ecule 1 and (b) mol­ecule 2] in the asymmetric unit of (IV)[link], with displacement ellipsoids shown at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of (II)[link] form canted head-to-head ππ associated mol­ecules with ring centroid separations of 3.5493 (9) Å (Cg1⋯Cg2iii) [symmetry code: (iii): −x, −y, −z − 1], and 3.6064 (10) Å for (Cg2⋯Cg3iv) [symmetry code (iv): −x, −y, −z + 1] where Cg1, Cg2 and Cg3 are the centroids of the six-membered rings defined by atoms N1/N2/C1/C14–C16, C1–C3/C12–C14 and C3–C5/C10–C12, respectively. These slight variations in ππ separations result from the mol­ecules being off-set by one six-membered ring along the long mol­ecular axis and by approximately half a six-membered ring along the short mol­ecular axis. The result is the formation of stacks along the c axis with an inter-planar separation of ca 3.41 Å (Fig. 4[link]). The packing viewed down the c axis is shown in Fig. 5[link] and displays an approximately orthogonal arrangement of the mol­ecular stacks. Present also in the crystal structure are two minor inter­molecular C—H⋯O inter­actions linking the stacks (aromatic C8—H⋯O1i and methyl­ene C19—H⋯O4ii; Table 1[link]).

[Figure 4]
Figure 4
A view of an off-set vertical stack of mol­ecules of (II)[link], extending along c.
[Figure 5]
Figure 5
The packing in the unit cell of (II)[link] as viewed along the c axis, with C-bound H atoms omitted.

In contrast, the crystal packing of (IV)[link] (Fig. 6[link]) involves no ππ ring inter­actions [minimum Cg⋯Cg separation = 3.9440 (9) Å between inversion-related mol­ecules]. There is only one significant inter­molecular hydrogen-bonding inter­action involving only mol­ecule 2: piperidin-1-yl C56—H⋯O3i = 3.1765 (19) Å [symmetry code (i) −x, −y + 1, −z + 1], giving inversion-related dimers (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C56—H56A⋯O3i 0.99 2.54 3.1765 (19) 122
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 6]
Figure 6
The packing in the unit cell of (IV)[link] as viewed along the b axis, with H atoms omitted.

4. Database survey

A search of the Cambridge Structural Database (V5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the naphtho­quinoxaline core gave three matches each having an additional fused six-membered ring, including the unsubstituted N-hetero­penta­cene pyrazino­[2′,3′;6,7]naphtho­[2,3-g]quinoxaline-6,13-dione (ref code AROCAM; Liang et al., 2010[Liang, Z., Tang, Q., Liu, J., Li, J., Yan, F. & Miao, Q. (2010). Chem. Mater. 22, 6438-6443.]) and two 13-chloro-6-methyl­carboxyl­ato-naphtho­[2,3-b]phenazine-7,12-diones (ref codes ABUVAW and ABUVEA; Chou et al., 2011[Chou, T.-C., Lin, K.-C., Kon-no, M., Lee, C.-C. & Shinmyozu, T. (2011). Org. Lett. 13, 4588-4591.]). Each of these examples have planar, or only slightly twisted (ca 12°) polycyclic cores and adopt off-set ππ stacked supra­molecular structures.

5. Synthesis and crystallization

(i) 2,3-Diethyl-5,12-di­hydroxy­naphtho­[2,3-g]quinoxaline-6,11-dione, (II)

Compound (II)[link] was prepared using the procedure of Shchekotikhin et al. (2005[Shchekotikhin, A. E., Makarov, I. G., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). Chem. Heterocycl. Compd. 41, 914-920.]), as follows. To a stirred mixture of di­amine (I) (1.35 g, 5 mmol), hexane-3,4-dione (3.0 ml, 2.85g, 25mmol), and 1,4-dioxane (30 ml) was heated at reflux for 3 h. The mixture was cooled and the resulting crystalline solid was collected by filtration and washed with diethyl ether to afford the title compound (1.58g, 91% yield) as rust-red needles, m.p. 507–509 K (found: M+ 348.1102; C20H16N2O4 requires M+ 348.1105). 1H NMR (CDCl3, 500 MHz) δ 8.42 (2H, m, ArH), 7.85 (2H, m, ArH), 3.18 (4H, q, J = 7.5Hz, CH2), 1.47 (6H, t, J = 7.5 Hz, CH3); 13C NMR (CDCl3, 125 MHz) δ 184.11, 161.55, 159.86, 139.09, 134.56, 133.80, 127.28, 109.12, 28.94, 12.84. Red–orange needles of (II)[link]. Crystals suitable for X-ray structure determination were grown from an acetone solution.

(ii) 2,3-Diethyl-6,11-dioxo-6,11-di­hydro­naphtho­[2,3-g]quinoxaline-5,12-diyl bis­(4-methyl­benzene­sulfonate) (III)

Compound (III) was prepared using the procedure of Zielske (1987[Zielske, A. G. (1987). J. Org. Chem. 52, 1305-1309.]). A mixture of diol (II)[link] (1.04g, 3.0 mmol), p-toluene­sulfonyl­chloride (2.92 g, 15.3 mmol), CH2Cl2 (100 ml), aqueous sodium hydroxide (0.5%, 208 mL, 25.3 mmol), and tetra­butyl­ammonium bromide (4.96 g, 15.3 mmol) was stirred rapidly for 24 h at room temperature. The organic phase was set aside and the aqueous phase was extracted with di­chloro­methane (50 ml). The combined organic phase was washed with water (3 × 200 ml), saturated brine (50 ml), and dried over MgSO4. After filtration, the solvent was removed by evaporation under reduced pressure. The residual red–brown gum (3.63 g) was purified by chromatography over silica gel. Elution with 0–10% ethyl acetate in di­chloro­methane and evaporation afforded compound (III) (661 mg, 34%) as a honeycomb-coloured powder (found: M+ 656.1278; C34H28N2O832S2 requires M+ 656.1282.) 1H NMR (CDCl3, 400 MHz) δ 8.05 (2H, m, ArH), 7.82 (4H, d, J = 8Hz, ArH), 7.75 (2H, m, ArH), 7.30 (4H, d, J = 8Hz, ArH), 2.84 (4H, q, J = 7.4 Hz, 2 × CH2), 2.45(6H, s, 2 × ArCH3), 1.25 (6H, t, J = 7.4 Hz, 2 × CH3); 13C NMR (CDCl3, 50 MHz) δ 180.81, 161.20, 145.03, 138.66, 134.43, 134.32, 134.03, 129.59, 128.73, 127.02, 125.78, 28.34, 21.69, 11.15.

(iii) 2,3-Diethyl-5,12-bis­(piperidin-1-yl)naphtho­[2,3-g]quinoxaline- 6,11-dione, (IV)

Compound (IV)[link] was prepared by modifying the procedures of Zielske (1987[Zielske, A. G. (1987). J. Org. Chem. 52, 1305-1309.]) and Melliou et al. (2001[Melliou, E., Magiatis, P., Mitaku, S., Skaltsounis, A.-L., Pierré, A., Atassi, G. & Renard, P. (2001). Bioorg. Med. Chem. 9, 607-612.]). A stirred mixture of the bis-tosyl­ate (III) (550 mg, 0.8 mmol) and piperidine (8 ml) under N2 (bubbler) was heated at 353 K for 2h. The reaction mixture was cooled and evaporated under reduced pressure. The residue was dissolved in a mixture of ethyl acetate (50 ml) and chloro­form (12 mL) and the resulting solution was washed sequentially with water (3 × 100ml) and brine (30 ml) and then dried (MgSO4) and evaporated under reduced pressure. The residual dark-purple solid (405 mg) was purified by chromatography over silica gel. Elution with 0–20% ethyl acetate in di­chloro­methane afforded the title compound (328 mg, 81%) as very dark purple–navy coloured blocks (Fig. 7[link]) after slow evaporation from di­chloro­methane/ethyl acetate, m.p. 463.5–464.5 K (found: M+ 482.2683; C30H34N4O2 requires M+ 482.2676). 1H NMR (CDCl3, 400 MHz) δ 8.22 (2H, m, ArH), 7.70 (2H, m, ArH), 3.31 (8H, m, 4 × CH2N), 3.06 (4H, q, J = 7.4Hz, 2 × CH2Ar), 1.90–1.75 (12H, 2 × CH2CH2CH2), 1.46 (6H, t, J = 7.4Hz, 2 × CH3); 13C NMR (CDCl3, 100 MHz) δ 183.04, 155.05, 147.52, 140.91, 135.47, 132.72, 126.19, 122.37, 54.93, 28.01, 26.97, 24.72, 12.04.

[Figure 7]
Figure 7
A photograph of crystals of (IV)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located by difference methods and were freely refined. Other H atoms were included in the refinement at calculated positions with C—H = 0.95–0.99 Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.52Ueq(O or methyl C). Electron density associated with additional solvent mol­ecules disordered about a fourfold axis was accounted for using the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Table 3
Experimental details

  (II) (IV)
Crystal data
Chemical formula C20H16N2O4 C30H34N4O2
Mr 348.35 482.61
Crystal system, space group Tetragonal, P4/n Triclinic, P[\overline{1}]
Temperature (K) 123 123
a, b, c (Å) 28.2529 (11), 28.2529 (11), 4.2504 (3) 11.6144 (6), 11.8249 (5), 19.0526 (9)
α, β, γ (°) 90, 90, 90 75.102 (2), 77.310 (2), 83.321 (2)
V3) 3392.8 (4) 2462.0 (2)
Z 8 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.80 0.08
Crystal size (mm) 0.25 × 0.04 × 0.04 0.25 × 0.15 × 0.06
 
Data collection
Diffractometer Oxford Gemini Ultra CCD Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.857, 1.000 0.708, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10284, 2986, 2391 46624, 11784, 7969
Rint 0.028 0.046
(sin θ/λ)max−1) 0.596 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03 0.047, 0.113, 1.03
No. of reflections 2986 11784
No. of parameters 243 653
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.19 0.26, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), APEX2 (and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (II); APEX2 (Bruker, 2014) for (IV). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (II); SAINT (Bruker, 2014) for (IV). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (II); SAINT (Bruker, 2014) for (IV). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

2,3-Diethyl-5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione (II) top
Crystal data top
C20H16N2O4Melting point = 507–509 K
Mr = 348.35Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4/nCell parameters from 2972 reflections
a = 28.2529 (11) Åθ = 4.4–66.9°
c = 4.2504 (3) ŵ = 0.80 mm1
V = 3392.8 (4) Å3T = 123 K
Z = 8Needle, orange
F(000) = 14560.25 × 0.04 × 0.04 mm
Dx = 1.364 Mg m3
Data collection top
Oxford Gemini Ultra CCD
diffractometer
2986 independent reflections
Radiation source: fine focus sealed tube2391 reflections with I > 2σ(I)
Detector resolution: 10.3389 pixels mm-1Rint = 0.028
ω scansθmax = 66.7°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 3232
Tmin = 0.857, Tmax = 1.000k = 3033
10284 measured reflectionsl = 45
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.2563P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2986 reflectionsΔρmax = 0.16 e Å3
243 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disordered solvent molecules were accounted for using PLATON SQUEEZE (Spek, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67025 (4)0.54392 (4)0.1718 (3)0.0328 (3)
O20.72757 (4)0.59355 (4)0.4871 (3)0.0390 (3)
O30.81968 (4)0.43226 (4)0.2039 (3)0.0378 (3)
O40.87451 (4)0.48403 (4)0.1138 (3)0.0379 (3)
N10.65539 (4)0.47227 (4)0.2404 (3)0.0290 (3)
N20.73105 (4)0.41228 (4)0.4052 (3)0.0301 (3)
C10.69990 (5)0.47958 (5)0.1266 (4)0.0266 (3)
C20.70777 (5)0.51838 (5)0.0856 (4)0.0273 (3)
C30.75334 (5)0.52791 (5)0.1904 (4)0.0272 (3)
C40.76120 (5)0.56822 (5)0.3970 (4)0.0300 (4)
C50.81005 (5)0.57931 (6)0.4958 (4)0.0307 (4)
C60.81855 (6)0.61881 (6)0.6840 (4)0.0368 (4)
H60.7929250.6382780.7486910.044*
C70.86416 (6)0.62974 (6)0.7769 (4)0.0397 (4)
H70.8697630.6568890.9034420.048*
C80.90185 (6)0.60122 (6)0.6862 (4)0.0391 (4)
H80.9330730.6087080.7524570.047*
C90.89390 (6)0.56199 (6)0.4997 (4)0.0357 (4)
H90.9197430.5426270.4373360.043*
C100.84809 (6)0.55063 (6)0.4023 (4)0.0312 (4)
C110.84036 (5)0.50917 (5)0.1971 (4)0.0307 (4)
C120.79233 (5)0.49866 (5)0.0926 (4)0.0273 (3)
C130.78477 (5)0.46048 (5)0.1055 (4)0.0287 (3)
C140.73774 (5)0.45040 (5)0.2159 (4)0.0276 (3)
C150.68771 (5)0.40428 (5)0.5072 (4)0.0301 (4)
C160.64927 (5)0.43592 (5)0.4317 (4)0.0295 (4)
C170.67933 (6)0.36048 (6)0.7008 (4)0.0357 (4)
H17A0.6653870.3699030.9051260.043*
H17B0.6559450.3402790.5910350.043*
C180.72365 (6)0.33147 (6)0.7628 (5)0.0415 (4)
H18A0.7154720.3036710.8895630.062*
H18B0.7467560.3508520.8767490.062*
H18C0.7373010.3211870.5622190.062*
C190.60067 (6)0.42782 (6)0.5658 (4)0.0344 (4)
H19A0.5866270.3997850.4618470.041*
H19B0.6038390.4204190.7924720.041*
C200.56686 (6)0.46916 (7)0.5296 (5)0.0447 (5)
H20A0.5362060.4609440.6227390.067*
H20B0.5626320.4762790.3056940.067*
H20C0.5798780.4969530.6369580.067*
H10.6842 (9)0.5668 (9)0.314 (6)0.073 (7)*
H30.8478 (9)0.4458 (9)0.091 (6)0.072 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (6)0.0316 (6)0.0405 (6)0.0052 (5)0.0000 (5)0.0013 (5)
O20.0321 (6)0.0370 (6)0.0479 (7)0.0048 (5)0.0002 (5)0.0077 (5)
O30.0261 (6)0.0361 (6)0.0511 (7)0.0051 (5)0.0015 (5)0.0069 (6)
O40.0251 (6)0.0375 (6)0.0511 (7)0.0029 (5)0.0002 (5)0.0003 (5)
N10.0264 (7)0.0281 (7)0.0326 (7)0.0013 (5)0.0009 (5)0.0055 (6)
N20.0288 (7)0.0292 (7)0.0323 (7)0.0012 (5)0.0018 (6)0.0029 (6)
C10.0245 (7)0.0262 (7)0.0291 (8)0.0006 (6)0.0011 (6)0.0073 (6)
C20.0257 (8)0.0253 (7)0.0308 (8)0.0030 (6)0.0033 (6)0.0065 (6)
C30.0263 (8)0.0259 (7)0.0296 (8)0.0007 (6)0.0021 (6)0.0069 (6)
C40.0311 (8)0.0281 (8)0.0309 (8)0.0006 (7)0.0011 (7)0.0052 (7)
C50.0305 (8)0.0299 (8)0.0315 (8)0.0033 (6)0.0008 (7)0.0060 (7)
C60.0381 (9)0.0332 (8)0.0390 (9)0.0023 (7)0.0004 (7)0.0018 (7)
C70.0426 (10)0.0362 (9)0.0403 (10)0.0083 (7)0.0037 (8)0.0007 (8)
C80.0341 (9)0.0406 (9)0.0424 (10)0.0086 (7)0.0045 (8)0.0062 (8)
C90.0304 (8)0.0366 (9)0.0401 (10)0.0031 (7)0.0019 (7)0.0068 (8)
C100.0295 (8)0.0309 (8)0.0333 (9)0.0037 (7)0.0000 (7)0.0075 (7)
C110.0280 (8)0.0294 (8)0.0347 (9)0.0001 (6)0.0012 (7)0.0066 (7)
C120.0243 (7)0.0265 (7)0.0312 (8)0.0006 (6)0.0014 (6)0.0070 (6)
C130.0249 (7)0.0277 (8)0.0334 (8)0.0023 (6)0.0029 (6)0.0054 (7)
C140.0278 (8)0.0258 (7)0.0292 (8)0.0004 (6)0.0028 (6)0.0055 (6)
C150.0311 (8)0.0294 (8)0.0299 (8)0.0011 (6)0.0020 (7)0.0051 (6)
C160.0293 (8)0.0277 (8)0.0317 (8)0.0023 (6)0.0018 (6)0.0053 (7)
C170.0350 (9)0.0345 (9)0.0377 (9)0.0014 (7)0.0016 (7)0.0014 (7)
C180.0426 (10)0.0349 (9)0.0470 (11)0.0005 (8)0.0002 (8)0.0077 (8)
C190.0284 (8)0.0358 (9)0.0389 (9)0.0039 (7)0.0008 (7)0.0011 (7)
C200.0308 (9)0.0432 (10)0.0602 (12)0.0003 (8)0.0079 (8)0.0035 (9)
Geometric parameters (Å, º) top
O1—C21.3333 (18)C8—H80.9500
O1—H10.97 (3)C9—C101.396 (2)
O2—C41.2495 (19)C9—H90.9500
O3—C131.3354 (19)C10—C111.477 (2)
O3—H31.00 (3)C11—C121.458 (2)
O4—C111.2493 (19)C12—C131.385 (2)
N1—C161.321 (2)C13—C141.438 (2)
N1—C11.363 (2)C15—C161.443 (2)
N2—C151.318 (2)C15—C171.505 (2)
N2—C141.358 (2)C16—C191.504 (2)
C1—C141.402 (2)C17—C181.519 (2)
C1—C21.437 (2)C17—H17A0.9900
C2—C31.389 (2)C17—H17B0.9900
C3—C121.438 (2)C18—H18A0.9800
C3—C41.455 (2)C18—H18B0.9800
C4—C51.476 (2)C18—H18C0.9800
C5—C61.394 (2)C19—C201.517 (2)
C5—C101.403 (2)C19—H19A0.9900
C6—C71.383 (2)C19—H19B0.9900
C6—H60.9500C20—H20A0.9800
C7—C81.390 (3)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—C91.381 (3)
C2—O1—H1102.1 (14)C13—C12—C11119.16 (14)
C13—O3—H3102.0 (14)C3—C12—C11120.51 (14)
C16—N1—C1117.19 (13)O3—C13—C12122.78 (14)
C15—N2—C14117.39 (14)O3—C13—C14117.52 (14)
N1—C1—C14121.20 (14)C12—C13—C14119.69 (14)
N1—C1—C2118.75 (13)N2—C14—C1121.37 (14)
C14—C1—C2120.04 (13)N2—C14—C13118.65 (13)
O1—C2—C3122.97 (14)C1—C14—C13119.98 (14)
O1—C2—C1117.53 (13)N2—C15—C16121.32 (15)
C3—C2—C1119.50 (14)N2—C15—C17117.81 (14)
C2—C3—C12120.41 (14)C16—C15—C17120.86 (14)
C2—C3—C4119.12 (14)N1—C16—C15121.34 (14)
C12—C3—C4120.46 (13)N1—C16—C19118.09 (14)
O2—C4—C3121.14 (14)C15—C16—C19120.56 (14)
O2—C4—C5120.14 (14)C15—C17—C18114.13 (14)
C3—C4—C5118.71 (14)C15—C17—H17A108.7
C6—C5—C10119.52 (15)C18—C17—H17A108.7
C6—C5—C4119.61 (15)C15—C17—H17B108.7
C10—C5—C4120.86 (14)C18—C17—H17B108.7
C7—C6—C5120.23 (16)H17A—C17—H17B107.6
C7—C6—H6119.9C17—C18—H18A109.5
C5—C6—H6119.9C17—C18—H18B109.5
C6—C7—C8120.34 (17)H18A—C18—H18B109.5
C6—C7—H7119.8C17—C18—H18C109.5
C8—C7—H7119.8H18A—C18—H18C109.5
C9—C8—C7120.01 (16)H18B—C18—H18C109.5
C9—C8—H8120.0C16—C19—C20114.80 (14)
C7—C8—H8120.0C16—C19—H19A108.6
C8—C9—C10120.35 (16)C20—C19—H19A108.6
C8—C9—H9119.8C16—C19—H19B108.6
C10—C9—H9119.8C20—C19—H19B108.6
C9—C10—C5119.56 (15)H19A—C19—H19B107.5
C9—C10—C11119.64 (15)C19—C20—H20A109.5
C5—C10—C11120.79 (14)C19—C20—H20B109.5
O4—C11—C12121.09 (15)H20A—C20—H20B109.5
O4—C11—C10120.28 (14)C19—C20—H20C109.5
C12—C11—C10118.62 (14)H20A—C20—H20C109.5
C13—C12—C3120.32 (13)H20B—C20—H20C109.5
N2—C15—C17—C181.9 (2)N1—C16—C19—C2014.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.97 (3)1.62 (3)2.5270 (16)155 (2)
O3—H3···O41.00 (3)1.58 (3)2.5225 (17)154 (2)
C8—H8···O1i0.952.573.227 (2)126
C19—H19A···O4ii0.992.593.418 (2)142
Symmetry codes: (i) y+3/2, x, z+1; (ii) y+1, x1/2, z.
2,3-Diethyl-5,12-bis(piperidin-1-yl)naphtho[2,3-g]quinoxaline-6,11-dione (IV) top
Crystal data top
C30H34N4O2F(000) = 1032
Mr = 482.61Dx = 1.302 Mg m3
Triclinic, P1Melting point = 463.5–464.5 K
a = 11.6144 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8249 (5) ÅCell parameters from 8449 reflections
c = 19.0526 (9) Åθ = 2.3–26.6°
α = 75.102 (2)°µ = 0.08 mm1
β = 77.310 (2)°T = 123 K
γ = 83.321 (2)°Prismatic, dark red
V = 2462.0 (2) Å30.25 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7969 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.046
ω scansθmax = 28.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1512
Tmin = 0.708, Tmax = 0.746k = 1513
46624 measured reflectionsl = 2525
11784 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.481P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
11784 reflectionsΔρmax = 0.26 e Å3
653 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64307 (10)0.76179 (9)0.10075 (6)0.0291 (3)
O20.44074 (9)0.37783 (9)0.09799 (6)0.0227 (2)
O30.00984 (9)0.43530 (9)0.39662 (6)0.0238 (3)
O40.20118 (9)0.83312 (9)0.38244 (6)0.0244 (3)
N10.92806 (11)0.56473 (11)0.08692 (7)0.0201 (3)
N20.87671 (11)0.33134 (10)0.02637 (7)0.0193 (3)
N30.76849 (11)0.74582 (10)0.04703 (7)0.0204 (3)
N40.67498 (11)0.27048 (10)0.08042 (7)0.0194 (3)
N50.35733 (11)0.31461 (10)0.53063 (7)0.0178 (3)
N60.36271 (11)0.51220 (10)0.58404 (7)0.0182 (3)
N70.23683 (11)0.32525 (10)0.41697 (7)0.0178 (3)
N80.23239 (11)0.71992 (10)0.53315 (7)0.0178 (3)
C10.82928 (13)0.53690 (13)0.03378 (8)0.0177 (3)
C20.75273 (13)0.63060 (12)0.00901 (8)0.0177 (3)
C30.65573 (13)0.59826 (12)0.04761 (8)0.0171 (3)
C40.59410 (14)0.68035 (13)0.09244 (8)0.0206 (3)
C50.46967 (14)0.65994 (13)0.13028 (8)0.0194 (3)
C60.40230 (15)0.74326 (13)0.16528 (8)0.0247 (4)
H60.4371960.8114650.1662820.030*
C70.28514 (15)0.72663 (14)0.19840 (9)0.0281 (4)
H70.2399890.7828870.2226990.034*
C80.23321 (15)0.62768 (14)0.19622 (9)0.0262 (4)
H80.1522300.6172860.2182200.031*
C90.29892 (14)0.54455 (13)0.16220 (8)0.0216 (3)
H90.2630280.4771330.1608590.026*
C100.41767 (13)0.55915 (13)0.12984 (8)0.0179 (3)
C110.49024 (13)0.46378 (12)0.09913 (8)0.0177 (3)
C120.61682 (13)0.47950 (12)0.06835 (8)0.0171 (3)
C130.69338 (13)0.38800 (12)0.04854 (8)0.0165 (3)
C140.80214 (13)0.41920 (12)0.00387 (8)0.0168 (3)
C150.97083 (13)0.36001 (13)0.07839 (8)0.0198 (3)
C160.99814 (13)0.47940 (13)0.10873 (8)0.0210 (3)
C171.04835 (14)0.26396 (13)0.10759 (9)0.0255 (4)
H17A1.1225450.2526410.0884300.031*
H17B1.0694890.2898890.1622620.031*
C180.99291 (15)0.14705 (14)0.08728 (10)0.0304 (4)
H18A0.9818070.1149870.0336040.046*
H18B1.0449700.0924370.1128000.046*
H18C0.9161220.1581410.1023180.046*
C191.10924 (14)0.51096 (14)0.16537 (9)0.0286 (4)
H19A1.1045990.4870610.2107570.034*
H19B1.1773920.4655430.1459140.034*
C201.13193 (15)0.64004 (15)0.18601 (10)0.0325 (4)
H20A1.0697010.6852310.2107460.049*
H20B1.2089130.6524700.2195420.049*
H20C1.1318770.6659510.1411060.049*
C210.66797 (14)0.83081 (13)0.05500 (9)0.0239 (4)
H21A0.6633930.8838970.0217480.029*
H21B0.5939300.7893590.0405030.029*
C220.68064 (15)0.90205 (13)0.13465 (9)0.0282 (4)
H22A0.6746770.8499790.1667560.034*
H22B0.6148490.9631760.1382340.034*
C230.79740 (15)0.96007 (14)0.16248 (10)0.0330 (4)
H23A0.7989511.0211220.1356290.040*
H23B0.8058290.9983240.2159050.040*
C240.89973 (16)0.86857 (14)0.15035 (10)0.0321 (4)
H24A0.9045860.8135890.1824260.039*
H24B0.9750210.9078300.1641130.039*
C250.88176 (14)0.80104 (13)0.06978 (9)0.0242 (4)
H25A0.9470230.7399960.0630180.029*
H25B0.8834700.8551310.0381130.029*
C260.61434 (14)0.22997 (13)0.15705 (8)0.0226 (3)
H26A0.5311050.2168480.1585340.027*
H26B0.6145630.2904030.1846000.027*
C270.67639 (15)0.11606 (13)0.19334 (9)0.0265 (4)
H27A0.7573000.1311970.1958100.032*
H27B0.6327140.0869580.2446150.032*
C280.68319 (16)0.02295 (13)0.14990 (9)0.0290 (4)
H28A0.7291860.0479710.1720850.035*
H28B0.6025560.0007660.1522990.035*
C290.74206 (15)0.07018 (13)0.06962 (9)0.0268 (4)
H29A0.7403260.0118710.0407920.032*
H29B0.8258000.0830030.0669310.032*
C300.67921 (14)0.18493 (13)0.03607 (9)0.0213 (3)
H30A0.7215460.2165770.0152150.026*
H30B0.5977650.1707180.0341170.026*
C310.29857 (13)0.41777 (12)0.50286 (8)0.0161 (3)
C320.22838 (13)0.41992 (12)0.44827 (8)0.0158 (3)
C330.16162 (13)0.52427 (12)0.42530 (8)0.0159 (3)
C340.05634 (13)0.52508 (12)0.39413 (8)0.0168 (3)
C350.00127 (13)0.64074 (12)0.36195 (8)0.0164 (3)
C360.09976 (13)0.64368 (13)0.33112 (8)0.0195 (3)
H360.1315800.5725160.3324670.023*
C370.15175 (14)0.75005 (13)0.29841 (8)0.0219 (3)
H370.2191120.7517080.2774120.026*
C380.10530 (14)0.85434 (13)0.29632 (9)0.0241 (4)
H380.1408960.9271470.2737180.029*
C390.00771 (14)0.85251 (13)0.32695 (8)0.0213 (3)
H390.0235220.9239990.3255670.026*
C400.04521 (13)0.74559 (12)0.36001 (8)0.0173 (3)
C410.14774 (13)0.74399 (12)0.39516 (8)0.0173 (3)
C420.18326 (13)0.63122 (12)0.44271 (8)0.0162 (3)
C430.24231 (13)0.62819 (12)0.49935 (8)0.0163 (3)
C440.30259 (12)0.51778 (12)0.52920 (8)0.0159 (3)
C450.41745 (13)0.41175 (13)0.61117 (8)0.0186 (3)
C460.41327 (13)0.30999 (13)0.58443 (8)0.0176 (3)
C470.48628 (15)0.40615 (14)0.67057 (9)0.0259 (4)
H47A0.5688720.3780110.6536340.031*
H47B0.4521880.3477110.7156110.031*
C480.48767 (16)0.52105 (14)0.69094 (10)0.0308 (4)
H48A0.5173340.5808740.6463290.046*
H48B0.5393280.5113460.7266890.046*
H48C0.4072640.5455620.7130260.046*
C490.47002 (14)0.19372 (12)0.61958 (9)0.0213 (3)
H49A0.4487720.1815590.6741170.026*
H49B0.5570210.1969110.6048840.026*
C500.43381 (14)0.08951 (13)0.59841 (9)0.0239 (4)
H50A0.3477930.0852410.6129770.036*
H50B0.4724380.0172460.6238950.036*
H50C0.4578520.0988360.5447180.036*
C510.22785 (15)0.34127 (13)0.33992 (8)0.0231 (4)
H51A0.2439040.4229660.3125470.028*
H51B0.1466260.3272010.3374340.028*
C520.31617 (15)0.25666 (13)0.30397 (9)0.0260 (4)
H52A0.3068840.2662190.2523050.031*
H52B0.3976730.2751830.3027020.031*
C530.29684 (15)0.13058 (13)0.34685 (9)0.0278 (4)
H53A0.3583190.0772080.3250650.033*
H53B0.2186140.1089730.3436970.033*
C540.30284 (15)0.11791 (13)0.42761 (9)0.0252 (4)
H54A0.2845640.0372950.4562460.030*
H54B0.3839950.1308090.4309140.030*
C550.21586 (14)0.20538 (12)0.46088 (8)0.0194 (3)
H55A0.1340860.1874610.4623180.023*
H55B0.2246040.1986620.5123500.023*
C560.12623 (13)0.79869 (13)0.53730 (9)0.0200 (3)
H56A0.0608340.7626720.5270240.024*
H56B0.1411430.8733160.4995660.024*
C570.09159 (14)0.82268 (14)0.61428 (9)0.0242 (4)
H57A0.0219080.8794590.6160460.029*
H57B0.0691860.7489640.6512450.029*
C580.19249 (14)0.87157 (14)0.63418 (9)0.0257 (4)
H58A0.1703150.8787070.6861600.031*
H58B0.2074590.9507050.6018250.031*
C590.30456 (14)0.79096 (14)0.62466 (9)0.0245 (4)
H59A0.3715510.8280070.6322840.029*
H59B0.2934930.7159430.6624970.029*
C600.33318 (13)0.76704 (13)0.54812 (8)0.0190 (3)
H60A0.3535460.8406820.5105160.023*
H60B0.4025960.7101930.5444750.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (7)0.0264 (6)0.0372 (7)0.0038 (5)0.0057 (5)0.0170 (5)
O20.0200 (6)0.0229 (6)0.0277 (6)0.0031 (5)0.0056 (5)0.0087 (5)
O30.0232 (6)0.0181 (5)0.0323 (6)0.0030 (5)0.0090 (5)0.0062 (5)
O40.0289 (6)0.0161 (5)0.0281 (6)0.0050 (5)0.0082 (5)0.0014 (5)
N10.0179 (7)0.0234 (7)0.0184 (7)0.0019 (5)0.0028 (5)0.0041 (5)
N20.0182 (7)0.0202 (7)0.0199 (7)0.0038 (5)0.0059 (6)0.0058 (5)
N30.0185 (7)0.0164 (6)0.0263 (7)0.0030 (5)0.0049 (6)0.0041 (6)
N40.0223 (7)0.0152 (6)0.0193 (7)0.0009 (5)0.0018 (6)0.0036 (5)
N50.0168 (7)0.0171 (6)0.0175 (7)0.0011 (5)0.0026 (5)0.0021 (5)
N60.0180 (7)0.0190 (6)0.0180 (7)0.0017 (5)0.0047 (5)0.0039 (5)
N70.0248 (7)0.0126 (6)0.0172 (6)0.0009 (5)0.0066 (6)0.0043 (5)
N80.0160 (7)0.0162 (6)0.0240 (7)0.0005 (5)0.0055 (5)0.0084 (5)
C10.0167 (8)0.0207 (8)0.0165 (8)0.0005 (6)0.0056 (6)0.0042 (6)
C20.0182 (8)0.0176 (8)0.0194 (8)0.0018 (6)0.0076 (6)0.0045 (6)
C30.0172 (8)0.0161 (7)0.0190 (8)0.0012 (6)0.0059 (6)0.0051 (6)
C40.0238 (9)0.0169 (8)0.0215 (8)0.0007 (6)0.0071 (7)0.0038 (6)
C50.0232 (8)0.0190 (8)0.0152 (7)0.0035 (6)0.0052 (6)0.0034 (6)
C60.0324 (10)0.0201 (8)0.0196 (8)0.0038 (7)0.0040 (7)0.0046 (7)
C70.0311 (10)0.0246 (9)0.0227 (9)0.0116 (7)0.0005 (7)0.0051 (7)
C80.0207 (9)0.0312 (9)0.0196 (8)0.0072 (7)0.0004 (7)0.0002 (7)
C90.0210 (8)0.0250 (8)0.0163 (8)0.0022 (6)0.0050 (7)0.0012 (6)
C100.0185 (8)0.0203 (8)0.0139 (7)0.0031 (6)0.0054 (6)0.0021 (6)
C110.0198 (8)0.0187 (8)0.0144 (7)0.0012 (6)0.0043 (6)0.0030 (6)
C120.0173 (8)0.0185 (7)0.0159 (7)0.0005 (6)0.0041 (6)0.0044 (6)
C130.0167 (8)0.0171 (7)0.0167 (7)0.0001 (6)0.0057 (6)0.0040 (6)
C140.0159 (8)0.0183 (7)0.0166 (7)0.0023 (6)0.0055 (6)0.0046 (6)
C150.0167 (8)0.0244 (8)0.0191 (8)0.0033 (6)0.0059 (7)0.0065 (6)
C160.0178 (8)0.0270 (8)0.0189 (8)0.0002 (6)0.0045 (7)0.0064 (7)
C170.0233 (9)0.0283 (9)0.0221 (8)0.0060 (7)0.0019 (7)0.0066 (7)
C180.0283 (10)0.0278 (9)0.0374 (10)0.0078 (7)0.0065 (8)0.0160 (8)
C190.0230 (9)0.0341 (10)0.0261 (9)0.0025 (7)0.0004 (7)0.0065 (8)
C200.0268 (10)0.0403 (10)0.0252 (9)0.0082 (8)0.0028 (8)0.0027 (8)
C210.0222 (9)0.0164 (8)0.0346 (9)0.0000 (6)0.0089 (7)0.0067 (7)
C220.0316 (10)0.0180 (8)0.0365 (10)0.0015 (7)0.0130 (8)0.0040 (7)
C230.0377 (11)0.0213 (9)0.0367 (10)0.0067 (8)0.0094 (9)0.0029 (8)
C240.0306 (10)0.0258 (9)0.0351 (10)0.0095 (7)0.0032 (8)0.0019 (8)
C250.0234 (9)0.0201 (8)0.0315 (9)0.0058 (7)0.0081 (7)0.0063 (7)
C260.0253 (9)0.0199 (8)0.0212 (8)0.0034 (7)0.0012 (7)0.0044 (7)
C270.0325 (10)0.0209 (8)0.0241 (9)0.0051 (7)0.0073 (7)0.0009 (7)
C280.0330 (10)0.0173 (8)0.0364 (10)0.0027 (7)0.0123 (8)0.0009 (7)
C290.0306 (10)0.0171 (8)0.0353 (10)0.0034 (7)0.0097 (8)0.0104 (7)
C300.0215 (8)0.0196 (8)0.0254 (9)0.0014 (6)0.0062 (7)0.0088 (7)
C310.0153 (8)0.0158 (7)0.0155 (7)0.0001 (6)0.0006 (6)0.0033 (6)
C320.0169 (8)0.0142 (7)0.0151 (7)0.0013 (6)0.0006 (6)0.0036 (6)
C330.0176 (8)0.0152 (7)0.0146 (7)0.0009 (6)0.0025 (6)0.0036 (6)
C340.0174 (8)0.0168 (7)0.0157 (7)0.0013 (6)0.0015 (6)0.0045 (6)
C350.0151 (8)0.0190 (8)0.0137 (7)0.0006 (6)0.0006 (6)0.0049 (6)
C360.0178 (8)0.0227 (8)0.0175 (8)0.0021 (6)0.0017 (6)0.0051 (6)
C370.0179 (8)0.0295 (9)0.0180 (8)0.0042 (7)0.0050 (7)0.0066 (7)
C380.0268 (9)0.0219 (8)0.0208 (8)0.0086 (7)0.0059 (7)0.0034 (7)
C390.0239 (9)0.0179 (8)0.0206 (8)0.0016 (6)0.0035 (7)0.0042 (6)
C400.0176 (8)0.0182 (7)0.0143 (7)0.0010 (6)0.0007 (6)0.0035 (6)
C410.0184 (8)0.0154 (7)0.0175 (8)0.0002 (6)0.0007 (6)0.0060 (6)
C420.0157 (8)0.0145 (7)0.0173 (7)0.0006 (6)0.0015 (6)0.0037 (6)
C430.0143 (8)0.0156 (7)0.0181 (8)0.0023 (6)0.0001 (6)0.0044 (6)
C440.0142 (8)0.0172 (7)0.0152 (7)0.0018 (6)0.0016 (6)0.0031 (6)
C450.0163 (8)0.0209 (8)0.0178 (8)0.0020 (6)0.0030 (6)0.0028 (6)
C460.0135 (8)0.0205 (8)0.0172 (8)0.0000 (6)0.0015 (6)0.0031 (6)
C470.0274 (9)0.0273 (9)0.0250 (9)0.0000 (7)0.0126 (7)0.0046 (7)
C480.0392 (11)0.0306 (9)0.0283 (9)0.0039 (8)0.0181 (8)0.0067 (8)
C490.0205 (8)0.0216 (8)0.0203 (8)0.0031 (6)0.0056 (7)0.0028 (6)
C500.0210 (9)0.0182 (8)0.0290 (9)0.0023 (6)0.0063 (7)0.0002 (7)
C510.0345 (10)0.0175 (8)0.0195 (8)0.0003 (7)0.0092 (7)0.0057 (6)
C520.0345 (10)0.0226 (8)0.0238 (9)0.0005 (7)0.0068 (8)0.0112 (7)
C530.0325 (10)0.0204 (8)0.0351 (10)0.0044 (7)0.0099 (8)0.0146 (7)
C540.0298 (9)0.0133 (8)0.0325 (9)0.0022 (7)0.0081 (8)0.0052 (7)
C550.0210 (8)0.0139 (7)0.0227 (8)0.0022 (6)0.0059 (7)0.0012 (6)
C560.0185 (8)0.0171 (8)0.0272 (9)0.0004 (6)0.0061 (7)0.0095 (7)
C570.0219 (9)0.0235 (8)0.0289 (9)0.0003 (7)0.0011 (7)0.0129 (7)
C580.0294 (9)0.0245 (8)0.0271 (9)0.0039 (7)0.0041 (7)0.0134 (7)
C590.0254 (9)0.0246 (8)0.0276 (9)0.0052 (7)0.0073 (7)0.0100 (7)
C600.0168 (8)0.0169 (7)0.0237 (8)0.0040 (6)0.0039 (7)0.0044 (6)
Geometric parameters (Å, º) top
O1—C41.233 (2)C25—H25B0.9900
O2—C111.2316 (18)C25—H25A0.9900
N1—C11.362 (2)C26—H26A0.9900
N1—C161.315 (2)C26—H26B0.9900
N2—C141.3674 (19)C27—H27A0.9900
N2—C151.315 (2)C27—H27B0.9900
N3—C21.3809 (19)C28—H28A0.9900
N3—C211.457 (2)C28—H28B0.9900
N3—C251.466 (2)C29—H29A0.9900
N4—C131.3870 (19)C29—H29B0.9900
N4—C261.4575 (19)C30—H30B0.9900
N4—C301.466 (2)C30—H30A0.9900
C1—C21.448 (2)C31—C321.450 (2)
C1—C141.406 (2)C31—C441.407 (2)
C2—C31.390 (2)C32—C331.402 (2)
C3—C41.477 (2)C33—C341.470 (2)
C3—C121.455 (2)C33—C421.449 (2)
O3—C341.2318 (18)C34—C351.493 (2)
C4—C51.483 (2)C35—C361.389 (2)
O4—C411.2286 (18)C35—C401.398 (2)
C5—C61.399 (2)C36—C371.386 (2)
C5—C101.400 (2)C37—C381.391 (2)
C6—C71.382 (2)C38—C391.380 (2)
C7—C81.391 (2)C39—C401.397 (2)
C8—C91.380 (2)C40—C411.485 (2)
C9—C101.393 (2)C41—C421.478 (2)
C10—C111.492 (2)C42—C431.391 (2)
C11—C121.473 (2)C43—C441.449 (2)
C12—C131.394 (2)C45—C461.432 (2)
C13—C141.447 (2)C45—C471.507 (2)
C15—C161.425 (2)C46—C491.511 (2)
C15—C171.509 (2)C47—C481.509 (2)
C16—C191.504 (2)C49—C501.519 (2)
C17—C181.516 (2)C51—C521.526 (2)
C19—C201.514 (2)C52—C531.520 (2)
C21—C221.519 (2)C53—C541.524 (2)
C22—C231.518 (3)C54—C551.518 (2)
C23—C241.526 (3)C56—C571.524 (2)
C24—C251.518 (2)C57—C581.522 (2)
C26—C271.525 (2)C58—C591.527 (2)
C27—C281.524 (2)C59—C601.515 (2)
C28—C291.520 (2)C36—H360.9500
C29—C301.520 (2)C37—H370.9500
N5—C311.3663 (19)C38—H380.9500
N5—C461.316 (2)C39—H390.9500
N6—C451.317 (2)C47—H47A0.9900
C6—H60.9500C47—H47B0.9900
N6—C441.3631 (19)C48—H48A0.9800
N7—C321.3822 (19)C48—H48B0.9800
C7—H70.9500C48—H48C0.9800
N7—C511.4565 (19)C49—H49A0.9900
N7—C551.4661 (19)C49—H49B0.9900
C8—H80.9500C50—H50A0.9800
N8—C431.3792 (19)C50—H50B0.9800
N8—C561.457 (2)C50—H50C0.9800
N8—C601.464 (2)C51—H51A0.9900
C9—H90.9500C51—H51B0.9900
C17—H17B0.9900C52—H52A0.9900
C17—H17A0.9900C52—H52B0.9900
C18—H18A0.9800C53—H53A0.9900
C18—H18B0.9800C53—H53B0.9900
C18—H18C0.9800C54—H54A0.9900
C19—H19A0.9900C54—H54B0.9900
C19—H19B0.9900C55—H55A0.9900
C20—H20C0.9800C55—H55B0.9900
C20—H20A0.9800C56—H56A0.9900
C20—H20B0.9800C56—H56B0.9900
C21—H21A0.9900C57—H57A0.9900
C21—H21B0.9900C57—H57B0.9900
C22—H22B0.9900C58—H58A0.9900
C22—H22A0.9900C58—H58B0.9900
C23—H23A0.9900C59—H59A0.9900
C23—H23B0.9900C59—H59B0.9900
C24—H24A0.9900C60—H60A0.9900
C24—H24B0.9900C60—H60B0.9900
C1—N1—C16118.72 (13)C30—C29—H29B109.00
C14—N2—C15118.47 (13)H29A—C29—H29B108.00
C2—N3—C21121.17 (13)C30—C29—H29A109.00
C2—N3—C25125.19 (13)N4—C30—H30A110.00
C21—N3—C25112.55 (12)N4—C30—H30B110.00
C13—N4—C26121.95 (12)C29—C30—H30B110.00
C13—N4—C30122.39 (12)H30A—C30—H30B108.00
C26—N4—C30112.94 (12)C29—C30—H30A110.00
N1—C1—C2118.83 (14)N5—C31—C32118.37 (13)
N1—C1—C14120.44 (14)N5—C31—C44120.43 (13)
C2—C1—C14120.73 (13)C32—C31—C44121.15 (13)
N3—C2—C1120.25 (13)N7—C32—C31119.88 (13)
N3—C2—C3122.22 (13)N7—C32—C33122.91 (13)
C1—C2—C3117.03 (13)C31—C32—C33116.99 (13)
C2—C3—C4121.26 (13)C32—C33—C34121.38 (13)
C2—C3—C12121.05 (13)C32—C33—C42120.31 (14)
C4—C3—C12117.53 (13)C34—C33—C42117.58 (13)
O1—C4—C3122.55 (15)O3—C34—C33123.23 (13)
O1—C4—C5119.81 (14)O3—C34—C35118.34 (14)
C3—C4—C5117.62 (14)C33—C34—C35118.33 (13)
C4—C5—C6119.94 (14)C34—C35—C36119.34 (13)
C4—C5—C10120.64 (14)C34—C35—C40120.87 (14)
C6—C5—C10119.40 (15)C36—C35—C40119.75 (14)
C5—C6—C7120.19 (15)C35—C36—C37120.24 (14)
C6—C7—C8120.12 (15)C36—C37—C38120.00 (15)
C7—C8—C9120.22 (16)C37—C38—C39120.27 (15)
C8—C9—C10120.23 (15)C38—C39—C40120.06 (15)
C5—C10—C9119.81 (14)C35—C40—C39119.69 (14)
C5—C10—C11120.50 (14)C35—C40—C41120.34 (13)
C9—C10—C11119.59 (14)C39—C40—C41119.94 (13)
O2—C11—C10118.59 (14)O4—C41—C40119.99 (13)
O2—C11—C12123.02 (13)O4—C41—C42122.83 (14)
C10—C11—C12118.33 (13)C40—C41—C42117.14 (13)
C3—C12—C11117.54 (13)C33—C42—C41117.83 (13)
C3—C12—C13120.24 (14)C33—C42—C43121.14 (13)
C11—C12—C13121.43 (13)C41—C42—C43120.91 (13)
N4—C13—C12123.60 (14)N8—C43—C42122.42 (13)
N4—C13—C14118.99 (13)N8—C43—C44119.96 (13)
C12—C13—C14117.22 (13)C42—C43—C44117.09 (13)
N2—C14—C1120.16 (14)N6—C44—C31120.42 (13)
N2—C14—C13118.38 (13)N6—C44—C43118.61 (13)
C1—C14—C13121.41 (13)C31—C44—C43120.97 (13)
N2—C15—C16121.24 (14)N6—C45—C46121.02 (14)
N2—C15—C17118.70 (14)N6—C45—C47118.62 (14)
C16—C15—C17120.03 (13)C46—C45—C47120.35 (14)
N1—C16—C15120.91 (14)N5—C46—C45121.07 (14)
N1—C16—C19118.23 (14)N5—C46—C49118.68 (14)
C15—C16—C19120.85 (14)C45—C46—C49120.22 (13)
C15—C17—C18114.69 (14)C45—C47—C48114.68 (14)
C16—C19—C20114.36 (14)C46—C49—C50113.89 (14)
N3—C21—C22110.29 (13)N7—C51—C52110.35 (13)
C21—C22—C23112.30 (14)C51—C52—C53110.71 (13)
C22—C23—C24109.93 (14)C52—C53—C54109.47 (13)
C23—C24—C25110.26 (15)C53—C54—C55111.00 (13)
N3—C25—C24110.77 (14)N7—C55—C54110.53 (12)
N4—C26—C27109.74 (13)N8—C56—C57109.61 (13)
C26—C27—C28111.05 (13)C56—C57—C58111.50 (13)
C27—C28—C29109.84 (13)C57—C58—C59110.26 (14)
C28—C29—C30110.81 (14)C58—C59—C60110.96 (13)
N4—C30—C29110.34 (13)N8—C60—C59110.74 (13)
C31—N5—C46118.44 (13)C35—C36—H36120.00
C5—C6—H6120.00C37—C36—H36120.00
C7—C6—H6120.00C36—C37—H37120.00
C44—N6—C45118.56 (13)C38—C37—H37120.00
C32—N7—C51121.25 (12)C37—C38—H38120.00
C32—N7—C55123.08 (12)C39—C38—H38120.00
C51—N7—C55112.71 (12)C38—C39—H39120.00
C6—C7—H7120.00C40—C39—H39120.00
C8—C7—H7120.00C45—C47—H47A109.00
C56—N8—C60112.97 (12)C45—C47—H47B109.00
C43—N8—C56121.01 (13)C48—C47—H47A109.00
C43—N8—C60123.82 (13)C48—C47—H47B109.00
C7—C8—H8120.00H47A—C47—H47B108.00
C9—C8—H8120.00C47—C48—H48A109.00
C8—C9—H9120.00C47—C48—H48B109.00
C10—C9—H9120.00C47—C48—H48C109.00
C15—C17—H17A109.00H48A—C48—H48B109.00
C18—C17—H17A109.00H48A—C48—H48C109.00
C18—C17—H17B109.00H48B—C48—H48C109.00
H17A—C17—H17B108.00C46—C49—H49A109.00
C15—C17—H17B109.00C46—C49—H49B109.00
C17—C18—H18A109.00C50—C49—H49A109.00
C17—C18—H18C109.00C50—C49—H49B109.00
H18A—C18—H18B109.00H49A—C49—H49B108.00
C17—C18—H18B109.00C49—C50—H50A109.00
H18B—C18—H18C109.00C49—C50—H50B109.00
H18A—C18—H18C109.00C49—C50—H50C109.00
C16—C19—H19A109.00H50A—C50—H50B109.00
H19A—C19—H19B108.00H50A—C50—H50C109.00
C20—C19—H19B109.00H50B—C50—H50C109.00
C16—C19—H19B109.00N7—C51—H51A110.00
C20—C19—H19A109.00N7—C51—H51B110.00
C19—C20—H20C109.00C52—C51—H51A110.00
C19—C20—H20B109.00C52—C51—H51B110.00
H20A—C20—H20B109.00H51A—C51—H51B108.00
H20A—C20—H20C109.00C51—C52—H52A110.00
H20B—C20—H20C109.00C51—C52—H52B110.00
C19—C20—H20A109.00C53—C52—H52A110.00
N3—C21—H21A110.00C53—C52—H52B109.00
C22—C21—H21A110.00H52A—C52—H52B108.00
C22—C21—H21B110.00C52—C53—H53A110.00
N3—C21—H21B110.00C52—C53—H53B110.00
H21A—C21—H21B108.00C54—C53—H53A110.00
C21—C22—H22A109.00C54—C53—H53B110.00
C21—C22—H22B109.00H53A—C53—H53B108.00
C23—C22—H22A109.00C53—C54—H54A109.00
C23—C22—H22B109.00C53—C54—H54B109.00
H22A—C22—H22B108.00C55—C54—H54A109.00
C22—C23—H23A110.00C55—C54—H54B109.00
C24—C23—H23A110.00H54A—C54—H54B108.00
C24—C23—H23B110.00N7—C55—H55A110.00
H23A—C23—H23B108.00N7—C55—H55B110.00
C22—C23—H23B110.00C54—C55—H55A110.00
C23—C24—H24A110.00C54—C55—H55B110.00
C25—C24—H24A110.00H55A—C55—H55B108.00
C25—C24—H24B110.00N8—C56—H56A110.00
C23—C24—H24B110.00N8—C56—H56B110.00
H24A—C24—H24B108.00C57—C56—H56A110.00
N3—C25—H25B109.00C57—C56—H56B110.00
N3—C25—H25A109.00H56A—C56—H56B108.00
H25A—C25—H25B108.00C56—C57—H57A109.00
C24—C25—H25A109.00C56—C57—H57B109.00
C24—C25—H25B109.00C58—C57—H57A109.00
C27—C26—H26A110.00C58—C57—H57B109.00
N4—C26—H26A110.00H57A—C57—H57B108.00
C27—C26—H26B110.00C57—C58—H58A110.00
H26A—C26—H26B108.00C57—C58—H58B110.00
N4—C26—H26B110.00C59—C58—H58A110.00
C26—C27—H27A109.00C59—C58—H58B110.00
C26—C27—H27B109.00H58A—C58—H58B108.00
C28—C27—H27B109.00C58—C59—H59A109.00
H27A—C27—H27B108.00C58—C59—H59B109.00
C28—C27—H27A109.00C60—C59—H59A109.00
C27—C28—H28A110.00C60—C59—H59B109.00
C27—C28—H28B110.00H59A—C59—H59B108.00
C29—C28—H28A110.00N8—C60—H60A109.00
C29—C28—H28B110.00N8—C60—H60B109.00
H28A—C28—H28B108.00C59—C60—H60A109.00
C28—C29—H29A109.00C59—C60—H60B110.00
C28—C29—H29B109.00H60A—C60—H60B108.00
C16—N1—C1—C2179.25 (14)C46—N5—C31—C32174.61 (14)
C16—N1—C1—C141.0 (2)C46—N5—C31—C442.8 (2)
C1—N1—C16—C151.0 (2)C31—N5—C46—C452.9 (2)
C1—N1—C16—C19177.77 (14)C31—N5—C46—C49175.11 (14)
C15—N2—C14—C12.8 (2)C45—N6—C44—C310.6 (2)
C15—N2—C14—C13174.61 (14)C45—N6—C44—C43179.97 (14)
C14—N2—C15—C162.7 (2)C44—N6—C45—C460.6 (2)
C14—N2—C15—C17175.36 (14)C44—N6—C45—C47178.61 (14)
C21—N3—C2—C1144.09 (15)C51—N7—C32—C31144.83 (15)
C21—N3—C2—C327.5 (2)C51—N7—C32—C3329.6 (2)
C25—N3—C2—C148.7 (2)C55—N7—C32—C3156.1 (2)
C25—N3—C2—C3139.68 (16)C55—N7—C32—C33129.45 (16)
C2—N3—C21—C22133.83 (14)C32—N7—C51—C52140.55 (14)
C25—N3—C21—C2257.50 (17)C55—N7—C51—C5258.37 (17)
C2—N3—C25—C24132.31 (15)C32—N7—C55—C54141.30 (15)
C21—N3—C25—C2459.57 (17)C51—N7—C55—C5458.02 (17)
C26—N4—C13—C1231.0 (2)C56—N8—C43—C4227.8 (2)
C26—N4—C13—C14143.79 (14)C56—N8—C43—C44143.56 (14)
C30—N4—C13—C12129.01 (16)C60—N8—C43—C42134.16 (16)
C30—N4—C13—C1456.2 (2)C60—N8—C43—C4454.5 (2)
C13—N4—C26—C27139.42 (14)C43—N8—C56—C57137.09 (14)
C30—N4—C26—C2758.87 (17)C60—N8—C56—C5759.11 (16)
C13—N4—C30—C29139.43 (15)C43—N8—C60—C59137.48 (14)
C26—N4—C30—C2958.95 (17)C56—N8—C60—C5959.25 (16)
N1—C1—C2—N310.8 (2)N5—C31—C32—N710.2 (2)
N1—C1—C2—C3177.20 (14)N5—C31—C32—C33174.99 (14)
C14—C1—C2—N3168.93 (14)C44—C31—C32—N7172.40 (14)
C14—C1—C2—C33.1 (2)C44—C31—C32—C332.4 (2)
N1—C1—C14—N21.9 (2)N5—C31—C44—N61.6 (2)
N1—C1—C14—C13175.35 (14)N5—C31—C44—C43178.96 (14)
C2—C1—C14—N2178.34 (14)C32—C31—C44—N6175.67 (14)
C2—C1—C14—C134.4 (2)C32—C31—C44—C433.7 (2)
N3—C2—C3—C427.3 (2)N7—C32—C33—C3429.0 (2)
N3—C2—C3—C12157.34 (14)N7—C32—C33—C42161.12 (14)
C1—C2—C3—C4160.91 (14)C31—C32—C33—C34156.43 (14)
C1—C2—C3—C1214.5 (2)C31—C32—C33—C4213.5 (2)
C2—C3—C4—O124.8 (2)C32—C33—C34—O311.5 (2)
C2—C3—C4—C5157.11 (14)C32—C33—C34—C35172.26 (13)
C12—C3—C4—O1150.71 (15)C42—C33—C34—O3158.64 (14)
C12—C3—C4—C527.3 (2)C42—C33—C34—C3517.6 (2)
C2—C3—C12—C11150.87 (14)C32—C33—C42—C41156.56 (14)
C2—C3—C12—C1319.1 (2)C32—C33—C42—C4319.4 (2)
C4—C3—C12—C1133.6 (2)C34—C33—C42—C4133.1 (2)
C4—C3—C12—C13156.44 (14)C34—C33—C42—C43150.87 (14)
O1—C4—C5—C610.3 (2)O3—C34—C35—C364.6 (2)
O1—C4—C5—C10171.27 (14)O3—C34—C35—C40177.78 (14)
C3—C4—C5—C6171.59 (14)C33—C34—C35—C36178.99 (13)
C3—C4—C5—C106.8 (2)C33—C34—C35—C401.4 (2)
C4—C5—C6—C7177.76 (14)C34—C35—C36—C37177.50 (14)
C10—C5—C6—C70.7 (2)C40—C35—C36—C370.1 (2)
C4—C5—C10—C9176.54 (14)C34—C35—C40—C39177.48 (14)
C4—C5—C10—C117.3 (2)C34—C35—C40—C414.7 (2)
C6—C5—C10—C91.9 (2)C36—C35—C40—C390.1 (2)
C6—C5—C10—C11174.32 (14)C36—C35—C40—C41177.76 (14)
C5—C6—C7—C80.9 (2)C35—C36—C37—C380.0 (2)
C6—C7—C8—C91.2 (2)C36—C37—C38—C390.2 (2)
C7—C8—C9—C100.0 (2)C37—C38—C39—C400.3 (2)
C8—C9—C10—C51.6 (2)C38—C39—C40—C350.1 (2)
C8—C9—C10—C11174.68 (14)C38—C39—C40—C41177.95 (14)
C5—C10—C11—O2178.18 (14)C35—C40—C41—O4167.23 (14)
C5—C10—C11—C121.0 (2)C35—C40—C41—C4210.7 (2)
C9—C10—C11—O25.6 (2)C39—C40—C41—O414.9 (2)
C9—C10—C11—C12177.24 (13)C39—C40—C41—C42167.18 (14)
O2—C11—C12—C3157.57 (14)O4—C41—C42—C33148.11 (15)
O2—C11—C12—C1312.3 (2)O4—C41—C42—C4327.9 (2)
C10—C11—C12—C319.5 (2)C40—C41—C42—C3329.7 (2)
C10—C11—C12—C13170.68 (14)C40—C41—C42—C43154.27 (14)
C3—C12—C13—N4163.81 (14)C33—C42—C43—N8158.85 (14)
C3—C12—C13—C1411.0 (2)C33—C42—C43—C4412.8 (2)
C11—C12—C13—N426.6 (2)C41—C42—C43—N825.3 (2)
C11—C12—C13—C14158.56 (14)C41—C42—C43—C44163.10 (14)
N4—C13—C14—N27.3 (2)N8—C43—C44—N69.1 (2)
N4—C13—C14—C1175.33 (14)N8—C43—C44—C31170.33 (14)
C12—C13—C14—N2177.57 (14)C42—C43—C44—N6179.09 (14)
C12—C13—C14—C10.2 (2)C42—C43—C44—C311.5 (2)
N2—C15—C16—N11.9 (2)N6—C45—C46—N51.9 (2)
N2—C15—C16—C19176.83 (14)N6—C45—C46—C49176.09 (14)
C17—C15—C16—N1176.18 (14)C47—C45—C46—N5177.38 (14)
C17—C15—C16—C195.1 (2)C47—C45—C46—C494.7 (2)
N2—C15—C17—C1814.6 (2)N6—C45—C47—C481.9 (2)
C16—C15—C17—C18163.53 (14)C46—C45—C47—C48177.32 (14)
N1—C16—C19—C204.9 (2)N5—C46—C49—C5011.8 (2)
C15—C16—C19—C20173.81 (14)C45—C46—C49—C50166.16 (14)
N3—C21—C22—C2354.60 (17)N7—C51—C52—C5356.87 (18)
C21—C22—C23—C2453.28 (18)C51—C52—C53—C5455.34 (18)
C22—C23—C24—C2553.88 (18)C52—C53—C54—C5555.07 (18)
C23—C24—C25—N356.99 (17)C53—C54—C55—N755.94 (18)
N4—C26—C27—C2856.46 (18)N8—C56—C57—C5856.07 (17)
C26—C27—C28—C2954.93 (19)C56—C57—C58—C5953.61 (18)
C27—C28—C29—C3054.54 (19)C57—C58—C59—C6052.82 (18)
C28—C29—C30—N456.00 (18)C58—C59—C60—N855.07 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O10.992.392.826 (2)106
C25—H25A···N10.992.282.872 (2)117
C26—H26A···O20.992.232.7484 (19)111
C30—H30A···N20.992.322.888 (2)115
C51—H51B···O30.992.222.752 (2)113
C55—H55B···N50.992.312.910 (2)118
C56—H56A···O3i0.992.543.1765 (19)122
C56—H56B···O40.992.342.822 (2)109
C60—H60B···N60.992.342.910 (2)116
Symmetry code: (i) x, y+1, z+1.
 

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChou, T.-C., Lin, K.-C., Kon-no, M., Lee, C.-C. & Shinmyozu, T. (2011). Org. Lett. 13, 4588–4591.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z., Tang, Q., Liu, J., Li, J., Yan, F. & Miao, Q. (2010). Chem. Mater. 22, 6438–6443.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelliou, E., Magiatis, P., Mitaku, S., Skaltsounis, A.-L., Pierré, A., Atassi, G. & Renard, P. (2001). Bioorg. Med. Chem. 9, 607–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShchekotikhin, A. E., Makarov, I. G., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). Chem. Heterocycl. Compd. 41, 914–920.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZielske, A. G. (1987). J. Org. Chem. 52, 1305–1309.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds