research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(4-hy­dr­oxy­benz­yl)acetone thio­semicarbazone

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es

Edited by G. Smith, Queensland University of Technology, Australia (Received 27 July 2017; accepted 22 August 2017; online 25 August 2017)

The structure of the title compound, C11H15N3OS, shows the flexibility due to the methyl­ene group at the thio­amide N atom in the side chain, resulting in the mol­ecule being non-planar. The dihedral angle between the plane of the benzene ring and that defined by the atoms of the thio­semicarbazide arm is 79.847 (4)°. In the crystal, the donor–acceptor hydrogen-bond character of the –OH group dominates the inter­molecular associations, acting as a donor in an O—H⋯S hydrogen bond, as well as being a double acceptor in a centrosymmetric cyclic bridging N—H⋯O,O′ inter­action [graph set R22(4)]. The result is a one-dimensional duplex chain structure, extending along [111]. The usual N—H⋯S hydrogen-bonding association common in thio­semicarbazone crystal structures is not observed.

1. Chemical context

Thio­semicarbazones (TSCs) are an inter­esting group of compounds because they show diverse biological properties (Serda et al., 2012[Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483-13502.]) and pharmacological activities (Lukmantara et al., 2013[Lukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967-974.]). They can be easily functionalized to yield different supra­molecular arrays through inter­molecular hydrogen-bonding inter­actions (Nuñez-Montenegro et al., 2017[Nuñez-Montenegro, A., Argibay-Otero, S., Carballo, R., Graña, A. & Vázquez-López, E. M. (2017). Cryst. Growth Des. 17, 3338-3349.]), by selection of suitable aldehyde or ketone reagents. In addition, metal coordination may be used to orient some of their substituents to optimize the inter­action with biomolecules (e.g. see Nuñez-Montenegro et al., 2014[Nuñez-Montenegro, A., Carballo, R. & Vázquez-López, E. M. (2014). J. Inorg. Biochem. 140, 53-63.]). In the present paper, we describe the synthesis and crystal structure of a TSC derivative (Figs. 1[link]), namely N-(4-hy­droxy­benz­yl)acetone thio­semicarbazone (acTSC), having a 4-hy­droxy­benzyl substituent at the thio­amide N atom (N1), in which the –CH2– group provides more flexibility to establish inter­molecular associations.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of acTSC.

2. Structural commentary

In the acTSC mol­ecule (Fig. 2[link]), the bond lengths (S1=C1 and C10=N3) and angles in the thio­semicarbazide arm are similar to those observed in other thio­semicarbazones, suggesting that the thione form is predominant. This arm is almost planar, probably due to some π-delocation (r.m.s. deviation of 0.0516 Å for the plane defined by atoms S1/C1/N1/N2/N3). Nevertheless, the ethyl­ene group at N1 allows an almost orthogonal orientation relative to the phenolic substituent group, with a dihedral angle between the two planes of 79.847 (4)°. The interatomic distance N1⋯N3 inter­action [2.6074 (18) Å] suggests some kind of intramolecular interaction.

[Figure 2]
Figure 2
The mol­ecular structure of acTSC, with displacement ellipsoids drawn at the 40% probability level.

3. Supra­molecular features

The association of the mol­ecules is strongly affected by the donor–acceptor character of the –OH group, while the usual N—H⋯S hydrogen bonds observed in most TSC structures (Nuñez-Montenegro et al., 2017[Nuñez-Montenegro, A., Argibay-Otero, S., Carballo, R., Graña, A. & Vázquez-López, E. M. (2017). Cryst. Growth Des. 17, 3338-3349.]; Pino-Cuevas et al., 2014[Pino-Cuevas, A., Carballo, R. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o926.]) are absent. The phenolic –OH group forms an inter­molecular hydrogen bond with a S-atom acceptor (O—H0⋯S1iii; Table 1[link]), while the N2—H group establishes two different hydrogen-bonding inter­actions with different phenolic O-atom acceptors. The shortest of these is N2—H2⋯Oi (Table 1[link]), which generates a centrosymmetric cyclic R22(4) ring-motif association (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) and also forms a conjoined cyclic R22(6) association via an O—H⋯S inter­action (see Fig. 3[link]). The second of the three-centre hydrogen-bonding inter­actions (N2—H2⋯Oii) extends the structure into one-dimensional duplex chains along [111] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Oi 0.848 (17) 2.292 (17) 2.9955 (15) 140.6 (14)
N2—H2⋯Oii 0.848 (17) 2.434 (16) 3.1333 (15) 140.3 (14)
O—H0⋯S1iii 0.857 (19) 2.299 (19) 3.1349 (10) 165.2 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z-1; (iii) x+1, y+1, z+1.
[Figure 3]
Figure 3
Inter­molecular hydrogen-bonding associations between mol­ecules in the crystal structure of acTSC, shown as dashed lines.

4. Database survey

For related structures of thio­semicarbazones derived from acetone, see: Yamin et al. (2014[Yamin, B. M., Rodis, M. L. & Chee, D. N. B. A. (2014). Acta Cryst. E70, o1109.]); Basu & Das (2011[Basu, A. & Das, G. (2011). Dalton Trans. 40, 2837-2843.]); Venkatraman et al. (2005[Venkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914-o3916.]); Jian et al. (2005[Jian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653-o654.]). For the metal-coordination properties of thio­semicarbazones, see: Paterson & Donnelly (2011[Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005-3018.]); Casas et al. (2000[Casas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). For acetone derivatives, see, for example, Su et al. (2013[Su, W., Quia, Q., Li, P., Lei, X., Xiao, Q., Huan, S., Huang, C. & Cui, J. (2013). Inorg. Chem. 52, 12440-12449.]); Nuñez-Montenegro et al. (2014[Nuñez-Montenegro, A., Carballo, R. & Vázquez-López, E. M. (2014). J. Inorg. Biochem. 140, 53-63.]); Swesi et al. (2006[Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006). Acta Cryst. E62, m3020-m3021.]); Paek et al. (1997[Paek, C., Kang, S. O., Ko, J. & Carroll, P. J. (1997). Organometallics, 16, 2110-2115.]).

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is shown in Fig. 1[link]. The primary amine 4-hy­droxy­benzyl­amine was converted to the corresponding iso­thio­cyanate by reaction with thio­phosgene (Sharma, 1978[Sharma, S. (1978). Synthesis, pp. 803-820.]). This iso­thio­cyanate was treated with hydrazide to form the thio­semicarbazide, as described previously (Reis et al., 2011[Reis, C. M., Pereira, D. S., Paiva, R. O., Kneipp, L. F. & Echevarria, A. (2011). Molecules, 16, 10668-10684.]). Finally, this compound was reacted with acetone in order to synthesize the desired thio­semicarbazone. In a typical synthesis, 3.4 g (0.017 mol) of thio­semicarbazide was dissolved in acetone (20 ml) and heated to 60°C for 20 min (Fig. 1[link]). This solution was concentrated and the resultant residue was purified using a silica column (AcOEt–hexane 30%). This solution was vacuum dried giving 1.96 g of acTSC. The solution was also used to obtain single crystals by slow evaporation (yield 48%; m.p. 165°C). C11H15N3OS requires: C 55.7, H 6.4, N 17.7%; found C 55.8, H 7.1,N 16.9%. MS–ESI [m/z (%)]: 238 (100) [M + H]+. IR (ATR, ν/cm−1): 3241 (b) ν(NH, OH); 1536 (w), 1508 (s) ν(C=N); 784 (w) ν(C=S). 1H NMR (DMSO-d6): 9.95 (s, 1H, N2H), 9.26 (s, 1H, OH), 8.46 (t, 3JH-NH = 6.2Hz, 1H, N1H), 7.15 (d, 3JH-H = 8.5Hz, 2H, C5H, C9H), 6.70 (d, 3JH-H = 8.5Hz, 2H, C6H, C8H), 4.65 (d, 3JH-H = 6.2Hz, 2H, C3H), 1.92 (d, 3JH-H = 8.5Hz, 6H, C11H, C12H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Inter­active H atoms on O and N atoms were located in difference Fourier analyses and were allowed to freely refine, with Uiso(H) = 1.2Ueq(O,N) and riding. Other H atoms were included at calculated sites and allowed to ride, with Uiso(H) = 1.2Ueq(aromatic and methyl­ene C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C11H15N3OS
Mr 237.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.2799 (8), 8.9169 (9), 9.7451 (10)
α, β, γ (°) 104.597 (3), 112.569 (3), 105.220 (3)
V3) 588.7 (1)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.18 × 0.11 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS, Bruker ASX Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17083, 2911, 2562
Rint 0.043
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.00
No. of reflections 2911
No. of parameters 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.28
Computer programs: APEX3 (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS, Bruker ASX Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS, Bruker ASX Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).

(I) top
Crystal data top
C11H15N3OSF(000) = 252
Mr = 237.32Dx = 1.339 Mg m3
Triclinic, P1Melting point: 438 K
a = 8.2799 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9169 (9) ÅCell parameters from 9917 reflections
c = 9.7451 (10) Åθ = 2.5–28.3°
α = 104.597 (3)°µ = 0.26 mm1
β = 112.569 (3)°T = 100 K
γ = 105.220 (3)°Prism, colourless
V = 588.7 (1) Å30.18 × 0.11 × 0.11 mm
Z = 2
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
2562 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.638, Tmax = 0.746h = 1111
17083 measured reflectionsk = 1111
2911 independent reflectionsl = 1213
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.3538P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2911 reflectionsΔρmax = 0.29 e Å3
156 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.5032 (2)0.1953 (2)0.3563 (2)0.0345 (4)
H12A0.63010.10420.43090.052*
H12B0.51650.29710.30360.052*
H12C0.43560.21990.41660.052*
C110.1912 (2)0.26338 (16)0.10998 (17)0.0243 (3)
H11A0.10700.25060.15620.036*
H11B0.18420.37930.08280.036*
H11C0.15080.24010.01180.036*
S10.33739 (4)0.28903 (4)0.00401 (4)0.02014 (10)
O0.96910 (14)0.95385 (12)0.83590 (11)0.0206 (2)
H01.063 (3)1.046 (2)0.864 (2)0.031*
N20.37419 (16)0.05734 (13)0.12372 (13)0.0170 (2)
H20.254 (2)0.024 (2)0.0853 (19)0.020*
N10.65479 (15)0.27673 (13)0.21157 (13)0.0163 (2)
H10.701 (2)0.225 (2)0.2663 (19)0.020*
N30.47907 (15)0.00499 (14)0.23774 (13)0.0194 (2)
C60.79084 (18)0.67223 (16)0.64146 (15)0.0173 (2)
H60.73080.64840.70380.021*
C30.77639 (18)0.44581 (15)0.24342 (15)0.0171 (2)
H3A0.71000.47890.15510.021*
H3B0.89510.44380.24270.021*
C10.46524 (17)0.20611 (15)0.12097 (14)0.0147 (2)
C40.82883 (17)0.57817 (15)0.40388 (14)0.0148 (2)
C70.92864 (17)0.83296 (15)0.69457 (14)0.0158 (2)
C90.96926 (17)0.73918 (15)0.46107 (15)0.0170 (2)
H91.03190.76220.40030.020*
C81.01956 (17)0.86683 (15)0.60508 (15)0.0164 (2)
H81.11500.97600.64190.020*
C50.74164 (17)0.54680 (15)0.49646 (15)0.0162 (2)
H50.64660.43760.46000.019*
C100.39253 (19)0.14134 (17)0.23078 (16)0.0197 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0274 (8)0.0421 (9)0.0502 (10)0.0188 (7)0.0187 (7)0.0374 (8)
C110.0297 (7)0.0153 (6)0.0263 (7)0.0065 (5)0.0131 (6)0.0090 (5)
S10.01646 (16)0.01708 (15)0.02248 (17)0.00497 (12)0.00379 (13)0.01202 (12)
O0.0182 (5)0.0184 (4)0.0173 (4)0.0022 (4)0.0071 (4)0.0030 (4)
N20.0138 (5)0.0164 (5)0.0197 (5)0.0056 (4)0.0053 (4)0.0104 (4)
N10.0152 (5)0.0145 (5)0.0182 (5)0.0059 (4)0.0059 (4)0.0083 (4)
N30.0174 (5)0.0228 (5)0.0238 (6)0.0108 (4)0.0097 (5)0.0157 (5)
C60.0154 (6)0.0201 (6)0.0178 (6)0.0059 (5)0.0085 (5)0.0101 (5)
C30.0151 (6)0.0164 (6)0.0187 (6)0.0042 (5)0.0081 (5)0.0076 (5)
C10.0163 (6)0.0135 (5)0.0139 (5)0.0060 (5)0.0075 (5)0.0046 (4)
C40.0131 (5)0.0158 (5)0.0161 (6)0.0072 (5)0.0055 (5)0.0082 (5)
C70.0134 (5)0.0169 (6)0.0144 (6)0.0067 (5)0.0036 (5)0.0065 (4)
C90.0154 (6)0.0182 (6)0.0202 (6)0.0065 (5)0.0094 (5)0.0110 (5)
C80.0131 (5)0.0146 (5)0.0194 (6)0.0041 (4)0.0056 (5)0.0086 (5)
C50.0131 (5)0.0154 (5)0.0186 (6)0.0042 (4)0.0060 (5)0.0087 (5)
C100.0213 (6)0.0225 (6)0.0263 (7)0.0131 (5)0.0155 (5)0.0152 (5)
Geometric parameters (Å, º) top
S1—C11.6959 (14)C8—C91.3914 (18)
O—C71.3708 (16)C10—C111.498 (2)
O—H00.86 (2)C10—C121.495 (2)
N1—C31.4527 (19)C3—H3A0.9900
N1—C11.3328 (19)C3—H3B0.9900
N2—N31.3929 (17)C5—H50.9500
N2—C11.3554 (19)C6—H60.9500
N3—C101.284 (2)C8—H80.9500
N1—H10.839 (18)C9—H90.9500
N2—H20.849 (18)C11—H11A0.9800
C3—C41.5186 (18)C11—H11B0.9800
C4—C51.391 (2)C11—H11C0.9800
C4—C91.395 (2)C12—H12A0.9800
C5—C61.3914 (19)C12—H12B0.9800
C6—C71.392 (2)C12—H12C0.9800
C7—C81.391 (2)
C7—O—H0111.1 (13)N1—C3—H3B109.00
C1—N1—C3124.73 (12)C4—C3—H3A109.00
N2—N3—C10116.82 (12)C4—C3—H3B109.00
S1—C1—N1124.19 (11)H3A—C3—H3B108.00
S1—C1—N2119.75 (11)C4—C5—H5119.00
C1—N1—H1115.1 (12)C6—C5—H5119.00
C3—N1—H1119.1 (12)C5—C6—H6120.00
N1—C1—N2116.05 (12)C7—C6—H6120.00
N3—N2—H2120.9 (12)C7—C8—H8120.00
C1—N2—H2116.2 (13)C9—C8—H8120.00
N1—C3—C4113.39 (12)C4—C9—H9119.00
C3—C4—C5122.91 (12)C8—C9—H9119.00
C5—C4—C9118.17 (12)C10—C11—H11A109.00
C3—C4—C9118.92 (12)C10—C11—H11B109.00
C4—C5—C6121.31 (13)C10—C11—H11C109.00
C5—C6—C7119.54 (13)H11A—C11—H11B109.00
O—C7—C6117.57 (13)H11A—C11—H11C109.00
C6—C7—C8120.21 (12)H11B—C11—H11C109.00
O—C7—C8122.21 (12)C10—C12—H12A109.00
C7—C8—C9119.30 (13)C10—C12—H12B109.00
C4—C9—C8121.46 (13)C10—C12—H12C109.00
N3—C10—C12116.82 (14)H12A—C12—H12B109.00
C11—C10—C12116.61 (14)H12A—C12—H12C109.00
N3—C10—C11126.57 (13)H12B—C12—H12C109.00
N1—C3—H3A109.00
C3—N1—C1—S110.03 (19)C3—C4—C9—C8178.25 (13)
C3—N1—C1—N2171.02 (12)C3—C4—C5—C6178.75 (14)
C1—N1—C3—C497.14 (15)C9—C4—C5—C60.6 (2)
C1—N2—N3—C10175.62 (14)C5—C4—C9—C81.1 (2)
N3—N2—C1—S1170.98 (10)C4—C5—C6—C70.7 (2)
N3—N2—C1—N110.02 (19)C5—C6—C7—C81.4 (2)
N2—N3—C10—C12178.18 (13)C5—C6—C7—O178.34 (13)
N2—N3—C10—C111.5 (2)O—C7—C8—C9178.83 (13)
N1—C3—C4—C9169.60 (13)C6—C7—C8—C90.9 (2)
N1—C3—C4—C511.0 (2)C7—C8—C9—C40.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Oi0.848 (17)2.292 (17)2.9955 (15)140.6 (14)
N2—H2···Oii0.848 (17)2.434 (16)3.1333 (15)140.3 (14)
O—H0···S1iii0.857 (19)2.299 (19)3.1349 (10)165.2 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1; (iii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain) and European Regional Development Fund (EU) (CTQ2015-71211-REDT and CTQ2015-7091-R).

References

First citationBasu, A. & Das, G. (2011). Dalton Trans. 40, 2837–2843.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX3, SAINT and SADABS, Bruker ASX Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCasas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653–o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967–974.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNuñez-Montenegro, A., Argibay-Otero, S., Carballo, R., Graña, A. & Vázquez-López, E. M. (2017). Cryst. Growth Des. 17, 3338–3349.  Google Scholar
First citationNuñez-Montenegro, A., Carballo, R. & Vázquez-López, E. M. (2014). J. Inorg. Biochem. 140, 53–63.  PubMed Google Scholar
First citationPaek, C., Kang, S. O., Ko, J. & Carroll, P. J. (1997). Organometallics, 16, 2110–2115.  CSD CrossRef CAS Google Scholar
First citationPaterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPino-Cuevas, A., Carballo, R. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o926.  CSD CrossRef IUCr Journals Google Scholar
First citationReis, C. M., Pereira, D. S., Paiva, R. O., Kneipp, L. F. & Echevarria, A. (2011). Molecules, 16, 10668–10684.  CrossRef PubMed Google Scholar
First citationSerda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483–13502.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharma, S. (1978). Synthesis, pp. 803–820.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, W., Quia, Q., Li, P., Lei, X., Xiao, Q., Huan, S., Huang, C. & Cui, J. (2013). Inorg. Chem. 52, 12440–12449.  CSD CrossRef CAS PubMed Google Scholar
First citationSwesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006). Acta Cryst. E62, m3020–m3021.  CSD CrossRef IUCr Journals Google Scholar
First citationVenkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914–o3916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M., Rodis, M. L. & Chee, D. N. B. A. (2014). Acta Cryst. E70, o1109.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds