research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N,N-di­methyl-(2-(2,2-diphen­yl)-2-prop-2-yn­yl­oxy)acet­­oxy)ethyl­amine and N,N-di­methyl-(2-(2,2-diphen­yl)-2-prop-2-yn­yl­­­oxy)acet­­oxy)ethyl­ammonium 2,4,6-tri­nitro­phenolate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, cMaterials Science Center, NCHS Building, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 23 August 2017; accepted 11 September 2017; online 15 September 2017)

The N,N-di­methyl­ethylamminium unit in N,N-dimethyl-[2-(2,2-diphen­yl)-2-prop-2-ynyloxyacet­oxy]ethyl­amine, C21H23NO3 (I), is disordered over two sets of atomic sites having occupancies of 0.880 (3) and 0. 120 (3), but there are no direction-specific inter­actions between the mol­ecules of (I). The cation in N,N-dimethyl-[2-(2,2-diphen­yl)-2-prop-2-ynyloxyacet­oxy]ethyl­ammonium 2,4,6-tri­nitro­phenolate (picrate), C21H24NO3+·C6H2N3O7 (II), shows a similar type of disorder, with occupancies of 0.654 (11) and 0.346 (11), although the overall conformation of the cation in (II) is different from that in the neutral (I). The component ions are are linked by an almost planar three-centre N—H⋯(O)2 hydrogen bond, and the ion pairs are further linked by a combination of three C—H⋯O hydrogen bonds to form sheets. Comparisons are made with some related structures.

1. Chemical context

N,N-dimethyl-[2-(2,2-diphen­yl)-2-prop-2-ynyloxyacet­oxy]ethyl­amine (pargeverine) is an established anti-spasmodic drug (Mishra et al., 2010[Mishra, R., Siddiqui, A. A., Rashid, M., Ramesha, A. R., Rohini, R. M. & Khaidem, S. (2010). Pharma Chemica, 2, 185-194.]). Although crystal structures have been reported (Bindya et al., 2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]; Harrison, Bindya et al., 2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]; Harrison, Sreevidya et al., 2007[Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.]; Swamy et al., 2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]; Yathirajan et al., 2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691-o1692.]; Jasinski et al., 2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738-o1739.]) for a number of related compounds that exhibit a range of pharmacological activities (e.g. Matsushima et al., 1997[Matsushima, S., Inada, H., Asai, T., Naka, M. & Tanaka, T. (1997). Eur. J. Pharmacol. 333, 93-97.]), the structure of pargeverine itself has not yet been reported. Here we report the structure of the neutral compound (I)[link] and its 2,4,6-tri­nitro­phenolate (picrate) salt (II)[link].

2. Structural commentary

In the neutral compound (I) (Fig. 1[link]) the methyl­amino­ethyl fragment is disordered over two sets of atomic sites with occupancies of 0.880 (3) for the major disorder component comprising the atomic sites C2,C1,N1,C111 and C112, and 0.120 (3) for the minor component, comprising the atomic sites C22,C21,N21,C211 and C212. The atomic sites in the two disorder components exhibit an approximately mirror-image relationship, as shown by the corresponding pairs of torsional angles, thus: O11—C2—C1—N1 = 59.5 (5)° and O11—C22—C21—N21 = −57 (3)°, C2—C1—N1—C111 = 68.9 (4)° and C22—C21—N21—C211 = −56 (2)°, and C2—C1—N1—C112 = −167.3 (4)° and C22—C21—N21—C212 = −180 (2)°. Exact, though nonetheless non-crystallographic symmetry, would require that the corresponding torsional angles have identical magnitudes, but opposite signs. An unexpected feature of this conformational disorder is the close proximity of the two sites N1 and N21, which are separated by only 0.182 (18) Å.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and the minor disorder component is drawn with broken lines.

In the cation of the picrate salt (II)[link] (Fig. 2[link]), the same fragment is disordered, again over two sets of atomic sites, but now with occupancies of 0.654 (11) and 0.346 (11). The physical separation of the two sets of atomic sites is, in general, rather less in (II)[link] than in (I)[link], but the overall conformation of the cation in (II)[link] is different from that of the neutral compound (I)[link]. This is well illustrated by the values of the torsion angles O12—C11—C12—O13, 157.8 (2)° in (I)[link] and 13.1 (2)° in (II)[link], and C11—O11—C2—C1 − 123.1 (4)° in (I)[link] and 172.8 (4)° in (II)[link], resulting in very different locations for the disordered fragment relative to the fragment Ph2COCH2CCH (cf. Figs. 1[link] and 2[link]).

[Figure 2]
Figure 2
The ionic components of compound (II)[link] showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and the minor disorder component is drawn with broken lines.

The C—O distance in the picrate anion in (II)[link], 1.2486 (17) Å, is short for its type [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) 1.362 Å, lower quartile value 1.353 Å]; the C—N distances in this anion, in the range 1.445 (2)–1.459 (2) Å, all fall below the mean value of 1.468 Å for bonds of this type. In addition, the C31—C32 and C31—C36 distances are 1.445 (2) and 1.439 (2) Å, respectively, whereas the other four C—C distances in this ring lie in the range 1.367 (2)–1.385 (2) Å with a mean value of 1.375 Å. These observations point to significant contributions to the electronic structure of this anion of polarized forms in which the negative charge is delocalized from the phenolic O atom into the ring and thence onto the nitro groups as recently noted (Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]).

3. Supra­molecular features

Despite the abundance of potential hydrogen-bond donors and acceptors in (I)[link], with the C—H bonds of the aryl rings and the alkynyl unit as potential donors, and the amino N atom, the carbonyl O atom, two aryl rings and the triple bond of the alkynyl function as potential acceptors, there are in fact, no hydrogen bonds of any kind in the crystal structure of (I)[link]: nor are there any aromatic ππ stacking inter­actions, so that the structure consists of essentially isolated mol­ecules making only van der Waals-type contacts with one another.

Both disorder components of the cation in (II)[link] are linked to the anion within the selected asymmetric unit via a near planar, but markedly asymmetric three-centre N-H⋯(O)2 charge-assisted (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]) hydrogen bond (Table 1[link]), which forms an R12(6) motif. The resulting ion pairs are further linked by three C—H⋯O hydrogen bonds into complex sheets: however, the straightforward identification of two simple one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]) leads to a simple analysis of the sheet formation. In the simpler of the two sub-structures, the C—H⋯O hydrogen bond involving an aryl C—H unit links ion pairs related by translation along [100] into a C21(12) chain (Fig. 3[link]). In the second sub-structure, the cooperative effect of two C—H⋯O hydrogen bonds, both involving CH2 groups, generates a chain parallel to [1[\overline{1}]0] containing alternating R12(6) and R22(11) rings (Fig. 4[link]). The combination of these two chain motifs generates a sheet lying parallel to (001) in the domain 0.5 < z < 1.0: a second such sheet, related to the first by inversion, lies in the domain 0 < z < 0.5, but there are no direction-specific inter­actions between adjacent sheets.

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O31 0.98 1.72 2.633 (7) 153
N1—H1⋯O37 0.98 2.33 3.010 (7) 126
N21—H21⋯O31 0.98 1.77 2.697 (14) 157
N21—H21⋯O37 0.98 2.34 2.944 (14) 120
C2—H2B⋯O33i 0.97 2.56 3.338 (9) 137
C14—H14B⋯O32i 0.97 2.52 3.407 (2) 153
C135—H135⋯O31ii 0.93 2.58 3.485 (2) 165
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z.
[Figure 3]
Figure 3
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded chain running parallel to [100]. For the sake of clarity, only the major disorder component of the cation is shown and the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) and a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded chain of rings running parallel to [1[\overline{1}]0]. For the sake of clarity, only the major disorder component of the cation is shown and the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) and a hash (#)are at the symmetry positions (1 + x, −1 + y, z) and (−1 + x, 1 + y, z), respectively.

4. Database survey

In the (2R,3R)-(hydrogentartrate) salt (III)[link] (Glidewell et al., 2017[Glidewell, C., Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M. & Byrappa, K. (2017). Private communication (refcode 1569461). CCDC, Cambridge, England.]), the cation is fully ordered, unlike that in the picrate (II)[link] and the conformation of the cation closely resembles that of the neutral mol­ecule (I)[link].

[Scheme 2]

The anions are linked by three O—H⋯O hydrogen bonds to form sheets lying parallel to (001) and containing equal numbers of R22(7) and R44(21) rings (Fig. 5[link]). Within this sheet, the anions related by translation along [100] are linked by a very short and nearly linear O—H⋯O hydrogen bond, although the H atom is nonetheless off-centre; O⋯Oi 2.461 (7) Å; O—H⋯Oi 167 (9)°, O—H 1.12 (1) Å, H⋯Oi 1.35 (10) Å [symmetry code: (i) 1 + x, y, z]. The cations are linked to this sheet by a three-centre N—O⋯(O)2 hydrogen bond and they are disposed to either side of the sheet (Fig. 6[link]).

[Figure 5]
Figure 5
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded sheet of anions parallel to (001). The original atomic coordinates (Glidewell et al., 2017[Glidewell, C., Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M. & Byrappa, K. (2017). Private communication (refcode 1569461). CCDC, Cambridge, England.]) have been used and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
A projection down [100] of part of the crystal structure of compound (III)[link] showing the disposition of the cations bonded to both faces of the anion sheet. For the sake of clarity, the H atoms bonded to C atoms have been omitted.

4-(2,2-Diphenyl-2-propoxyacet­oxy)-1-methyl­piperidin-1-ium picrate (propiverinium picrate) (IV) is closely related to compound (II)[link], differing in containing a saturated alk­oxy substituent and having an N-methyl piperidinium unit in place of the N,N-di­methyl­ethyl­ammonium unit in (II)[link]. The component anions in (IV) are linked (Jasinski et al., 2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738-o1739.]) by the same type of hydrogen-bonded (R126) ring as seen in (II)[link] but there are no structurally significant inter­actions between adjacent ion pairs in (IV).

5. Synthesis and crystallization

A sample of compound (I)[link] was a gift from RL Fine Chem, Pvt. Ltd., Bengaluru, India, and it was recrystallized from methanol solution by slow evaporation at room temperature, m.p. 347–351 K. For the preparation of compound (II)[link], equimolar qu­anti­ties (0.30 mmol) of (I)[link] and picric acid were dissolved in hot methanol and the solution was held at 333 K for 0.5 h, with magnetic stirring throughout. The solution was then allowed to cool slowly to room temperature, giving crystals of (II)[link] suitable for single-crystal X-ray diffraction. m.p. 386–389 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. It was apparent from an early stage in the refinements that in both (I)[link] and (II)[link] the di­methyl­amino­ethyl portion was disordered over two sets of atomic sites having different occupancies in each case, and corres­ponding to different conformations. For the minor conformation of each compound, the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major conformer, subject to s.u.s of 0.005 and 0.01 Å, respectively: in addition, the anisotropic displacement parameters for corresponding pairs of atomic sites occupying essentially the same physical space were constrained to be equal. All H atoms, other than those in the minor disorder components, were located in difference maps, and then treated as riding atoms in geometrically idealized position, with distances C—H 0.93 Å (aromatic and alkyne), 0.96 Å (CH3) or 0.97 Å (CH2) and N—H 0.98 Å, with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The H atoms in the minor disorder components were included in calculated positions using the same procedure. When the refinement of the atomic coordinates for the H atoms bonded to N atoms in (II)[link] was attempted, the resulting N—H distances were 1.04 (4) and 0.82 (8) Å: accordingly, the riding model was preferred. Two low-angle reflections which had been attenuated by the beam stop, (020) for (I)[link] and (002) for (II)[link], were omitted from the final refinements. Subject to these conditions, the occupancies of the disorder components were 0.880 (3) and 0.120 (3) in (I)[link] and 0.654 (11) and 0.346 (11) in (II)[link]. In the final analyses of variance for (I)[link] there was a large value, 22.969, of K = [mean(Fo2)/mean(Fc2)] for the group of 518 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.004, and for (II)[link] a value of K = 9.509 for the group of 789 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.006.

Table 2
Experimental details

  (I) (II)
Crystal data
Chemical formula C21H23NO3 C21H24NO3·C6H2N3O7
Mr 337.40 566.52
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 296 296
a, b, c (Å) 9.2545 (9), 21.7246 (19), 9.4531 (9) 7.5208 (3), 8.3919 (3), 22.2282 (7)
α, β, γ (°) 90, 94.763 (9), 90 85.099 (3), 84.294 (3), 75.117 (3)
V3) 1894.0 (3) 1346.51 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.11
Crystal size (mm) 0.30 × 0.24 × 0.23 0.23 × 0.21 × 0.21
 
Data collection
Diffractometer Rigaku Saturn724 Rigaku Saturn724
Absorption correction Multi-scan (SADABS; Sheldrick,2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick,2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.956, 0.982 0.949, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 23094, 4348, 2221 18671, 7547, 4973
Rint 0.066 0.033
(sin θ/λ)max−1) 0.651 0.728
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.195, 1.04 0.053, 0.136, 1.05
No. of reflections 4348 7547
No. of parameters 247 390
No. of restraints 10 10
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15 0.27, −0.22
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS86 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

N,N-Dimethyl-[2-(2,2-diphenyl)-2-prop-2-ynyloxyacetoxy]ethylamine (I) top
Crystal data top
C21H23NO3F(000) = 720
Mr = 337.40Dx = 1.183 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2545 (9) ÅCell parameters from 5622 reflections
b = 21.7246 (19) Åθ = 1.9–31.2°
c = 9.4531 (9) ŵ = 0.08 mm1
β = 94.763 (9)°T = 296 K
V = 1894.0 (3) Å3Block, colourless
Z = 40.30 × 0.24 × 0.23 mm
Data collection top
Rigaku Saturn724
diffractometer
2221 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.066
φ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick,2003)
h = 911
Tmin = 0.956, Tmax = 0.982k = 2828
23094 measured reflectionsl = 1212
4348 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.2089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.195(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.16 e Å3
4348 reflectionsΔρmin = 0.15 e Å3
247 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraintsExtinction coefficient: 0.011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1191 (3)0.41234 (15)0.8098 (3)0.0714 (6)0.880 (3)
C1110.2407 (5)0.37948 (19)0.7606 (5)0.1196 (16)0.880 (3)
H11A0.32750.40320.78050.179*0.880 (3)
H11B0.22470.37280.66020.179*0.880 (3)
H11C0.25090.34050.80840.179*0.880 (3)
C1120.0119 (5)0.3773 (2)0.7788 (5)0.1315 (16)0.880 (3)
H11D0.00680.34000.83360.197*0.880 (3)
H11E0.02240.36730.67960.197*0.880 (3)
H11F0.09370.40110.80260.197*0.880 (3)
C10.1396 (3)0.42760 (13)0.9570 (3)0.0735 (9)0.880 (3)
H1A0.16550.39061.01070.088*0.880 (3)
H1B0.04880.44270.98800.088*0.880 (3)
C20.2551 (7)0.47531 (13)0.9896 (4)0.0849 (9)0.880 (3)
H2A0.26460.48401.09060.102*0.880 (3)
H2B0.34760.46020.96270.102*0.880 (3)
O110.21492 (17)0.53133 (7)0.91034 (17)0.0686 (5)0.880 (3)
N210.1334 (19)0.4120 (9)0.8101 (19)0.0714 (6)0.120 (3)
C2120.143 (3)0.3597 (14)0.718 (3)0.1196 (16)0.120 (3)
H21A0.21890.36630.65620.179*0.120 (3)
H21B0.05230.35450.66140.179*0.120 (3)
H21C0.16340.32330.77340.179*0.120 (3)
C2110.012 (2)0.4041 (15)0.895 (3)0.1315 (16)0.120 (3)
H21D0.02930.36400.87790.197*0.120 (3)
H21E0.05930.43500.87030.197*0.120 (3)
H21F0.04520.40790.99380.197*0.120 (3)
C210.2645 (18)0.4226 (5)0.897 (2)0.0735 (9)0.120 (3)
H21G0.34270.42950.83690.088*0.120 (3)
H21H0.28790.38610.95360.088*0.120 (3)
C220.255 (5)0.4768 (5)0.9950 (18)0.0849 (9)0.120 (3)
H22A0.18330.46901.06190.102*0.120 (3)
H22B0.34820.48331.04830.102*0.120 (3)
O210.21492 (17)0.53133 (7)0.91034 (17)0.0686 (5)0.120 (3)
C110.3078 (3)0.55286 (10)0.8243 (2)0.0560 (6)
O120.42714 (18)0.53231 (8)0.81288 (19)0.0774 (6)
C120.2500 (2)0.61174 (9)0.7481 (2)0.0519 (5)
O130.09551 (14)0.61353 (6)0.73420 (15)0.0549 (4)
C140.0256 (2)0.56650 (10)0.6483 (2)0.0603 (6)
H14A0.05150.52630.68740.072*
H14B0.05630.56860.55280.072*
C150.1296 (3)0.57546 (11)0.6453 (2)0.0603 (6)
C160.2545 (3)0.58165 (14)0.6416 (3)0.0869 (9)
H160.35450.58660.63860.104*
C1210.3093 (2)0.61909 (10)0.6028 (2)0.0538 (6)
C1220.3424 (2)0.56994 (11)0.5191 (3)0.0654 (7)
H1220.33670.53010.55430.079*
C1230.3841 (3)0.57906 (14)0.3833 (3)0.0804 (8)
H1230.40620.54540.32830.096*
C1240.3928 (3)0.63714 (17)0.3298 (3)0.0898 (9)
H1240.42130.64310.23880.108*
C1250.3594 (3)0.68648 (15)0.4108 (3)0.0889 (9)
H1250.36380.72610.37400.107*
C1260.3192 (3)0.67781 (12)0.5471 (3)0.0725 (7)
H1260.29860.71170.60190.087*
C1310.2994 (2)0.66400 (10)0.8497 (2)0.0571 (6)
C1320.4459 (3)0.67502 (12)0.8790 (3)0.0843 (8)
H1320.51320.65090.83650.101*
C1330.4930 (4)0.72146 (15)0.9706 (3)0.0987 (10)
H1330.59180.72880.98890.118*
C1340.3965 (4)0.75646 (13)1.0342 (3)0.0952 (10)
H1340.42890.78761.09660.114*
C1350.2507 (4)0.74606 (13)1.0068 (3)0.0933 (9)
H1350.18430.77041.04980.112*
C1360.2019 (3)0.69943 (11)0.9152 (3)0.0730 (7)
H1360.10300.69210.89800.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0713 (16)0.0745 (13)0.0683 (14)0.0059 (11)0.0060 (11)0.0046 (10)
C1110.122 (4)0.109 (3)0.135 (4)0.016 (3)0.047 (3)0.014 (3)
C1120.108 (3)0.154 (4)0.126 (4)0.034 (3)0.028 (3)0.019 (3)
C10.079 (2)0.0749 (18)0.0674 (19)0.0072 (15)0.0104 (15)0.0114 (14)
C20.097 (2)0.0824 (18)0.0710 (18)0.0109 (15)0.0182 (15)0.0298 (14)
O110.0646 (11)0.0706 (10)0.0701 (11)0.0038 (8)0.0022 (8)0.0146 (8)
N210.0713 (16)0.0745 (13)0.0683 (14)0.0059 (11)0.0060 (11)0.0046 (10)
C2120.122 (4)0.109 (3)0.135 (4)0.016 (3)0.047 (3)0.014 (3)
C2110.108 (3)0.154 (4)0.126 (4)0.034 (3)0.028 (3)0.019 (3)
C210.079 (2)0.0749 (18)0.0674 (19)0.0072 (15)0.0104 (15)0.0114 (14)
C220.097 (2)0.0824 (18)0.0710 (18)0.0109 (15)0.0182 (15)0.0298 (14)
O210.0646 (11)0.0706 (10)0.0701 (11)0.0038 (8)0.0022 (8)0.0146 (8)
C110.0462 (14)0.0603 (13)0.0602 (14)0.0003 (11)0.0033 (11)0.0009 (11)
O120.0573 (12)0.0861 (12)0.0880 (13)0.0196 (9)0.0010 (9)0.0147 (9)
C120.0402 (13)0.0560 (12)0.0589 (13)0.0006 (9)0.0005 (10)0.0000 (10)
O130.0403 (9)0.0568 (9)0.0667 (10)0.0001 (6)0.0008 (7)0.0052 (7)
C140.0474 (14)0.0655 (14)0.0664 (15)0.0069 (10)0.0039 (11)0.0062 (11)
C150.0486 (15)0.0732 (15)0.0586 (14)0.0082 (11)0.0019 (11)0.0039 (11)
C160.0495 (17)0.114 (2)0.096 (2)0.0066 (15)0.0000 (14)0.0089 (17)
C1210.0366 (12)0.0597 (13)0.0647 (14)0.0012 (9)0.0015 (10)0.0031 (11)
C1220.0579 (15)0.0708 (15)0.0680 (16)0.0038 (11)0.0078 (12)0.0023 (12)
C1230.0661 (18)0.104 (2)0.0729 (18)0.0116 (15)0.0140 (13)0.0018 (16)
C1240.072 (2)0.125 (3)0.0751 (19)0.0081 (17)0.0218 (15)0.0191 (19)
C1250.082 (2)0.090 (2)0.095 (2)0.0066 (16)0.0172 (17)0.0297 (18)
C1260.0689 (17)0.0704 (16)0.0783 (18)0.0006 (12)0.0058 (13)0.0116 (13)
C1310.0549 (15)0.0526 (12)0.0626 (14)0.0033 (10)0.0025 (11)0.0016 (10)
C1320.0567 (17)0.0823 (18)0.111 (2)0.0084 (13)0.0133 (15)0.0131 (16)
C1330.087 (2)0.088 (2)0.115 (3)0.0243 (18)0.0298 (19)0.0037 (19)
C1340.133 (3)0.0632 (17)0.083 (2)0.0200 (19)0.029 (2)0.0020 (14)
C1350.115 (3)0.0709 (18)0.093 (2)0.0019 (17)0.0038 (19)0.0187 (15)
C1360.0724 (17)0.0671 (15)0.0790 (17)0.0037 (13)0.0039 (14)0.0103 (13)
Geometric parameters (Å, º) top
N1—C11.428 (4)C12—O131.426 (2)
N1—C1121.442 (5)C12—C1211.529 (3)
N1—C1111.442 (4)C12—C1311.532 (3)
C111—H11A0.9600O13—C141.426 (2)
C111—H11B0.9600C14—C151.447 (3)
C111—H11C0.9600C14—H14A0.9700
C112—H11D0.9600C14—H14B0.9700
C112—H11E0.9600C15—C161.161 (3)
C112—H11F0.9600C16—H160.9300
C1—C21.502 (6)C121—C1221.378 (3)
C1—H1A0.9700C121—C1261.386 (3)
C1—H1B0.9700C122—C1231.385 (3)
C2—O111.461 (3)C122—H1220.9300
C2—H2A0.9700C123—C1241.364 (4)
C2—H2B0.9700C123—H1230.9300
O11—C111.317 (3)C124—C1251.367 (4)
N21—C211.428 (6)C124—H1240.9300
N21—C2111.441 (7)C125—C1261.384 (3)
N21—C2121.442 (6)C125—H1250.9300
C212—H21A0.9600C126—H1260.9300
C212—H21B0.9600C131—C1361.372 (3)
C212—H21C0.9600C131—C1321.382 (3)
C211—H21D0.9600C132—C1331.377 (4)
C211—H21E0.9600C132—H1320.9300
C211—H21F0.9600C133—C1341.352 (4)
C21—C221.503 (8)C133—H1330.9300
C21—H21G0.9700C134—C1351.371 (4)
C21—H21H0.9700C134—H1340.9300
C22—H22A0.9700C135—C1361.384 (3)
C22—H22B0.9700C135—H1350.9300
C11—O121.204 (2)C136—H1360.9300
C11—C121.542 (3)
C1—N1—C112111.3 (3)O12—C11—C12123.4 (2)
C1—N1—C111112.7 (3)O11—C11—C12111.37 (19)
C112—N1—C111109.8 (4)O13—C12—C121110.28 (16)
N1—C111—H11A109.5O13—C12—C131106.39 (16)
N1—C111—H11B109.5C121—C12—C131112.03 (17)
H11A—C111—H11B109.5O13—C12—C11111.83 (17)
N1—C111—H11C109.5C121—C12—C11111.72 (17)
H11A—C111—H11C109.5C131—C12—C11104.35 (17)
H11B—C111—H11C109.5C12—O13—C14115.91 (15)
N1—C112—H11D109.5O13—C14—C15108.50 (18)
N1—C112—H11E109.5O13—C14—H14A110.0
H11D—C112—H11E109.5C15—C14—H14A110.0
N1—C112—H11F109.5O13—C14—H14B110.0
H11D—C112—H11F109.5C15—C14—H14B110.0
H11E—C112—H11F109.5H14A—C14—H14B108.4
N1—C1—C2113.3 (3)C16—C15—C14178.7 (3)
N1—C1—H1A108.9C15—C16—H16180.0
C2—C1—H1A108.9C122—C121—C126118.0 (2)
N1—C1—H1B108.9C122—C121—C12123.23 (19)
C2—C1—H1B108.9C126—C121—C12118.5 (2)
H1A—C1—H1B107.7C121—C122—C123120.9 (2)
O11—C2—C1108.8 (3)C121—C122—H122119.6
O11—C2—H2A109.9C123—C122—H122119.6
C1—C2—H2A109.9C124—C123—C122120.4 (3)
O11—C2—H2B109.9C124—C123—H123119.8
C1—C2—H2B109.9C122—C123—H123119.8
H2A—C2—H2B108.3C123—C124—C125119.6 (3)
C11—O11—C2117.4 (3)C123—C124—H124120.2
C21—N21—C211111.1 (8)C125—C124—H124120.2
C21—N21—C212112.7 (8)C124—C125—C126120.4 (3)
C211—N21—C212109.4 (8)C124—C125—H125119.8
N21—C212—H21A109.5C126—C125—H125119.8
N21—C212—H21B109.5C125—C126—C121120.7 (3)
H21A—C212—H21B109.5C125—C126—H126119.6
N21—C212—H21C109.5C121—C126—H126119.6
H21A—C212—H21C109.5C136—C131—C132118.9 (2)
H21B—C212—H21C109.5C136—C131—C12121.7 (2)
N21—C211—H21D109.5C132—C131—C12119.4 (2)
N21—C211—H21E109.5C133—C132—C131120.5 (3)
H21D—C211—H21E109.5C133—C132—H132119.8
N21—C211—H21F109.5C131—C132—H132119.8
H21D—C211—H21F109.5C134—C133—C132120.4 (3)
H21E—C211—H21F109.5C134—C133—H133119.8
N21—C21—C22113.1 (9)C132—C133—H133119.8
N21—C21—H21G109.0C133—C134—C135120.0 (3)
C22—C21—H21G109.0C133—C134—H134120.0
N21—C21—H21H109.0C135—C134—H134120.0
C22—C21—H21H109.0C134—C135—C136120.2 (3)
H21G—C21—H21H107.8C134—C135—H135119.9
C21—C22—H22A109.9C136—C135—H135119.9
C21—C22—H22B109.9C131—C136—C135120.0 (3)
H22A—C22—H22B108.3C131—C136—H136120.0
O12—C11—O11125.0 (2)C135—C136—H136120.0
C112—N1—C1—C2167.3 (4)C11—C12—C121—C126153.9 (2)
C111—N1—C1—C268.9 (4)C126—C121—C122—C1230.1 (3)
N1—C1—C2—O1159.5 (5)C12—C121—C122—C123174.4 (2)
C1—C2—O11—C11123.1 (4)C121—C122—C123—C1240.1 (4)
C211—N21—C21—C2256 (2)C122—C123—C124—C1250.3 (4)
C212—N21—C21—C22180 (2)C123—C124—C125—C1261.0 (5)
C2—O11—C11—O125.2 (3)C124—C125—C126—C1211.3 (4)
C2—O11—C11—C12179.8 (2)C122—C121—C126—C1250.8 (4)
O12—C11—C12—O13157.8 (2)C12—C121—C126—C125174.0 (2)
O11—C11—C12—O1327.0 (2)O13—C12—C131—C1364.0 (3)
O12—C11—C12—C12133.6 (3)C121—C12—C131—C136124.6 (2)
O11—C11—C12—C121151.20 (18)C11—C12—C131—C136114.3 (2)
O12—C11—C12—C13187.6 (3)O13—C12—C131—C132177.5 (2)
O11—C11—C12—C13187.6 (2)C121—C12—C131—C13256.9 (3)
C121—C12—O13—C1461.1 (2)C11—C12—C131—C13264.2 (3)
C131—C12—O13—C14177.23 (17)C136—C131—C132—C1331.0 (4)
C11—C12—O13—C1463.9 (2)C12—C131—C132—C133179.6 (2)
C12—O13—C14—C15179.68 (16)C131—C132—C133—C1340.7 (5)
O13—C12—C121—C12293.5 (2)C132—C133—C134—C1350.5 (5)
C131—C12—C121—C122148.2 (2)C133—C134—C135—C1360.7 (4)
C11—C12—C121—C12231.6 (3)C132—C131—C136—C1351.2 (4)
O13—C12—C121—C12681.1 (2)C12—C131—C136—C135179.7 (2)
C131—C12—C121—C12637.2 (3)C134—C135—C136—C1311.0 (4)
N,N-Dimethyl-[2-(2,2-diphenyl)-2-prop-2-ynyloxyacetoxy]ethylammonium 2,4,6-trinitrophenolate (II) top
Crystal data top
C21H24NO3·C6H2N3O7Z = 2
Mr = 566.52F(000) = 592
Triclinic, P1Dx = 1.397 Mg m3
a = 7.5208 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3919 (3) ÅCell parameters from 4348 reflections
c = 22.2282 (7) Åθ = 2.4–27.6°
α = 85.099 (3)°µ = 0.11 mm1
β = 84.294 (3)°T = 296 K
γ = 75.117 (3)°Block, colourless
V = 1346.51 (9) Å30.23 × 0.21 × 0.21 mm
Data collection top
Rigaku Saturn724
diffractometer
4973 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.033
φ and ω scansθmax = 31.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick,2003)
h = 1010
Tmin = 0.949, Tmax = 0.978k = 129
18671 measured reflectionsl = 3131
7547 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.2103P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7547 reflectionsΔρmax = 0.27 e Å3
390 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6256 (10)0.4825 (7)0.6843 (3)0.0517 (9)0.654 (11)
H10.75020.42530.66890.062*0.654 (11)
C1110.5676 (10)0.3670 (6)0.7326 (4)0.0770 (17)0.654 (11)
H11A0.58260.26120.71660.115*0.654 (11)
H11B0.44030.41050.74610.115*0.654 (11)
H11C0.64240.35500.76600.115*0.654 (11)
C1120.5108 (16)0.5096 (11)0.6316 (3)0.0809 (18)0.654 (11)
H11D0.38340.55280.64510.121*0.654 (11)
H11E0.52520.40670.61360.121*0.654 (11)
H11F0.54990.58700.60220.121*0.654 (11)
C10.6438 (8)0.6401 (8)0.7067 (4)0.0500 (9)0.654 (11)
H1A0.71690.69030.67600.060*0.654 (11)
H1B0.71230.61330.74250.060*0.654 (11)
C20.4667 (11)0.7662 (7)0.7221 (4)0.0448 (9)0.654 (11)
H2A0.49310.86870.73080.054*0.654 (11)
H2B0.39070.78820.68810.054*0.654 (11)
O110.36983 (14)0.70288 (12)0.77457 (5)0.0435 (3)0.654 (11)
N210.612 (2)0.4863 (14)0.6728 (5)0.0517 (9)0.346 (11)
H210.73350.41770.65990.062*0.346 (11)
C2110.5119 (18)0.3703 (13)0.7068 (6)0.0770 (17)0.346 (11)
H21A0.39180.43100.72200.115*0.346 (11)
H21B0.58040.31520.74010.115*0.346 (11)
H21C0.49920.29010.68030.115*0.346 (11)
C2120.526 (3)0.558 (2)0.6156 (6)0.0809 (18)0.346 (11)
H21D0.58390.64150.59750.121*0.346 (11)
H21E0.39660.60540.62450.121*0.346 (11)
H21F0.54240.47200.58810.121*0.346 (11)
C210.6478 (14)0.6122 (18)0.7103 (7)0.0500 (9)0.346 (11)
H21G0.74600.65560.68900.060*0.346 (11)
H21H0.69320.55660.74790.060*0.346 (11)
C220.488 (2)0.7555 (13)0.7256 (7)0.0448 (9)0.346 (11)
H22A0.53270.84550.73780.054*0.346 (11)
H22B0.41870.79450.69040.054*0.346 (11)
O210.36983 (14)0.70288 (12)0.77457 (5)0.0435 (3)0.346 (11)
C110.2198 (2)0.81409 (17)0.79625 (6)0.0359 (3)
O120.16787 (16)0.94998 (13)0.77343 (5)0.0506 (3)
C120.13145 (19)0.74885 (17)0.85597 (6)0.0335 (3)
O130.04211 (13)0.86286 (12)0.87024 (4)0.0367 (2)
C140.1829 (2)0.8619 (2)0.83189 (8)0.0481 (4)
H14A0.21760.75770.83860.058*
H14B0.13650.87250.78980.058*
C150.3429 (2)0.9967 (2)0.84437 (7)0.0472 (4)
C160.4802 (3)1.0991 (3)0.85172 (10)0.0723 (6)
H160.58941.18060.85760.087*
C1210.25642 (19)0.75762 (17)0.90515 (6)0.0348 (3)
C1220.2015 (2)0.87452 (19)0.94821 (7)0.0421 (4)
H1220.08680.94970.94730.051*
C1230.3161 (3)0.8801 (2)0.99240 (8)0.0543 (4)
H1230.27720.95801.02140.065*
C1240.4869 (3)0.7715 (3)0.99388 (9)0.0593 (5)
H1240.56380.77621.02360.071*
C1250.5439 (2)0.6557 (2)0.95124 (9)0.0568 (5)
H1250.66000.58260.95190.068*
C1260.4292 (2)0.6476 (2)0.90731 (8)0.0471 (4)
H1260.46800.56780.87900.056*
C1310.1025 (2)0.57518 (17)0.85444 (6)0.0357 (3)
C1320.0746 (2)0.48827 (19)0.90896 (7)0.0443 (4)
H1320.08710.53130.94510.053*
C1330.0288 (3)0.3393 (2)0.91052 (8)0.0537 (4)
H1330.00970.28320.94750.064*
C1340.0110 (3)0.2730 (2)0.85755 (9)0.0540 (4)
H1340.02010.17240.85870.065*
C1350.0395 (2)0.3566 (2)0.80287 (8)0.0497 (4)
H1350.02950.31160.76690.060*
C1360.0830 (2)0.50791 (19)0.80123 (7)0.0424 (4)
H1360.09940.56480.76420.051*
C311.0191 (2)0.18823 (19)0.61774 (7)0.0424 (4)
O310.93492 (18)0.25416 (15)0.66415 (5)0.0584 (3)
C321.0549 (2)0.01354 (19)0.60957 (7)0.0426 (4)
N320.9763 (2)0.08842 (19)0.65583 (6)0.0529 (4)
O320.8237 (2)0.03049 (19)0.68053 (7)0.0753 (4)
O331.0676 (2)0.22946 (16)0.66751 (6)0.0688 (4)
C331.1556 (2)0.0640 (2)0.56099 (7)0.0450 (4)
H331.17500.17730.55850.054*
C341.2283 (2)0.0300 (2)0.51549 (7)0.0435 (4)
N341.3347 (2)0.0478 (2)0.46332 (7)0.0558 (4)
O341.3586 (2)0.19701 (19)0.46114 (7)0.0872 (5)
O351.3986 (2)0.0377 (2)0.42408 (6)0.0740 (4)
C351.2027 (2)0.1978 (2)0.51881 (7)0.0438 (4)
H351.25390.25900.48820.053*
C361.1010 (2)0.27324 (19)0.56788 (7)0.0429 (4)
N361.0748 (2)0.45097 (18)0.56790 (7)0.0525 (4)
O361.1884 (2)0.51340 (17)0.53894 (7)0.0749 (4)
O370.9371 (2)0.53363 (16)0.59497 (7)0.0786 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (13)0.0446 (9)0.057 (2)0.0052 (9)0.0087 (16)0.0119 (13)
C1110.074 (4)0.0484 (13)0.099 (4)0.012 (2)0.027 (3)0.006 (3)
C1120.080 (2)0.080 (5)0.082 (4)0.004 (3)0.015 (4)0.038 (3)
C10.0448 (9)0.050 (2)0.0532 (12)0.0107 (12)0.0077 (9)0.0113 (16)
C20.048 (2)0.0416 (11)0.0435 (12)0.0126 (11)0.0092 (14)0.0078 (8)
O110.0461 (6)0.0387 (6)0.0399 (5)0.0045 (5)0.0090 (5)0.0042 (4)
N210.0486 (13)0.0446 (9)0.057 (2)0.0052 (9)0.0087 (16)0.0119 (13)
C2110.074 (4)0.0484 (13)0.099 (4)0.012 (2)0.027 (3)0.006 (3)
C2120.080 (2)0.080 (5)0.082 (4)0.004 (3)0.015 (4)0.038 (3)
C210.0448 (9)0.050 (2)0.0532 (12)0.0107 (12)0.0077 (9)0.0113 (16)
C220.048 (2)0.0416 (11)0.0435 (12)0.0126 (11)0.0092 (14)0.0078 (8)
O210.0461 (6)0.0387 (6)0.0399 (5)0.0045 (5)0.0090 (5)0.0042 (4)
C110.0409 (7)0.0302 (7)0.0364 (7)0.0080 (6)0.0004 (6)0.0075 (6)
O120.0616 (7)0.0322 (6)0.0510 (6)0.0049 (5)0.0082 (6)0.0000 (5)
C120.0359 (7)0.0290 (7)0.0339 (7)0.0051 (6)0.0007 (6)0.0065 (5)
O130.0348 (5)0.0349 (5)0.0388 (5)0.0034 (4)0.0026 (4)0.0105 (4)
C140.0429 (8)0.0521 (10)0.0487 (9)0.0054 (7)0.0086 (7)0.0133 (7)
C150.0421 (8)0.0545 (10)0.0431 (8)0.0085 (8)0.0046 (7)0.0029 (7)
C160.0510 (11)0.0828 (15)0.0684 (13)0.0096 (10)0.0043 (10)0.0039 (11)
C1210.0382 (7)0.0324 (7)0.0353 (7)0.0126 (6)0.0000 (6)0.0021 (5)
C1220.0470 (8)0.0407 (8)0.0404 (8)0.0128 (7)0.0029 (7)0.0075 (6)
C1230.0671 (11)0.0556 (11)0.0463 (9)0.0224 (9)0.0085 (8)0.0102 (8)
C1240.0611 (11)0.0720 (13)0.0535 (10)0.0282 (10)0.0186 (9)0.0002 (9)
C1250.0436 (9)0.0635 (12)0.0617 (11)0.0107 (8)0.0124 (8)0.0069 (9)
C1260.0444 (8)0.0451 (9)0.0489 (9)0.0054 (7)0.0041 (7)0.0047 (7)
C1310.0365 (7)0.0306 (7)0.0389 (7)0.0065 (6)0.0001 (6)0.0060 (6)
C1320.0551 (9)0.0370 (8)0.0417 (8)0.0146 (7)0.0026 (7)0.0051 (6)
C1330.0647 (11)0.0384 (9)0.0575 (10)0.0171 (8)0.0051 (9)0.0012 (7)
C1340.0572 (10)0.0334 (8)0.0741 (12)0.0151 (8)0.0045 (9)0.0078 (8)
C1350.0547 (10)0.0379 (9)0.0589 (10)0.0094 (8)0.0123 (8)0.0148 (7)
C1360.0496 (9)0.0359 (8)0.0419 (8)0.0091 (7)0.0057 (7)0.0058 (6)
C310.0410 (8)0.0420 (8)0.0398 (8)0.0002 (7)0.0074 (6)0.0044 (6)
O310.0670 (8)0.0537 (7)0.0424 (6)0.0041 (6)0.0043 (6)0.0061 (5)
C320.0416 (8)0.0405 (8)0.0443 (8)0.0074 (7)0.0084 (7)0.0011 (6)
N320.0600 (9)0.0550 (9)0.0464 (8)0.0180 (8)0.0134 (7)0.0032 (6)
O320.0622 (9)0.0881 (11)0.0710 (9)0.0208 (8)0.0053 (7)0.0144 (8)
O330.0942 (10)0.0463 (7)0.0640 (8)0.0138 (7)0.0185 (7)0.0094 (6)
C330.0454 (8)0.0371 (8)0.0520 (9)0.0041 (7)0.0133 (7)0.0073 (7)
C340.0393 (8)0.0450 (9)0.0441 (8)0.0031 (7)0.0043 (7)0.0124 (7)
N340.0474 (8)0.0617 (10)0.0562 (9)0.0045 (7)0.0035 (7)0.0219 (8)
O340.0967 (12)0.0629 (9)0.0981 (12)0.0099 (8)0.0170 (9)0.0424 (8)
O350.0716 (9)0.0897 (11)0.0557 (8)0.0140 (8)0.0126 (7)0.0159 (7)
C350.0423 (8)0.0445 (9)0.0428 (8)0.0071 (7)0.0033 (7)0.0037 (6)
C360.0465 (8)0.0358 (8)0.0451 (8)0.0061 (7)0.0056 (7)0.0057 (6)
N360.0639 (9)0.0414 (8)0.0504 (8)0.0098 (7)0.0026 (7)0.0064 (6)
O360.0896 (10)0.0533 (8)0.0851 (10)0.0293 (8)0.0079 (9)0.0052 (7)
O370.0959 (11)0.0432 (7)0.0824 (10)0.0016 (7)0.0185 (8)0.0132 (7)
Geometric parameters (Å, º) top
N1—C1111.492 (3)C16—H160.9300
N1—C1121.492 (4)C121—C1221.387 (2)
N1—C11.495 (3)C121—C1261.390 (2)
N1—H10.9800C122—C1231.381 (2)
C111—H11A0.9600C122—H1220.9300
C111—H11B0.9600C123—C1241.373 (3)
C111—H11C0.9600C123—H1230.9300
C112—H11D0.9600C124—C1251.374 (3)
C112—H11E0.9600C124—H1240.9300
C112—H11F0.9600C125—C1261.383 (2)
C1—C21.503 (3)C125—H1250.9300
C1—H1A0.9700C126—H1260.9300
C1—H1B0.9700C131—C1321.386 (2)
C2—O111.447 (3)C131—C1361.389 (2)
C2—H2A0.9700C132—C1331.376 (2)
C2—H2B0.9700C132—H1320.9300
O11—C111.3432 (16)C133—C1341.377 (3)
N21—C2111.489 (5)C133—H1330.9300
N21—C2121.490 (5)C134—C1351.377 (3)
N21—C211.493 (4)C134—H1340.9300
N21—H210.9800C135—C1361.387 (2)
C211—H21A0.9600C135—H1350.9300
C211—H21B0.9600C136—H1360.9300
C211—H21C0.9600C31—O311.2486 (17)
C212—H21D0.9600C31—C361.439 (2)
C212—H21E0.9600C31—C321.445 (2)
C212—H21F0.9600C32—C331.367 (2)
C21—C221.502 (4)C32—N321.459 (2)
C21—H21G0.9700N32—O321.220 (2)
C21—H21H0.9700N32—O331.2267 (19)
C22—H22A0.9700C33—C341.385 (2)
C22—H22B0.9700C33—H330.9300
C11—O121.1925 (17)C34—C351.379 (2)
C11—C121.546 (2)C34—N341.445 (2)
C12—O131.4311 (15)N34—O351.222 (2)
C12—C1211.529 (2)N34—O341.223 (2)
C12—C1311.532 (2)C35—C361.371 (2)
O13—C141.4261 (19)C35—H350.9300
C14—C151.447 (2)C36—N361.453 (2)
C14—H14A0.9700N36—O361.2170 (19)
C14—H14B0.9700N36—O371.2226 (18)
C15—C161.169 (2)
C111—N1—C112112.0 (3)C15—C14—H14A109.6
C111—N1—C1114.3 (3)O13—C14—H14B109.6
C112—N1—C1112.9 (3)C15—C14—H14B109.6
C111—N1—H1105.6H14A—C14—H14B108.1
C112—N1—H1105.6C16—C15—C14174.3 (2)
C1—N1—H1105.6C15—C16—H16180.0
N1—C111—H11A109.5C122—C121—C126118.53 (14)
N1—C111—H11B109.5C122—C121—C12121.32 (13)
H11A—C111—H11B109.5C126—C121—C12120.15 (13)
N1—C111—H11C109.5C123—C122—C121120.45 (15)
H11A—C111—H11C109.5C123—C122—H122119.8
H11B—C111—H11C109.5C121—C122—H122119.8
N1—C112—H11D109.5C124—C123—C122120.53 (16)
N1—C112—H11E109.5C124—C123—H123119.7
H11D—C112—H11E109.5C122—C123—H123119.7
N1—C112—H11F109.5C123—C124—C125119.72 (17)
H11D—C112—H11F109.5C123—C124—H124120.1
H11E—C112—H11F109.5C125—C124—H124120.1
N1—C1—C2116.3 (3)C124—C125—C126120.22 (17)
N1—C1—H1A108.2C124—C125—H125119.9
C2—C1—H1A108.2C126—C125—H125119.9
N1—C1—H1B108.2C125—C126—C121120.53 (15)
C2—C1—H1B108.2C125—C126—H126119.7
H1A—C1—H1B107.4C121—C126—H126119.7
O11—C2—C1108.8 (3)C132—C131—C136118.23 (14)
O11—C2—H2A109.9C132—C131—C12118.48 (13)
C1—C2—H2A109.9C136—C131—C12122.91 (13)
O11—C2—H2B109.9C133—C132—C131121.04 (15)
C1—C2—H2B109.9C133—C132—H132119.5
H2A—C2—H2B108.3C131—C132—H132119.5
C11—O11—C2113.4 (3)C132—C133—C134120.36 (16)
C211—N21—C212111.9 (6)C132—C133—H133119.8
C211—N21—C21114.3 (6)C134—C133—H133119.8
C212—N21—C21113.7 (5)C133—C134—C135119.54 (16)
C211—N21—H21105.3C133—C134—H134120.2
C212—N21—H21105.3C135—C134—H134120.2
C21—N21—H21105.3C134—C135—C136120.19 (16)
N21—C211—H21A109.5C134—C135—H135119.9
N21—C211—H21B109.5C136—C135—H135119.9
H21A—C211—H21B109.5C135—C136—C131120.62 (15)
N21—C211—H21C109.5C135—C136—H136119.7
H21A—C211—H21C109.5C131—C136—H136119.7
H21B—C211—H21C109.5O31—C31—C36124.73 (15)
N21—C212—H21D109.5O31—C31—C32123.31 (15)
N21—C212—H21E109.5C36—C31—C32111.87 (13)
H21D—C212—H21E109.5C33—C32—C31124.78 (15)
N21—C212—H21F109.5C33—C32—N32117.05 (14)
H21D—C212—H21F109.5C31—C32—N32118.17 (14)
H21E—C212—H21F109.5O32—N32—O33123.34 (16)
N21—C21—C22116.8 (6)O32—N32—C32118.84 (15)
N21—C21—H21G108.1O33—N32—C32117.82 (15)
C22—C21—H21G108.1C32—C33—C34118.50 (15)
N21—C21—H21H108.1C32—C33—H33120.8
C22—C21—H21H108.1C34—C33—H33120.8
H21G—C21—H21H107.3C35—C34—C33121.46 (14)
C21—C22—H22A109.9C35—C34—N34118.57 (15)
C21—C22—H22B109.9C33—C34—N34119.97 (15)
H22A—C22—H22B108.3O35—N34—O34123.21 (15)
O12—C11—O11123.37 (13)O35—N34—C34118.67 (15)
O12—C11—C12124.45 (13)O34—N34—C34118.12 (17)
O11—C11—C12112.07 (11)C36—C35—C34119.12 (15)
O13—C12—C121106.58 (10)C36—C35—H35120.4
O13—C12—C131109.47 (11)C34—C35—H35120.4
C121—C12—C131111.76 (11)C35—C36—C31124.26 (14)
O13—C12—C11108.04 (11)C35—C36—N36116.46 (15)
C121—C12—C11105.98 (11)C31—C36—N36119.27 (13)
C131—C12—C11114.62 (11)O36—N36—O37122.06 (15)
C14—O13—C12114.74 (10)O36—N36—C36118.51 (14)
O13—C14—C15110.22 (13)O37—N36—C36119.38 (15)
O13—C14—H14A109.6
C111—N1—C1—C275.6 (5)C11—C12—C131—C13625.2 (2)
C112—N1—C1—C254.0 (6)C136—C131—C132—C1330.0 (2)
N1—C1—C2—O1167.3 (7)C12—C131—C132—C133173.15 (15)
C1—C2—O11—C11172.8 (4)C131—C132—C133—C1340.5 (3)
C211—N21—C21—C2277.1 (10)C132—C133—C134—C1350.1 (3)
C212—N21—C21—C2253.1 (12)C133—C134—C135—C1361.0 (3)
C2—O11—C11—O122.3 (5)C134—C135—C136—C1311.4 (3)
C2—O11—C11—C12174.0 (5)C132—C131—C136—C1350.9 (2)
O12—C11—C12—O1313.1 (2)C12—C131—C136—C135173.77 (14)
O11—C11—C12—O13170.68 (11)O31—C31—C32—C33176.05 (16)
O12—C11—C12—C121100.86 (17)C36—C31—C32—C330.6 (2)
O11—C11—C12—C12175.41 (14)O31—C31—C32—N324.9 (2)
O12—C11—C12—C131135.39 (16)C36—C31—C32—N32178.42 (13)
O11—C11—C12—C13148.34 (17)C33—C32—N32—O32142.86 (17)
C121—C12—O13—C14174.95 (12)C31—C32—N32—O3236.3 (2)
C131—C12—O13—C1453.92 (15)C33—C32—N32—O3336.5 (2)
C11—C12—O13—C1471.53 (15)C31—C32—N32—O33144.32 (16)
C12—O13—C14—C15171.72 (13)C31—C32—C33—C340.7 (2)
O13—C12—C121—C1227.05 (18)N32—C32—C33—C34178.39 (14)
C131—C12—C121—C122126.61 (14)C32—C33—C34—C350.8 (2)
C11—C12—C121—C122107.87 (15)C32—C33—C34—N34179.70 (14)
O13—C12—C121—C126173.18 (13)C35—C34—N34—O350.1 (2)
C131—C12—C121—C12653.63 (17)C33—C34—N34—O35179.37 (15)
C11—C12—C121—C12671.90 (16)C35—C34—N34—O34179.07 (16)
C126—C121—C122—C1230.5 (2)C33—C34—N34—O340.4 (2)
C12—C121—C122—C123179.77 (14)C33—C34—C35—C360.9 (2)
C121—C122—C123—C1240.9 (3)N34—C34—C35—C36179.57 (15)
C122—C123—C124—C1250.4 (3)C34—C35—C36—C310.9 (2)
C123—C124—C125—C1260.6 (3)C34—C35—C36—N36178.34 (14)
C124—C125—C126—C1211.0 (3)O31—C31—C36—C35175.86 (16)
C122—C121—C126—C1250.4 (2)C32—C31—C36—C350.8 (2)
C12—C121—C126—C125179.32 (15)O31—C31—C36—N364.9 (2)
O13—C12—C131—C13276.50 (16)C32—C31—C36—N36178.50 (14)
C121—C12—C131—C13241.34 (17)C35—C36—N36—O3625.2 (2)
C11—C12—C131—C132161.95 (13)C31—C36—N36—O36155.44 (16)
O13—C12—C131—C13696.35 (16)C35—C36—N36—O37152.17 (16)
C121—C12—C131—C136145.81 (14)C31—C36—N36—O3727.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O310.981.722.633 (7)153
N1—H1···O370.982.333.010 (7)126
N21—H21···O310.981.772.697 (14)157
N21—H21···O370.982.342.944 (14)120
C2—H2B···O33i0.972.563.338 (9)137
C14—H14B···O32i0.972.523.407 (2)153
C135—H135···O31ii0.932.583.485 (2)165
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the DST–PURSE Lab (Mangalore University) for the diffractometer and other facilities. MAES thanks the University of Mysore for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science
First citationGlidewell, C., Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M. & Byrappa, K. (2017). Private communication (refcode 1569461). CCDC, Cambridge, England.
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals
First citationHarrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  Web of Science CSD CrossRef IUCr Journals
First citationHarrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.  Web of Science CSD CrossRef IUCr Journals
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals
First citationMatsushima, S., Inada, H., Asai, T., Naka, M. & Tanaka, T. (1997). Eur. J. Pharmacol. 333, 93–97.  CrossRef CAS PubMed Web of Science
First citationMishra, R., Siddiqui, A. A., Rashid, M., Ramesha, A. R., Rohini, R. M. & Khaidem, S. (2010). Pharma Chemica, 2, 185–194.  CAS
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds