research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

New monoclinic form of {O-Ethyl N-(4-nitro­phen­yl)thio­carbamato-κS}(tri-4-tolyl­phosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 September 2017; accepted 7 September 2017; online 15 September 2017)

The title phosphanegold(I) thiol­ate compound, [Au(C9H9N2O3S)(C21H21P)], is a second monoclinic polymorph (space group P21/c) that complements a previously reported Cc polymorph [Broker & Tiekink (2008[Broker, G. A. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1582.]). Acta Cryst. E64, m1582]. An SP donor set defines an approximately linear geometry about the gold atom in both forms. The key distinguishing feature between the present structure and the previously reported polymorph rests with the relative disposition of the thiol­ate ligand. In the title compound, the orientation is such to place the oxygen atom in close contact with the gold atom [Au⋯O = 2.915 (2) Å], in contrast to the aryl ring in the original polymorph. In the crystal, linear supra­molecular chains along the a-axis direction mediated by C–H⋯π and nitro-O⋯π inter­actions are found. These pack with no directional inter­actions between them. The analysis of the Hirshfeld surfaces for both forms of [Au(C9H9N3O3S)(C21H21P)] indicates quite distinctive inter­action profiles relating to the differences in inter­molecular contacts found in their respective crystals.

1. Chemical context

Phosphanegold(I) thiol­ates of the general formula R3PAu[SC(OR′)=NR′′], for R, R′ = alkyl, aryl and R′′ = aryl, have proven to exhibit exciting biological activities. For example, compounds of the type Ph3PAu[SC(OR)=NPh], R = Me, Et and i-Pr, induce G2/M cell cycle arrest in HT-29 cancer cells and exhibit tolerable toxicity based on experiments on zebrafish (Yeo, Ooi et al., 2013[Yeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24-38.]; Ooi et al., 2017[Ooi, K. K., Yeo, C. I., Mahandaran, T., Ang, K. P., Akim, A. M., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2017). J. Inorg. Biochem. 166, 173-181.]). Further, in vitro mechanistic investigations point to these compounds inducing both intrinsic and extrinsic pathways of cell death leading to apoptosis. In complementary studies on compounds with R′′ = 4-tolyl, quite promising in vitro potency against Gram-positive bacteria has been revealed (Yeo, Sim et al., 2013[Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145-152.]). However, such biological potential does not extend to activity against certain Acanthamoeba castellanii (Siddiqui et al., 2017[Siddiqui, R., Abjani, F., Yeo, C. I., Tiekink, E. R. T. & Khan, N. A. (2017). J. Neg. Res. Biomedicine, 16, article no. 6.]). The observed biological activity for this class of compound has necessitated synthesis and re-synthesis during the course of which various polymorphs (e.g. Yeo et al., 2016a[Yeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016a). Acta Cryst. E72, 1446-1452.]) and solvates (e.g. Yeo et al., 2016b[Yeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016b). Acta Cryst. E72, 1068-1073.]) have been revealed. Of particular inter­est has been the recent appearance of conformational polymorphs for these compounds.

Referring the conformation shown in the Scheme, most structures having the formula R3PAu[SC(OR′)=NR′′] display an intra­molecular Au⋯O inter­action. In an exercise in crystal engineering, it was argued that by moderating the electronic properties of the phosphane-bound and thiol­ate-N-bound groups, it was possible to direct a change in conformation so that an intra­molecular Au⋯π(ar­yl) inter­action formed instead of the Au⋯O contact (Kuan et al., 2008[Kuan, F. S., Yei Ho, S., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). Such Au⋯π(ar­yl) inter­actions are well established in the supra­molecular chemistry of mol­ecular gold compounds (Tiekink & Zukerman-Schpector, 2009[Tiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176-1186.]; Caracelli et al., 2013[Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81-89.]) and have important implications in mechanisms associated with catalytic gold (Lin & Hammond, 2012[Liu, L. P. & Hammond, G. B. (2012). Chem. Soc. Rev. 41, 3129-3139.]). As mentioned above, current inter­est in the biological activity of this class of compounds has prompted renewed synthesis and scale-up. Recently, a conformational polymorph was discovered during a check for sample purity, via powder X-ray diffraction, for a compound, Ph3PAu[SC(OEt)=NPh], that was originally reported in a form with an intra­molecular Au⋯O inter­action (Hall & Tiekink, 1993[Hall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr. 203, 313-315.]). The new polymorph featured an intra­molecular Au⋯π(ar­yl) inter­action instead, an observation ascribed to thermodynamic considerations (Yeo, Tan, Otero-de-la-Roza et al., 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231 653-661.]). Herein, as a continuation of structural studies of these compounds, a new polymorph for (4-tol)3PAu[SC(OEt)=NC6H4NO2-4] is reported which was reported originally in space group Cc with a Au⋯π(ar­yl) inter­action (Broker & Tiekink, 2008[Broker, G. A. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1582.]), but now with a Au⋯O inter­action. Herein, the crystal and mol­ecular structures of a P21/c polymorph of (4-tol)3PAu[SC(OEt)=NC6H4NO2-4], (I)[link], are described complemented by an analysis of the Hirshfeld surfaces calculated for (I)[link] and for the original Cc form, (II).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected inter­atomic parameters are collected in Table 1[link]. The gold(I) atom is coordinated by thiol­ate-S and phosphane-P atoms in a near linear geometry. The P1—Au—S angle of 175.80 (3)° deviates from the ideal 180°, an observation which might be ascribed to the formation of an intra­molecular Au⋯O inter­action of 2.915 (2) Å, which arises as the thiol­ate ligand is orientated to place the oxygen atom in close proximity to the gold atom. As is usual for these compounds, the Au—S bond is longer than the Au—P bond. The C1=N1 bond length of 1.259 (4) Å is consistent with significant double character in this bond and, by implication, the presence of a thiol­ate-S atom. These bond-length conclusions are vindicated by a comparison of the bond lengths found in the uncoordinated mol­ecule, i.e. EtOC(=S)N(H)C6H4NO2-4 (Benson et al., 2006[Benson, R. E., Broker, G. A., Daniels, L. M., Tiekink, E. R. T., Wardell, J. L. & Young, D. J. (2006). Acta Cryst. E62, o4106-o4108.]). Here, the C1=S1 and C1—N1 bond lengths are 1.672 (2) and 1.354 (3) Å, respectively, i.e. clearly shorter and longer than the related bond lengths in (I)[link]. The equivalent geometric parameters to those listed in Table 1[link] for the Cc polymorph (Broker & Tiekink, 2008[Broker, G. A. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1582.]) are equal within experimental error with one possible exception, being the P—Au—S angle, which at 174.54 (10)° appears to be narrower by about 1° than the equivalent angle in (I)[link], Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Au—P1 2.2611 (8) S1—C1 1.756 (3)
Au—S1 2.3105 (8) N1—C1 1.259 (4)
       
P1—Au—S1 175.80 (3) C1—S1—Au 100.18 (11)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The central S1, O1, N1 and C1 atoms of the thiol­ate ligand are strictly (r.m.s. deviation of the fitted atoms = 0.0008 Å) planar. The plane through the nitro­benzene ligand is orthogonal to the former plane, forming a dihedral angle of 89.67 (12)°. Finally, the nitro group is essentially co-planar with the ring to which it is connected, forming a dihedral angle of 4.7 (4)°.

The differences in conformation for (I)[link] and (II) are starkly highlighted in the overlay diagram shown in Fig. 2[link]. Some physical properties for the two forms, calculated in Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), are included in Table 2[link]. These data indicate significant differences between the mol­ecules comprising polymorphs (I)[link] and (II), most notably indicating the mol­ecule in (II) to be more compact, spherical and to have a greater density, all parameters consistent with this being the thermodynamically more stable form.

Table 2
A comparison of some physical properties between the mol­ecules in the polymorphs of (4-tol)3PAu[SC(OEt)=NC6H4NO2-4]

Mol­ecule Volume, V3) Area, A2) A:V Globularity, G Asphericity, Ω Dx'
P21/c form, (I) 714.31 603.78 0.845 0.640 0.117 1.663
Cc form, (II) 698.76 531.90 0.761 0.716 0.036 1.704
[Figure 2]
Figure 2
Overlay diagram of the mol­ecular structures found in (I)[link] (P21/c, red image) and (II) (Cc, blue) forms of (4-tol)3PAu[SC(OEt)=NC6H4NO2-4]. The mol­ecules have been overlapped so that the P—Au—S fragments are coincident.

3. Supra­molecular features

The geometric parameters defining the identified inter­molecular inter­actions are listed in Table 3[link]. The key feature of the mol­ecular packing is the formation of linear supra­molecular chains along the a-axis direction, Fig. 3[link]a. These are sustained by a combination of nitro­benzene-C—H⋯π(tol­yl) inter­actions as well as nitro-O⋯π(tol­yl) contacts, Fig. 3[link]b. For the latter, the nitro group lies over the ring, with the two residues being almost parallel, forming a dihedral angle = 7.4 (2)°. While comparatively rare, the latter inter­actions have been discussed in the crystallographic literature (Huang et al., 2008[Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720-13723.]).

Table 3
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.94 2.64 3.528 (4) 157
N2—O2⋯Cg2ii 1.22 (1) 3.55 (1) 83.1 (2) 4 (1)
N2—O3⋯Cg2ii 1.21 (1) 3.83 (1) 70.2 (2) 4 (1)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1.
[Figure 3]
Figure 3
Mol­ecular packing in (I)[link]: (a) a view of the linear supra­molecular chain sustained by nitro­benzene-C—H⋯π(tol­yl) inter­actions as well as nitro-O⋯π(tol­yl) contacts shown as purple and orange dashed lines, respectively (non-participating H atoms have been removed) and (b) a view of the unit-cell contents shown in projection down the a axis.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface calculations on polymorphic (I)[link] and (II) were performed in accord with recent related work (Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]). In short, the two monoclinic polymorphs reveal quite distinctive features in their Hirshfeld surfaces.

It is clearly evident from the Hirshfeld surfaces mapped over dnorm for forms (I)[link] and (II), Fig. 4[link], that the former conformation favours an intra­molecular Au⋯O contact while the latter, an intra­molecular Au⋯π(ar­yl) inter­action. In addition, the tiny red spots appearing near the nitro-O2 and tolyl-C11 atoms in Fig. 4[link]a indicate the significance of short inter-atomic C⋯O/O⋯C contacts, Table 4[link], in the packing of (I)[link]. The immediate environments about a reference mol­ecule within the shape-index mapped surface for (I)[link], Fig. 5[link]a, b, and the dnorm-mapped surface for (II), Fig. 5[link]c, are consistent with (I)[link] forming C—H⋯π and N—O⋯π inter­actions together with few short inter-atomic contacts in its packing, whereas the packing of (II) involves only a few short inter-atomic contacts, Table 4[link]. The donor and acceptor of the C—H⋯π(ar­yl) contact in (I)[link] appear as blue and bright-red regions around the participating atoms and highlighted with red and yellow dotted lines in Fig. 5[link]a. The inter­molecular nitro-O⋯π inter­action involving both nitro­benzene-O2 and O3 atoms with the same symmetrically located tolyl ring (C17–C22) are viewed as two adjoining blue and bright-orange regions in Fig. 5[link]b. The short inter-atomic S⋯H/H⋯S, C⋯H/H⋯C and O⋯H/H⋯O contacts influential in the structure of (II) are highlighted with black, red and yellow dashed lines, respectively, in Fig.5c.

Table 4
Summary of short inter-atomic contacts (Å) in (I)[link] and (II)

Contact Distance Symmetry operation
(I)    
O2⋯C11 3.175 (5) 1 − x, −y, 1 − z
H4⋯C12 2.89 x, −y, 1 − z
H4⋯C13 2.81 x, −y, 1 − z
H9B⋯H16B 2.38 x, 1 − y, 1 − z
(II)    
S1⋯H3A 2.97 x, 1 − y, −[{1\over 2}] + z
S1⋯H25A 2.88 x, 1 − y, [{1\over 2}] + z
C4⋯H18A 2.89 [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
C7⋯H2A 2.82 x, 1 − y, −[{1\over 2}] + z
O2⋯H30C 2.63 x, y, 1 + z
H12A⋯H30B 2.35 [{1\over 2}] + x, [{1\over 2}] + y, z
[Figure 4]
Figure 4
Views of the Hirshfeld surface mapped over dnorm for (a) (I)[link] in the range −0.003 to +1.441 au and (b) (II) in the range 0.007 to 1.513 au.
[Figure 5]
Figure 5
Views of the Hirshfeld surfaces about a reference mol­ecule mapped over (a) the shape-index property for (I)[link] showing C—H⋯π and its reciprocal, i.e. π⋯H—C, contacts as red and yellow dotted line, respectively, (b) the shape-index property for (I)[link] showing short inter-atomic C⋯O/O⋯C and C⋯H/H⋯C contacts as black and red dashed lines, respectively, and (c) over dnorm for (II) showing short inter-atomic C⋯H/H⋯C, S⋯H/H⋯S and O⋯H/H⋯O contacts as red, black and yellow dashed lines, respectively.

From the overall two-dimensional fingerprint plots for (I)[link] and (II), Fig. 6[link]a, it is apparent that the different orientations of the thiol­ate ligands significantly impact upon the observed features in the plots. This is also visible from the fingerprints delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 6[link]be, and in the relative percentage contributions from the different contacts to the Hirshfeld surfaces, as summarized in Table 5[link]. Although H⋯H contacts make dominant contributions of 50.1 and 55.2% to the Hirshfeld surfaces of (I)[link] and (II), respectively, the plot area and the distribution of characteristic points within the plots indicate different propensities to form such inter-atomic contacts, Fig. 6[link]b. The pair of small, closely situated peaks at de + di < 2.40 Å, i.e. the sum of two times the van der Waals radius of hydrogen, are observed for both the polymorphs and reflect short inter-atomic H⋯H contacts, Table 4[link].

Table 5
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (I)

    Percentage contribution
Contact (I) (II)
H⋯H 50.1 55.2
C⋯H/H⋯C 19.6 16.2
O⋯H/H⋯O 13.5 14.5
S⋯H/H⋯S 6.4 7.5
Au⋯H/H⋯Au 2.9 1.9
C⋯O/O⋯C 2.5 1.3
C⋯C 2.1 1.3
N⋯H/H⋯N 1.8 2.1
C⋯N/N⋯C 0.8 0.0
N⋯O /O⋯N 0.2 0.0
S⋯N/N⋯S 0.1 0.0
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plots for (I)[link] and (II), and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) S⋯H/H⋯S contacts.

The distinctive features of fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6[link]c, wherein the half-arrows in (I)[link] contrast the forceps in (II) with their tips at de + di ∼ 2.8 Å and 2.9 Å, respectively, arise as the result of distinctive inter­molecular inter­actions in the two forms: the former has a C—H⋯π contact while the latter has short inter-atomic C⋯H/H⋯C contacts, Fig. 5[link]c and Table 4[link]. Thus, the short C⋯H/H⋯C contacts involving the nitro­benzene-H4 atom inter­acting with the tolyl-C12 and C13 atoms for (I)[link], Table 4[link], have analogous contacts in form (II), Fig. 5[link]b and Table 4[link]. Although, O⋯H/H⋯O and S⋯H/H⋯S contacts make almost similar percentage contributions to the Hirshfeld surfaces for both the forms, Table 4[link], the distinct features in their delineated fingerprint plots, Fig. 6[link]c and d, reflects the different types of inter-atomic contacts they form. In the respective plots for the form (I)[link], the distribution of characteristic points are far away from the van der Waals separations indicating the absence of such short inter-atomic contacts in the packing. By contrast, the forceps-like tips at de + di ∼2.7 Å in the O⋯H/H⋯O delineated and the knife-edge tips at de + di ∼2.9 Å in the S⋯H/H⋯S delineated fingerprint plots for (II) are the result of short inter-atomic O⋯H/H⋯O and S⋯H/H⋯S contacts, Table 4[link]. The other inter-atomic contacts summarized in Table 4[link] have small percentage contributions to the Hirshfeld surfaces of (I)[link] and (II) and are considered to have negligible influence in the crystals.

5. Database survey

A measure of the significance of Au⋯π(ar­yl) inter­actions can be seen in the polymorphic structures of ClAuP(Ph2)CH2(Ph2)PAuCl. In the original form, intra­molecular Au⋯Au inter­actions [3.34 Å] were observed (Schmidbaur et al., 1977[Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977). Chem. Ber. 110, 1748-1754.]) but, in the more recently determined second form, intra­molecular Au⋯π(ar­yl) inter­actions (3.58 Å) were formed instead (Healy, 2003[Healy, P. C. (2003). Acta Cryst. E59, m1112-m1114.]). The real significance of this is that the energy of stabilization to a structure provided by Au⋯Au inter­actions is comparable to that provided by conventional hydrogen bonding (Schmidbaur, 2001[Schmidbaur, H. (2001). Nature, 413, 31, 33.]). This observation lead to systematic investigations into the cooperation/competition between hydrogen-bonding and Au⋯Au inter­actions (Schneider et al., 1996[Schneider, W., Bauer, A. & Schmidbaur, H. (1996). Organometallics, 15, 5445-5446.]; Schmidbaur et al., 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.]) with the former often winning out owing to steric pressures associated with bringing gold centres into close proximity (Tiekink, 2014[Tiekink, E. R. T. (2014). Coord. Chem. Rev. 275, 130-153.]). The structures found for ClAuP(Ph2)CH2(Ph2)PAuCl imply that Au⋯π(ar­yl) inter­actions provide comparable energies of stabilization to their crystal structures. Indeed, computational chemistry on the polymorphic system Ph3PAu[SC(OEt)=NPh] suggested the form with the intra­molecular Au⋯π(ar­yl) contact was more than 5 kcal  mol−1 stable than the form with the intra­molecular Au⋯O contact (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]). Related studies on a binuclear compound of the general formula [Et3PAuS(OMe)=N]2(1,4-C6H4) indicated that each Au⋯π(ar­yl) inter­action in the centrosymmetric mol­ecule was more stable by more than 12 kcal mol−1 than each putative Au⋯O contact (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]). This near equivalence in energies of different inter­molecular contacts in metal-containing species is the focus of a recent review (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]).

6. Synthesis and crystallization

The title compound (I)[link] was prepared following established literature procedures (Ho et al., 2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]). Yellow crystals were obtained by the slow evaporation of a CH2Cl2/Et2O/hexane (1:1:2) solution of (I)[link]. Crystals with the same unit-cell characteristics were also isolated from benzene and ethyl­acetate solutions of (I)[link]. 1H NMR (δ): thiol­ate: 7.92 (d, Ha, J = 8.8 Hz), 6.89 (d, Hb, J = 8.8 Hz), 4.34 (q, OCH2, J = 7.2 Hz), 1.35 (t, CH3, J = 7.2 Hz). Phosphane: 7.32–7.22 (m, aryl-H), 2.40 (s, Me). 13C NMR (δ): Thiol­ate: 165.7 (s, Cq), 157.5 (s, C1), 142.6 (s, C4), 124.8 (s, C3), 122.5 (s, C2), 64.5 (s, OCH2), 14.5 (s, CH3). Phosphane: 142.2 (s, Cδ), 133.9 (d, Cβ, J = 14.2 Hz), 129.8 (d, Cγ, J = 12.0 Hz), 126.4 (d, Cα, J = 58.2 Hz), 21.4 (s, Me).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.94–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.16 and 0.78 e Å−3, respectively, were located 0.81 and 1.28 Å from the Au atom. Owing to inter­ference from the beam-stop, the (011) reflection was omitted from the final cycles of refinement.

Table 6
Experimental details

Crystal data
Chemical formula [Au(C9H9N2O3S)(C21H21P)]
Mr 726.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 9.8815 (6), 14.0448 (9), 21.2332 (13)
β (°) 99.924 (2)
V3) 2902.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.23
Crystal size (mm) 0.27 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker AXS SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.])
Tmin, Tmax 0.421, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 23909, 8412, 6748
Rint 0.040
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 0.95
No. of reflections 8412
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.16, −0.78
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

{O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS}(tri-4-tolylphosphane-κP)gold(I) top
Crystal data top
[Au(C9H9N2O3S)(C21H21P)]F(000) = 1432
Mr = 726.55Dx = 1.663 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 9.8815 (6) ÅCell parameters from 7098 reflections
b = 14.0448 (9) Åθ = 2.4–28.2°
c = 21.2332 (13) ŵ = 5.23 mm1
β = 99.924 (2)°T = 223 K
V = 2902.7 (3) Å3Block, yellow
Z = 40.27 × 0.12 × 0.11 mm
Data collection top
Bruker AXS SMART CCD
diffractometer
8412 independent reflections
Radiation source: fine-focus sealed tube6748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1013
Tmin = 0.421, Tmax = 1k = 1919
23909 measured reflectionsl = 2919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
8412 reflectionsΔρmax = 1.16 e Å3
347 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.12283 (2)0.07759 (2)0.34429 (2)0.03271 (5)
S10.18283 (10)0.03609 (6)0.42279 (4)0.03903 (18)
P10.06779 (8)0.19705 (6)0.27309 (4)0.03035 (16)
O10.1276 (2)0.12051 (16)0.47896 (10)0.0395 (5)
O20.6243 (3)0.3434 (2)0.61518 (16)0.0661 (8)
O30.4384 (3)0.3994 (2)0.63774 (18)0.0711 (9)
N10.2402 (3)0.0118 (2)0.54778 (13)0.0419 (7)
N20.5036 (3)0.3355 (2)0.61897 (15)0.0451 (7)
C10.1877 (3)0.0344 (2)0.49148 (15)0.0343 (6)
C20.3048 (4)0.0766 (2)0.56273 (15)0.0368 (7)
C30.2308 (4)0.1524 (3)0.58156 (18)0.0461 (8)
H30.13610.14590.58150.055*
C40.2960 (4)0.2371 (3)0.60035 (19)0.0473 (9)
H40.24620.28870.61290.057*
C50.4348 (3)0.2452 (2)0.60053 (15)0.0356 (7)
C60.5105 (3)0.1700 (3)0.58361 (17)0.0422 (8)
H60.60560.17630.58480.051*
C70.4448 (4)0.0855 (2)0.56491 (19)0.0449 (8)
H70.49560.03350.55360.054*
C80.1369 (4)0.1857 (3)0.53290 (17)0.0505 (10)
H8A0.13110.14980.57190.061*
H8B0.05990.23070.52540.061*
C90.2709 (5)0.2398 (3)0.5413 (2)0.0596 (11)
H9A0.34690.19510.54770.089*
H9B0.27760.28120.57830.089*
H9C0.27440.27770.50350.089*
C100.0001 (3)0.2979 (2)0.31120 (14)0.0312 (6)
C110.0534 (4)0.3172 (3)0.37427 (16)0.0419 (8)
H110.12140.27720.39670.050*
C120.0079 (4)0.3948 (3)0.40474 (17)0.0483 (9)
H120.04640.40740.44760.058*
C130.0930 (4)0.4540 (3)0.37347 (17)0.0416 (8)
C140.1455 (4)0.4348 (2)0.31043 (18)0.0457 (8)
H140.21450.47420.28820.055*
C150.0986 (4)0.3585 (2)0.27939 (16)0.0410 (7)
H150.13420.34760.23600.049*
C160.1475 (5)0.5364 (3)0.4073 (2)0.0593 (11)
H16A0.20630.51250.43590.089*
H16B0.20010.57850.37600.089*
H16C0.07130.57130.43170.089*
C170.2135 (3)0.2461 (2)0.24238 (14)0.0326 (6)
C180.2127 (4)0.3395 (3)0.22013 (16)0.0411 (7)
H180.13490.37810.22030.049*
C190.3248 (4)0.3757 (3)0.19790 (17)0.0475 (9)
H190.32270.43870.18270.057*
C200.4419 (4)0.3201 (3)0.19754 (17)0.0509 (9)
C210.4425 (4)0.2289 (3)0.21997 (18)0.0529 (10)
H210.52050.19070.21980.063*
C220.3299 (3)0.1914 (3)0.24308 (16)0.0428 (8)
H220.33320.12890.25910.051*
C230.5626 (4)0.3616 (4)0.1716 (2)0.0784 (15)
H23A0.62030.31040.16080.118*
H23B0.61560.40210.20380.118*
H23C0.52920.39890.13370.118*
C240.0624 (3)0.1663 (2)0.20533 (14)0.0314 (6)
C250.0789 (4)0.2143 (3)0.14741 (15)0.0403 (7)
H250.01810.26350.14130.048*
C260.1852 (4)0.1897 (3)0.09838 (17)0.0477 (9)
H260.19660.22360.05970.057*
C270.2745 (4)0.1164 (3)0.10531 (17)0.0447 (8)
C280.2578 (4)0.0687 (3)0.1635 (2)0.0516 (10)
H280.31820.01900.16930.062*
C290.1533 (4)0.0933 (2)0.21300 (17)0.0416 (8)
H290.14380.06050.25210.050*
C300.3886 (6)0.0899 (3)0.0519 (2)0.0748 (15)
H30A0.45210.14280.04300.112*
H30B0.43700.03480.06440.112*
H30C0.35060.07490.01390.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03883 (7)0.03027 (7)0.02839 (7)0.00283 (5)0.00402 (5)0.00126 (4)
S10.0541 (5)0.0278 (4)0.0343 (4)0.0064 (4)0.0052 (3)0.0014 (3)
P10.0335 (4)0.0303 (4)0.0271 (4)0.0013 (3)0.0047 (3)0.0002 (3)
O10.0516 (14)0.0341 (12)0.0317 (11)0.0153 (11)0.0043 (10)0.0018 (9)
O20.0422 (15)0.0540 (17)0.101 (2)0.0135 (13)0.0091 (15)0.0129 (16)
O30.0616 (19)0.0425 (15)0.111 (3)0.0113 (14)0.0197 (18)0.0289 (17)
N10.0577 (18)0.0352 (14)0.0324 (14)0.0134 (13)0.0067 (12)0.0042 (11)
N20.0456 (17)0.0361 (15)0.0510 (18)0.0042 (13)0.0011 (13)0.0038 (13)
C10.0383 (16)0.0299 (15)0.0361 (16)0.0056 (13)0.0104 (13)0.0024 (12)
C20.0501 (19)0.0321 (15)0.0269 (15)0.0086 (14)0.0028 (13)0.0012 (12)
C30.0336 (17)0.045 (2)0.061 (2)0.0051 (15)0.0101 (15)0.0110 (17)
C40.0371 (18)0.0401 (18)0.065 (2)0.0030 (15)0.0099 (16)0.0149 (17)
C50.0377 (16)0.0314 (15)0.0365 (16)0.0047 (13)0.0032 (13)0.0030 (12)
C60.0332 (16)0.0428 (18)0.051 (2)0.0022 (14)0.0083 (14)0.0067 (15)
C70.051 (2)0.0354 (18)0.051 (2)0.0025 (15)0.0145 (17)0.0067 (14)
C80.071 (3)0.045 (2)0.0354 (18)0.0288 (19)0.0093 (17)0.0038 (15)
C90.082 (3)0.044 (2)0.048 (2)0.013 (2)0.005 (2)0.0100 (17)
C100.0330 (15)0.0312 (14)0.0298 (15)0.0013 (12)0.0067 (12)0.0023 (11)
C110.0438 (19)0.0458 (19)0.0340 (17)0.0032 (16)0.0011 (14)0.0041 (14)
C120.058 (2)0.052 (2)0.0322 (18)0.0004 (18)0.0020 (16)0.0125 (16)
C130.051 (2)0.0346 (16)0.0429 (19)0.0062 (15)0.0174 (15)0.0069 (14)
C140.057 (2)0.0379 (18)0.042 (2)0.0098 (16)0.0104 (17)0.0057 (14)
C150.0490 (19)0.0401 (17)0.0323 (16)0.0078 (15)0.0026 (14)0.0017 (14)
C160.083 (3)0.043 (2)0.056 (2)0.007 (2)0.024 (2)0.0088 (18)
C170.0310 (14)0.0390 (17)0.0274 (14)0.0018 (13)0.0036 (11)0.0034 (12)
C180.0414 (18)0.0430 (18)0.0401 (18)0.0018 (15)0.0102 (14)0.0003 (14)
C190.049 (2)0.051 (2)0.043 (2)0.0126 (18)0.0081 (15)0.0011 (16)
C200.0401 (19)0.077 (3)0.0352 (18)0.0160 (19)0.0047 (14)0.0061 (18)
C210.0342 (18)0.075 (3)0.049 (2)0.0056 (18)0.0062 (15)0.003 (2)
C220.0390 (18)0.0475 (19)0.0409 (18)0.0039 (15)0.0042 (14)0.0020 (15)
C230.042 (2)0.117 (5)0.079 (3)0.022 (3)0.017 (2)0.005 (3)
C240.0334 (15)0.0290 (14)0.0308 (15)0.0006 (12)0.0030 (12)0.0021 (11)
C250.0420 (17)0.048 (2)0.0300 (16)0.0092 (15)0.0043 (13)0.0012 (14)
C260.053 (2)0.054 (2)0.0330 (18)0.0001 (18)0.0018 (15)0.0019 (15)
C270.049 (2)0.0404 (18)0.0399 (19)0.0039 (16)0.0047 (15)0.0041 (15)
C280.053 (2)0.042 (2)0.054 (2)0.0173 (17)0.0057 (18)0.0004 (16)
C290.050 (2)0.0349 (17)0.0367 (18)0.0044 (15)0.0002 (15)0.0051 (13)
C300.076 (3)0.077 (3)0.059 (3)0.023 (3)0.023 (2)0.003 (2)
Geometric parameters (Å, º) top
Au—P12.2611 (8)C13—C161.510 (5)
Au—S12.3105 (8)C14—C151.380 (5)
S1—C11.756 (3)C14—H140.9400
P1—C101.816 (3)C15—H150.9400
P1—C241.809 (3)C16—H16A0.9700
P1—C171.815 (3)C16—H16B0.9700
O1—C11.354 (4)C16—H16C0.9700
O1—C81.457 (4)C17—C221.382 (5)
O2—N21.215 (4)C17—C181.395 (5)
O3—N21.211 (4)C18—C191.374 (5)
N1—C11.259 (4)C18—H180.9400
N1—C21.407 (4)C19—C201.397 (6)
N2—C51.460 (4)C19—H190.9400
C2—C71.381 (5)C20—C211.366 (6)
C2—C31.389 (5)C20—C231.514 (5)
C3—C41.379 (5)C21—C221.395 (5)
C3—H30.9400C21—H210.9400
C4—C51.375 (5)C22—H220.9400
C4—H40.9400C23—H23A0.9700
C5—C61.377 (5)C23—H23B0.9700
C6—C71.379 (5)C23—H23C0.9700
C6—H60.9400C24—C291.391 (5)
C7—H70.9400C24—C251.387 (4)
C8—C91.510 (6)C25—C261.389 (5)
C8—H8A0.9800C25—H250.9400
C8—H8B0.9800C26—C271.379 (5)
C9—H9A0.9700C26—H260.9400
C9—H9B0.9700C27—C281.391 (5)
C9—H9C0.9700C27—C301.502 (5)
C10—C111.379 (4)C28—C291.384 (5)
C10—C151.378 (4)C28—H280.9400
C11—C121.382 (5)C29—H290.9400
C11—H110.9400C30—H30A0.9700
C12—C131.378 (6)C30—H30B0.9700
C12—H120.9400C30—H30C0.9700
C13—C141.377 (5)
P1—Au—S1175.80 (3)C15—C14—H14119.5
C1—S1—Au100.18 (11)C13—C14—H14119.5
C10—P1—C24105.90 (14)C14—C15—C10120.8 (3)
C10—P1—C17103.93 (14)C14—C15—H15119.6
C24—P1—C17107.71 (14)C10—C15—H15119.6
C10—P1—Au110.22 (10)C13—C16—H16A109.5
C24—P1—Au114.24 (10)C13—C16—H16B109.5
C17—P1—Au114.04 (10)H16A—C16—H16B109.5
C1—O1—C8116.2 (2)C13—C16—H16C109.5
C1—N1—C2122.2 (3)H16A—C16—H16C109.5
O3—N2—O2122.5 (3)H16B—C16—H16C109.5
O3—N2—C5118.8 (3)C22—C17—C18118.9 (3)
O2—N2—C5118.6 (3)C22—C17—P1119.7 (3)
N1—C1—O1120.4 (3)C18—C17—P1121.3 (2)
N1—C1—S1126.5 (3)C17—C18—C19120.4 (3)
O1—C1—S1113.1 (2)C17—C18—H18119.8
C7—C2—N1120.0 (3)C19—C18—H18119.8
C7—C2—C3119.7 (3)C18—C19—C20120.9 (4)
N1—C2—C3120.0 (3)C18—C19—H19119.6
C4—C3—C2120.1 (3)C20—C19—H19119.6
C4—C3—H3120.0C21—C20—C19118.4 (3)
C2—C3—H3120.0C21—C20—C23122.1 (4)
C3—C4—C5119.2 (3)C19—C20—C23119.5 (4)
C3—C4—H4120.4C20—C21—C22121.4 (4)
C5—C4—H4120.4C20—C21—H21119.3
C6—C5—C4121.5 (3)C22—C21—H21119.3
C6—C5—N2119.1 (3)C17—C22—C21119.9 (4)
C4—C5—N2119.4 (3)C17—C22—H22120.0
C5—C6—C7119.0 (3)C21—C22—H22120.0
C5—C6—H6120.5C20—C23—H23A109.5
C7—C6—H6120.5C20—C23—H23B109.5
C6—C7—C2120.4 (3)H23A—C23—H23B109.5
C6—C7—H7119.8C20—C23—H23C109.5
C2—C7—H7119.8H23A—C23—H23C109.5
O1—C8—C9110.2 (3)H23B—C23—H23C109.5
O1—C8—H8A109.6C29—C24—C25118.8 (3)
C9—C8—H8A109.6C29—C24—P1117.9 (2)
O1—C8—H8B109.6C25—C24—P1123.2 (2)
C9—C8—H8B109.6C26—C25—C24120.1 (3)
H8A—C8—H8B108.1C26—C25—H25119.9
C8—C9—H9A109.5C24—C25—H25119.9
C8—C9—H9B109.5C27—C26—C25121.4 (3)
H9A—C9—H9B109.5C27—C26—H26119.3
C8—C9—H9C109.5C25—C26—H26119.3
H9A—C9—H9C109.5C26—C27—C28118.3 (3)
H9B—C9—H9C109.5C26—C27—C30121.0 (4)
C11—C10—C15118.3 (3)C28—C27—C30120.6 (4)
C11—C10—P1118.5 (2)C29—C28—C27120.9 (3)
C15—C10—P1123.1 (2)C29—C28—H28119.6
C12—C11—C10120.5 (3)C27—C28—H28119.6
C12—C11—H11119.7C28—C29—C24120.5 (3)
C10—C11—H11119.7C28—C29—H29119.8
C13—C12—C11121.2 (3)C24—C29—H29119.8
C13—C12—H12119.4C27—C30—H30A109.5
C11—C12—H12119.4C27—C30—H30B109.5
C12—C13—C14118.0 (3)H30A—C30—H30B109.5
C12—C13—C16121.4 (3)C27—C30—H30C109.5
C14—C13—C16120.5 (4)H30A—C30—H30C109.5
C15—C14—C13121.0 (3)H30B—C30—H30C109.5
C2—N1—C1—O1179.4 (3)C13—C14—C15—C101.7 (6)
C2—N1—C1—S10.4 (5)C11—C10—C15—C142.0 (5)
C8—O1—C1—N14.3 (5)P1—C10—C15—C14179.3 (3)
C8—O1—C1—S1175.5 (3)C10—P1—C17—C22143.8 (3)
Au—S1—C1—N1165.6 (3)C24—P1—C17—C22104.1 (3)
Au—S1—C1—O114.2 (2)Au—P1—C17—C2223.8 (3)
C1—N1—C2—C792.7 (4)C10—P1—C17—C1833.7 (3)
C1—N1—C2—C393.8 (4)C24—P1—C17—C1878.3 (3)
C7—C2—C3—C42.1 (6)Au—P1—C17—C18153.8 (2)
N1—C2—C3—C4175.6 (3)C22—C17—C18—C191.5 (5)
C2—C3—C4—C50.4 (6)P1—C17—C18—C19179.1 (3)
C3—C4—C5—C61.3 (6)C17—C18—C19—C200.5 (5)
C3—C4—C5—N2178.6 (3)C18—C19—C20—C210.2 (6)
O3—N2—C5—C6175.3 (4)C18—C19—C20—C23178.9 (4)
O2—N2—C5—C64.3 (5)C19—C20—C21—C220.2 (6)
O3—N2—C5—C44.8 (5)C23—C20—C21—C22179.3 (4)
O2—N2—C5—C4175.6 (4)C18—C17—C22—C211.9 (5)
C4—C5—C6—C71.3 (5)P1—C17—C22—C21179.5 (3)
N2—C5—C6—C7178.6 (3)C20—C21—C22—C171.3 (6)
C5—C6—C7—C20.5 (6)C10—P1—C24—C2996.7 (3)
N1—C2—C7—C6175.7 (3)C17—P1—C24—C29152.6 (3)
C3—C2—C7—C62.2 (6)Au—P1—C24—C2924.8 (3)
C1—O1—C8—C985.1 (4)C10—P1—C24—C2580.7 (3)
C24—P1—C10—C11159.0 (3)C17—P1—C24—C2530.0 (3)
C17—P1—C10—C1187.6 (3)Au—P1—C24—C25157.8 (3)
Au—P1—C10—C1135.0 (3)C29—C24—C25—C260.4 (5)
C24—P1—C10—C1523.7 (3)P1—C24—C25—C26177.0 (3)
C17—P1—C10—C1589.6 (3)C24—C25—C26—C271.4 (6)
Au—P1—C10—C15147.8 (3)C25—C26—C27—C281.5 (6)
C15—C10—C11—C120.7 (5)C25—C26—C27—C30179.6 (4)
P1—C10—C11—C12178.1 (3)C26—C27—C28—C290.7 (6)
C10—C11—C12—C130.9 (6)C30—C27—C28—C29179.5 (4)
C11—C12—C13—C141.2 (6)C27—C28—C29—C240.3 (6)
C11—C12—C13—C16177.3 (4)C25—C24—C29—C280.5 (5)
C12—C13—C14—C150.1 (6)P1—C24—C29—C28177.9 (3)
C16—C13—C14—C15178.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.942.643.528 (4)157
N2—O2···Cg2ii1.22 (1)3.55 (1)83.1 (2)4 (1)
N2—O3···Cg2ii1.21 (1)3.83 (1)70.2 (2)4 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
A comparison of some physical properties between the molecules in the polymorphs of (4-tol)3PAu[SC(OEt)NC6H4NO2-4] top
MoleculeVolume, V3)Area, A2)A:VGlobularity, GAsphericity, ΩDx'
P21/c form, (I)714.31603.780.8450.6400.1171.663
Cc form, (II)698.76531.900.7610.7160.0361.704
Summary of short inter-atomic contacts (Å) in (I) and (II) top
ContactDistanceSymmetry operation
(I)
O2···C113.175 (5)1 - x, -y, 1 - z
H4···C122.89-x, -y, 1 - z
H4···C132.81-x, -y, 1 - z
H9B···H16B2.38-x, 1 - y, 1 - z
(II)
S1···H3A2.97x, 1 - y, -1/2 + z
S1···H25A2.88x, 1 - y, 1/2 + z
C4···H18A2.891/2 + x, 1/2 - y, 1/2 + z
C7···H2A2.82x, 1 - y, -1/2 + z
O2···H30C2.63x, y, 1 + z
H12A···H30B2.35-1/2 + x, 1/2 + y, z
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (I) top
Percentage contribution
Contact(I)(II)
H···H50.155.2
C···H/H···C19.616.2
O···H/H···O13.514.5
S···H/H···S6.47.5
Au···H/H···Au2.91.9
C···O/O···C2.51.3
C···C2.11.3
N···H/H···N1.82.1
C···N/N···C0.80.0
N···O /O···N0.20.0
S···N/N···S0.10.0
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

We thank Sunway University for the support of biological and crystal engineering studies of coinage metal thio­carbamates.

References

First citationBenson, R. E., Broker, G. A., Daniels, L. M., Tiekink, E. R. T., Wardell, J. L. & Young, D. J. (2006). Acta Cryst. E62, o4106–o4108.  Web of Science CSD CrossRef IUCr Journals
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBroker, G. A. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1582.  Web of Science CSD CrossRef IUCr Journals
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.
First citationCaracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81–89.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS
First citationHall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr. 203, 313–315.  CAS
First citationHealy, P. C. (2003). Acta Cryst. E59, m1112–m1114.  Web of Science CSD CrossRef IUCr Journals
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS
First citationHuang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723.  Web of Science CrossRef PubMed CAS
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS
First citationKuan, F. S., Yei Ho, S., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS
First citationLiu, L. P. & Hammond, G. B. (2012). Chem. Soc. Rev. 41, 3129–3139.  Web of Science CrossRef CAS PubMed
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationOoi, K. K., Yeo, C. I., Mahandaran, T., Ang, K. P., Akim, A. M., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2017). J. Inorg. Biochem. 166, 173–181.  Web of Science CrossRef CAS PubMed
First citationSchmidbaur, H. (2001). Nature, 413, 31, 33.
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed
First citationSchmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977). Chem. Ber. 110, 1748–1754.  CSD CrossRef CAS Web of Science
First citationSchneider, W., Bauer, A. & Schmidbaur, H. (1996). Organometallics, 15, 5445–5446.  CSD CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSiddiqui, R., Abjani, F., Yeo, C. I., Tiekink, E. R. T. & Khan, N. A. (2017). J. Neg. Res. Biomedicine, 16, article no. 6.  Web of Science CrossRef
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTiekink, E. R. T. (2014). Coord. Chem. Rev. 275, 130–153.  Web of Science CrossRef CAS
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176–1186.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
First citationYeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401–41411.  Web of Science CSD CrossRef CAS
First citationYeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24–38.  Web of Science CSD CrossRef CAS PubMed
First citationYeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145–152.  Web of Science CSD CrossRef CAS
First citationYeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231 653–661.  CAS
First citationYeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016a). Acta Cryst. E72, 1446–1452.  Web of Science CSD CrossRef IUCr Journals
First citationYeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016b). Acta Cryst. E72, 1068–1073.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds