research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ebastinium 3,5-di­nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri-574 199, India, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 September 2017; accepted 15 September 2017; online 19 September 2017)

Ebastine, 4-(benzhydr­yloxy)-1-[4-(4-tert-butyl­phen­yl)-4-oxobut­yl]piperidine, reacts with 3,5-di­nitro­benzoic acid in methanol solution to give the title 1:1 salt, ebastinium 3,5-di­nitro­benzoate, C32H40NO2+·C7H3N2O6. In the cation, the disubstituted aryl ring exhibits orientational disorder over two sets of atomic sites having occupancies 0.706 (4) and 0.294 (6), with a dihedral angle of 41.2 (5)° between the two orientations: the bulky Ph2CH—O– substituent occupies an axial site on the piperidine ring. The two ions in the selected asymmetric unit are linked by a nearly linear N—H⋯O hydrogen bond and this, in combination with two C—H⋯O hydrogen bonds, links the ions into complex sheets.

1. Chemical context

Ebastine, or 4-(benzhydr­yloxy)-1-[4-(4-tert-butyl­phen­yl)-4-oxo­but­yl]piperidine, is a non-sedating second generation H1 receptor antagonist, which is effective in the treatment of both allergic rhinitis, whether seasonal or perennial, and chronic idiopathic urticaria (Wiseman & Faulds, 1996[Wiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260-277.]; Van Cauwenberge et al., 2004[Van Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807-1813.]). The structure of ebastine has been the subject of two recent reports (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]: Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]). Herein, we report the mol­ecular and supra­molecular structure of the 1:1 salt ebastinium 3,5-di­nitro­benzoate (I)[link], formed in the reaction between ebastine and 3,5-di­nitro­benzoic acid.

[Scheme 1]

2. Structural commentary

The title compound (I)[link], consists of an N-protonated ebastinium cation and a 3,5-di­nitro­benzoate anion (Fig. 1[link]), which are linked within the selected asymmetric unit a by a fairly short and nearly linear N—H⋯O hydrogen bond (Fig. 1[link], Table 1[link]). The disubstituted aryl ring in the cation is disordered over two sets of atomic sites having occupancies 0.706 (4) for the major ring orientation, labelled C161–C166, and 0.294 (4) for the minor orientation, labeled C171–C176: the dihedral angle between these two ring planes is 41.2 (5)° (Fig. 1[link]). The piperidine ring adopts an almost perfect chair conformation, with a ring-puckering angle, calculated for the atom sequence (N1,C2,C3,C4,C5,C6) of θ = 0.0 (3)°, identical within experimental uncertainty to the idealized value for a perfect chair form of θ = 0.0° (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). However, although the non-H substituent at atom N1 in the ring occupies an equatorial site, as expected, the bulky Ph2CHO substituent at atom C4 unexpectedly occupies an axial site. This observation is the more surprising since in ebastine itself, both non-H substit­uents on the piperidine ring occupy equatorial sites (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]: Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]). The 3,5-di­nitro­benzoate anion in compound (I)[link] is nearly planar: the dihedral angles between the aryl ring and the substituents at atoms C21, C23 and C25 are 1.4 (2), 4.2 (2) and 10.7 (2)°, respectively: only the O atoms of the 5-nitro group are significantly displaced from the mean plane of the anion as a whole, 0.219 (2) Å for atom O25 and 0.187 (2) Å for atom O26: the r.m.s. deviation from the mean plane for the entire anion is only 0.082 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O22 0.99 (3) 1.66 (2) 2.634 (3) 167 (2)
C2—H2A⋯O25i 0.97 2.50 3.444 (3) 163
C11—H11A⋯O14ii 0.97 2.49 3.358 (4) 150
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the ionic components of compound (I)[link], showing the atom-labelling scheme, the N—H⋯O hydrogen bond within the selected asymmetric unit, and the orientational disorder of the disubstituted aryl ring (the major component is drawn with full lines and the minor component with broken lines). Displacement ellipsoids are drawn at the 30% probability level and, for clarity, a few of the atom labels have been omitted.

3. Supra­molecular features

In addition to the N—H⋯O hydrogen bond within the selected asymmetric unit, already noted (cf. Fig. 1[link] and Table 1[link]), there are two C—H⋯O hydrogen bonds in the crystal of compound (I)[link], which link the components into complex sheets, whose formation can, however, be readily analysed in terms of two simple, one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simpler of the two sub-structures, cations related by translation are linked by a single C—H⋯O hydrogen bond to form a C(6) chain running parallel to the [100] direction (Fig. 2[link], Table 1[link]). The second sub-structure involves the cations and the anions, and a combination of the N—H⋯O hydrogen bond and a second C—H⋯O hydrogen bond links ions related by a c-glide plane into a C22(11) chain, running parallel to the [20[\overline{1}]] direction, in which cations and anions alternate (Fig. 3[link], Table 1[link]). The combination of these two chain motifs generates a sheet lying parallel to (010) in the domain 0.5 < y < 1.0, and a second such sheet, related to the first by inversion, lies in the domain 0.0 < y < 0.5, but there are no direction-specific inter­actions between adjacent sheets. It is inter­esting to note that none of the hydrogen bonds in compound (I)[link] involves the Ph2CHO substituent, so that direction-specific inter­actions cannot be held responsible for the location of this substituent at an axial site on the piperidine ring.

[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing a hydrogen-bonded C(6) chain of cations running parallel to [100]. For clarity, the anions, the minor disorder component of the cation, and the H atoms bonded to carrier atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z) respectively.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing a hydrogen-bonded C22(11) chain running parallel to [20[\overline{1}]]. For clarity, the minor disorder component of the cation, and the H atoms bonded to C atoms not involved in the motif shown have been omitted.

4. Database survey

The mol­ecular structure of neutral ebastine (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]; Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]) differs from that of the ebastinium cation in compound (I)[link] in two significant respects. Firstly, there is no disorder in the neutral compound as opposed to the orientation disorder of the disubstituted aryl ring in (I)[link] and secondly, both of the non-H substituents on the piperidine ring occupy equatorial sites in the neutral compound as opposed to the presence of one axial and one equatorial substituent in (I)[link]. Neither of the two reports on the structure of ebastine gave any description of the supra­molecular assembly: one (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]) noted the presence of hydrogen bonds, but the second (Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]) did not record these. Accordingly, we have now examined the supra­molecular assembly of ebastine using the most recently reported atomic coordinates (Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]): a combination of one C—H⋯N hydrogen bond and one C—H⋯O hydrogen bond links the mol­ecules into sheets lying parallel to (100) and containing R22(20) and R66(48) rings, both centrosymmetric, arranges in chess board fashion (Fig. 4[link]). Structures have also been reported recently for some structurally related compounds with pharmacological activity, including the picrate salt of the anti­cholinergic drug propiverine, 4-(2,2-diphenyl-2-prop­oxy­acet­oxy)-1-meth­ylpiperidin-1-ium picrate (Jasinski et al., 2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738-o1739.]), and the anti-spasmodic drug pargeverine, N,N-dimeth­yl-[2-(2,2-diphen­yl)-2-prop-2-yn­yloxy)acet­oxy]ethyl­amine and its picrate and (2R,3R)-(hydrogentartrate) salts (Shaibah et al., 2017[Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017). E73, 1488-1493.]).

[Figure 4]
Figure 4
Part of the crystal structure of ebastine showing the formation of a hydrogen-bonded sheet of R22(20) and R66(48) rings. The original atomic coordinates (Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]) have been used and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

5. Synthesis and crystallization

A sample of ebastine was a gift from RL Fine Chem, Pvt. Ltd., Bengaluru, India. For the synthesis of compound (I)[link], ebastine (100 mg, 0.20 mmol) and 3,5-di­nitro­benzoic acid (45 mg, 0.20 mmol) were dissolved in hot methanol and held at 333 K for 30 min, with magnetic stirring throughout. The resulting solution was then allowed to cool slowly to room temperature, giving colourless block-like crystals (m.p. 424–428 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three low-angle reflections (021), (002) and (012), which had been attenuated by the beam stop, were omitted from the refinements. It was apparent from an early stage in the refinement that the disubstituted aryl ring was disordered over two sets of atomic sights having unequal occupancies, and corresponding to different orientations of this ring relative to its substituents. For the minor orientation, the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major orientation, subject to s.u.s of 0.01 and 0.02 Å, respect­ively: in addition, the anisotropic displacement parameters for corresponding pairs of atomic sites were constrained to be equal. All H atoms, other than those in the minor disorder components, were located in difference-Fourier maps. The C-bound H atoms were all treated as riding atoms in geometrically idealized positions: C—H 0.93 Å (aromatic), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The methyl groups were permitted to rotate but not to tilt. For the H atom bonded to the N atom, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving an N—H distance of 0.99 (3) Å. Subject to these conditions, the occupancies of the two disordered components refined to 0.706 (4) and 0.294 (4). In the final analysis of variance there was a large value, 15.256, of K = [mean(Fo2)/mean(Fc2)] for the group of 867 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.005.

Table 2
Experimental details

Crystal data
Chemical formula C32H40NO2·C7H3N2O6
Mr 681.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.9168 (3), 28.3733 (12), 21.0782 (11)
β (°) 97.836 (5)
V3) 3505.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.21 × 0.18
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.956, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 40112, 7331, 4388
Rint 0.061
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.179, 1.05
No. of reflections 7331
No. of parameters 470
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.25
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS86 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-(Benzhydryloxy)-1-[4-(4-tert-butylphenyl)-4-oxobutyl]piperidinium 3,5-dinitrobenzoate top
Crystal data top
C32H40NO2+·C7H3N2O6F(000) = 1448
Mr = 681.76Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9168 (3) ÅCell parameters from 10431 reflections
b = 28.3733 (12) Åθ = 2.4–31.2°
c = 21.0782 (11) ŵ = 0.09 mm1
β = 97.836 (5)°T = 293 K
V = 3505.6 (3) Å3Block, colourless
Z = 40.23 × 0.21 × 0.18 mm
Data collection top
Rigaku Saturn724
diffractometer
4388 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.061
φ and ω scansθmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.956, Tmax = 0.984k = 3535
40112 measured reflectionsl = 2625
7331 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0661P)2 + 1.0412P]
where P = (Fo2 + 2Fc2)/3
7331 reflections(Δ/σ)max = 0.001
470 parametersΔρmax = 0.20 e Å3
22 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3135 (4)0.72898 (6)0.37455 (11)0.0510 (5)
H10.374 (4)0.7192 (8)0.3349 (12)0.061*
C20.4460 (4)0.77114 (8)0.40021 (11)0.0479 (6)
H2B0.60620.76290.40970.057*
H2A0.39380.78110.43980.057*
C30.4185 (4)0.81101 (8)0.35285 (11)0.0457 (6)
H3A0.48260.80180.31470.055*
H3B0.50270.83820.37130.055*
C40.1701 (4)0.82448 (8)0.33437 (11)0.0457 (6)
H40.15790.84880.30110.055*
C50.0386 (4)0.78137 (9)0.30906 (12)0.0553 (7)
H5A0.12190.78920.29940.066*
H5B0.09160.77130.26970.066*
C60.0676 (4)0.74172 (9)0.35682 (13)0.0575 (7)
H6A0.00430.75100.39500.069*
H6B0.01600.71440.33880.069*
O40.0623 (3)0.84055 (5)0.38735 (7)0.0484 (4)
C410.1566 (4)0.88157 (8)0.41962 (11)0.0460 (6)
H410.31070.87390.44030.055*
C1410.0098 (4)0.89282 (8)0.47183 (11)0.0453 (6)
C1420.1660 (4)0.86412 (9)0.48464 (11)0.0511 (6)
H1420.19750.83670.46100.061*
C1430.2974 (5)0.87546 (10)0.53237 (12)0.0613 (7)
H1430.41590.85570.54030.074*
C1440.2527 (6)0.91565 (10)0.56772 (13)0.0686 (8)
H1440.34220.92360.59910.082*
C1450.0755 (6)0.94408 (10)0.55665 (15)0.0798 (10)
H1450.04260.97110.58120.096*
C1460.0550 (6)0.93287 (9)0.50904 (14)0.0719 (8)
H1460.17490.95250.50190.086*
C1510.1735 (4)0.92244 (8)0.37464 (11)0.0469 (6)
C1520.3761 (5)0.94689 (9)0.37596 (14)0.0612 (7)
H1520.50160.93800.40500.073*
C1530.3962 (6)0.98416 (10)0.33510 (18)0.0770 (9)
H1530.53381.00030.33680.092*
C1540.2134 (7)0.99730 (11)0.29230 (17)0.0808 (10)
H1540.22641.02220.26440.097*
C1550.0086 (6)0.97356 (11)0.29040 (15)0.0754 (9)
H1550.11610.98270.26130.091*
C1560.0118 (5)0.93637 (9)0.33152 (13)0.0603 (7)
H1560.15040.92070.33020.072*
C110.3376 (6)0.68892 (10)0.42095 (17)0.0865 (11)
H11A0.22130.66560.40710.104*
H11B0.31010.70050.46250.104*
C120.5687 (5)0.66527 (9)0.42801 (16)0.0724 (9)
H12A0.65230.66640.47370.087*
H12B0.65230.67760.40140.087*
C130.5462 (5)0.61430 (10)0.41343 (17)0.0833 (10)
H13A0.46970.61080.37000.100*
H13B0.44810.60050.44170.100*
C140.7637 (6)0.58644 (10)0.41954 (15)0.0709 (8)
O140.9451 (4)0.60527 (8)0.43408 (16)0.1170 (10)
C1610.7488 (5)0.53513 (9)0.40590 (14)0.0659 (8)0.706 (4)
C1620.5497 (7)0.51590 (14)0.3727 (3)0.0902 (17)0.706 (4)
H1620.42450.53510.35990.108*0.706 (4)
C1630.5386 (7)0.46828 (14)0.3589 (3)0.0907 (18)0.706 (4)
H1630.40540.45610.33640.109*0.706 (4)
C1640.7209 (5)0.43792 (9)0.37782 (13)0.0587 (7)0.706 (4)
C1650.9157 (9)0.45915 (18)0.4048 (5)0.103 (4)0.706 (4)
H1651.04580.44070.41470.124*0.706 (4)
C1660.9308 (9)0.50664 (17)0.4185 (4)0.099 (3)0.706 (4)
H1661.06970.51920.43670.119*0.706 (4)
C1710.7488 (5)0.53513 (9)0.40590 (14)0.0659 (8)0.294 (4)
C1720.5662 (15)0.5073 (3)0.4211 (5)0.0902 (17)0.294 (4)
H1720.44970.52160.43960.108*0.294 (4)
C1730.5554 (15)0.4594 (3)0.4093 (5)0.0907 (18)0.294 (4)
H1730.43820.44150.42230.109*0.294 (4)
C1740.7209 (5)0.43792 (9)0.37782 (13)0.0587 (7)0.294 (4)
C1750.9160 (17)0.4626 (4)0.3793 (15)0.103 (4)0.294 (4)
H1751.04830.44680.37260.124*0.294 (4)
C1760.9267 (18)0.5104 (4)0.3905 (12)0.099 (3)0.294 (4)
H1761.06250.52620.38720.119*0.294 (4)
C1810.7009 (5)0.38550 (9)0.36135 (13)0.0591 (7)
C1820.6091 (6)0.35909 (12)0.41549 (16)0.0925 (11)
H18A0.59080.32640.40440.139*
H18B0.46430.37210.42200.139*
H18C0.71450.36220.45410.139*
C1830.9278 (5)0.36413 (11)0.35081 (18)0.0903 (11)
H18D1.03260.36610.38970.135*
H18E0.98830.38110.31750.135*
H18F0.90590.33170.33860.135*
C1840.5349 (5)0.37825 (11)0.29982 (14)0.0753 (8)
H18G0.58950.39490.26530.113*
H18H0.38720.39000.30580.113*
H18I0.52400.34530.28980.113*
C210.7522 (4)0.69940 (8)0.19856 (11)0.0431 (5)
C220.8763 (4)0.66079 (8)0.22368 (11)0.0458 (6)
H220.83380.64480.25870.055*
C231.0631 (4)0.64614 (8)0.19644 (12)0.0486 (6)
C241.1306 (4)0.66812 (9)0.14419 (12)0.0525 (6)
H241.25710.65790.12630.063*
C251.0032 (4)0.70587 (9)0.11964 (11)0.0505 (6)
C260.8156 (4)0.72192 (8)0.14567 (11)0.0493 (6)
H260.73270.74760.12780.059*
C270.5535 (4)0.71822 (9)0.23013 (13)0.0504 (6)
O210.4514 (3)0.75292 (7)0.20644 (9)0.0689 (5)
O220.5158 (3)0.69618 (6)0.27979 (9)0.0649 (5)
N231.1983 (4)0.60593 (8)0.22480 (13)0.0672 (6)
O231.1460 (4)0.58894 (8)0.27369 (12)0.0920 (7)
O241.3561 (4)0.59235 (8)0.19822 (12)0.1010 (8)
N251.0724 (5)0.72964 (9)0.06325 (12)0.0700 (7)
O251.2546 (4)0.71894 (9)0.04679 (11)0.0974 (8)
O260.9409 (5)0.75808 (9)0.03539 (11)0.1034 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0585 (13)0.0405 (10)0.0606 (13)0.0002 (9)0.0321 (11)0.0031 (10)
C20.0490 (14)0.0496 (13)0.0474 (14)0.0035 (11)0.0147 (11)0.0072 (11)
C30.0470 (14)0.0421 (12)0.0508 (14)0.0017 (10)0.0168 (11)0.0075 (11)
C40.0480 (14)0.0472 (13)0.0444 (13)0.0039 (11)0.0150 (11)0.0043 (11)
C50.0430 (14)0.0664 (16)0.0576 (16)0.0005 (12)0.0108 (12)0.0223 (13)
C60.0514 (16)0.0545 (15)0.0722 (18)0.0128 (12)0.0285 (14)0.0229 (14)
O40.0520 (10)0.0442 (9)0.0527 (10)0.0011 (7)0.0203 (8)0.0131 (7)
C410.0446 (13)0.0415 (12)0.0521 (14)0.0040 (10)0.0076 (11)0.0054 (11)
C1410.0513 (14)0.0397 (12)0.0453 (13)0.0080 (11)0.0082 (11)0.0019 (10)
C1420.0510 (15)0.0579 (15)0.0441 (14)0.0011 (12)0.0058 (12)0.0045 (12)
C1430.0581 (17)0.0772 (19)0.0501 (15)0.0059 (14)0.0130 (13)0.0065 (14)
C1440.088 (2)0.0690 (18)0.0540 (17)0.0236 (17)0.0277 (16)0.0054 (15)
C1450.122 (3)0.0537 (17)0.070 (2)0.0072 (18)0.040 (2)0.0174 (15)
C1460.100 (2)0.0518 (16)0.0696 (19)0.0091 (15)0.0334 (18)0.0129 (14)
C1510.0498 (14)0.0416 (12)0.0521 (14)0.0045 (11)0.0171 (12)0.0075 (11)
C1520.0595 (17)0.0526 (15)0.0755 (19)0.0007 (13)0.0234 (15)0.0081 (14)
C1530.079 (2)0.0557 (17)0.106 (3)0.0001 (16)0.047 (2)0.0010 (18)
C1540.117 (3)0.0544 (17)0.083 (2)0.0105 (19)0.056 (2)0.0096 (16)
C1550.092 (2)0.0709 (19)0.0646 (19)0.0251 (18)0.0133 (17)0.0088 (16)
C1560.0614 (17)0.0567 (16)0.0640 (17)0.0072 (13)0.0131 (14)0.0013 (14)
C110.109 (3)0.0547 (16)0.110 (3)0.0158 (17)0.069 (2)0.0279 (17)
C120.089 (2)0.0500 (15)0.086 (2)0.0124 (15)0.0381 (18)0.0181 (15)
C130.087 (2)0.0635 (18)0.095 (2)0.0207 (16)0.0026 (19)0.0269 (17)
C140.073 (2)0.0543 (16)0.083 (2)0.0038 (15)0.0015 (17)0.0062 (15)
O140.0782 (17)0.0650 (14)0.200 (3)0.0039 (12)0.0078 (17)0.0152 (16)
C1610.0586 (17)0.0523 (15)0.085 (2)0.0033 (14)0.0038 (15)0.0064 (14)
C1620.071 (3)0.063 (2)0.125 (5)0.028 (2)0.031 (3)0.023 (3)
C1630.062 (2)0.065 (2)0.136 (5)0.0107 (19)0.023 (3)0.029 (3)
C1640.0531 (16)0.0537 (15)0.0714 (18)0.0057 (13)0.0157 (14)0.0063 (13)
C1650.064 (2)0.056 (2)0.181 (11)0.0166 (17)0.013 (3)0.014 (4)
C1660.061 (2)0.057 (2)0.170 (10)0.0066 (17)0.017 (3)0.011 (3)
C1710.0586 (17)0.0523 (15)0.085 (2)0.0033 (14)0.0038 (15)0.0064 (14)
C1720.071 (3)0.063 (2)0.125 (5)0.028 (2)0.031 (3)0.023 (3)
C1730.062 (2)0.065 (2)0.136 (5)0.0107 (19)0.023 (3)0.029 (3)
C1740.0531 (16)0.0537 (15)0.0714 (18)0.0057 (13)0.0157 (14)0.0063 (13)
C1750.064 (2)0.056 (2)0.181 (11)0.0166 (17)0.013 (3)0.014 (4)
C1760.061 (2)0.057 (2)0.170 (10)0.0066 (17)0.017 (3)0.011 (3)
C1810.0610 (17)0.0529 (15)0.0659 (17)0.0014 (13)0.0175 (14)0.0020 (13)
C1820.121 (3)0.087 (2)0.073 (2)0.007 (2)0.028 (2)0.0090 (18)
C1830.079 (2)0.069 (2)0.124 (3)0.0164 (17)0.019 (2)0.014 (2)
C1840.085 (2)0.0685 (18)0.074 (2)0.0021 (16)0.0180 (17)0.0076 (16)
C210.0455 (13)0.0423 (12)0.0432 (13)0.0045 (10)0.0127 (11)0.0105 (10)
C220.0518 (14)0.0467 (13)0.0406 (13)0.0047 (11)0.0124 (11)0.0067 (10)
C230.0479 (14)0.0481 (13)0.0496 (14)0.0050 (11)0.0062 (12)0.0117 (11)
C240.0476 (14)0.0601 (15)0.0527 (15)0.0056 (12)0.0173 (12)0.0186 (13)
C250.0535 (15)0.0581 (15)0.0428 (14)0.0097 (12)0.0169 (12)0.0076 (12)
C260.0536 (15)0.0480 (13)0.0472 (14)0.0034 (11)0.0106 (12)0.0072 (11)
C270.0486 (15)0.0505 (14)0.0548 (16)0.0031 (12)0.0166 (12)0.0165 (13)
O210.0677 (13)0.0620 (12)0.0798 (13)0.0171 (10)0.0207 (10)0.0063 (10)
O220.0747 (13)0.0646 (11)0.0634 (12)0.0063 (9)0.0386 (10)0.0071 (10)
N230.0668 (16)0.0624 (15)0.0715 (16)0.0143 (12)0.0064 (14)0.0117 (13)
O230.1038 (18)0.0849 (15)0.0873 (16)0.0259 (13)0.0133 (14)0.0247 (13)
O240.0920 (17)0.1013 (17)0.1138 (19)0.0466 (14)0.0293 (15)0.0112 (15)
N250.0849 (19)0.0748 (17)0.0557 (15)0.0129 (14)0.0292 (15)0.0015 (13)
O250.0960 (18)0.127 (2)0.0806 (16)0.0088 (15)0.0543 (14)0.0002 (14)
O260.132 (2)0.1008 (18)0.0844 (17)0.0167 (16)0.0413 (16)0.0340 (15)
Geometric parameters (Å, º) top
N1—C21.491 (3)C13—H13A0.9700
N1—C111.493 (3)C13—H13B0.9700
N1—C61.496 (3)C14—O141.201 (3)
N1—H10.99 (3)C14—C1611.484 (4)
C2—C31.503 (3)C161—C1661.344 (5)
C2—H2B0.9700C161—C1621.397 (5)
C2—H2A0.9700C162—C1631.382 (5)
C3—C41.517 (3)C162—H1620.9300
C3—H3A0.9700C163—C1641.396 (4)
C3—H3B0.9700C163—H1630.9300
C4—O41.434 (3)C164—C1651.355 (6)
C4—C51.507 (3)C164—C1811.528 (4)
C4—H40.9800C165—C1661.378 (5)
C5—C61.504 (4)C165—H1650.9300
C5—H5A0.9700C166—H1660.9300
C5—H5B0.9700C172—C1731.381 (8)
C6—H6A0.9700C172—H1720.9300
C6—H6B0.9700C173—H1730.9300
O4—C411.423 (3)C175—C1761.376 (8)
C41—C1511.510 (3)C175—H1750.9300
C41—C1411.526 (3)C176—H1760.9300
C41—H410.9800C181—C1831.517 (4)
C141—C1421.377 (3)C181—C1821.526 (4)
C141—C1461.386 (3)C181—C1841.530 (4)
C142—C1431.390 (3)C182—H18A0.9600
C142—H1420.9300C182—H18B0.9600
C143—C1441.368 (4)C182—H18C0.9600
C143—H1430.9300C183—H18D0.9600
C144—C1451.368 (4)C183—H18E0.9600
C144—H1440.9300C183—H18F0.9600
C145—C1461.384 (4)C184—H18G0.9600
C145—H1450.9300C184—H18H0.9600
C146—H1460.9300C184—H18I0.9600
C151—C1521.382 (3)C21—C261.380 (3)
C151—C1561.383 (4)C21—C221.383 (3)
C152—C1531.379 (4)C21—C271.524 (3)
C152—H1520.9300C22—C231.378 (3)
C153—C1541.363 (5)C22—H220.9300
C153—H1530.9300C23—C241.371 (3)
C154—C1551.382 (5)C23—N231.473 (3)
C154—H1540.9300C24—C251.370 (3)
C155—C1561.381 (4)C24—H240.9300
C155—H1550.9300C25—C261.381 (3)
C156—H1560.9300C25—N251.472 (3)
C11—C121.512 (4)C26—H260.9300
C11—H11A0.9700C27—O211.226 (3)
C11—H11B0.9700C27—O221.265 (3)
C12—C131.481 (4)N23—O241.215 (3)
C12—H12A1.0216N23—O231.215 (3)
C12—H12B0.8703N25—O261.215 (3)
C13—C141.501 (4)N25—O251.215 (3)
C2—N1—C11112.0 (2)C11—C12—H12A113.2
C2—N1—C6110.00 (18)C13—C12—H12B107.6
C11—N1—C6110.5 (2)C11—C12—H12B110.1
C2—N1—H1107.3 (14)H12A—C12—H12B110.5
C11—N1—H1109.0 (14)C12—C13—C14116.4 (3)
C6—N1—H1107.9 (15)C12—C13—H13A108.2
N1—C2—C3111.04 (19)C14—C13—H13A108.2
N1—C2—H2B109.4C12—C13—H13B108.2
C3—C2—H2B109.4C14—C13—H13B108.2
N1—C2—H2A109.4H13A—C13—H13B107.3
C3—C2—H2A109.4O14—C14—C161120.9 (3)
H2B—C2—H2A108.0O14—C14—C13120.9 (3)
C2—C3—C4111.94 (19)C161—C14—C13118.2 (3)
C2—C3—H3A109.2C166—C161—C162117.5 (3)
C4—C3—H3A109.2C166—C161—C14121.8 (3)
C2—C3—H3B109.2C162—C161—C14120.3 (3)
C4—C3—H3B109.2C163—C162—C161120.0 (4)
H3A—C3—H3B107.9C163—C162—H162120.0
O4—C4—C5105.72 (18)C161—C162—H162120.0
O4—C4—C3113.48 (19)C162—C163—C164122.1 (4)
C5—C4—C3108.75 (19)C162—C163—H163119.0
O4—C4—H4109.6C164—C163—H163119.0
C5—C4—H4109.6C165—C164—C163115.2 (3)
C3—C4—H4109.6C165—C164—C181124.3 (3)
C6—C5—C4111.3 (2)C163—C164—C181120.2 (3)
C6—C5—H5A109.4C164—C165—C166123.3 (5)
C4—C5—H5A109.4C164—C165—H165118.3
C6—C5—H5B109.4C166—C165—H165118.3
C4—C5—H5B109.4C161—C166—C165121.3 (5)
H5A—C5—H5B108.0C161—C166—H166119.3
N1—C6—C5111.49 (19)C165—C166—H166119.3
N1—C6—H6A109.3C173—C172—H172119.0
C5—C6—H6A109.3C172—C173—H173120.1
N1—C6—H6B109.3C176—C175—H175118.8
C5—C6—H6B109.3C175—C176—H176118.7
H6A—C6—H6B108.0C183—C181—C182109.0 (3)
C41—O4—C4116.44 (17)C183—C181—C164112.3 (2)
O4—C41—C151112.52 (19)C182—C181—C164109.4 (2)
O4—C41—C141106.93 (18)C183—C181—C184107.5 (2)
C151—C41—C141112.66 (18)C182—C181—C184108.4 (2)
O4—C41—H41108.2C164—C181—C184110.1 (2)
C151—C41—H41108.2C181—C182—H18A109.5
C141—C41—H41108.2C181—C182—H18B109.5
C142—C141—C146117.8 (2)H18A—C182—H18B109.5
C142—C141—C41122.5 (2)C181—C182—H18C109.5
C146—C141—C41119.7 (2)H18A—C182—H18C109.5
C141—C142—C143121.1 (2)H18B—C182—H18C109.5
C141—C142—H142119.4C181—C183—H18D109.5
C143—C142—H142119.4C181—C183—H18E109.5
C144—C143—C142120.1 (3)H18D—C183—H18E109.5
C144—C143—H143120.0C181—C183—H18F109.5
C142—C143—H143120.0H18D—C183—H18F109.5
C145—C144—C143119.7 (3)H18E—C183—H18F109.5
C145—C144—H144120.2C181—C184—H18G109.5
C143—C144—H144120.2C181—C184—H18H109.5
C144—C145—C146120.3 (3)H18G—C184—H18H109.5
C144—C145—H145119.9C181—C184—H18I109.5
C146—C145—H145119.9H18G—C184—H18I109.5
C145—C146—C141121.0 (3)H18H—C184—H18I109.5
C145—C146—H146119.5C26—C21—C22119.2 (2)
C141—C146—H146119.5C26—C21—C27120.1 (2)
C152—C151—C156118.5 (2)C22—C21—C27120.7 (2)
C152—C151—C41120.3 (2)C23—C22—C21119.6 (2)
C156—C151—C41121.2 (2)C23—C22—H22120.2
C153—C152—C151121.4 (3)C21—C22—H22120.2
C153—C152—H152119.3C24—C23—C22122.4 (2)
C151—C152—H152119.3C24—C23—N23118.5 (2)
C154—C153—C152119.7 (3)C22—C23—N23119.2 (2)
C154—C153—H153120.2C25—C24—C23117.0 (2)
C152—C153—H153120.2C25—C24—H24121.5
C153—C154—C155120.0 (3)C23—C24—H24121.5
C153—C154—H154120.0C24—C25—C26122.6 (2)
C155—C154—H154120.0C24—C25—N25117.6 (2)
C156—C155—C154120.4 (3)C26—C25—N25119.8 (2)
C156—C155—H155119.8C21—C26—C25119.3 (2)
C154—C155—H155119.8C21—C26—H26120.3
C155—C156—C151120.1 (3)C25—C26—H26120.3
C155—C156—H156120.0O21—C27—O22127.0 (2)
C151—C156—H156120.0O21—C27—C21118.1 (2)
N1—C11—C12114.0 (2)O22—C27—C21115.0 (2)
N1—C11—H11A108.8O24—N23—O23124.5 (3)
C12—C11—H11A108.8O24—N23—C23117.9 (3)
N1—C11—H11B108.8O23—N23—C23117.7 (2)
C12—C11—H11B108.8O26—N25—O25124.2 (3)
H11A—C11—H11B107.7O26—N25—C25117.6 (3)
C13—C12—C11111.0 (3)O25—N25—C25118.1 (3)
C13—C12—H12A104.2
C11—N1—C2—C3179.77 (19)O14—C14—C161—C16610.3 (6)
C6—N1—C2—C356.5 (2)C13—C14—C161—C166170.9 (5)
N1—C2—C3—C457.2 (2)O14—C14—C161—C162162.5 (4)
C2—C3—C4—O461.4 (2)C13—C14—C161—C16216.4 (5)
C2—C3—C4—C555.9 (2)C166—C161—C162—C1635.6 (7)
O4—C4—C5—C666.3 (2)C14—C161—C162—C163178.6 (4)
C3—C4—C5—C655.8 (3)C161—C162—C163—C1640.8 (7)
C2—N1—C6—C557.0 (2)C162—C163—C164—C1656.2 (8)
C11—N1—C6—C5178.8 (2)C162—C163—C164—C181179.9 (4)
C4—C5—C6—N157.7 (3)C163—C164—C165—C1665.7 (11)
C5—C4—O4—C41179.83 (19)C181—C164—C165—C166179.0 (6)
C3—C4—O4—C4161.1 (3)C162—C161—C166—C1656.3 (10)
C4—O4—C41—C15153.7 (3)C14—C161—C166—C165179.2 (6)
C4—O4—C41—C141177.88 (18)C164—C165—C166—C1610.5 (13)
O4—C41—C141—C1424.6 (3)C165—C164—C181—C18324.9 (6)
C151—C41—C141—C142128.7 (2)C163—C164—C181—C183148.2 (4)
O4—C41—C141—C146176.5 (2)C165—C164—C181—C18296.3 (6)
C151—C41—C141—C14652.4 (3)C163—C164—C181—C18290.6 (4)
C146—C141—C142—C1431.4 (4)C165—C164—C181—C184144.6 (6)
C41—C141—C142—C143179.7 (2)C163—C164—C181—C18428.4 (4)
C141—C142—C143—C1440.2 (4)C26—C21—C22—C231.4 (3)
C142—C143—C144—C1451.2 (4)C27—C21—C22—C23176.3 (2)
C143—C144—C145—C1461.4 (5)C21—C22—C23—C240.9 (4)
C144—C145—C146—C1410.1 (5)C21—C22—C23—N23178.1 (2)
C142—C141—C146—C1451.3 (4)C22—C23—C24—C250.0 (4)
C41—C141—C146—C145179.8 (3)N23—C23—C24—C25179.0 (2)
O4—C41—C151—C152129.7 (2)C23—C24—C25—C260.4 (4)
C141—C41—C151—C152109.3 (2)C23—C24—C25—N25179.6 (2)
O4—C41—C151—C15650.5 (3)C22—C21—C26—C251.0 (3)
C141—C41—C151—C15670.5 (3)C27—C21—C26—C25176.7 (2)
C156—C151—C152—C1530.6 (4)C24—C25—C26—C210.1 (4)
C41—C151—C152—C153179.6 (2)N25—C25—C26—C21180.0 (2)
C151—C152—C153—C1540.2 (4)C26—C21—C27—O211.3 (3)
C152—C153—C154—C1550.6 (5)C22—C21—C27—O21179.0 (2)
C153—C154—C155—C1560.3 (5)C26—C21—C27—O22177.2 (2)
C154—C155—C156—C1510.5 (4)C22—C21—C27—O220.5 (3)
C152—C151—C156—C1550.9 (4)C24—C23—N23—O244.2 (4)
C41—C151—C156—C155179.3 (2)C22—C23—N23—O24176.8 (2)
C2—N1—C11—C1272.4 (3)C24—C23—N23—O23174.9 (2)
C6—N1—C11—C12164.5 (3)C22—C23—N23—O234.1 (4)
N1—C11—C12—C13122.9 (3)C24—C25—N25—O26168.7 (3)
C11—C12—C13—C14179.2 (3)C26—C25—N25—O2611.3 (4)
C12—C13—C14—O141.7 (5)C24—C25—N25—O259.9 (4)
C12—C13—C14—C161179.5 (3)C26—C25—N25—O25170.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.99 (3)1.66 (2)2.634 (3)167 (2)
C2—H2A···O25i0.972.503.444 (3)163
C11—H11A···O14ii0.972.493.358 (4)150
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the DST–PURSE Lab. (Mangalore University) for the diffractometer and other facilities. MAES thanks the University of Mysore for research facilities and BKS thanks the UGC for the award of a Rajiv Gandhi National Fellowship.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science
First citationCheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932–o2933.  CSD CrossRef IUCr Journals
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationShaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017). E73, 1488–1493.
First citationSharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299–1301.  CSD CrossRef CAS IUCr Journals
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVan Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807–1813.  CrossRef PubMed CAS
First citationWiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260–277.  CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds