research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of two solvates of a luminescent copper(II) bis­­(pyridine)-substituted benzimidazole complex

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by M. Zeller, Purdue University, USA (Received 29 September 2017; accepted 2 October 2017; online 6 October 2017)

Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of inter­est for chemotherapeutic and other pharmaceutical uses. The complex bis­(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole-κ2N2,N3}copper(II), has been prepared. The absorption spectrum has features attributed to intra­ligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The aceto­nitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Inter­molecular ππ inter­actions are found in 1 and 2. A weak C—H⋯π inter­action is observed in 1.

1. Chemical context

Copper(II) complexes containing benzimidazole ligands exhibit anti­cancer properties involving reactive oxygen species and DNA inter­actions (Prosser et al., 2017[Prosser, K. E., Chang, S. W., Saraci, F., Le, P. H. & Walsby, C. J. (2017). J. Inorg. Biochem. 167, 89-99.]; Lewis et al., 2016[Lewis, A., McDonald, M., Scharbach, S., Hamaway, S., Plooster, M., Peters, K., Fox, K. M., Cassimeris, L., Tanski, J. M. & Tyler, L. A. (2016). J. Inorg. Biochem. 157, 52-61.]; Mal et al., 2014[Mal, S. K., Mitra, M., Kaur, G., Manikandamathavan, V. M., Kiran, M. S., Choudhury, A. R., Nair, B. U. & Ghosh, R. (2014). RSC Adv. 4, 61337-61342.]). Similar complexes show anti­bacterial activity (Chen et al., 2012[Chen, J. Y., Ren, X. X., Mao, Z. W. & Le, X. Y. (2012). J. Coord. Chem. 65, 2182-2191.]). The biological activity suggests that CuII–benzimidazole complexes have potential as chemo­thera­peutic and other pharmaceutical uses.

In addition to biological applications, CuII complexes containing benzimidazole have been explored as catalysts. For example, one complex behaves as a ring-opening polymerization catalyst (Zaca et al., 2016[Zaca, T., Ojwach, S. O. & Akerman, M. P. (2016). Transit. Met. Chem. 41, 663-673.]). Others have been used as building blocks for the construction of metal–organic frameworks and coordination polymers (Li et al., 2011[Li, J., Ji, C.-C., Huang, L.-F., Li, Y.-Z. & Zheng, H.-G. (2011). Inorg. Chim. Acta, 371, 27-35.]; Machura et al., 2010[Machura, B., Świtlicka, A., Mroziński, J., Kruszynski, R. & Kusz, J. (2010). Polyhedron, 29, 2157-2165.]).

We recently reported the structures of two zinc(II) complexes of 5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole, Me2BzImpy2, that exhibit blue luminescence (DeStefano & Geiger, 2016[DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491-497.]) and a luminescent platinum(II) complex that exhibits an inter­molecular anagostic inter­action (DeStefano & Geiger, 2017[DeStefano, M. R. & Geiger, D. K. (2017). Acta Cryst. C73, 697-702.]). In this report, we expand the series to CuII(Me2BzImpy2)(OAc)2, which is luminescent in solution. Two forms of the compound have been structurally characterized: 1 is an aceto­nitrile solvate and 2 is an ethanol hemisolvate.

[Scheme 1]

2. Spectroscopy

The absorption and emission spectra of Cu(Me2BzImpy2)(OAc)2 are shown in Fig. 1[link]. In the UV region, the absorption spectrum is similar to that of the free ligand, Me2BzImpy2, (Geiger & DeStefano, 2016[Geiger, D. K. & DeStefano, M. R. (2016). Acta Cryst. C72, 867-874.]) but red-shifted (λmax = 340 nm, 3.65 eV; = 17,500 M−1cm−1), as was observed for the zinc(II) (DeStefano & Geiger, 2016[DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491-497.]) and platinum(II) (DeStefano & Geiger, 2017[DeStefano, M. R. & Geiger, D. K. (2017). Acta Cryst. C73, 697-702.]) complexes of Me2BzImpy2. In the previously reported complexes, the bands were assigned as ligand-centered π*←π in nature based on the results of mol­ecular orbital calculations. In addition to the features in the UV region of the spectrum, a ligand-field band is observed in the visible region (λmax = 695 nm, 1.78 eV; = 77 M−1cm−1). The emission spectrum obtained using an excitation wavelength of 320 nm exhibits a band (λmax = 383 nm, 3.24 eV) similar to those of the ZnII and PtII complexes where there is evidence of involvement of the di­imine in the emissive state (DeStefano & Geiger, 2017[DeStefano, M. R. & Geiger, D. K. (2017). Acta Cryst. C73, 697-702.]; Hissler et al., 2000[Hissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 447-457.]).

[Figure 1]
Figure 1
Absorption (solid black) and normalized emission (dash black, λexc = 320 nm) spectra for 5.25E-5 M Cu(Me2BzImpy2)(OAc)2. Absorption (solid red) spectrum for 5.25E-3 M Cu(Me2BzImpy2)(OAc)2 in ethanol.

Luminescent CuII 1,10-phenanthroline complexes have been reported (Melnic et al., 2014[Melnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087-30100.]; Mistri, García-Granda et al., 2013[Mistri, S., García-Granda, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 50, 333-338.]; Mistri, Zangrando et al., 2013[Mistri, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 49, 252-258.]). In these complexes, ligand-field transitions appear in the near infrared, which do not exhibit emission bands due to ultrafast non-radiative processes (Melnic et al., 2014[Melnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087-30100.]). Bis(1,2-benzenedi­amine-κ2N,N′)copper(II) nitrate (Supriya & Das, 2003[Supriya, S. & Das, S. K. (2003). Inorg. Chem. Commun. 6, 10-14.]) and a series of copper(II) complexes with tridentate phenol-substituted picolinylidenes (Das & Pal, 2010[Das, S. & Pal, S. (2010). Inorg. Chim. Acta, 363, 3028-3035.]) are other examples of luminescent CuII complexes. However, to our knowledge, Cu(Me2BzImpy2)(OAc)2 is the first luminescent CuII–benz­im­idazole complex reported.

3. Structural commentary

The two copper complexes explored in this study differ in the co-crystallized solvent: 1 contains one aceto­nitrile mol­ecule per copper complex, whereas 2 is an ethanol solvate with two symmetry-independent mol­ecules of the copper complex per mol­ecule of ethanol. The two independent mol­ecules will be referred to as 2a and 2b. Representations of the asymmetric units of 1 and 2 along with the respective atom-labeling schemes are found in Figs. 2[link] and 3[link]. The ethanol mol­ecule in 2 is threefold disordered (see Refinement section for details).

[Figure 2]
Figure 2
View of 1 showing the atom-labeling scheme. Anisotropic displacement parameters of non-H atoms are drawn at the 30% probability level.
[Figure 3]
Figure 3
View of 2 showing the atom-labeling scheme. Anisotropic displacement parameters of non-H atoms are drawn at the 30% probability level. Hydrogen atoms are not shown. Only the major contributor to the disordered ethanol mol­ecule is shown.

In both 1 and 2, the coordination geometries of the copper ions are best described as distorted square planar with monodentate coordination of two acetate ligands in addition to the Me2BzImpy2 ligand (see Figs. 2[link] and 3[link], and Tables 1[link] and 2[link]). In 1, the uncoordinated oxygen atoms are 2.651 (3) and 2.676 (4) Å from the CuII atom. In 2a, the corresponding distances are 2.471 (2) and 2.698 (3) Å; in 2b, the distances are 2.546 (3) and 2.554 (3) Å. The oxygen atoms of the N2O2 coordination sphere have a twist angle from the nitro­gen atoms of 6.7 (2)° for 1. These values are 17.2 (2) and 7.9 (2)° for 2a and 2b, respectively. In 1, 2a and 2b, the two acetate ligands adopt anti conformations.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Cu1—N1 1.974 (3) Cu1—O1 1.948 (3)
Cu1—N3 2.034 (3) Cu1—O3 1.935 (2)
       
N1—Cu1—N3 80.41 (11) O3—Cu1—N3 93.35 (12)
O1—Cu1—N3 171.88 (11) O3—Cu1—N1 173.39 (12)
O1—Cu1—N1 94.59 (12) O3—Cu1—O1 91.85 (12)
       
N1—C7—C8—N3 0.0 (5)    

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cu1—N1 2.024 (3) Cu2—N5 2.029 (2)
Cu1—N2 1.962 (2) Cu2—N6 1.987 (3)
Cu1—O1 1.931 (2) Cu2—O5 1.961 (2)
Cu1—O3 1.974 (2) Cu2—O7 1.955 (2)
       
O1—Cu1—N2 166.81 (11) O7—Cu2—O5 94.38 (10)
O1—Cu1—O3 94.41 (9) O7—Cu2—N6 170.19 (10)
N2—Cu1—O3 94.24 (10) O5—Cu2—N6 93.55 (10)
O1—Cu1—N1 93.50 (10) O7—Cu2—N5 92.34 (10)
N2—Cu1—N1 80.25 (10) O5—Cu2—N5 172.00 (11)
O3—Cu1—N1 165.68 (10) N6—Cu2—N5 80.24 (10)
       
N1—C1—C6—N2 1.2 (4)    

The Cu—N(pyridine) bond distances found in 1 and 2 are slightly longer than the Cu—N(imidazole) bond distances (Tables 1[link] and 2[link]). The bond distances compare favorably with those found in other CuII 2-pyridin-2-yl-1H-benzimidazole complexes. For the four square-planar complexes in the comparison pool (Prosser et al., 2017[Prosser, K. E., Chang, S. W., Saraci, F., Le, P. H. & Walsby, C. J. (2017). J. Inorg. Biochem. 167, 89-99.]; Lewis et al., 2016[Lewis, A., McDonald, M., Scharbach, S., Hamaway, S., Plooster, M., Peters, K., Fox, K. M., Cassimeris, L., Tanski, J. M. & Tyler, L. A. (2016). J. Inorg. Biochem. 157, 52-61.]; Li et al., 2011[Li, J., Ji, C.-C., Huang, L.-F., Li, Y.-Z. & Zheng, H.-G. (2011). Inorg. Chim. Acta, 371, 27-35.]), the Cu—N(pyridine) bond distances are 2.04 (2) Å [range = 2.0047 (2)–2.059 (4) Å] and the Cu—N(imidazole) bond distances are 1.99 (2) Å [range = 1.9645 (2)–2.002 (2) Å].

In 1 and 2, the coordinated pyridine and benzimidazole ring systems are approximately coplanar. The torsion angles are reported in Tables 1[link] and 2[link]. In 1 the angle between the mean planes of the benzimidazole ring system and the coordinated pyridine is 0.89 (19)° and in 2a and 2b the corresponding angles are 3.5 (2) and 4.91 (16)°, respectively.

4. Supra­molecular features

There are several types of hydrogen-bonding inter­actions present in 1, as seen in Table 3[link]. The aceto­nitrile solvate participates as acceptor in C—H⋯N hydrogen bonds in which an aromatic hydrogen atom (H9) is donor. Additionally, C—H⋯O hydrogen bonds involving the uncoordinated acetate oxygen atom O2 as acceptor and the aromatic carbon atoms C10 and C16 as donors result in chains that run parallel to [[\overline{1}] 10] (Fig. 4[link]). In 2, the most significant hydrogen-bonding inter­actions (Table 4[link]) involve the disordered ethanol solvate mol­ecule, which participates as donor in O—H⋯O hydrogen bonding with the uncoordinated acetate oxygen atoms O2 and O6 as acceptors.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

Cg(Bz) is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3 0.95 2.51 3.043 (5) 115
C10—H10⋯O2i 0.95 2.42 3.140 (5) 132
C6—H6⋯O1 0.95 2.54 3.191 (5) 126
C24—H24B⋯O1 0.98 2.59 3.334 (6) 133
C9—H9⋯N5ii 0.95 2.50 3.349 (6) 149
C13—H13B⋯O4iii 0.99 2.41 3.391 (5) 169
C16—H16⋯O2iv 0.95 2.57 3.449 (6) 154
C17—H17⋯Cg(Bz)v 0.95 2.87 3.783 (6) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) -x+1, -y+1, -z+1; (v) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O100—H100⋯O2i 0.84 2.25 3.010 (8) 152
O200—H200⋯O6 0.84 2.31 3.068 (14) 149
O300—H300⋯O6 0.84 2.41 3.13 (2) 144
C5—H5⋯N8ii 0.95 2.52 3.279 (4) 137
C13—H13A⋯O2iii 0.99 2.53 3.497 (4) 167
C17—H17⋯O8iv 0.95 2.63 3.334 (4) 132
C20—H20B⋯O3i 0.98 2.61 3.576 (5) 169
C25—H25⋯O8iv 0.95 2.45 3.321 (4) 152
C33—H33⋯O100v 0.95 2.51 3.202 (8) 130
C35—H35A⋯O8iv 0.99 2.37 3.353 (4) 170
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z; (v) x-1, y, z.
[Figure 4]
Figure 4
Partial packing diagram of 1 showing the chains formed by C—H⋯O hydrogen bonding. Only the H atoms involved in the inter­actions are shown. [Symmetry codes: (i) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iv) x + [{3\over 2}], y + [{3\over 2}], z + 1.]

In addition to weak C—H⋯O and C—H⋯N hydrogen bonds (Table 3[link]), the extended structure of 1 exhibits inter­molecular C—H⋯π and ππ inter­actions (see Tables 3[link] and 5[link]). Fig. 5[link] shows a partial packing diagram emaphasizing these inter­actions. The closest ππ inter­action exists between the coordinated pyridine rings of mol­ecules related by a crystallographically imposed inversion center. Weaker ππ inter­actions exist between imidazole rings and between coordin­ated pyridine rings and benzene rings on inversion-related mol­ecules. The C—H⋯π inter­action is between inversion-related mol­ecules and involves the benzene ring and a hydrogen atom of the 1-(pyridin-2-yl)methyl substituent.

Table 5
Significant π–π inter­actions (Å) in 1 and 2

Cg(n) refers to the centroids of the imidazole (n = Im), benzene (n = Bz), pyridine (n = py), and pyridyl­methyl (n = Pym) rings.

1   2  
Cg(Im)⋯Cg(Im)i 3.502 (2) Cg(Pym2a)⋯Cg(Pym2b) 3.955 (2)
Cg(py)⋯Cg(py)ii 3.415 (2) Cg(Im2a)⋯Cg(Im2a)iii 3.3405 (18)
Cg(py)⋯Cg(Bz)ii 3.603 (2) Cg(Im2b)⋯Cg(Im2b)iv 3.5618 (19)
Symmetry codes: (i) −x + [{1\over 2}], −y + [{1\over 2}], 1 − z; (ii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x + 2, −y, −z + 1; (iv) −x + 1, −y + 1, −z.
[Figure 5]
Figure 5
Partial packing diagram of 1 showing the C—H⋯π and the primary ππ inter­actions. Only the H atom involved in the C—H⋯π inter­action is shown. [Symmetry identifiers: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x + 1, −y + 1, −z + 1.]

No significant C—H⋯π inter­actions are observed in 2; however, a number of close ππ inter­actions exist (see Table 5[link] and Fig. 6[link]). A ππ inter­action between 2a and 2b involves the 1-(pyridin-2-yl)methyl substituent of each mol­ecule. In both 2a and 2b, the closest ππ inter­action is between imidazole rings related by the crystallographically imposed inversion center. The Cg(Im)⋯Cg(Im) separation in 2a is shorter than that observed in 2b.

[Figure 6]
Figure 6
Partial packing diagram of 2 emphasizing the primary ππ inter­actions. H atoms and the ethanol solvate mol­ecule are not shown. [Symmetry identifiers: (iii) −x + 2, −y, −z + 1; (iv) −x + 1, −y + 1, −z.]

π stacking is prevalent in CuII 1,10-phenanthroline complexes (Melnic et al., 2014[Melnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087-30100.]) and it has been suggested as a necessary structural feature for the DNA-cleavage activity exhibited by these and similar complexes (McCann et al., 2013[McCann, M., McGinley, J., Ni, K., O'Connor, M., Kavanagh, K., McKee, V., Colleran, J., Devereux, M., Gathergood, N., Barron, N., Prisecaru, A. & Kellett, A. (2013). Chem. Commun. 49, 2341-2343.]). π stacking has also been implicated in the fluorescence quenching of amyloid-β peptide, which could be of relevance to possible therapeutic applications of CuII chelators in the treatment of Alzheimer's disease (Melnic et al., 2014[Melnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087-30100.]).

5. Database survey

A search of the Cambridge Structural Database (WebCSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-(pyridin-2-yl)-1H-benzimidazole ligands coordinated to CuII yielded 14 different compounds. The most similar to 1 and 2 are the four which adopt square-planar coordination geometries (EQOGAT: Li et al., 2011[Li, J., Ji, C.-C., Huang, L.-F., Li, Y.-Z. & Zheng, H.-G. (2011). Inorg. Chim. Acta, 371, 27-35.]; MALLAP: Lewis et al., 2016[Lewis, A., McDonald, M., Scharbach, S., Hamaway, S., Plooster, M., Peters, K., Fox, K. M., Cassimeris, L., Tanski, J. M. & Tyler, L. A. (2016). J. Inorg. Biochem. 157, 52-61.]; CANMIQ and CANMUC: Prosser et al., 2017[Prosser, K. E., Chang, S. W., Saraci, F., Le, P. H. & Walsby, C. J. (2017). J. Inorg. Biochem. 167, 89-99.]). Two complexes exhibit octa­hedral coordination geometries (MALLUJ: Lewis et al., 2016[Lewis, A., McDonald, M., Scharbach, S., Hamaway, S., Plooster, M., Peters, K., Fox, K. M., Cassimeris, L., Tanski, J. M. & Tyler, L. A. (2016). J. Inorg. Biochem. 157, 52-61.]; TUBXUK: Altaf & Stoeckli-Evans, 2009[Altaf, M. & Stoeckli-Evans, H. (2009). Transition Met. Chem. 34, 613-620.]), five have square-pyramidal geometries (RAXQUE: Chen et al., 2012[Chen, J. Y., Ren, X. X., Mao, Z. W. & Le, X. Y. (2012). J. Coord. Chem. 65, 2182-2191.]; BUYCUU: Machura et al., 2010[Machura, B., Świtlicka, A., Mroziński, J., Kruszynski, R. & Kusz, J. (2010). Polyhedron, 29, 2157-2165.]; ZOTCUI: Mal et al., 2014[Mal, S. K., Mitra, M., Kaur, G., Manikandamathavan, V. M., Kiran, M. S., Choudhury, A. R., Nair, B. U. & Ghosh, R. (2014). RSC Adv. 4, 61337-61342.]; GUXBOR: Zhang & Yang, 2010[Zhang, L.-H. & Yang, J. (2010). Z. Kristallogr. New Cryst. Struct. 225, 199-200.]; COXSOY01: Altaf & Stoeckli-Evans, 2009[Altaf, M. & Stoeckli-Evans, H. (2009). Transition Met. Chem. 34, 613-620.]), and three have trigonal–bipyramidal geometries (CANMEM and CANMOW: Prosser et al., 2017[Prosser, K. E., Chang, S. W., Saraci, F., Le, P. H. & Walsby, C. J. (2017). J. Inorg. Biochem. 167, 89-99.]; OVAXEQ: Zaca et al., 2016[Zaca, T., Ojwach, S. O. & Akerman, M. P. (2016). Transit. Met. Chem. 41, 663-673.]). Excluding those complexes exhibiting Jahn–Teller distorted geometries, the average Cu—N(pyridine) and Cu—N(imidazole) bond distances found are 2.04 (2) and 2.00 (4) Å, respectively.

6. Synthesis and crystallization

5,6-Dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole, Me2BzImpy2, was prepared as previously described (Geiger & DeStefano, 2014[Geiger, D. K. & DeStefano, M. R. (2014). Acta Cryst. E70, o365.]). Solvents were of commercial analytical grade and used without further purification. Spectroscopic measurements were performed at ambient temperature. Absorption spectra were recorded on a Varian Cary 50 Bio UV–Visible spectrophotometer. Excitation and emission spectra were recorded on a Photon Technology Inter­national Inc. QM-40 spectrofluorimeter using an excitation wavelength of 320 nm.

Bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[pyridin-2-yl)meth­yl]-1H-benzimidazole-κ2N2,N3}copper(II), Cu(Me2BzImpy2)(OAc)2, was prepared by refluxing 200 mg (0.63 mmol) Me2BzImpy2 and 130 mg (0.65 mmol) copper acetate monohydrate in 15 mL ethanol for 10 min. The ethanol was reduced in volume until crystallization commenced. After chilling in an ice bath, the blue crystalline product was separated by filtration. The yield was 0.24 g (0.52 mmol, 83% yield). Single crystals of 1 and 2 were obtained by slow evaporation of aceto­nitrile and ethanol solutions of Cu(Me2BzImpy2)(OAc)2, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Early in the refinement of 2, the ethanol hemisolvate mol­ecule was found to be disordered. The disorder was modeled using three contributors. Successful refinement required the use of O—H, C—C and C—O distance restraints of 0.84, 1.53 and 1.43 Å, respectively, and restraints on the Uij components of the anisotropically refined atoms in the disordered ethanol mol­ecule. The disorder model refined to occupancies of 0.411 (3):0.362 (3):0.227 (3). All H atoms were located in difference-Fourier maps for 1 and 2, except those associated with the disordered ethanol mol­ecule. H atoms bonded to C atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions; C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methyl­ene groups; and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. The hy­droxy H atoms in the disordered ethanol contributors were refined using a rotating-group model with C—O—H tetra­hedral, distance restraints to acceptor atoms (O6 and symmetry-generated O2) and with Uiso(H) = 1.5Ueq(O).

Table 6
Experimental details

  1 2
Crystal data
Chemical formula [Cu(C2H3O2)2(C20H18N4)]·C2H3N [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O
Mr 537.06 1038.09
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 200 200
a, b, c (Å) 21.292 (3), 10.1837 (12), 24.867 (4) 11.2595 (11), 14.0130 (15), 16.5004 (18)
α, β, γ (°) 90, 102.668 (5), 90 81.873 (4), 77.126 (4), 80.348 (4)
V3) 5260.7 (12) 2487.4 (5)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.87 0.92
Crystal size (mm) 0.60 × 0.15 × 0.15 0.60 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.855, 0.878 0.726, 0.832
No. of measured, independent and observed [I > 2σ(I)] reflections 17879, 4616, 3415 22519, 9149, 6690
Rint 0.093 0.042
(sin θ/λ)max−1) 0.595 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.178, 1.02 0.045, 0.121, 1.04
No. of reflections 4616 9149
No. of parameters 330 690
No. of restraints 0 160
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.84, −1.27 0.77, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κ2N2,N3}copper(II) acetonitrile monosolvate (1) top
Crystal data top
[Cu(C2H3O2)2(C20H18N4)]·C2H3NF(000) = 2232
Mr = 537.06Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.292 (3) ÅCell parameters from 6746 reflections
b = 10.1837 (12) Åθ = 2.3–25.6°
c = 24.867 (4) ŵ = 0.87 mm1
β = 102.668 (5)°T = 200 K
V = 5260.7 (12) Å3Needle, blue-green
Z = 80.60 × 0.15 × 0.15 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3415 reflections with I > 2σ(I)
Radiation source: sealed microfocus tubeRint = 0.093
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 2525
Tmin = 0.855, Tmax = 0.878k = 1111
17879 measured reflectionsl = 1629
4616 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1166P)2]
where P = (Fo2 + 2Fc2)/3
4616 reflections(Δ/σ)max = 0.003
330 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 1.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in difference Fourier maps. H atoms bonded to C atoms were refined using a riding model, with C–H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions; C–H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methylene group; and C–H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25894 (2)0.51131 (4)0.60501 (2)0.0386 (2)
O10.30689 (14)0.4530 (3)0.67694 (10)0.0513 (7)
O20.37267 (15)0.6034 (3)0.65669 (12)0.0656 (8)
O30.21236 (14)0.6405 (3)0.63799 (11)0.0527 (7)
O40.14226 (17)0.4765 (3)0.62642 (15)0.0652 (9)
N10.29915 (14)0.3832 (3)0.56335 (11)0.0359 (7)
N20.32326 (14)0.3222 (3)0.48426 (11)0.0345 (7)
N30.22120 (15)0.5741 (3)0.52699 (12)0.0385 (7)
N40.3977 (2)0.5171 (3)0.44721 (17)0.0583 (10)
N50.2435 (4)0.5210 (6)0.8052 (2)0.112 (2)
C10.34177 (17)0.2802 (3)0.57473 (13)0.0368 (8)
C20.35794 (17)0.2411 (3)0.52502 (13)0.0358 (8)
C30.40079 (18)0.1394 (4)0.52338 (15)0.0431 (9)
H30.41120.11430.48960.052*
C40.42816 (18)0.0748 (4)0.57212 (16)0.0455 (9)
C50.41051 (19)0.1134 (4)0.62263 (16)0.0487 (10)
C60.36792 (18)0.2129 (4)0.62356 (14)0.0435 (9)
H60.35610.23630.65700.052*
C70.28948 (17)0.4081 (3)0.50934 (13)0.0342 (8)
C80.24562 (19)0.5156 (3)0.48640 (15)0.0357 (8)
C90.2294 (2)0.5596 (4)0.43257 (14)0.0442 (9)
H90.24700.51860.40490.053*
C100.1877 (2)0.6624 (4)0.41948 (16)0.0509 (10)
H100.17620.69340.38260.061*
C110.1624 (2)0.7209 (4)0.45988 (16)0.0507 (10)
H110.13300.79200.45140.061*
C120.18092 (19)0.6736 (4)0.51333 (16)0.0465 (9)
H120.16390.71450.54140.056*
C130.33262 (18)0.3199 (4)0.42732 (13)0.0389 (9)
H13A0.29380.35560.40210.047*
H13B0.33850.22810.41630.047*
C140.39095 (18)0.4007 (4)0.42239 (14)0.0414 (9)
C150.43403 (19)0.3528 (5)0.39292 (16)0.0554 (11)
H150.42770.26920.37570.066*
C160.4865 (2)0.4291 (6)0.3891 (2)0.0730 (15)
H160.51700.39890.36920.088*
C170.4935 (3)0.5485 (6)0.4143 (2)0.0804 (16)
H170.52900.60350.41220.097*
C180.4486 (3)0.5877 (5)0.4428 (2)0.0760 (14)
H180.45420.67080.46050.091*
C190.3582 (2)0.5207 (4)0.68811 (16)0.0497 (11)
C200.4030 (3)0.4923 (6)0.7436 (2)0.096 (2)
H20A0.42840.41340.74060.144*
H20B0.37750.47830.77140.144*
H20C0.43200.56710.75440.144*
C210.1592 (2)0.5863 (5)0.64384 (15)0.0496 (10)
C220.1192 (3)0.6702 (6)0.6741 (2)0.0832 (17)
H22A0.08360.71030.64750.125*
H22B0.14630.73940.69470.125*
H22C0.10200.61530.69980.125*
C230.2282 (3)0.4307 (6)0.7801 (2)0.0764 (16)
C240.2089 (3)0.3137 (6)0.7481 (2)0.0860 (16)
H24A0.21000.23850.77290.129*
H24B0.23840.29800.72360.129*
H24C0.16500.32500.72600.129*
C410.4746 (2)0.0370 (5)0.5713 (2)0.0664 (13)
H41A0.47160.06570.53320.100*
H41B0.46380.11040.59300.100*
H41C0.51860.00740.58700.100*
C510.4385 (3)0.0398 (6)0.6760 (2)0.0731 (14)
H51A0.42310.08020.70650.110*
H51B0.48560.04410.68360.110*
H51C0.42470.05220.67210.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0377 (3)0.0473 (3)0.0331 (3)0.00463 (19)0.0127 (2)0.00961 (17)
O10.0510 (19)0.0698 (18)0.0349 (13)0.0078 (16)0.0135 (13)0.0072 (13)
O20.060 (2)0.074 (2)0.0609 (18)0.0027 (17)0.0088 (16)0.0134 (16)
O30.0509 (18)0.0602 (17)0.0513 (15)0.0003 (14)0.0202 (14)0.0171 (13)
O40.062 (2)0.064 (2)0.073 (2)0.0070 (17)0.0208 (18)0.0168 (16)
N10.0367 (17)0.0427 (17)0.0286 (14)0.0010 (14)0.0079 (12)0.0040 (12)
N20.0353 (17)0.0401 (16)0.0298 (14)0.0045 (14)0.0110 (13)0.0048 (12)
N30.0334 (17)0.0392 (17)0.0432 (16)0.0029 (15)0.0094 (13)0.0092 (13)
N40.054 (3)0.060 (2)0.065 (2)0.0151 (18)0.022 (2)0.0073 (17)
N50.173 (7)0.107 (4)0.067 (3)0.016 (4)0.048 (4)0.005 (3)
C10.037 (2)0.040 (2)0.0352 (17)0.0047 (17)0.0099 (15)0.0057 (15)
C20.0293 (19)0.042 (2)0.0373 (18)0.0081 (16)0.0101 (15)0.0053 (15)
C30.035 (2)0.051 (2)0.046 (2)0.0019 (18)0.0138 (17)0.0086 (17)
C40.029 (2)0.049 (2)0.058 (2)0.0010 (18)0.0081 (17)0.0034 (18)
C50.039 (2)0.056 (2)0.048 (2)0.001 (2)0.0043 (18)0.0040 (18)
C60.039 (2)0.054 (2)0.0372 (18)0.0005 (19)0.0087 (16)0.0002 (16)
C70.0328 (19)0.041 (2)0.0281 (16)0.0095 (16)0.0055 (14)0.0062 (14)
C80.033 (2)0.037 (2)0.0366 (18)0.0072 (16)0.0065 (16)0.0065 (14)
C90.052 (3)0.045 (2)0.0356 (19)0.003 (2)0.0097 (18)0.0022 (16)
C100.058 (3)0.047 (2)0.045 (2)0.004 (2)0.0054 (19)0.0012 (17)
C110.047 (3)0.042 (2)0.059 (2)0.0007 (19)0.003 (2)0.0033 (19)
C120.038 (2)0.050 (2)0.052 (2)0.0020 (19)0.0106 (18)0.0107 (18)
C130.041 (2)0.049 (2)0.0284 (16)0.0031 (17)0.0121 (15)0.0093 (14)
C140.040 (2)0.053 (2)0.0313 (17)0.0028 (19)0.0082 (16)0.0042 (16)
C150.042 (2)0.086 (3)0.042 (2)0.009 (2)0.0181 (19)0.011 (2)
C160.044 (3)0.120 (5)0.060 (3)0.008 (3)0.022 (2)0.025 (3)
C170.052 (3)0.103 (4)0.086 (4)0.016 (3)0.015 (3)0.036 (3)
C180.067 (3)0.074 (3)0.088 (3)0.028 (3)0.020 (3)0.000 (3)
C190.047 (3)0.063 (3)0.039 (2)0.006 (2)0.0077 (19)0.0034 (18)
C200.081 (5)0.134 (6)0.059 (3)0.007 (4)0.014 (3)0.018 (3)
C210.046 (2)0.067 (3)0.0366 (19)0.011 (2)0.0108 (18)0.0051 (19)
C220.073 (4)0.103 (4)0.083 (3)0.018 (3)0.039 (3)0.020 (3)
C230.103 (5)0.081 (4)0.050 (3)0.003 (3)0.026 (3)0.011 (3)
C240.096 (4)0.086 (4)0.072 (3)0.008 (3)0.010 (3)0.017 (3)
C410.044 (3)0.078 (3)0.076 (3)0.014 (3)0.009 (2)0.002 (3)
C510.062 (3)0.095 (4)0.056 (3)0.018 (3)0.001 (2)0.016 (3)
Geometric parameters (Å, º) top
N1—C11.375 (5)C8—C91.382 (5)
C9—C101.365 (6)C10—H100.9500
C10—C111.375 (5)C11—H110.9500
C11—C121.387 (6)C12—H120.9500
N3—C121.323 (5)C13—H13A0.9900
N2—C131.473 (4)C13—H13B0.9900
C13—C141.517 (5)C15—H150.9500
N4—C141.329 (5)C16—H160.9500
C14—C151.382 (5)C17—H170.9500
C15—C161.381 (6)C18—H180.9500
C16—C171.361 (9)C20—H20A0.9800
C17—C181.370 (7)C20—H20B0.9800
N4—C181.324 (6)C20—H20C0.9800
O2—C191.233 (5)C22—H22A0.9800
O1—C191.271 (5)C22—H22B0.9800
C1—C21.411 (4)C22—H22C0.9800
N2—C21.388 (4)C24—H24A0.9800
C19—C201.523 (7)C24—H24B0.9800
O4—C211.224 (5)C24—H24C0.9800
O3—C211.295 (5)C3—H30.9500
C21—C221.518 (5)C41—H41A0.9800
N5—C231.119 (7)C41—H41B0.9800
C23—C241.442 (8)C41—H41C0.9800
C2—C31.387 (5)C51—H51A0.9800
C3—C41.390 (6)C51—H51B0.9800
C4—C411.511 (6)C51—H51C0.9800
C4—C51.442 (5)C6—H60.9500
C5—C511.526 (6)C9—H90.9500
C5—C61.364 (6)Cu1—N11.974 (3)
C1—C61.399 (5)Cu1—N32.034 (3)
N2—C71.367 (4)Cu1—O11.948 (3)
N1—C71.338 (4)Cu1—O31.935 (2)
C7—C81.471 (5)Cu1—O22.651 (3)
N3—C81.369 (4)Cu1—O42.676 (4)
C1—C6—H6120.4C6—C1—C2119.6 (3)
C1—N1—Cu1137.6 (2)C7—N2—C13130.1 (3)
C10—C11—H11120.8C7—N2—C2107.3 (3)
C10—C11—C12118.4 (4)C7—N1—Cu1114.4 (2)
C10—C9—H9120.3C7—N1—C1107.5 (3)
C10—C9—C8119.4 (3)C8—C9—H9120.3
C11—C12—H12118.5C8—N3—Cu1115.6 (2)
C11—C10—H10120.1C9—C10—H10120.1
C12—C11—H11120.8C9—C10—C11119.7 (4)
C12—N3—Cu1125.8 (2)C9—C8—C7128.3 (3)
C12—N3—C8118.3 (3)H13A—C13—H13B108.1
C14—C15—H15120.7H20A—C20—H20C109.5
C14—C13—H13B109.5H20A—C20—H20B109.5
C14—C13—H13A109.5H20B—C20—H20C109.5
C15—C16—H16120.6H22A—C22—H22C109.5
C15—C14—C13120.1 (4)H22A—C22—H22B109.5
C16—C17—H17120.7H22B—C22—H22C109.5
C16—C17—C18118.7 (5)H24A—C24—H24C109.5
C16—C15—H15120.7H24A—C24—H24B109.5
C16—C15—C14118.6 (5)H24B—C24—H24C109.5
C17—C18—H18117.9H41A—C41—H41C109.5
C17—C16—H16120.6H41A—C41—H41B109.5
C17—C16—C15118.7 (4)H41B—C41—H41C109.5
C18—C17—H17120.7H51A—C51—H51C109.5
C18—N4—C14116.9 (4)H51A—C51—H51B109.5
C19—C20—H20C109.5H51B—C51—H51C109.5
C19—C20—H20B109.5N1—C7—C8118.4 (3)
C19—C20—H20A109.5N1—C7—N2110.9 (3)
C19—O1—Cu1106.7 (2)N1—C1—C2108.2 (3)
C2—C3—H3120.6N1—C1—C6132.2 (3)
C2—C3—C4118.7 (3)N1—Cu1—N380.41 (11)
C2—N2—C13122.0 (3)N2—C13—H13B109.5
C21—C22—H22C109.5N2—C13—H13A109.5
C21—C22—H22B109.5N2—C13—C14110.8 (3)
C21—C22—H22A109.5N2—C7—C8130.7 (3)
C21—O3—Cu1107.4 (2)N2—C2—C1106.2 (3)
C23—C24—H24C109.5N3—C12—H12118.5
C23—C24—H24B109.5N3—C12—C11122.9 (3)
C23—C24—H24A109.5N3—C8—C7110.5 (3)
C3—C4—C41119.6 (3)N3—C8—C9121.2 (3)
C3—C4—C5119.4 (3)N4—C18—H18117.9
C3—C2—C1121.7 (3)N4—C18—C17124.2 (5)
C3—C2—N2132.2 (3)N4—C14—C13116.9 (3)
C4—C41—H41C109.5N4—C14—C15122.9 (4)
C4—C41—H41B109.5N5—C23—C24179.5 (9)
C4—C41—H41A109.5O1—C19—C20115.7 (4)
C4—C5—C51119.8 (4)O1—Cu1—N3171.88 (11)
C4—C3—H3120.6O1—Cu1—N194.59 (12)
C5—C51—H51C109.5O2—C19—C20120.7 (5)
C5—C51—H51B109.5O2—C19—O1123.7 (4)
C5—C51—H51A109.5O3—C21—C22114.5 (4)
C5—C6—H6120.4O3—Cu1—N393.35 (12)
C5—C6—C1119.3 (3)O3—Cu1—N1173.39 (12)
C5—C4—C41120.9 (4)O3—Cu1—O191.85 (12)
C6—C5—C51119.0 (4)O4—C21—C22122.4 (4)
C6—C5—C4121.2 (4)O4—C21—O3123.2 (3)
C7—N1—C1—C6179.0 (4)C12—N3—C8—C90.6 (5)
Cu1—N1—C1—C610.3 (6)Cu1—N3—C8—C9172.7 (3)
C7—N1—C1—C20.5 (4)C12—N3—C8—C7179.7 (3)
Cu1—N1—C1—C2171.2 (3)Cu1—N3—C8—C76.4 (4)
C7—N2—C2—C3178.6 (4)N1—C7—C8—N30.0 (5)
C13—N2—C2—C36.6 (6)N2—C7—C8—N3178.5 (3)
C7—N2—C2—C11.7 (4)N1—C7—C8—C9179.0 (4)
C13—N2—C2—C1173.6 (3)N2—C7—C8—C92.5 (6)
N1—C1—C2—C3179.4 (3)N3—C8—C9—C100.7 (6)
C6—C1—C2—C31.9 (5)C7—C8—C9—C10179.5 (4)
N1—C1—C2—N20.8 (4)C8—C9—C10—C110.0 (6)
C6—C1—C2—N2178.0 (3)C9—C10—C11—C120.6 (6)
N2—C2—C3—C4179.7 (4)C8—N3—C12—C110.0 (6)
C1—C2—C3—C40.1 (5)Cu1—N3—C12—C11172.6 (3)
C2—C3—C4—C51.2 (5)C10—C11—C12—N30.7 (6)
C2—C3—C4—C41179.5 (4)C7—N2—C13—C1488.6 (4)
C3—C4—C5—C60.7 (6)C2—N2—C13—C1481.3 (4)
C41—C4—C5—C6179.0 (4)C18—N4—C14—C150.1 (7)
C3—C4—C5—C51177.8 (4)C18—N4—C14—C13179.9 (4)
C41—C4—C5—C510.6 (6)N2—C13—C14—N444.2 (5)
C4—C5—C6—C11.1 (6)N2—C13—C14—C15136.1 (4)
C51—C5—C6—C1179.6 (4)N4—C14—C15—C160.0 (6)
N1—C1—C6—C5179.3 (4)C13—C14—C15—C16179.8 (4)
C2—C1—C6—C52.3 (5)C14—C15—C16—C170.2 (7)
C1—N1—C7—N21.6 (4)C15—C16—C17—C180.5 (8)
Cu1—N1—C7—N2174.7 (2)C14—N4—C18—C170.4 (8)
C1—N1—C7—C8179.6 (3)C16—C17—C18—N40.6 (9)
Cu1—N1—C7—C86.5 (4)Cu1—O1—C19—O21.9 (5)
C2—N2—C7—N12.1 (4)Cu1—O1—C19—C20179.1 (4)
C13—N2—C7—N1173.1 (3)Cu1—O3—C21—O45.5 (5)
C2—N2—C7—C8179.4 (3)Cu1—O3—C21—C22174.7 (3)
C13—N2—C7—C88.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg(Bz) is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O30.952.513.043 (5)115
C10—H10···O2i0.952.423.140 (5)132
C6—H6···O10.952.543.191 (5)126
C24—H24B···O10.982.593.334 (6)133
C9—H9···N5ii0.952.503.349 (6)149
C13—H13B···O4iii0.992.413.391 (5)169
C16—H16···O2iv0.952.573.449 (6)154
C17—H17···Cg(Bz)v0.952.873.783 (6)162
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+1, z+1; (v) x+3/2, y+3/2, z+1.
Bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[pyridin-2-yl)methyl]-1H-benzimidazole-κ2N2,N3}copper(II) ethanol hemisolvate (2) top
Crystal data top
[Cu(C2H3O2)2(C20H18N4)]·0.5C2H6OZ = 2
Mr = 1038.09F(000) = 1080
Triclinic, P1Dx = 1.386 Mg m3
a = 11.2595 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0130 (15) ÅCell parameters from 7750 reflections
c = 16.5004 (18) Åθ = 2.3–23.9°
α = 81.873 (4)°µ = 0.92 mm1
β = 77.126 (4)°T = 200 K
γ = 80.348 (4)°Parallelpiped, blue-green
V = 2487.4 (5) Å30.60 × 0.30 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
9149 independent reflections
Radiation source: sealed microfocus tube6690 reflections with I > 2σ(I)
Detector resolution: 8.3330 pixels mm-1Rint = 0.042
ω scansθmax = 25.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1313
Tmin = 0.726, Tmax = 0.832k = 1716
22519 measured reflectionsl = 2015
Refinement top
Refinement on F2160 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.9243P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9149 reflectionsΔρmax = 0.77 e Å3
690 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal data, data collection and structure refinement details are summarized in Table 1. Early in the refinement of (2), the ethanol hemisolvate molecule was found to be disordered. The disorder was modeled using three contributors. Successful refinement required the use of O–H, C–C and C–O distance restraints of 0.84 Å, 1.53 Å and 1.43 Å, respectively, and restraints on the Uij components of the anisotropically refined atoms in the disordered ethanol. The disorder model refined to occupancies of 0.411 (3) : 0.362 (3) : 0.227 (3). All H atoms were located in difference Fourier maps, except those associated with the disordered ethanol molecule. H atoms bonded to C atoms were refined using a riding model, with C–H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions; C–H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methylene groups; and C–H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. The hydroxy H atoms in the disordered ethanol contributors were refined using a rotating group model with C–O–H tetrahedral, distance restraints to acceptor atoms (O6 and symmetry-generated O2) and with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1100.7322 (12)0.7207 (12)0.2553 (10)0.112 (3)0.411 (3)
H1110.68630.67310.24250.169*0.411 (3)
H1120.67840.76110.29650.169*0.411 (3)
H1130.76110.76220.20400.169*0.411 (3)
C1000.8389 (12)0.6691 (9)0.2895 (11)0.122 (3)0.411 (3)
H1010.80860.62610.34030.147*0.411 (3)
H1020.89110.62720.24790.147*0.411 (3)
O1000.9097 (8)0.7285 (6)0.3096 (5)0.112 (3)0.411 (3)
H1000.88300.74050.35940.168*0.411 (3)
C2100.6049 (12)0.6081 (10)0.2736 (10)0.114 (3)0.362 (3)
H2110.59410.54040.29420.171*0.362 (3)
H2120.57260.64920.31920.171*0.362 (3)
H2130.56040.63050.22810.171*0.362 (3)
C2000.7342 (13)0.6145 (9)0.2429 (12)0.111 (3)0.362 (3)
H2010.77880.59030.28880.134*0.362 (3)
H2020.76660.57160.19770.134*0.362 (3)
O2000.7576 (11)0.7075 (9)0.2126 (8)0.123 (3)0.362 (3)
H2000.69070.74450.21230.184*0.362 (3)
C3100.825 (2)0.7134 (19)0.2390 (18)0.119 (3)0.227 (3)
H3110.86040.72410.28570.178*0.227 (3)
H3120.89110.68610.19520.178*0.227 (3)
H3130.78460.77550.21620.178*0.227 (3)
C3000.731 (2)0.642 (2)0.2700 (12)0.117 (3)0.227 (3)
H3010.77040.57850.29270.140*0.227 (3)
H3020.66310.66850.31380.140*0.227 (3)
O3000.6892 (17)0.6336 (13)0.1987 (12)0.119 (3)0.227 (3)
H3000.62560.67400.19620.178*0.227 (3)
Cu11.12110 (3)0.24202 (3)0.42497 (2)0.03483 (12)
Cu20.39897 (4)0.74583 (3)0.09205 (2)0.03675 (13)
O11.2626 (2)0.30596 (16)0.41826 (15)0.0443 (6)
O21.2708 (3)0.2118 (2)0.53576 (19)0.0743 (9)
O31.0065 (2)0.33510 (17)0.49500 (15)0.0465 (6)
O40.99188 (19)0.38173 (17)0.36382 (15)0.0439 (6)
O50.4991 (2)0.83679 (16)0.01689 (15)0.0495 (6)
O60.5495 (3)0.8340 (2)0.13825 (16)0.0767 (10)
O70.2561 (2)0.84483 (16)0.11952 (16)0.0513 (6)
O80.2187 (2)0.77443 (17)0.01778 (15)0.0518 (6)
N11.2083 (2)0.15678 (18)0.33409 (16)0.0341 (6)
N21.0026 (2)0.15012 (18)0.43873 (15)0.0335 (6)
N30.9448 (2)0.02312 (18)0.39860 (17)0.0366 (6)
N40.9083 (2)0.06519 (19)0.23244 (17)0.0403 (7)
N50.3178 (2)0.64194 (19)0.17383 (16)0.0359 (6)
N60.5232 (2)0.63011 (18)0.06515 (15)0.0318 (6)
N70.5810 (2)0.46992 (18)0.08607 (16)0.0326 (6)
N80.5714 (2)0.26486 (19)0.24464 (17)0.0416 (7)
C11.1481 (3)0.0844 (2)0.3236 (2)0.0349 (7)
C21.1963 (3)0.0241 (2)0.2612 (2)0.0444 (8)
H21.15310.02590.25410.053*
C31.3089 (3)0.0375 (3)0.2089 (2)0.0518 (9)
H31.34480.00430.16670.062*
C41.3676 (3)0.1124 (3)0.2192 (2)0.0509 (9)
H41.44330.12430.18310.061*
C51.3151 (3)0.1697 (3)0.2825 (2)0.0442 (8)
H51.35650.22060.28970.053*
C61.0319 (3)0.0831 (2)0.38545 (19)0.0333 (7)
C70.8886 (3)0.1354 (2)0.48849 (19)0.0353 (7)
C80.8512 (3)0.0567 (2)0.4630 (2)0.0374 (8)
C90.7376 (3)0.0263 (3)0.4987 (2)0.0476 (9)
H90.71300.02750.48060.057*
C100.6623 (3)0.0768 (3)0.5608 (2)0.0512 (10)
C110.6995 (3)0.1566 (3)0.5885 (2)0.0497 (9)
C120.8135 (3)0.1856 (3)0.5526 (2)0.0420 (8)
H120.83950.23830.57130.050*
C130.9321 (3)0.0540 (2)0.3508 (2)0.0425 (8)
H13A0.88570.10270.38840.051*
H13B1.01460.08730.32690.051*
C140.8655 (3)0.0113 (2)0.2814 (2)0.0365 (7)
C150.7647 (3)0.0491 (3)0.2714 (2)0.0433 (8)
H150.73620.10290.30810.052*
C160.7061 (3)0.0076 (3)0.2074 (2)0.0500 (9)
H160.63720.03270.19880.060*
C170.7491 (3)0.0709 (3)0.1563 (2)0.0454 (9)
H170.71020.10140.11190.054*
C180.8502 (3)0.1044 (2)0.1710 (2)0.0434 (8)
H180.88000.15830.13520.052*
C190.9574 (3)0.3905 (2)0.4395 (2)0.0416 (8)
C200.8523 (4)0.4683 (3)0.4697 (3)0.0672 (12)
H20A0.79650.48220.43030.101*
H20B0.88520.52780.47310.101*
H20C0.80740.44540.52500.101*
C211.3077 (3)0.2774 (3)0.4830 (2)0.0435 (8)
C221.4111 (3)0.3294 (3)0.4922 (3)0.0648 (12)
H22A1.38590.36260.54300.097*
H22B1.42950.37730.44350.097*
H22C1.48460.28180.49600.097*
C230.6360 (3)0.6074 (2)0.01201 (18)0.0317 (7)
C240.6730 (3)0.5073 (2)0.02474 (19)0.0331 (7)
C250.7842 (3)0.4623 (2)0.0185 (2)0.0396 (8)
H250.80780.39390.00960.047*
C260.8592 (3)0.5209 (3)0.0748 (2)0.0420 (8)
C270.8222 (3)0.6228 (3)0.0891 (2)0.0423 (8)
C280.7099 (3)0.6658 (2)0.04656 (19)0.0375 (8)
H280.68400.73370.05710.045*
C290.4942 (3)0.5477 (2)0.10875 (18)0.0321 (7)
C300.3812 (3)0.5508 (2)0.17337 (19)0.0332 (7)
C310.3395 (3)0.4751 (3)0.2297 (2)0.0487 (9)
H310.38630.41200.23000.058*
C320.2293 (3)0.4920 (3)0.2857 (3)0.0627 (12)
H320.19880.44050.32440.075*
C330.1643 (3)0.5840 (3)0.2849 (2)0.0600 (11)
H330.08770.59690.32250.072*
C340.2117 (3)0.6574 (3)0.2286 (2)0.0482 (9)
H340.16730.72130.22890.058*
C350.5817 (3)0.3659 (2)0.1147 (2)0.0367 (7)
H35A0.63440.32790.07040.044*
H35B0.49710.35020.12280.044*
C360.6272 (3)0.3344 (2)0.19473 (19)0.0318 (7)
C370.7230 (3)0.3699 (3)0.2131 (2)0.0530 (10)
H370.76100.41950.17600.064*
C380.7643 (3)0.3336 (3)0.2854 (2)0.0591 (11)
H380.83030.35790.29920.071*
C390.7086 (4)0.2624 (3)0.3365 (2)0.0577 (11)
H390.73480.23560.38680.069*
C400.6135 (4)0.2297 (3)0.3140 (2)0.0561 (10)
H400.57550.17920.34980.067*
C410.5640 (4)0.8600 (3)0.0627 (2)0.0557 (11)
C420.6635 (4)0.9222 (3)0.0194 (3)0.0776 (15)
H42A0.62690.99080.01370.116*
H42B0.70060.90160.03610.116*
H42C0.72700.91430.05290.116*
C430.1881 (3)0.8350 (2)0.0695 (2)0.0480 (9)
C440.0649 (4)0.8991 (3)0.0772 (3)0.0868 (16)
H44A0.02590.89100.03170.130*
H44B0.07690.96730.07400.130*
H44C0.01210.88070.13100.130*
C450.6167 (4)0.2099 (3)0.6582 (2)0.0688 (12)
H45A0.60940.16640.71050.103*
H45B0.53510.23060.64480.103*
H45C0.65200.26710.66440.103*
C460.5361 (3)0.0466 (3)0.5996 (3)0.0733 (14)
H46A0.52840.01310.57780.110*
H46B0.47180.09860.58550.110*
H46C0.52690.03490.66050.110*
C470.9831 (3)0.4749 (3)0.1201 (3)0.0614 (11)
H47A1.04860.49630.09980.092*
H47B0.99210.49470.18030.092*
H47C0.98880.40380.10960.092*
C480.9058 (3)0.6858 (3)0.1512 (2)0.0589 (11)
H48A0.87010.75440.14940.088*
H48B0.91420.66770.20760.088*
H48C0.98700.67590.13650.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1100.135 (6)0.093 (5)0.107 (6)0.021 (5)0.026 (6)0.047 (5)
C1000.138 (6)0.095 (5)0.113 (6)0.042 (5)0.014 (5)0.031 (5)
O1000.145 (6)0.058 (4)0.094 (5)0.043 (4)0.022 (5)0.018 (4)
C2100.137 (7)0.092 (6)0.115 (7)0.032 (6)0.029 (6)0.067 (6)
C2000.131 (5)0.087 (5)0.109 (6)0.034 (5)0.024 (5)0.046 (5)
O2000.133 (6)0.103 (5)0.128 (6)0.035 (5)0.038 (5)0.044 (5)
C3100.138 (6)0.085 (5)0.114 (7)0.044 (6)0.013 (6)0.038 (5)
C3000.133 (6)0.092 (5)0.112 (6)0.038 (5)0.020 (5)0.040 (5)
O3000.136 (6)0.090 (6)0.124 (7)0.025 (5)0.027 (6)0.042 (5)
Cu10.0377 (2)0.0332 (2)0.0358 (2)0.01181 (17)0.01069 (18)0.00191 (17)
Cu20.0470 (3)0.0298 (2)0.0306 (2)0.00976 (18)0.00089 (18)0.00279 (16)
O10.0466 (14)0.0423 (13)0.0491 (14)0.0183 (11)0.0165 (12)0.0033 (11)
O20.0743 (19)0.076 (2)0.074 (2)0.0280 (16)0.0333 (16)0.0363 (17)
O30.0547 (15)0.0452 (14)0.0430 (14)0.0137 (12)0.0092 (12)0.0094 (12)
O40.0373 (13)0.0484 (14)0.0458 (14)0.0078 (11)0.0075 (11)0.0035 (12)
O50.0639 (16)0.0388 (13)0.0432 (14)0.0180 (12)0.0016 (12)0.0031 (11)
O60.101 (2)0.095 (2)0.0399 (16)0.0591 (19)0.0092 (16)0.0094 (15)
O70.0645 (17)0.0332 (13)0.0486 (15)0.0038 (12)0.0041 (13)0.0077 (11)
O80.0626 (16)0.0402 (14)0.0452 (14)0.0069 (12)0.0052 (12)0.0058 (12)
N10.0306 (15)0.0316 (14)0.0389 (15)0.0049 (11)0.0088 (12)0.0038 (12)
N20.0367 (16)0.0330 (14)0.0321 (14)0.0109 (12)0.0111 (12)0.0055 (11)
N30.0406 (16)0.0286 (14)0.0448 (16)0.0117 (12)0.0201 (13)0.0079 (12)
N40.0445 (17)0.0312 (15)0.0472 (17)0.0083 (12)0.0143 (14)0.0008 (13)
N50.0350 (15)0.0386 (15)0.0313 (14)0.0086 (12)0.0008 (12)0.0001 (12)
N60.0335 (15)0.0326 (14)0.0293 (13)0.0117 (11)0.0039 (12)0.0010 (11)
N70.0357 (15)0.0294 (14)0.0341 (14)0.0085 (12)0.0117 (12)0.0041 (11)
N80.0444 (17)0.0370 (16)0.0406 (16)0.0079 (13)0.0072 (13)0.0055 (13)
C10.0343 (18)0.0301 (16)0.0406 (18)0.0035 (14)0.0135 (15)0.0030 (14)
C20.047 (2)0.0352 (18)0.052 (2)0.0029 (15)0.0152 (18)0.0050 (16)
C30.047 (2)0.052 (2)0.052 (2)0.0073 (18)0.0094 (19)0.0088 (18)
C40.036 (2)0.055 (2)0.054 (2)0.0020 (17)0.0022 (18)0.0020 (19)
C50.034 (2)0.046 (2)0.050 (2)0.0080 (16)0.0066 (17)0.0038 (17)
C60.0362 (18)0.0306 (16)0.0354 (17)0.0089 (14)0.0157 (15)0.0063 (14)
C70.0343 (19)0.0386 (18)0.0333 (17)0.0116 (14)0.0130 (15)0.0121 (14)
C80.0362 (19)0.0416 (19)0.0356 (18)0.0126 (15)0.0155 (16)0.0131 (15)
C90.042 (2)0.053 (2)0.051 (2)0.0215 (18)0.0221 (18)0.0220 (18)
C100.037 (2)0.070 (3)0.044 (2)0.0187 (19)0.0142 (17)0.028 (2)
C110.040 (2)0.069 (3)0.0342 (19)0.0053 (19)0.0080 (16)0.0147 (18)
C120.041 (2)0.050 (2)0.0340 (18)0.0107 (16)0.0104 (16)0.0077 (16)
C130.049 (2)0.0318 (17)0.052 (2)0.0162 (15)0.0186 (17)0.0017 (16)
C140.0394 (19)0.0316 (17)0.0415 (19)0.0048 (14)0.0148 (15)0.0031 (15)
C150.046 (2)0.043 (2)0.043 (2)0.0144 (16)0.0115 (17)0.0012 (16)
C160.040 (2)0.066 (3)0.048 (2)0.0141 (18)0.0115 (17)0.012 (2)
C170.046 (2)0.053 (2)0.0366 (19)0.0000 (17)0.0106 (16)0.0070 (17)
C180.050 (2)0.0340 (18)0.043 (2)0.0043 (16)0.0065 (17)0.0008 (16)
C190.036 (2)0.0383 (19)0.053 (2)0.0116 (15)0.0047 (18)0.0126 (18)
C200.057 (3)0.058 (3)0.084 (3)0.004 (2)0.005 (2)0.027 (2)
C210.038 (2)0.041 (2)0.053 (2)0.0035 (16)0.0156 (17)0.0039 (17)
C220.047 (2)0.079 (3)0.079 (3)0.019 (2)0.022 (2)0.018 (2)
C230.0312 (18)0.0363 (17)0.0293 (16)0.0101 (14)0.0069 (14)0.0017 (13)
C240.0339 (18)0.0366 (18)0.0318 (16)0.0108 (14)0.0100 (14)0.0010 (14)
C250.040 (2)0.0364 (18)0.0432 (19)0.0028 (15)0.0123 (16)0.0050 (16)
C260.0350 (19)0.053 (2)0.0399 (19)0.0054 (16)0.0072 (16)0.0122 (17)
C270.042 (2)0.051 (2)0.0336 (18)0.0144 (17)0.0033 (16)0.0038 (16)
C280.0391 (19)0.0361 (18)0.0356 (18)0.0106 (15)0.0015 (15)0.0013 (15)
C290.0322 (18)0.0342 (17)0.0317 (16)0.0084 (14)0.0111 (14)0.0024 (14)
C300.0283 (17)0.0383 (18)0.0341 (17)0.0106 (14)0.0102 (14)0.0059 (14)
C310.031 (2)0.045 (2)0.062 (2)0.0077 (16)0.0063 (18)0.0198 (18)
C320.041 (2)0.064 (3)0.069 (3)0.011 (2)0.003 (2)0.030 (2)
C330.038 (2)0.071 (3)0.056 (2)0.008 (2)0.0071 (19)0.017 (2)
C340.046 (2)0.045 (2)0.045 (2)0.0034 (17)0.0012 (18)0.0064 (17)
C350.0369 (18)0.0292 (16)0.0469 (19)0.0101 (14)0.0149 (15)0.0024 (14)
C360.0258 (16)0.0335 (17)0.0343 (17)0.0026 (13)0.0067 (14)0.0012 (14)
C370.044 (2)0.073 (3)0.047 (2)0.0241 (19)0.0187 (17)0.0141 (19)
C380.037 (2)0.094 (3)0.048 (2)0.011 (2)0.0174 (18)0.001 (2)
C390.054 (2)0.071 (3)0.039 (2)0.016 (2)0.0157 (19)0.003 (2)
C400.066 (3)0.052 (2)0.044 (2)0.010 (2)0.010 (2)0.0138 (18)
C410.077 (3)0.045 (2)0.043 (2)0.028 (2)0.010 (2)0.0126 (18)
C420.108 (4)0.077 (3)0.053 (2)0.063 (3)0.014 (3)0.014 (2)
C430.058 (2)0.0282 (18)0.043 (2)0.0048 (16)0.0064 (19)0.0054 (16)
C440.078 (3)0.078 (3)0.082 (3)0.037 (3)0.005 (3)0.009 (3)
C450.051 (2)0.100 (4)0.047 (2)0.010 (2)0.001 (2)0.006 (2)
C460.042 (2)0.101 (4)0.069 (3)0.027 (2)0.012 (2)0.035 (3)
C470.044 (2)0.069 (3)0.065 (3)0.000 (2)0.003 (2)0.015 (2)
C480.051 (2)0.066 (3)0.052 (2)0.017 (2)0.0100 (19)0.001 (2)
Geometric parameters (Å, º) top
N1—C11.361 (4)C12—H120.9500
C9—C101.373 (5)C13—H13A0.9900
C110—C1001.476 (9)C13—H13B0.9900
C10—C111.423 (5)C15—H150.9500
C11—C121.390 (5)C16—H160.9500
C7—C121.393 (4)C17—H170.9500
N3—C131.466 (4)C18—H180.9500
C13—C141.507 (5)C2—H20.9500
N4—C141.337 (4)O200—H2000.8400
C14—C151.381 (4)C200—H2010.9900
C15—C161.377 (5)C200—H2020.9900
C16—C171.375 (5)C20—H20A0.9800
C17—C181.382 (5)C20—H20B0.9800
N4—C181.332 (4)C20—H20C0.9800
O4—C191.240 (4)C210—H2110.9800
O3—C191.275 (4)C210—H2120.9800
Cu1—C192.538 (3)C210—H2130.9800
C1—C21.383 (4)C22—H22A0.9800
C19—C201.515 (5)C22—H22B0.9800
C210—C2001.444 (9)C22—H22C0.9800
O2—C211.232 (4)C25—H250.9500
O1—C211.269 (4)C28—H280.9500
C21—C221.517 (5)C3—H30.9500
N6—C231.389 (4)O300—H3000.8400
C23—C241.394 (4)C300—H3010.9900
N7—C241.392 (4)C300—H3020.9900
C24—C251.393 (4)C31—H310.9500
C25—C261.385 (4)C310—H3110.9800
C26—C271.420 (5)C310—H3120.9800
C27—C281.387 (4)C310—H3130.9800
C23—C281.395 (4)C32—H320.9500
N7—C291.370 (4)C33—H330.9500
N6—C291.321 (4)C34—H340.9500
C2—C31.390 (5)C35—H35A0.9900
C29—C301.466 (4)C35—H35B0.9900
N5—C301.355 (4)C37—H370.9500
C310—C3001.532 (10)C38—H380.9500
C30—C311.379 (4)C39—H390.9500
C31—C321.379 (5)C4—H40.9500
C32—C331.372 (5)C40—H400.9500
C33—C341.377 (5)C42—H42A0.9800
N5—C341.333 (4)C42—H42B0.9800
N7—C351.467 (4)C42—H42C0.9800
C35—C361.504 (4)C44—H44A0.9800
N8—C361.330 (4)C44—H44B0.9800
C36—C371.368 (4)C44—H44C0.9800
C37—C381.377 (5)C45—H45A0.9800
C38—C391.355 (5)C45—H45B0.9800
C3—C41.380 (5)C45—H45C0.9800
C39—C401.373 (5)C46—H46A0.9800
N8—C401.334 (5)C46—H46B0.9800
O6—C411.231 (4)C46—H46C0.9800
O5—C411.267 (4)C47—H47A0.9800
C41—C421.523 (5)C47—H47B0.9800
O8—C431.242 (4)C47—H47C0.9800
O7—C431.278 (5)C48—H48A0.9800
C43—C441.511 (5)C48—H48B0.9800
C11—C451.509 (5)C48—H48C0.9800
C10—C461.526 (5)C5—H50.9500
C26—C471.514 (4)C9—H90.9500
C27—C481.519 (5)Cu1—N12.024 (3)
C4—C51.373 (5)Cu1—N21.962 (2)
N1—C51.333 (4)Cu1—O11.931 (2)
C1—C61.470 (4)Cu1—O31.974 (2)
N3—C61.358 (4)Cu1—O22.471 (2)
N2—C61.329 (4)Cu1—O42.698 (3)
N2—C71.392 (4)Cu2—N52.029 (2)
C7—C81.392 (4)Cu2—N61.987 (3)
N3—C81.392 (4)C100—O1001.362 (9)
C8—C91.394 (4)C200—O2001.375 (9)
O100—H1000.8400C300—O3001.388 (10)
C100—H1010.9900Cu2—O51.961 (2)
C100—H1020.9900Cu2—O71.955 (2)
C110—H1110.9800Cu2—O62.554 (3)
C110—H1120.9800Cu2—O82.546 (3)
C110—H1130.9800
C100—C110—H111109.5C17—C16—H16120.6
C100—C110—H112109.5C15—C16—H16120.6
H111—C110—H112109.5C16—C17—C18118.4 (3)
C100—C110—H113109.5C16—C17—H17120.8
H111—C110—H113109.5C18—C17—H17120.8
H112—C110—H113109.5N4—C18—C17123.7 (3)
O100—C100—C110114.6 (9)N4—C18—H18118.2
O100—C100—H101108.6C17—C18—H18118.2
C110—C100—H101108.6O4—C19—O3122.5 (3)
O100—C100—H102108.6O4—C19—C20120.3 (4)
C110—C100—H102108.6O3—C19—C20117.2 (3)
H101—C100—H102107.6O4—C19—Cu172.71 (19)
C100—O100—H100109.5O3—C19—Cu149.90 (16)
C200—C210—H211109.5C20—C19—Cu1166.3 (3)
C200—C210—H212109.5C19—C20—H20A109.5
H211—C210—H212109.5C19—C20—H20B109.5
C200—C210—H213109.5H20A—C20—H20B109.5
H211—C210—H213109.5C19—C20—H20C109.5
H212—C210—H213109.5H20A—C20—H20C109.5
O200—C200—C210113.2 (9)H20B—C20—H20C109.5
O200—C200—H201108.9O2—C21—O1122.9 (3)
C210—C200—H201108.9O2—C21—C22121.3 (4)
O200—C200—H202108.9O1—C21—C22115.9 (3)
C210—C200—H202108.9C21—C22—H22A109.5
H201—C200—H202107.7C21—C22—H22B109.5
C200—O200—H200109.5H22A—C22—H22B109.5
C300—C310—H311109.5C21—C22—H22C109.5
C300—C310—H312109.5H22A—C22—H22C109.5
H311—C310—H312109.5H22B—C22—H22C109.5
C300—C310—H313109.5N6—C23—C24108.5 (3)
H311—C310—H313109.5N6—C23—C28131.3 (3)
H312—C310—H313109.5C24—C23—C28120.2 (3)
O300—C300—C310103.6 (9)N7—C24—C25131.3 (3)
O300—C300—H301111.0N7—C24—C23106.5 (3)
C310—C300—H301111.0C25—C24—C23122.2 (3)
O300—C300—H302111.0C26—C25—C24117.5 (3)
C310—C300—H302111.0C26—C25—H25121.2
H301—C300—H302109.0C24—C25—H25121.2
C300—O300—H300109.5C25—C26—C27121.0 (3)
O1—Cu1—N2166.81 (11)C25—C26—C47118.9 (3)
O1—Cu1—O394.41 (9)C27—C26—C47120.1 (3)
N2—Cu1—O394.24 (10)C28—C27—C26120.5 (3)
O1—Cu1—N193.50 (10)C28—C27—C48119.3 (3)
N2—Cu1—N180.25 (10)C26—C27—C48120.1 (3)
O3—Cu1—N1165.68 (10)C27—C28—C23118.6 (3)
O1—Cu1—C1998.13 (10)C27—C28—H28120.7
N2—Cu1—C1994.31 (10)C23—C28—H28120.7
O3—Cu1—C1929.61 (10)N6—C29—N7111.9 (3)
N1—Cu1—C19137.00 (11)N6—C29—C30118.5 (3)
O7—Cu2—O594.38 (10)N7—C29—C30129.5 (3)
O7—Cu2—N6170.19 (10)N5—C30—C31121.2 (3)
O5—Cu2—N693.55 (10)N5—C30—C29111.1 (3)
O7—Cu2—N592.34 (10)C31—C30—C29127.7 (3)
O5—Cu2—N5172.00 (11)C32—C31—C30119.3 (3)
N6—Cu2—N580.24 (10)C32—C31—H31120.3
C21—O1—Cu1109.3 (2)C30—C31—H31120.3
C19—O3—Cu1100.5 (2)C33—C32—C31119.3 (4)
C41—O5—Cu2103.6 (2)C33—C32—H32120.4
C43—O7—Cu2103.3 (2)C31—C32—H32120.4
C5—N1—C1118.9 (3)C32—C33—C34119.0 (3)
C5—N1—Cu1125.0 (2)C32—C33—H33120.5
C1—N1—Cu1116.0 (2)C34—C33—H33120.5
C6—N2—C7106.7 (2)N5—C34—C33122.4 (3)
C6—N2—Cu1115.4 (2)N5—C34—H34118.8
C7—N2—Cu1137.8 (2)C33—C34—H34118.8
C6—N3—C8106.7 (3)N7—C35—C36114.1 (2)
C6—N3—C13130.8 (3)N7—C35—H35A108.7
C8—N3—C13121.9 (3)C36—C35—H35A108.7
C18—N4—C14117.1 (3)N7—C35—H35B108.7
C34—N5—C30118.9 (3)C36—C35—H35B108.7
C34—N5—Cu2125.4 (2)H35A—C35—H35B107.6
C30—N5—Cu2115.70 (19)N8—C36—C37122.2 (3)
C29—N6—C23106.7 (3)N8—C36—C35114.7 (3)
C29—N6—Cu2114.30 (19)C37—C36—C35123.0 (3)
C23—N6—Cu2139.0 (2)C36—C37—C38119.8 (3)
C29—N7—C24106.4 (2)C36—C37—H37120.1
C29—N7—C35129.8 (3)C38—C37—H37120.1
C24—N7—C35123.8 (3)C39—C38—C37118.5 (4)
C36—N8—C40117.2 (3)C39—C38—H38120.8
N1—C1—C2121.2 (3)C37—C38—H38120.8
N1—C1—C6110.6 (3)C38—C39—C40118.7 (4)
C2—C1—C6128.2 (3)C38—C39—H39120.7
C1—C2—C3119.1 (3)C40—C39—H39120.7
C1—C2—H2120.4N8—C40—C39123.6 (4)
C3—C2—H2120.4N8—C40—H40118.2
C4—C3—C2119.0 (3)C39—C40—H40118.2
C4—C3—H3120.5O6—C41—O5122.7 (3)
C2—C3—H3120.5O6—C41—C42120.7 (4)
C5—C4—C3119.0 (3)O5—C41—C42116.6 (3)
C5—C4—H4120.5C41—C42—H42A109.5
C3—C4—H4120.5C41—C42—H42B109.5
N1—C5—C4122.7 (3)H42A—C42—H42B109.5
N1—C5—H5118.6C41—C42—H42C109.5
C4—C5—H5118.6H42A—C42—H42C109.5
N2—C6—N3111.7 (3)H42B—C42—H42C109.5
N2—C6—C1117.7 (3)O8—C43—O7122.7 (3)
N3—C6—C1130.6 (3)O8—C43—C44120.4 (4)
N2—C7—C8108.1 (3)O7—C43—C44116.9 (3)
N2—C7—C12131.4 (3)C43—C44—H44A109.5
C8—C7—C12120.5 (3)C43—C44—H44B109.5
C7—C8—N3106.7 (3)H44A—C44—H44B109.5
C7—C8—C9121.9 (3)C43—C44—H44C109.5
N3—C8—C9131.4 (3)H44A—C44—H44C109.5
C10—C9—C8117.7 (3)H44B—C44—H44C109.5
C10—C9—H9121.2C11—C45—H45A109.5
C8—C9—H9121.2C11—C45—H45B109.5
C9—C10—C11121.3 (3)H45A—C45—H45B109.5
C9—C10—C46118.8 (4)C11—C45—H45C109.5
C11—C10—C46119.9 (4)H45A—C45—H45C109.5
C12—C11—C10120.3 (3)H45B—C45—H45C109.5
C12—C11—C45119.2 (4)C10—C46—H46A109.5
C10—C11—C45120.5 (3)C10—C46—H46B109.5
C11—C12—C7118.3 (3)H46A—C46—H46B109.5
C11—C12—H12120.9C10—C46—H46C109.5
C7—C12—H12120.9H46A—C46—H46C109.5
N3—C13—C14110.2 (3)H46B—C46—H46C109.5
N3—C13—H13A109.6C26—C47—H47A109.5
C14—C13—H13A109.6C26—C47—H47B109.5
N3—C13—H13B109.6H47A—C47—H47B109.5
C14—C13—H13B109.6C26—C47—H47C109.5
H13A—C13—H13B108.1H47A—C47—H47C109.5
N4—C14—C15123.0 (3)H47B—C47—H47C109.5
N4—C14—C13116.2 (3)C27—C48—H48A109.5
C15—C14—C13120.8 (3)C27—C48—H48B109.5
C16—C15—C14118.9 (3)H48A—C48—H48B109.5
C16—C15—H15120.6C27—C48—H48C109.5
C14—C15—H15120.6H48A—C48—H48C109.5
C17—C16—C15118.9 (3)H48B—C48—H48C109.5
C5—N1—C1—C20.6 (5)C29—N6—C23—C240.8 (3)
Cu1—N1—C1—C2177.3 (2)Cu2—N6—C23—C24178.7 (2)
C5—N1—C1—C6179.0 (3)C29—N6—C23—C28179.1 (3)
Cu1—N1—C1—C62.3 (3)Cu2—N6—C23—C281.4 (5)
N1—C1—C2—C30.6 (5)C29—N7—C24—C25177.8 (3)
C6—C1—C2—C3179.9 (3)C35—N7—C24—C254.4 (5)
C1—C2—C3—C41.8 (5)C29—N7—C24—C231.0 (3)
C2—C3—C4—C52.0 (6)C35—N7—C24—C23176.8 (3)
C1—N1—C5—C40.4 (5)N6—C23—C24—N70.2 (3)
Cu1—N1—C5—C4176.9 (3)C28—C23—C24—N7180.0 (3)
C3—C4—C5—N10.8 (6)N6—C23—C24—C25178.8 (3)
C7—N2—C6—N31.6 (3)C28—C23—C24—C251.1 (5)
Cu1—N2—C6—N3179.4 (2)N7—C24—C25—C26177.8 (3)
C7—N2—C6—C1178.4 (3)C23—C24—C25—C260.8 (5)
Cu1—N2—C6—C10.5 (4)C24—C25—C26—C271.4 (5)
C8—N3—C6—N22.3 (3)C24—C25—C26—C47177.4 (3)
C13—N3—C6—N2173.4 (3)C25—C26—C27—C280.2 (5)
C8—N3—C6—C1177.6 (3)C47—C26—C27—C28178.7 (3)
C13—N3—C6—C16.6 (6)C25—C26—C27—C48180.0 (3)
N1—C1—C6—N21.2 (4)C47—C26—C27—C481.1 (5)
C2—C1—C6—N2178.4 (3)C26—C27—C28—C231.7 (5)
N1—C1—C6—N3178.9 (3)C48—C27—C28—C23178.1 (3)
C2—C1—C6—N31.5 (6)N6—C23—C28—C27177.5 (3)
C6—N2—C7—C80.2 (3)C24—C23—C28—C272.3 (5)
Cu1—N2—C7—C8177.3 (2)C23—N6—C29—N71.4 (3)
C6—N2—C7—C12178.2 (3)Cu2—N6—C29—N7178.20 (19)
Cu1—N2—C7—C121.1 (6)C23—N6—C29—C30177.1 (3)
N2—C7—C8—N31.1 (3)Cu2—N6—C29—C303.3 (3)
C12—C7—C8—N3179.7 (3)C24—N7—C29—N61.5 (3)
N2—C7—C8—C9177.3 (3)C35—N7—C29—N6176.1 (3)
C12—C7—C8—C91.4 (5)C24—N7—C29—C30176.8 (3)
C6—N3—C8—C72.0 (3)C35—N7—C29—C305.6 (5)
C13—N3—C8—C7174.1 (3)C34—N5—C30—C311.7 (5)
C6—N3—C8—C9176.1 (3)Cu2—N5—C30—C31175.8 (3)
C13—N3—C8—C94.1 (5)C34—N5—C30—C29179.5 (3)
C7—C8—C9—C100.1 (5)Cu2—N5—C30—C293.0 (3)
N3—C8—C9—C10178.0 (3)N6—C29—C30—N54.2 (4)
C8—C9—C10—C110.7 (5)N7—C29—C30—N5177.6 (3)
C8—C9—C10—C46178.6 (3)N6—C29—C30—C31174.5 (3)
C9—C10—C11—C120.3 (5)N7—C29—C30—C313.7 (5)
C46—C10—C11—C12179.0 (3)N5—C30—C31—C322.1 (5)
C9—C10—C11—C45178.6 (3)C29—C30—C31—C32179.2 (3)
C46—C10—C11—C452.0 (5)C30—C31—C32—C330.9 (6)
C10—C11—C12—C70.9 (5)C31—C32—C33—C340.8 (7)
C45—C11—C12—C7179.9 (3)C30—N5—C34—C330.0 (5)
N2—C7—C12—C11176.5 (3)Cu2—N5—C34—C33177.2 (3)
C8—C7—C12—C111.7 (5)C32—C33—C34—N51.2 (6)
C6—N3—C13—C1486.0 (4)C29—N7—C35—C3684.0 (4)
C8—N3—C13—C1483.9 (4)C24—N7—C35—C3698.8 (3)
C18—N4—C14—C150.9 (5)C40—N8—C36—C370.6 (5)
C18—N4—C14—C13179.6 (3)C40—N8—C36—C35175.8 (3)
N3—C13—C14—N450.3 (4)N7—C35—C36—N8144.9 (3)
N3—C13—C14—C15128.4 (3)N7—C35—C36—C3738.7 (4)
N4—C14—C15—C161.0 (5)N8—C36—C37—C380.1 (6)
C13—C14—C15—C16179.7 (3)C35—C36—C37—C38176.3 (3)
C14—C15—C16—C170.8 (5)C36—C37—C38—C390.5 (6)
C15—C16—C17—C180.5 (5)C37—C38—C39—C400.1 (6)
C14—N4—C18—C170.6 (5)C36—N8—C40—C391.1 (5)
C16—C17—C18—N40.5 (5)C38—C39—C40—N80.7 (6)
Cu1—O3—C19—O45.1 (3)Cu2—O5—C41—O66.3 (5)
Cu1—O3—C19—C20174.3 (2)Cu2—O5—C41—C42173.3 (3)
Cu1—O1—C21—O26.6 (4)Cu2—O7—C43—O81.0 (4)
Cu1—O1—C21—C22173.4 (2)Cu2—O7—C43—C44177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O100—H100···O2i0.842.253.010 (8)152
O200—H200···O60.842.313.068 (14)149
O300—H300···O60.842.413.13 (2)144
C5—H5···O10.952.523.043 (4)115
C5—H5···N8ii0.952.523.279 (4)137
C9—H9···O2iii0.952.613.482 (5)153
C12—H12···O30.952.513.171 (4)127
C13—H13A···O2iii0.992.533.497 (4)167
C17—H17···O8iv0.952.633.334 (4)132
C20—H20B···O3i0.982.613.576 (5)169
C25—H25···O8iv0.952.453.321 (4)152
C28—H28···O50.952.503.188 (4)129
C33—H33···O100v0.952.513.202 (8)130
C34—H34···O70.952.483.015 (4)116
C35—H35A···O8iv0.992.373.353 (4)170
C42—H42A···O5vi0.982.633.600 (6)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y+2, z.
Significant ππ interactions (Å) in 1 and 2 top
Cg(n) refers to the centroids of the imidazole (n = Im), benzene (n = Bz), pyridine (n = Py), and pyridylmethyl (n = Pym) rings.
12
Cg(Im)···Cg(Im)i3.502 (2)Cg(Pym2a)···Cg(Pym2b)3.955 (2)
Cg(Py)···Cg(Py)ii3.415 (2)Cg(Im2a)···Cg(Im2a)iii3.3405 (18)
Cg(Py)···Cg(Bz)ii3.603 (2)Cg(Im2b)···Cg(Im2b)iv3.5618 (19)
Symmetry codes: (i) -x + 1/2, -y + 1/2, 1 - z; (ii) -x + 1/2, -y + 3/2, -z + 1; (iii) -x + 2, -y, -z + 1; (iv) -x + 1, -y + 1, -z.
 

Funding information

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationAltaf, M. & Stoeckli-Evans, H. (2009). Transition Met. Chem. 34, 613–620.  Web of Science CSD CrossRef CAS
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, J. Y., Ren, X. X., Mao, Z. W. & Le, X. Y. (2012). J. Coord. Chem. 65, 2182–2191.  Web of Science CSD CrossRef CAS
First citationDas, S. & Pal, S. (2010). Inorg. Chim. Acta, 363, 3028–3035.  Web of Science CSD CrossRef CAS
First citationDeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491–497.  Web of Science CSD CrossRef IUCr Journals
First citationDeStefano, M. R. & Geiger, D. K. (2017). Acta Cryst. C73, 697–702.  Web of Science CSD CrossRef IUCr Journals
First citationGeiger, D. K. & DeStefano, M. R. (2014). Acta Cryst. E70, o365.  CSD CrossRef IUCr Journals
First citationGeiger, D. K. & DeStefano, M. R. (2016). Acta Cryst. C72, 867–874.  Web of Science CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 447–457.  Web of Science CSD CrossRef PubMed CAS
First citationLewis, A., McDonald, M., Scharbach, S., Hamaway, S., Plooster, M., Peters, K., Fox, K. M., Cassimeris, L., Tanski, J. M. & Tyler, L. A. (2016). J. Inorg. Biochem. 157, 52–61.  Web of Science CSD CrossRef CAS PubMed
First citationLi, J., Ji, C.-C., Huang, L.-F., Li, Y.-Z. & Zheng, H.-G. (2011). Inorg. Chim. Acta, 371, 27–35.  Web of Science CSD CrossRef CAS
First citationMachura, B., Świtlicka, A., Mroziński, J., Kruszynski, R. & Kusz, J. (2010). Polyhedron, 29, 2157–2165.  Web of Science CSD CrossRef CAS
First citation[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.] Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMal, S. K., Mitra, M., Kaur, G., Manikandamathavan, V. M., Kiran, M. S., Choudhury, A. R., Nair, B. U. & Ghosh, R. (2014). RSC Adv. 4, 61337–61342.  Web of Science CSD CrossRef CAS
First citationMcCann, M., McGinley, J., Ni, K., O'Connor, M., Kavanagh, K., McKee, V., Colleran, J., Devereux, M., Gathergood, N., Barron, N., Prisecaru, A. & Kellett, A. (2013). Chem. Commun. 49, 2341–2343.  Web of Science CSD CrossRef CAS
First citationMelnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087–30100.  Web of Science CSD CrossRef CAS
First citationMistri, S., García-Granda, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 50, 333–338.  Web of Science CSD CrossRef CAS
First citationMistri, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 49, 252–258.  Web of Science CSD CrossRef CAS
First citationProsser, K. E., Chang, S. W., Saraci, F., Le, P. H. & Walsby, C. J. (2017). J. Inorg. Biochem. 167, 89–99.  Web of Science CSD CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSupriya, S. & Das, S. K. (2003). Inorg. Chem. Commun. 6, 10–14.  Web of Science CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZaca, T., Ojwach, S. O. & Akerman, M. P. (2016). Transit. Met. Chem. 41, 663–673.  Web of Science CSD CrossRef CAS
First citationZhang, L.-H. & Yang, J. (2010). Z. Kristallogr. New Cryst. Struct. 225, 199–200.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds