research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Deca­chloro­cyclo­penta­silanes coordinated by pairs of chloride anions, with different cations, but the same solvent mol­ecules

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 November 2017; accepted 13 November 2017; online 21 November 2017)

We have determined the crystal structures of two deca­chloro­cyclo­penta­silanes, namely bis­(tetra-n-butyl­ammonium) dichloride deca­chloro­cyclo­penta­silane di­chloro­methane disolvate, 2C16H36N+·2Cl·Si5Cl10·2CH2Cl2, (I), and bis­(tetra­ethyl­ammonium) dichloride deca­chloro­cyclo­penta­silane di­chloro­methane disolvate, 2C8H20N+·2Cl·Si5Cl10·2CH2Cl2, (II), both of which crystallize with discrete cations, anions, and solvent mol­ecules. In (I), the complete deca­chloro­cyclo­penta­silane ring is generated by a crystallographic twofold rotation axis. In (II), one cation is located on a general position and the other two are disordered about centres of inversion. These are the first structures featuring the structural motif of a five-membered cyclo­penta­silane ring coordinated from both sides by a chloride ion. The extended structures of (I) and (II) feature numerous C—H⋯Cl inter­actions. In (II), the N atoms are located on centres of inversion and as a result, the ethyl­ene chains are disordered over equally occupied orientations.

1. Chemical context

The title compounds are the first known halide diadducts of the long-known perchlorinated cyclo­penta­silane Si5Cl10 (Hengge & Kovar, 1977[Hengge, E. & Kovar, D. (1977). J. Organomet. Chem. 125, C29-C32.]). Their structures can be seen as inverse-sandwich complexes, in which two chloride ions lie above and below the planar five-membered silicon ring.

[Scheme 1]

In the recent years, new and facile synthetic protocols for the Cl diadduct [Si6Cl14]2– of dodeca­chloro­cyclo­hexa­silane have been developed. It can either be prepared through the chloride-induced disproportionation of Si2Cl6, which leads directly to [Si6Cl14]2– (Tillmann et al., 2012[Tillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M. & Lerner, H.-W. (2012). Inorg. Chem. 51, 8599-8606.], 2014[Tillmann, J., Meyer, L., Schweizer, J. I., Bolte, M., Lerner, H.-W., Wagner, M. & Holthausen, M. C. (2014). Chem. Eur. J. 20, 9234-9239.]; Tillmann, Moxter et al., 2015[Tillmann, J., Moxter, M., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Inorg. Chem. 54, 9611-9618.]), or the Lewis acidic uncomplexed Si6Cl12 can be used as the starting material. In the latter case, mere addition of soluble chloride salts [R4N]Cl (R = nBu or Et) leads to the formation of [Si6Cl14]2– (Dai et al., 2010[Dai, X., Anderson, K. J., Schulz, D. L. & Boudjouk, P. (2010). Dalton Trans. 39, 11188-11192.]). Given this background, it was of inter­est to investigate the Lewis acidity and ability of Si5Cl10 to bind Cl ions.

2. Structural commentary

Bis(tetra-n-butyl­ammonium) dichloride deca­chloro­cyclo­penta­silane di­chloro­methane disolvate, 2C16H36N+·2Cl·Si5Cl10·2CH2Cl2, (I)[link], crystallizes with discrete cations, anions, and solvent mol­ecules (Fig. 1[link]). The five-membered deca­chloro­cyclo­penta­silane ring is located on a twofold rotation axis. The Si—Cl bond lengths range from 2.081 (3) Å for Si2—Cl21 to 2.100 (3) Å for Si2—Cl22. The Si—Si bond lengths do not vary markedly: they range from 2.339 (3) Å (Si1—Si2) to 2.347 (3) Å (Si2—Si3).

[Figure 1]
Figure 1
Perspective view of (I)[link] with displacement ellipsoids drawn at the 50% probability level. For clarity, H atoms are omitted and only the symmetry independent mol­ecules are labelled. Atoms without labels are generated by the symmetry operator −x + 1, y, −z + [{3\over 2}].

The almost planar ring (r.m.s. deviation 0.002 Å) is coord­inated by two chloride anions located above and below the ring. The distances of the chloride ions to the Si atoms [Cl1⋯Si1 2.907 (3), Cl1⋯Si2 2.914 (3), Cl1⋯Si3 2.930 (3) Å,] show that the chloride ions are located almost exactly above the centroid of the ring [distance Cl1⋯Cg = 2.1434 (16) Å].

Bis(tetra­ethyl­ammonium) dichloride deca­chloro­cyclo­penta­silane di­chloro­methane disolvate, 2C8H20N+·2Cl·Si5Cl10·2CH2Cl2, (II)[link], crystallizes as (I)[link] with discrete cations, anions, and solvent mol­ecules (Fig. 2[link]). The Si—Cl bonds again lie in a quite narrow range [2.0805 (9) Å (Si1—Cl12) to 2.1102 (8) Å (Si2—Cl22)] and the Si—Si bond lengths are also very similar [2.3386 (8) Å (Si1—Si2) to 2.3473 (7) Å (Si4—Si5)].

[Figure 2]
Figure 2
Perspective view of (II)[link] with displacement ellipsoids drawn at the 50% probability level. For clarity, H atoms are omitted and only one of the two disordered sites of the tetra­ethyl­ammonium cations are shown.

The five-membered deca­chloro­cyclo­penta­silane ring is almost planar (r.m.s. deviation = 0.017 Å) and coordinated by two chloride anions located above and below the ring with a Cl⋯Cg distance of 2.1781 (5) Å for Cl1 and 2.1237 (5) Å for Cl2. The Cl⋯Si distances range from 2.9381 (7) Å (Cl1⋯Si5) to 2.9645 (7) Å (Cl1⋯Si2) and from 2.8759 (8) Å (Cl2⋯Si2) to 2.9510 (7) Å (Cl2⋯Si5). Since the Cl⋯Si distances have a broader range for Cl2, it can be said that this ion is slightly displaced from a position directly over the ring centroid.

It is inter­esting to note that (I)[link] and (II)[link] have – apart from the different cations – the same mol­ecular stoichiometry, i.e. one Si5Cl10 ring coordinated by two chloride anions, two cations and two solvent di­chloro­methane mol­ecules. However, since (I)[link] has twofold rotation symmetry, there are only half of the chemical entities in the asymmetric unit.

3. Supra­molecular features

The components of (I)[link] and (II)[link] are linked by a plethora of C—H⋯Cl contacts (Tables 1[link] and 2[link], respectively); in particular the chloride ions are surrounded by C—H groups. For an example, see Fig. 3[link]. As a result of the disorder of the N2 and N3 cations in (II)[link], a plot showing the coordination of the Cl ions looks extremely crowded and is therefore omitted.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl1 0.99 2.88 3.686 (7) 139
C2—H2A⋯Cl31i 0.99 2.89 3.596 (8) 129
C5—H5A⋯Cl22ii 0.99 2.99 3.945 (7) 163
C9—H9B⋯Cl1 0.99 2.91 3.652 (7) 132
C1L—H1L1⋯Cl12ii 0.99 2.96 3.528 (13) 119
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl42 0.99 2.99 3.829 (3) 144
C2—H2C⋯Cl2 0.98 2.95 3.753 (3) 139
C3—H3A⋯Cl52i 0.99 2.79 3.643 (3) 144
C3—H3B⋯Cl2Bii 0.99 2.98 3.804 (3) 142
C5—H5B⋯Cl22iii 0.99 2.89 3.850 (3) 165
C6—H6B⋯Cl21iii 0.98 2.86 3.630 (3) 136
C7—H7A⋯Cl2 0.99 2.86 3.394 (2) 115
C22—H22C⋯Cl51iv 0.98 2.89 3.847 (4) 165
C22—H22E⋯Cl41 0.98 2.90 3.859 (3) 165
C23—H23B⋯Cl1iv 0.99 2.98 3.465 (4) 111
C23′—H23C⋯Cl42 0.99 2.87 3.497 (4) 122
C24—H24C⋯Cl41 0.98 2.84 3.793 (3) 164
C24—H24E⋯Cl51iv 0.98 2.81 3.771 (3) 165
C24—H24F⋯Cl2Aiv 0.98 2.92 3.778 (3) 147
C31′—H31C⋯Cl31 0.99 2.95 3.434 (5) 111
C32—H32F⋯Cl21v 0.98 2.76 3.584 (4) 142
C33—H33A⋯Cl32vi 0.99 2.94 3.515 (4) 118
C33′—H33D⋯Cl41 0.99 2.98 3.630 (5) 124
C34—H34A⋯Cl1Bvii 0.98 2.93 3.556 (3) 123
C34—H34C⋯Cl2B 0.98 2.89 3.716 (4) 142
C34—H34A⋯Cl1Bvii 0.98 2.93 3.556 (3) 123
C1L—H1L1⋯Cl12i 0.99 2.90 3.421 (3) 114
C2L—H2L2⋯Cl41 0.99 2.96 3.465 (3) 113
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1; (vi) -x, -y+2, -z+1; (vii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
Perspective view of (I)[link] showing the environment of the Cl anion. The contact to the centre of the five-membered ring is drawn as an open dashed bond. H⋯Cl contacts less than 3.5 Å are drawn as dashed lines.

4. Database survey

The present structures are the first examples of a deca­chloro­cyclo­penta­silane ring coordinated by two anions. There are only two structures of a deca­chloro­cyclo­penta­silane ring in the CSD (Version 5.38 of November 2016 plus three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), namely deca­chloro­cyclo­penta­silane 4-methyl­benzo­nitrile solvate (refcode ELAFON; Dai et al., 2010[Dai, X., Anderson, K. J., Schulz, D. L. & Boudjouk, P. (2010). Dalton Trans. 39, 11188-11192.]) and deca­chloro­cyclo­penta­silane aceto­nitrile solvate (ELAFIH; Dai et al., 2010[Dai, X., Anderson, K. J., Schulz, D. L. & Boudjouk, P. (2010). Dalton Trans. 39, 11188-11192.]). In both of them, the deca­chloro­cyclo­penta­silane ring is almost planar (0.017 Å for ELAFON and 0.001 Å for ELAFIH) and shows almost no variation in the Si—Si (2.358–2.368 Å for ELAFON and 2.342–2.349 Å for ELAFIH) and Si—Cl (2.030–2.059 Å for ELAFON and 2.034– 2.038 Å for ELAFIH) bond lengths.

The distance of the N atom to the centroid of the ring is 2.152 and 2.196 Å for ELAFON and 2.234 Å for ELAFIH. This difference could be due to the steric demand of the benzene ring in ELAFIH. The N⋯Cg distances are in the same range as the Cl⋯Cg distances in (I)[link] and (II)[link].

Mean values of the structural parameters of the four compared structures and dichloride dodeca­chloro­cyclo­hexa­silanes (Tillmann, Lerner & Bolte, 2015[Tillmann, J., Lerner, H.-W. & Bolte, M. (2015). Acta Cryst. C71, 883-888.]) are compiled in Table 3[link]. It is remarkable that the Si—Si and Si—Cl bond lengths do not vary significantly between the five and six-membered Si rings, but the Cl⋯Cg distance in the dodeca­chloro­cyclo­hexa­silanes is significantly shorter than for deca­chloro­cyclo­penta­silane. This might be due to the fact that the Cl ligands form a narrower cone in five- compared to six-membered rings.

Table 3
Mean values (Å) of Si—Si, Si—Cl bond lengths and Cl/N⋯Cg contacts in the title compounds and related structures

X = Cl for (I)[link] and (II)[link] and X = N for ELAFON and ELAFIH. The row for Si6Cl12 contains data for dichloride dodeca­chloro­hexa­silanes (Tillmann, Lerner & Bolte, 2015[Tillmann, J., Lerner, H.-W. & Bolte, M. (2015). Acta Cryst. C71, 883-888.]).

Structure Si—Si Si—Cl XCg
(I) 2.342 2.092 2.143
(II) 2.344 2.092 2.151
ELAFON 2.363 2.049 2.174
ELAFIH 2.348 2.036 2.234
Si6Cl12 2.322 2.078 1.90

5. Synthesis and crystallization

The addition of a solution of [R4N]Cl (R = nBu or Et) in CH2Cl2 at 195 K to a solution of Si5Cl10 in CH2Cl2 furnished the Cl diadducts [R4N]2[Si5Cl12] (R = nBu or Et) (Fig. 4[link]). Crystals of [R4N]2[Si5Cl12] (R = nBu or Et) could be harvested after storage of the reaction solution for one week at 195 K in 89% and 93% yield, respectively. Both adducts are stable in the solid phase under inert conditions. However, in solution a rapid transformation of [nBu4N]2[Si5Cl12] to [nBu4N]2[Si6Cl14] and [nBu4N]2[Si7Cl16] (Fig. 5[link]) can be observed via 29Si NMR spectroscopy (for the NMR spectrum see Fig. S1 in the Supporting information), while [Et4N]2[Si5Cl12] is not soluble. For comparison, a 29Si CP/MAS NMR spectrum of single crystals of [nBu4N]2[Si5Cl12] was recorded (Fig. S2 in the Supporting information).

[Figure 4]
Figure 4
Synthesis of [R4N]2[Si5Cl12] (R = nBu or Et).
[Figure 5]
Figure 5
Transformation of [nBu4N]2[Si5Cl12] (I)[link] to [nBu4N]2[Si6Cl14] (R = R′ = Cl) and [nBu4N]2[Si7Cl16] (R = Cl; R′ = SiCl3).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were refined using a riding model, with Cmeth­yl—H = 0.98 Å or Cmethyl­ene—H = 0.99 Å and with Uiso(H) = 1.5Ueq(Cmeth­yl) or 1.2Ueq(C).

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula 2C16H36N+·2Cl·Si5Cl10·2CH2Cl2 2C8H20N+·2Cl·Si5Cl10·2CH2Cl2
Mr 1220.61 996.20
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 173 173
a, b, c (Å) 20.9091 (15), 15.7423 (7), 19.8734 (16) 10.3596 (4), 13.9612 (5), 16.0205 (6)
α, β, γ (°) 90, 112.451 (6), 90 89.959 (3), 72.484 (3), 79.534 (3)
V3) 6045.7 (7) 2169.29 (15)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.85 1.17
Crystal size (mm) 0.27 × 0.16 × 0.12 0.23 × 0.23 × 0.20
 
Data collection
Diffractometer Stoe IPDS II two-circle Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.543, 1.000 0.408, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32650, 5699, 4428 62962, 13044, 11976
Rint 0.060 0.043
(sin θ/λ)max−1) 0.612 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.199, 1.15 0.048, 0.131, 1.08
No. of reflections 5699 13044
No. of parameters 258 409
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −1.46 0.87, −0.84
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL-Plus and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The Cl atoms of the di­chloro­methane solvent mol­ecule in (I)[link] have rather large displacement ellipsoids, but since no valid disorder model for splitting this mol­ecule could be found, refinement with enlarged ADPs was preferred. In (II)[link], atoms N2 and N3 are located on centres of inversion. As a result, the ethyl­ene chains are disordered over equally occupied orientations.

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Bis(tetra-n-butylammonium) dichloride decachlorocyclopentasilane dichloromethane disolvate (I) top
Crystal data top
2C16H36N+·2Cl·Si5Cl10·2CH2Cl2F(000) = 2544
Mr = 1220.61Dx = 1.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.9091 (15) ÅCell parameters from 30920 reflections
b = 15.7423 (7) Åθ = 3.3–25.8°
c = 19.8734 (16) ŵ = 0.85 mm1
β = 112.451 (6)°T = 173 K
V = 6045.7 (7) Å3Needle, colourless
Z = 40.27 × 0.16 × 0.12 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4428 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.060
ω scansθmax = 25.8°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2525
Tmin = 0.543, Tmax = 1.000k = 1819
32650 measured reflectionsl = 2424
5699 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.103H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0209P)2 + 98.7944P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
5699 reflectionsΔρmax = 1.50 e Å3
258 parametersΔρmin = 1.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44920 (9)0.65838 (13)0.63371 (9)0.0392 (4)
Si10.55353 (9)0.75962 (13)0.74394 (10)0.0312 (4)
Si20.58692 (10)0.61853 (14)0.73977 (10)0.0329 (4)
Si30.50000.53144 (19)0.75000.0368 (7)
Cl110.55030 (11)0.83349 (15)0.65484 (12)0.0536 (5)
Cl120.62942 (10)0.82642 (15)0.82814 (12)0.0535 (6)
Cl210.60720 (11)0.58866 (16)0.64782 (11)0.0534 (6)
Cl220.68493 (9)0.59548 (15)0.82099 (11)0.0499 (5)
Cl310.46207 (13)0.44593 (15)0.66352 (15)0.0667 (7)
N10.3868 (3)0.7205 (4)0.4082 (3)0.0278 (12)
C10.4614 (3)0.6993 (5)0.4564 (4)0.0309 (15)
H1A0.46680.63680.45780.037*
H1B0.46990.71850.50650.037*
C20.5172 (4)0.7380 (5)0.4335 (4)0.0373 (17)
H2A0.51020.71880.38380.045*
H2B0.51350.80080.43290.045*
C30.5881 (4)0.7115 (6)0.4859 (4)0.047 (2)
H3A0.58940.64890.49130.056*
H3B0.59690.73670.53430.056*
C40.6455 (4)0.7395 (6)0.4601 (6)0.060 (3)
H4A0.69050.72100.49560.090*
H4B0.63750.71370.41270.090*
H4C0.64500.80150.45570.090*
C50.3758 (4)0.8156 (5)0.3999 (4)0.0351 (16)
H5A0.32580.82650.37280.042*
H5B0.40070.83740.37000.042*
C60.3994 (4)0.8659 (5)0.4706 (4)0.0440 (19)
H6A0.37440.84570.50100.053*
H6B0.44950.85680.49810.053*
C70.3852 (4)0.9597 (5)0.4545 (5)0.055 (2)
H7A0.33480.96850.42880.066*
H7B0.40820.97870.42190.066*
C80.4110 (5)1.0135 (6)0.5234 (6)0.078 (3)
H8A0.40081.07340.51040.116*
H8B0.38770.99570.55540.116*
H8C0.46111.00590.54850.116*
C90.3385 (3)0.6853 (5)0.4418 (4)0.0303 (15)
H9A0.29100.70450.41200.036*
H9B0.35130.71070.49080.036*
C100.3372 (4)0.5894 (5)0.4494 (4)0.0396 (17)
H10A0.32730.56230.40150.047*
H10B0.38300.56930.48350.047*
C110.2824 (4)0.5642 (5)0.4778 (4)0.044 (2)
H11A0.23640.58150.44200.053*
H11B0.29060.59510.52370.053*
C120.2818 (4)0.4698 (6)0.4915 (5)0.059 (2)
H12A0.24550.45670.50970.088*
H12B0.27270.43890.44590.088*
H12C0.32680.45250.52760.088*
C130.3714 (4)0.6817 (5)0.3333 (3)0.0348 (16)
H13A0.40260.70850.31250.042*
H13B0.38340.62060.34000.042*
C140.2978 (4)0.6896 (6)0.2779 (4)0.0412 (18)
H14A0.28390.75010.27110.049*
H14B0.26570.65890.29530.049*
C150.2940 (4)0.6515 (7)0.2051 (4)0.057 (2)
H15A0.32940.67890.19070.068*
H15B0.30490.59010.21180.068*
C160.2249 (5)0.6627 (9)0.1459 (5)0.083 (4)
H16A0.22510.63750.10090.124*
H16B0.18980.63460.15940.124*
H16C0.21430.72340.13830.124*
C1L0.1235 (8)0.4569 (8)0.2807 (9)0.110 (5)
H1L10.13170.48570.32750.132*
H1L20.09040.49240.24160.132*
Cl1L0.19998 (18)0.4539 (3)0.2681 (2)0.1200 (15)
Cl2L0.0881 (5)0.3685 (5)0.2810 (5)0.294 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0321 (9)0.0584 (12)0.0230 (8)0.0037 (9)0.0059 (7)0.0024 (8)
Si10.0233 (9)0.0364 (11)0.0327 (10)0.0031 (8)0.0092 (8)0.0029 (8)
Si20.0281 (9)0.0417 (12)0.0302 (10)0.0050 (9)0.0124 (8)0.0018 (9)
Si30.0373 (15)0.0330 (16)0.0421 (16)0.0000.0174 (13)0.000
Cl110.0498 (11)0.0575 (14)0.0576 (13)0.0087 (10)0.0251 (10)0.0109 (11)
Cl120.0345 (10)0.0572 (14)0.0600 (13)0.0137 (9)0.0082 (9)0.0193 (11)
Cl210.0526 (12)0.0739 (15)0.0441 (11)0.0101 (11)0.0302 (10)0.0056 (10)
Cl220.0276 (9)0.0708 (15)0.0470 (11)0.0139 (9)0.0095 (8)0.0056 (10)
Cl310.0663 (15)0.0501 (13)0.0859 (18)0.0109 (12)0.0315 (13)0.0313 (13)
N10.027 (3)0.032 (3)0.028 (3)0.003 (2)0.014 (2)0.002 (2)
C10.025 (3)0.036 (4)0.030 (4)0.002 (3)0.009 (3)0.000 (3)
C20.044 (4)0.035 (4)0.039 (4)0.006 (3)0.023 (3)0.005 (3)
C30.030 (4)0.065 (6)0.045 (4)0.006 (4)0.014 (3)0.011 (4)
C40.045 (5)0.054 (6)0.096 (7)0.011 (4)0.043 (5)0.018 (5)
C50.032 (4)0.035 (4)0.040 (4)0.009 (3)0.015 (3)0.003 (3)
C60.052 (5)0.039 (4)0.046 (4)0.001 (4)0.024 (4)0.007 (4)
C70.042 (5)0.038 (5)0.082 (7)0.005 (4)0.020 (4)0.012 (4)
C80.063 (6)0.052 (6)0.116 (9)0.004 (5)0.033 (6)0.034 (6)
C90.024 (3)0.042 (4)0.025 (3)0.000 (3)0.010 (3)0.003 (3)
C100.039 (4)0.043 (4)0.041 (4)0.002 (4)0.019 (3)0.003 (4)
C110.028 (4)0.057 (5)0.049 (5)0.001 (4)0.016 (3)0.016 (4)
C120.043 (5)0.059 (6)0.079 (7)0.005 (4)0.027 (5)0.019 (5)
C130.040 (4)0.043 (4)0.025 (3)0.004 (3)0.017 (3)0.002 (3)
C140.036 (4)0.055 (5)0.030 (4)0.003 (4)0.010 (3)0.005 (3)
C150.044 (5)0.082 (7)0.045 (5)0.005 (5)0.018 (4)0.005 (5)
C160.056 (6)0.150 (12)0.035 (5)0.004 (7)0.009 (4)0.019 (6)
C1L0.143 (13)0.077 (9)0.149 (13)0.017 (9)0.100 (11)0.003 (9)
Cl1L0.087 (2)0.168 (4)0.114 (3)0.022 (2)0.048 (2)0.065 (3)
Cl2L0.471 (12)0.237 (7)0.350 (10)0.225 (8)0.355 (10)0.183 (7)
Geometric parameters (Å, º) top
Si1—Cl122.097 (3)C7—H7A0.9900
Si1—Cl112.098 (3)C7—H7B0.9900
Si1—Si22.339 (3)C8—H8A0.9800
Si1—Si1i2.341 (4)C8—H8B0.9800
Si2—Cl212.081 (3)C8—H8C0.9800
Si2—Cl222.100 (3)C9—C101.519 (10)
Si2—Si32.347 (3)C9—H9A0.9900
Si3—Cl312.086 (3)C9—H9B0.9900
Si3—Cl31i2.086 (3)C10—C111.509 (9)
Si3—Si2i2.347 (3)C10—H10A0.9900
N1—C91.513 (8)C10—H10B0.9900
N1—C51.515 (9)C11—C121.513 (12)
N1—C11.523 (8)C11—H11A0.9900
N1—C131.525 (8)C11—H11B0.9900
C1—C21.531 (9)C12—H12A0.9800
C1—H1A0.9900C12—H12B0.9800
C1—H1B0.9900C12—H12C0.9800
C2—C31.510 (10)C13—C141.518 (10)
C2—H2A0.9900C13—H13A0.9900
C2—H2B0.9900C13—H13B0.9900
C3—C41.538 (10)C14—C151.539 (10)
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—H4A0.9800C15—C161.485 (12)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—C61.521 (10)C16—H16A0.9800
C5—H5A0.9900C16—H16B0.9800
C5—H5B0.9900C16—H16C0.9800
C6—C71.516 (11)C1L—Cl2L1.578 (14)
C6—H6A0.9900C1L—Cl1L1.711 (13)
C6—H6B0.9900C1L—H1L10.9900
C7—C81.522 (13)C1L—H1L20.9900
Cl12—Si1—Cl1199.57 (12)C6—C7—H7B109.2
Cl12—Si1—Si2111.06 (11)C8—C7—H7B109.2
Cl11—Si1—Si2114.22 (11)H7A—C7—H7B107.9
Cl12—Si1—Si1i112.32 (12)C7—C8—H8A109.5
Cl11—Si1—Si1i111.28 (12)C7—C8—H8B109.5
Si2—Si1—Si1i108.28 (6)H8A—C8—H8B109.5
Cl21—Si2—Cl2299.76 (11)C7—C8—H8C109.5
Cl21—Si2—Si1114.16 (12)H8A—C8—H8C109.5
Cl22—Si2—Si1110.71 (12)H8B—C8—H8C109.5
Cl21—Si2—Si3111.61 (12)N1—C9—C10116.6 (6)
Cl22—Si2—Si3113.15 (11)N1—C9—H9A108.1
Si1—Si2—Si3107.47 (10)C10—C9—H9A108.1
Cl31—Si3—Cl31i99.6 (2)N1—C9—H9B108.1
Cl31—Si3—Si2111.65 (9)C10—C9—H9B108.1
Cl31i—Si3—Si2112.64 (9)H9A—C9—H9B107.3
Cl31—Si3—Si2i112.64 (9)C11—C10—C9110.0 (6)
Cl31i—Si3—Si2i111.65 (9)C11—C10—H10A109.7
Si2—Si3—Si2i108.50 (16)C9—C10—H10A109.7
C9—N1—C5108.1 (5)C11—C10—H10B109.7
C9—N1—C1109.8 (5)C9—C10—H10B109.7
C5—N1—C1111.2 (5)H10A—C10—H10B108.2
C9—N1—C13110.9 (5)C10—C11—C12112.6 (7)
C5—N1—C13108.8 (5)C10—C11—H11A109.1
C1—N1—C13108.0 (5)C12—C11—H11A109.1
N1—C1—C2116.1 (6)C10—C11—H11B109.1
N1—C1—H1A108.3C12—C11—H11B109.1
C2—C1—H1A108.3H11A—C11—H11B107.8
N1—C1—H1B108.3C11—C12—H12A109.5
C2—C1—H1B108.3C11—C12—H12B109.5
H1A—C1—H1B107.4H12A—C12—H12B109.5
C3—C2—C1110.1 (6)C11—C12—H12C109.5
C3—C2—H2A109.6H12A—C12—H12C109.5
C1—C2—H2A109.6H12B—C12—H12C109.5
C3—C2—H2B109.6C14—C13—N1116.9 (6)
C1—C2—H2B109.6C14—C13—H13A108.1
H2A—C2—H2B108.1N1—C13—H13A108.1
C2—C3—C4112.1 (7)C14—C13—H13B108.1
C2—C3—H3A109.2N1—C13—H13B108.1
C4—C3—H3A109.2H13A—C13—H13B107.3
C2—C3—H3B109.2C13—C14—C15108.9 (6)
C4—C3—H3B109.2C13—C14—H14A109.9
H3A—C3—H3B107.9C15—C14—H14A109.9
C3—C4—H4A109.5C13—C14—H14B109.9
C3—C4—H4B109.5C15—C14—H14B109.9
H4A—C4—H4B109.5H14A—C14—H14B108.3
C3—C4—H4C109.5C16—C15—C14112.5 (7)
H4A—C4—H4C109.5C16—C15—H15A109.1
H4B—C4—H4C109.5C14—C15—H15A109.1
N1—C5—C6115.6 (6)C16—C15—H15B109.1
N1—C5—H5A108.4C14—C15—H15B109.1
C6—C5—H5A108.4H15A—C15—H15B107.8
N1—C5—H5B108.4C15—C16—H16A109.5
C6—C5—H5B108.4C15—C16—H16B109.5
H5A—C5—H5B107.4H16A—C16—H16B109.5
C7—C6—C5110.1 (7)C15—C16—H16C109.5
C7—C6—H6A109.6H16A—C16—H16C109.5
C5—C6—H6A109.6H16B—C16—H16C109.5
C7—C6—H6B109.6Cl2L—C1L—Cl1L116.2 (8)
C5—C6—H6B109.6Cl2L—C1L—H1L1108.2
H6A—C6—H6B108.2Cl1L—C1L—H1L1108.2
C6—C7—C8112.3 (8)Cl2L—C1L—H1L2108.2
C6—C7—H7A109.2Cl1L—C1L—H1L2108.2
C8—C7—H7A109.2H1L1—C1L—H1L2107.4
C9—N1—C1—C2174.3 (6)C5—N1—C9—C10175.4 (6)
C5—N1—C1—C254.8 (7)C1—N1—C9—C1063.2 (7)
C13—N1—C1—C264.6 (7)C13—N1—C9—C1056.1 (8)
N1—C1—C2—C3179.8 (6)N1—C9—C10—C11175.2 (6)
C1—C2—C3—C4172.9 (7)C9—C10—C11—C12176.1 (7)
C9—N1—C5—C668.4 (7)C9—N1—C13—C1455.2 (8)
C1—N1—C5—C652.2 (7)C5—N1—C13—C1463.6 (8)
C13—N1—C5—C6171.0 (6)C1—N1—C13—C14175.6 (6)
N1—C5—C6—C7179.9 (6)N1—C13—C14—C15176.8 (7)
C5—C6—C7—C8177.3 (7)C13—C14—C15—C16175.4 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl10.992.883.686 (7)139
C2—H2A···Cl31ii0.992.893.596 (8)129
C5—H5A···Cl22iii0.992.993.945 (7)163
C9—H9B···Cl10.992.913.652 (7)132
C1L—H1L1···Cl12iii0.992.963.528 (13)119
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
Bis(tetraethylammonium) dichloride decachlorocyclopentasilane dichloromethane disolvate (II) top
Crystal data top
2C8H20N+·2Cl·Si5Cl10·2CH2Cl2Z = 2
Mr = 996.20F(000) = 1016
Triclinic, P1Dx = 1.525 Mg m3
a = 10.3596 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9612 (5) ÅCell parameters from 153722 reflections
c = 16.0205 (6) Åθ = 3.3–30.8°
α = 89.959 (3)°µ = 1.17 mm1
β = 72.484 (3)°T = 173 K
γ = 79.534 (3)°Block, colourless
V = 2169.29 (15) Å30.23 × 0.23 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
11976 reflections with I > 2σ(I)
ω scansRint = 0.043
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 30.5°, θmin = 3.4°
Tmin = 0.408, Tmax = 1.000h = 1414
62962 measured reflectionsk = 1919
13044 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.6519P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
13044 reflectionsΔρmax = 0.87 e Å3
409 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.68362 (5)0.71247 (4)0.37887 (3)0.03357 (10)
Cl20.55394 (6)0.71721 (4)0.14756 (3)0.03425 (11)
Si10.79603 (6)0.63165 (4)0.19539 (4)0.03316 (12)
Si20.74595 (6)0.80223 (4)0.20699 (4)0.02939 (11)
Si30.51729 (5)0.85241 (4)0.29623 (3)0.02570 (10)
Si40.42527 (5)0.71172 (4)0.33588 (3)0.02431 (10)
Si50.59853 (6)0.57465 (4)0.27696 (4)0.02724 (11)
Cl110.97197 (6)0.57714 (6)0.23162 (6)0.0628 (2)
Cl120.86579 (9)0.57414 (5)0.06642 (4)0.0632 (2)
Cl210.88627 (7)0.86092 (6)0.25209 (5)0.05179 (16)
Cl220.78501 (6)0.86177 (4)0.08273 (4)0.04303 (13)
Cl310.49581 (7)0.94164 (4)0.40573 (4)0.04399 (13)
Cl320.39997 (6)0.94686 (4)0.23306 (4)0.04020 (12)
Cl410.33929 (5)0.71094 (4)0.47227 (3)0.03436 (10)
Cl420.24659 (5)0.71209 (4)0.29964 (4)0.03703 (11)
Cl510.63586 (6)0.47736 (4)0.36927 (4)0.04057 (12)
Cl520.53223 (8)0.48498 (4)0.20041 (4)0.04831 (15)
N10.27041 (18)0.79721 (13)0.00541 (11)0.0299 (3)
C10.2204 (4)0.7299 (2)0.06657 (18)0.0551 (7)
H1A0.12380.72620.07170.066*
H1B0.22060.75900.12280.066*
C20.3050 (4)0.62647 (19)0.0530 (2)0.0551 (7)
H2A0.26560.58820.10240.083*
H2B0.30340.59590.00160.083*
H2C0.40040.62880.04970.083*
C30.2867 (3)0.7533 (2)0.09498 (16)0.0438 (5)
H3A0.36410.69660.10890.053*
H3B0.31260.80210.13870.053*
C40.1610 (4)0.7201 (3)0.1052 (3)0.0648 (9)
H4A0.18160.69280.16510.097*
H4B0.13570.67010.06360.097*
H4C0.08420.77590.09340.097*
C50.1640 (3)0.89268 (19)0.0117 (2)0.0470 (6)
H5A0.18630.93140.04070.056*
H5B0.07210.87670.01920.056*
C60.1555 (3)0.9554 (2)0.0910 (2)0.0545 (7)
H6A0.08521.01450.09670.082*
H6B0.13060.91870.14380.082*
H6C0.24510.97360.08370.082*
C70.4085 (3)0.81784 (18)0.00349 (18)0.0412 (5)
H7A0.39800.84240.05660.049*
H7B0.47560.75540.01550.049*
C80.4683 (3)0.8892 (2)0.0662 (2)0.0517 (6)
H8A0.55680.89700.05940.078*
H8B0.48260.86510.12640.078*
H8C0.40480.95230.05400.078*
N20.00000.50000.50000.0260 (4)
C210.0005 (4)0.6091 (3)0.5117 (3)0.0331 (8)0.5
H21A0.08550.64830.50400.040*0.5
H21B0.08000.62700.46750.040*0.5
C21'0.0128 (5)0.5139 (3)0.5909 (3)0.0350 (8)0.5
H21C0.10130.47550.59410.042*0.5
H21D0.06330.49120.63520.042*0.5
C220.0063 (3)0.6300 (3)0.6105 (2)0.0638 (9)
H22A0.00610.69940.61970.096*0.5
H22B0.07400.61220.65360.096*0.5
H22C0.09080.59100.61730.096*0.5
H22D0.01440.64030.66900.096*0.5
H22E0.08230.65180.56650.096*0.5
H22F0.08180.66750.60750.096*0.5
C230.1319 (4)0.4394 (3)0.5085 (3)0.0294 (7)0.5
H23A0.12850.36930.50400.035*0.5
H23B0.14110.45440.56660.035*0.5
C23'0.1182 (4)0.5289 (3)0.4300 (3)0.0321 (7)0.5
H23C0.11960.59860.43980.039*0.5
H23D0.10630.51970.37170.039*0.5
C240.2624 (2)0.4624 (2)0.4327 (2)0.0533 (7)
H24A0.34710.42280.43890.080*0.5
H24B0.25380.44670.37530.080*0.5
H24C0.26620.53170.43770.080*0.5
H24D0.33910.48130.38710.080*0.5
H24E0.27430.47230.49030.080*0.5
H24F0.26100.39350.42240.080*0.5
N30.00001.00000.50000.0324 (5)
C310.0124 (7)1.0998 (4)0.5376 (4)0.0522 (13)0.5
H31A0.05991.10320.60150.063*0.5
H31B0.06841.14770.51060.063*0.5
C31'0.1452 (5)1.0189 (5)0.4881 (4)0.0509 (13)0.5
H31C0.20031.00760.42550.061*0.5
H31D0.19100.97290.52210.061*0.5
C320.1392 (6)1.1271 (4)0.5199 (3)0.0956 (17)
H32A0.12941.19300.54500.143*0.5
H32B0.19411.08030.54740.143*0.5
H32C0.18551.12460.45660.143*0.5
H32D0.23301.13790.51180.143*0.5
H32E0.09511.17270.48560.143*0.5
H32F0.08571.13800.58210.143*0.5
C330.0905 (5)1.0176 (4)0.5927 (3)0.0412 (10)0.5
H33A0.18501.00920.59670.049*0.5
H33B0.09521.08510.61400.049*0.5
C33'0.0691 (5)0.9243 (4)0.5529 (3)0.0459 (11)0.5
H33C0.16290.93500.54790.055*0.5
H33D0.07650.85720.52960.055*0.5
C340.0250 (4)0.9384 (3)0.6531 (2)0.0724 (11)
H34A0.08330.94900.71440.109*0.5
H34B0.02120.87190.63180.109*0.5
H34C0.06830.94750.64900.109*0.5
H34D0.01620.89160.68790.109*0.5
H34E0.03141.00500.67560.109*0.5
H34F0.11750.92740.65740.109*0.5
C1L0.1880 (4)0.3162 (2)0.1144 (2)0.0565 (7)
H1L10.23300.29600.05160.068*
H1L20.09970.36110.12000.068*
Cl1A0.29537 (8)0.37721 (5)0.15334 (6)0.05663 (17)
Cl1B0.15522 (9)0.21224 (6)0.17452 (6)0.05883 (18)
C2L0.4865 (4)0.7900 (3)0.6208 (2)0.0642 (8)
H2L10.52010.82280.56570.077*
H2L20.48310.72220.60500.077*
Cl2A0.60192 (10)0.78831 (6)0.68194 (6)0.0634 (2)
Cl2B0.32076 (10)0.85079 (10)0.67916 (6)0.0828 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0361 (2)0.0429 (3)0.0274 (2)0.01369 (19)0.01464 (17)0.00581 (17)
Cl20.0424 (3)0.0357 (2)0.0271 (2)0.00201 (19)0.01742 (18)0.00062 (16)
Si10.0284 (2)0.0311 (3)0.0307 (3)0.0042 (2)0.0012 (2)0.0051 (2)
Si20.0258 (2)0.0307 (3)0.0279 (2)0.00452 (19)0.00314 (19)0.00405 (19)
Si30.0266 (2)0.0229 (2)0.0245 (2)0.00328 (17)0.00405 (18)0.00117 (17)
Si40.0239 (2)0.0234 (2)0.0246 (2)0.00303 (17)0.00662 (17)0.00054 (16)
Si50.0287 (2)0.0228 (2)0.0295 (2)0.00127 (18)0.00988 (19)0.00119 (18)
Cl110.0288 (3)0.0663 (4)0.0855 (5)0.0061 (3)0.0147 (3)0.0272 (4)
Cl120.0766 (5)0.0475 (3)0.0344 (3)0.0162 (3)0.0127 (3)0.0050 (2)
Cl210.0423 (3)0.0669 (4)0.0530 (3)0.0301 (3)0.0132 (3)0.0083 (3)
Cl220.0427 (3)0.0432 (3)0.0342 (2)0.0043 (2)0.0008 (2)0.0144 (2)
Cl310.0582 (3)0.0344 (2)0.0360 (3)0.0095 (2)0.0090 (2)0.0121 (2)
Cl320.0410 (3)0.0302 (2)0.0445 (3)0.00368 (19)0.0119 (2)0.00648 (19)
Cl410.0336 (2)0.0416 (3)0.0253 (2)0.01096 (19)0.00306 (17)0.00253 (17)
Cl420.0285 (2)0.0429 (3)0.0433 (3)0.00619 (18)0.01663 (19)0.0021 (2)
Cl510.0404 (3)0.0343 (2)0.0516 (3)0.0089 (2)0.0198 (2)0.0174 (2)
Cl520.0629 (4)0.0337 (3)0.0529 (3)0.0081 (2)0.0251 (3)0.0133 (2)
N10.0310 (8)0.0304 (8)0.0275 (7)0.0052 (6)0.0080 (6)0.0030 (6)
C10.0746 (19)0.0423 (13)0.0395 (12)0.0160 (13)0.0016 (12)0.0076 (10)
C20.085 (2)0.0343 (12)0.0522 (15)0.0151 (13)0.0287 (15)0.0117 (10)
C30.0530 (14)0.0456 (12)0.0365 (11)0.0105 (10)0.0187 (10)0.0010 (9)
C40.069 (2)0.0598 (18)0.087 (2)0.0171 (15)0.0524 (19)0.0019 (16)
C50.0357 (11)0.0378 (12)0.0634 (16)0.0041 (9)0.0110 (11)0.0002 (11)
C60.0512 (15)0.0407 (13)0.0554 (15)0.0079 (11)0.0070 (12)0.0096 (11)
C70.0378 (11)0.0392 (11)0.0498 (13)0.0028 (9)0.0208 (10)0.0006 (9)
C80.0378 (12)0.0480 (14)0.0643 (17)0.0150 (10)0.0042 (11)0.0017 (12)
N20.0230 (9)0.0267 (10)0.0268 (10)0.0036 (8)0.0063 (8)0.0051 (8)
C210.0329 (18)0.0228 (16)0.040 (2)0.0042 (14)0.0058 (16)0.0055 (14)
C21'0.0330 (19)0.043 (2)0.0293 (17)0.0049 (16)0.0108 (15)0.0050 (15)
C220.0471 (15)0.073 (2)0.0663 (19)0.0141 (14)0.0078 (13)0.0342 (16)
C230.0252 (16)0.0297 (17)0.0327 (17)0.0030 (13)0.0095 (14)0.0056 (14)
C23'0.0275 (17)0.0336 (18)0.0322 (18)0.0082 (14)0.0031 (14)0.0067 (14)
C240.0240 (9)0.0589 (16)0.0671 (17)0.0074 (10)0.0005 (10)0.0163 (13)
N30.0243 (10)0.0345 (12)0.0329 (11)0.0000 (9)0.0037 (9)0.0037 (9)
C310.072 (4)0.037 (2)0.040 (2)0.006 (2)0.009 (2)0.0055 (19)
C31'0.030 (2)0.081 (4)0.043 (3)0.015 (2)0.0107 (18)0.013 (2)
C320.146 (4)0.103 (3)0.080 (3)0.084 (3)0.061 (3)0.023 (2)
C330.034 (2)0.049 (2)0.0292 (18)0.0039 (18)0.0004 (16)0.0031 (17)
C33'0.033 (2)0.055 (3)0.045 (2)0.0018 (19)0.0118 (19)0.009 (2)
C340.083 (2)0.110 (3)0.0381 (14)0.048 (2)0.0207 (15)0.0216 (16)
C1L0.0620 (17)0.0570 (16)0.0647 (18)0.0176 (14)0.0369 (15)0.0150 (13)
Cl1A0.0500 (3)0.0452 (3)0.0797 (5)0.0104 (3)0.0265 (3)0.0018 (3)
Cl1B0.0613 (4)0.0527 (4)0.0685 (5)0.0195 (3)0.0237 (4)0.0092 (3)
C2L0.0639 (19)0.078 (2)0.0503 (16)0.0043 (16)0.0266 (14)0.0118 (15)
Cl2A0.0746 (5)0.0622 (4)0.0588 (4)0.0015 (4)0.0367 (4)0.0093 (3)
Cl2B0.0612 (5)0.1170 (9)0.0576 (5)0.0084 (5)0.0143 (4)0.0110 (5)
Geometric parameters (Å, º) top
Si1—Cl122.0805 (9)C22—H22B0.9800
Si1—Cl112.0906 (9)C22—H22C0.9800
Si1—Si22.3386 (8)C22—H22D0.9800
Si1—Si52.3469 (8)C22—H22E0.9800
Si2—Cl212.0910 (8)C22—H22F0.9800
Si2—Cl222.1102 (8)C23—C241.604 (5)
Si2—Si32.3465 (7)C23—H23A0.9900
Si3—Cl312.0849 (7)C23—H23B0.9900
Si3—Cl322.0967 (8)C23'—C241.622 (5)
Si3—Si42.3419 (7)C23'—H23C0.9900
Si4—Cl412.0977 (7)C23'—H23D0.9900
Si4—Cl422.0993 (7)C24—H24A0.9800
Si4—Si52.3473 (7)C24—H24B0.9800
Si5—Cl512.0814 (7)C24—H24C0.9800
Si5—Cl522.0890 (8)C24—H24D0.9800
N1—C31.510 (3)C24—H24E0.9800
N1—C11.516 (3)C24—H24F0.9800
N1—C71.519 (3)N3—C31ii1.487 (5)
N1—C51.533 (3)N3—C311.487 (5)
C1—C21.526 (4)N3—C33ii1.491 (4)
C1—H1A0.9900N3—C331.491 (4)
C1—H1B0.9900N3—C31'ii1.530 (5)
C2—H2A0.9800N3—C31'1.530 (5)
C2—H2B0.9800N3—C33'ii1.561 (5)
C2—H2C0.9800N3—C33'1.561 (5)
C3—C41.511 (4)C31—C321.625 (8)
C3—H3A0.9900C31—H31A0.9900
C3—H3B0.9900C31—H31B0.9900
C4—H4A0.9800C31'—C321.579 (8)
C4—H4B0.9800C31'—H31C0.9900
C4—H4C0.9800C31'—H31D0.9900
C5—C61.514 (4)C32—H32A0.9800
C5—H5A0.9900C32—H32B0.9800
C5—H5B0.9900C32—H32C0.9800
C6—H6A0.9800C32—H32D0.9800
C6—H6B0.9800C32—H32E0.9800
C6—H6C0.9800C32—H32F0.9800
C7—C81.495 (4)C33—C341.656 (6)
C7—H7A0.9900C33—H33A0.9900
C7—H7B0.9900C33—H33B0.9900
C8—H8A0.9800C33'—C341.599 (6)
C8—H8B0.9800C33'—H33C0.9900
C8—H8C0.9800C33'—H33D0.9900
N2—C23'i1.508 (4)C34—H34A0.9800
N2—C23'1.508 (4)C34—H34B0.9800
N2—C23i1.514 (4)C34—H34C0.9800
N2—C231.514 (4)C34—H34D0.9800
N2—C21'i1.517 (4)C34—H34E0.9800
N2—C21'1.517 (4)C34—H34F0.9800
N2—C211.533 (4)C1L—Cl1A1.765 (3)
N2—C21i1.533 (4)C1L—Cl1B1.769 (3)
C21—C221.633 (6)C1L—H1L10.9900
C21—H21A0.9900C1L—H1L20.9900
C21—H21B0.9900C2L—Cl2B1.746 (4)
C21'—C221.636 (6)C2L—Cl2A1.757 (3)
C21'—H21C0.9900C2L—H2L10.9900
C21'—H21D0.9900C2L—H2L20.9900
C22—H22A0.9800
Cl12—Si1—Cl1198.50 (4)C21—C22—H22A109.5
Cl12—Si1—Si2113.28 (3)C21—C22—H22B109.5
Cl11—Si1—Si2111.32 (4)H22A—C22—H22B109.5
Cl12—Si1—Si5111.49 (4)C21—C22—H22C109.5
Cl11—Si1—Si5113.90 (4)H22A—C22—H22C109.5
Si2—Si1—Si5108.23 (3)H22B—C22—H22C109.5
Cl21—Si2—Cl2298.77 (4)C21'—C22—H22D109.5
Cl21—Si2—Si1112.27 (4)C21'—C22—H22E109.5
Cl22—Si2—Si1111.72 (3)H22D—C22—H22E109.5
Cl21—Si2—Si3112.69 (3)C21'—C22—H22F109.5
Cl22—Si2—Si3113.01 (3)H22D—C22—H22F109.5
Si1—Si2—Si3108.26 (3)H22E—C22—H22F109.5
Cl31—Si3—Cl32100.07 (3)N2—C23—C24110.3 (3)
Cl31—Si3—Si4111.69 (3)N2—C23—H23A109.6
Cl32—Si3—Si4111.61 (3)C24—C23—H23A109.6
Cl31—Si3—Si2114.12 (3)N2—C23—H23B109.6
Cl32—Si3—Si2111.88 (3)C24—C23—H23B109.6
Si4—Si3—Si2107.47 (3)H23A—C23—H23B108.1
Cl41—Si4—Cl4298.87 (3)N2—C23'—C24109.6 (3)
Cl41—Si4—Si3111.22 (3)N2—C23'—H23C109.7
Cl42—Si4—Si3112.22 (3)C24—C23'—H23C109.7
Cl41—Si4—Si5112.75 (3)N2—C23'—H23D109.7
Cl42—Si4—Si5113.01 (3)C24—C23'—H23D109.7
Si3—Si4—Si5108.60 (3)H23C—C23'—H23D108.2
Cl51—Si5—Cl5299.88 (3)C23—C24—H24A109.5
Cl51—Si5—Si1113.02 (3)C23—C24—H24B109.5
Cl52—Si5—Si1112.15 (3)H24A—C24—H24B109.5
Cl51—Si5—Si4114.27 (3)C23—C24—H24C109.5
Cl52—Si5—Si4110.11 (3)H24A—C24—H24C109.5
Si1—Si5—Si4107.38 (3)H24B—C24—H24C109.5
C3—N1—C1111.90 (19)C23'—C24—H24D109.5
C3—N1—C7108.98 (18)C23'—C24—H24E109.5
C1—N1—C7109.2 (2)H24D—C24—H24E109.5
C3—N1—C5108.79 (19)C23'—C24—H24F109.5
C1—N1—C5108.2 (2)H24D—C24—H24F109.5
C7—N1—C5109.76 (17)H24E—C24—H24F109.5
N1—C1—C2115.0 (2)C31ii—N3—C31180.0 (4)
N1—C1—H1A108.5C31ii—N3—C33ii66.3 (3)
C2—C1—H1A108.5C31—N3—C33ii113.7 (3)
N1—C1—H1B108.5C31ii—N3—C33113.7 (3)
C2—C1—H1B108.5C31—N3—C3366.3 (3)
H1A—C1—H1B107.5C33ii—N3—C33180.0
C1—C2—H2A109.5C31'ii—N3—C31'180.0 (7)
C1—C2—H2B109.5C31'ii—N3—C33'ii72.4 (3)
H2A—C2—H2B109.5C31'—N3—C33'ii107.6 (3)
C1—C2—H2C109.5C31'ii—N3—C33'107.6 (3)
H2A—C2—H2C109.5C31'—N3—C33'72.4 (3)
H2B—C2—H2C109.5C33'ii—N3—C33'180.0 (3)
N1—C3—C4115.5 (2)N3—C31—C32110.4 (4)
N1—C3—H3A108.4N3—C31—H31A109.6
C4—C3—H3A108.4C32—C31—H31A109.6
N1—C3—H3B108.4N3—C31—H31B109.6
C4—C3—H3B108.4C32—C31—H31B109.6
H3A—C3—H3B107.5H31A—C31—H31B108.1
C3—C4—H4A109.5N3—C31'—C32110.7 (4)
C3—C4—H4B109.5N3—C31'—H31C109.5
H4A—C4—H4B109.5C32—C31'—H31C109.5
C3—C4—H4C109.5N3—C31'—H31D109.5
H4A—C4—H4C109.5C32—C31'—H31D109.5
H4B—C4—H4C109.5H31C—C31'—H31D108.1
C6—C5—N1115.2 (2)C31—C32—H32A109.5
C6—C5—H5A108.5C31—C32—H32B109.5
N1—C5—H5A108.5H32A—C32—H32B109.5
C6—C5—H5B108.5C31—C32—H32C109.5
N1—C5—H5B108.5H32A—C32—H32C109.5
H5A—C5—H5B107.5H32B—C32—H32C109.5
C5—C6—H6A109.5C31'—C32—H32D109.5
C5—C6—H6B109.5C31'—C32—H32E109.5
H6A—C6—H6B109.5H32D—C32—H32E109.5
C5—C6—H6C109.5C31'—C32—H32F109.5
H6A—C6—H6C109.5H32D—C32—H32F109.5
H6B—C6—H6C109.5H32E—C32—H32F109.5
C8—C7—N1116.3 (2)N3—C33—C34108.3 (3)
C8—C7—H7A108.2N3—C33—H33A110.0
N1—C7—H7A108.2C34—C33—H33A110.0
C8—C7—H7B108.2N3—C33—H33B110.0
N1—C7—H7B108.2C34—C33—H33B110.0
H7A—C7—H7B107.4H33A—C33—H33B108.4
C7—C8—H8A109.5N3—C33'—C34107.8 (3)
C7—C8—H8B109.5N3—C33'—H33C110.1
H8A—C8—H8B109.5C34—C33'—H33C110.1
C7—C8—H8C109.5N3—C33'—H33D110.1
H8A—C8—H8C109.5C34—C33'—H33D110.1
H8B—C8—H8C109.5H33C—C33'—H33D108.5
C23'i—N2—C23'180.0C33—C34—H34A109.5
C23i—N2—C23180.0 (3)C33—C34—H34B109.5
C23'i—N2—C21'i111.7 (2)H34A—C34—H34B109.5
C23'—N2—C21'i68.3 (2)C33—C34—H34C109.5
C23'i—N2—C21'68.3 (2)H34A—C34—H34C109.5
C23'—N2—C21'111.7 (2)H34B—C34—H34C109.5
C21'i—N2—C21'180.0C33'—C34—H34D109.5
C23i—N2—C2169.5 (2)C33'—C34—H34E109.5
C23—N2—C21110.5 (2)H34D—C34—H34E109.5
C23i—N2—C21i110.5 (2)C33'—C34—H34F109.5
C23—N2—C21i69.5 (2)H34D—C34—H34F109.5
C21—N2—C21i180.0 (4)H34E—C34—H34F109.5
N2—C21—C22107.8 (3)Cl1A—C1L—Cl1B110.64 (16)
N2—C21—H21A110.2Cl1A—C1L—H1L1109.5
C22—C21—H21A110.2Cl1B—C1L—H1L1109.5
N2—C21—H21B110.2Cl1A—C1L—H1L2109.5
C22—C21—H21B110.2Cl1B—C1L—H1L2109.5
H21A—C21—H21B108.5H1L1—C1L—H1L2108.1
N2—C21'—C22108.4 (3)Cl2B—C2L—Cl2A111.70 (18)
N2—C21'—H21C110.0Cl2B—C2L—H2L1109.3
C22—C21'—H21C110.0Cl2A—C2L—H2L1109.3
N2—C21'—H21D110.0Cl2B—C2L—H2L2109.3
C22—C21'—H21D110.0Cl2A—C2L—H2L2109.3
H21C—C21'—H21D108.4H2L1—C2L—H2L2107.9
C3—N1—C1—C252.6 (3)C23'i—N2—C21'—C22117.4 (3)
C7—N1—C1—C268.1 (3)C23'—N2—C21'—C2262.6 (3)
C5—N1—C1—C2172.4 (3)C21—N2—C23—C2462.3 (3)
C1—N1—C3—C453.9 (3)C21i—N2—C23—C24117.7 (3)
C7—N1—C3—C4174.8 (2)C21'i—N2—C23'—C24119.9 (3)
C5—N1—C3—C465.6 (3)C21'—N2—C23'—C2460.1 (3)
C3—N1—C5—C6168.9 (2)C33ii—N3—C31—C3249.5 (5)
C1—N1—C5—C669.3 (3)C33—N3—C31—C32130.5 (5)
C7—N1—C5—C649.8 (3)C33'ii—N3—C31'—C3257.8 (4)
C3—N1—C7—C861.8 (3)C33'—N3—C31'—C32122.2 (4)
C1—N1—C7—C8175.7 (2)C31ii—N3—C33—C3460.0 (5)
C5—N1—C7—C857.2 (3)C31—N3—C33—C34120.0 (5)
C23i—N2—C21—C22118.2 (3)C31'ii—N3—C33'—C3458.6 (5)
C23—N2—C21—C2261.8 (3)C31'—N3—C33'—C34121.4 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl420.992.993.829 (3)144
C2—H2C···Cl20.982.953.753 (3)139
C3—H3A···Cl52iii0.992.793.643 (3)144
C3—H3B···Cl2Biv0.992.983.804 (3)142
C5—H5B···Cl22v0.992.893.850 (3)165
C6—H6B···Cl21v0.982.863.630 (3)136
C7—H7A···Cl20.992.863.394 (2)115
C22—H22C···Cl51vi0.982.893.847 (4)165
C22—H22E···Cl410.982.903.859 (3)165
C23—H23B···Cl1vi0.992.983.465 (4)111
C23—H23C···Cl420.992.873.497 (4)122
C24—H24C···Cl410.982.843.793 (3)164
C24—H24E···Cl51vi0.982.813.771 (3)165
C24—H24F···Cl2Avi0.982.923.778 (3)147
C31—H31C···Cl310.992.953.434 (5)111
C32—H32F···Cl21vii0.982.763.584 (4)142
C33—H33A···Cl32ii0.992.943.515 (4)118
C33—H33D···Cl410.992.983.630 (5)124
C34—H34A···Cl1Bi0.982.933.556 (3)123
C34—H34C···Cl2B0.982.893.716 (4)142
C34—H34A···Cl1Bi0.982.933.556 (3)123
C1L—H1L1···Cl12iii0.992.903.421 (3)114
C2L—H2L2···Cl410.992.963.465 (3)113
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+1, z; (iv) x, y, z1; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x+1, y+2, z+1.
Mean values (Å) of Si—Si, Si—Cl bond lengths and Cl/N···Cg contacts in the title compounds and related structures top
X = Cl for (I) and (II) and X = N for ELAFON and ELAFIH. The row for Si6Cl12 contains data for dichloride dodecachlorohexasilanes (Tillmann, Lerner & Bolte, 2015).
StructureSi—SiSi—ClX···Cg
(I)2.3422.0922.143
(II)2.3442.0922.151
ELAFON2.3632.0492.174
ELAFIH2.3482.0362.234
Si6Cl122.3222.0781.90
 

Footnotes

Correspondence e-mail for synthetic work: Matthias.Wagner@chemie.uni-frankfurt.de.

Acknowledgements

The authors wish to thank Johanna Becker-Baldus for the recording of the 29Si CP/MAS NMR spectrum.

References

First citationDai, X., Anderson, K. J., Schulz, D. L. & Boudjouk, P. (2010). Dalton Trans. 39, 11188–11192.  CSD CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHengge, E. & Kovar, D. (1977). J. Organomet. Chem. 125, C29–C32.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
First citationTillmann, J., Lerner, H.-W. & Bolte, M. (2015). Acta Cryst. C71, 883–888.  CSD CrossRef IUCr Journals
First citationTillmann, J., Meyer, L., Schweizer, J. I., Bolte, M., Lerner, H.-W., Wagner, M. & Holthausen, M. C. (2014). Chem. Eur. J. 20, 9234–9239.  Web of Science CSD CrossRef CAS PubMed
First citationTillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M. & Lerner, H.-W. (2012). Inorg. Chem. 51, 8599–8606.  Web of Science CSD CrossRef CAS PubMed
First citationTillmann, J., Moxter, M., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Inorg. Chem. 54, 9611–9618.  CSD CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds