research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-1-{3-[(5-fluoro-2-hy­dr­oxy­benzyl­­idene)amino]­phen­yl}ethanone and of a fourth polymorph of (E)-1-{3-[(2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)amino]­phen­yl}ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bCentre for Biological Sciences (Bioinformatics), School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Patna 800 014, India, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com, cg@st-andrews.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 October 2017; accepted 2 November 2017; online 7 November 2017)

In the mol­ecules of both (E)-1-{3-[(5-fluoro-2-hy­droxy­benzyl­idene)amino]­phen­yl}ethanone, C15H12FNO2, (I), and (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone, C16H15NO3, (II), which crystallizes with Z′ = 2 in space group Pca21, there are intra­molecular O—H⋯N hydrogen bonds, and the non-H atoms in each mol­ecule are essentially coplanar. In the crystal of (I), mol­ecules are linked by a single C—H⋯O hydrogen bond to form a C(8) chain, whereas in the crystal of (II), mol­ecules are linked by three C—H⋯O hydrogen bonds to form sheets within which orthogonal C22(16) and C22(17) chains can be identified. Comparisons are made with some related structures.

1. Chemical context

Schiff bases of general type RR′C=NR′′ can exhibit very wide structural diversity and have found a wide range of applications (Jia & Li, 2015[Jia, Y. & Li, J. (2015). Chem. Rev. 115, 1597-1621.]), ranging from anti-bacterial, anti-fungal and anti-tumour activity (Rani et al., 2015[Rani, A., Kumar, M., Khare, R. & Tuli, H. S. (2015). J. Biol. Chem. Sci. 2, 62-91.]), via catalysis (Kumar et al., 2009[Kumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181-187.]), to use as organic photovoltaic materials (Jeevadason et al., 2014[Jeevadason, A. W., Murugavel, K. & Neelakantan, M. A. (2014). Renewable Sustainable Energy Rev. 36, 220-227.]). The extensive patent literature on their medicinal applications has recently been reviewed (Hameed et al., 2017[Hameed, A., Al-Rashida, M., Uroos, M., Ali, S. A. & Khan, K. M. (2017). Expert Opin. Ther. Pat. 27, 63-79.]). With this great diversity of use in mind, we report herein on the mol­ecular and supra­molecular structures of two closely related Schiff bases,(E)-1-{3-[(5-fluoro-2-hy­droxy­benzyl­idene)amino]­phen­yl}ethanone (I)[link] and (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone (II)[link]. Compounds (I)[link] and (II)[link] were prepared by straightforward condensation reactions between 3-acetyl­aniline (3-amino­aceto­phenone) and the appropriately substituted salicyl­aldehydes. Their mol­ecular constitutions differ only in the identity and location of a single substituent, 5-fluoro in (I)[link] versus 3-meth­oxy in (II)[link], but their crystallization behaviour is different. Compound (I)[link] crystallizes in the monoclinic space group P21/n with Z′ = 1 (Fig. 1[link]), while compound (II)[link] crystallizes in the ortho­rhom­bic space group Pca21 with Z′ = 2 (Figs. 2[link] and 3[link]), and it will be convenient to refer to the mol­ecules of (II)[link] which contain the atoms N11 and N21 as mol­ecules of types 1 and 2, respectively. Compound (II)[link], in fact, represents the fourth polymorphic form of this compound to be identified. Three other forms, one in Pna21 with Z′ = 2, and two others in P212121, each with Z′ = 1, have recently been reported (Zbačnik et al., 2015[Zbačnik, M., Nogalo, I., Cinčić, D. & Kaitner, B. (2015). CrystEngComm, 17, 7870-7877.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The structure of mol­ecule 1 in compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The structure of mol­ecule 2 in compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

In each of compounds (I)[link] (Fig. 1[link]) and (II)[link] (Figs. 2[link] and 3[link]), the non-H atoms are almost coplanar. Thus in (I)[link], the r.m.s. deviation of the non-H atoms from their mean plane is only 0.085 Å, with a maximum individual deviation from the plane of 0.196 (2) Å for the acetyl atom C18. Similarly, in compound (II)[link], the r.m.s. deviations of the non-H atoms from the mean planes of the two mol­ecules are 0.086 and 0.071 Å for mol­ecules 1 and 2, respectively, with corresponding maximum deviations of 0.225 (5) and 0.211 (5) Å for atoms C118 and C218, respectively. In all of the mol­ecules there is an intra­molecular O—H⋯N hydrogen bond (Tables 1[link] and 2[link]); although this probably influences the orientation of the hy­droxy­lated ring relative to the central spacer unit, it will not have any influence on the orientation of the acetyl­phenyl ring relative to the rest of the mol­ecule. In the two mol­ecules of (II)[link], the deviation of the meth­oxy C atoms C128 and C228 from the planes of their adjacent aryl rings are 0.107 (9) and 0.049 (11) Å, respectively. Consistent with this, the pair of exocyclic C—C—O angles at each of the atoms C123 and C223 differ by ca 10°, as is generally observed in planar alk­oxy­arene derivatives (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]). The dihedral angle between the mean planes of the two mol­ecules in (II)[link] is 80.74 (3)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯N1 0.98 (3) 1.72 (3) 2.607 (2) 148 (3)
C27—H27⋯O17i 0.93 2.58 3.475 (3) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O122—H122⋯N11 1.06 (6) 1.68 (6) 2.604 (4) 142 (5)
O222—H222⋯N21 0.92 (6) 1.79 (6) 2.603 (5) 147 (5)
C116—H116⋯O223i 0.93 2.50 3.347 (6) 152
C127—H127⋯O217 0.93 2.59 3.496 (5) 164
C227—H227⋯O117ii 0.93 2.58 3.487 (5) 164
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) x, y-1, z.

3. Supra­molecular features

The supra­molecular assembly in compound (I)[link] is very simple, as shown in Fig. 4[link]. In addition to the intra­molecular hydrogen bond noted above, there is a single C—H⋯O hydrogen bond (Table 1[link]), which links mol­ecules related by a 21 screw axis into C(8)chains running parallel to the [010] direction. Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded C(8) chain running parallel to the [010] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Hydrogen bonds are drawn as dashed lines and the atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) and ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), respectively.

There are three C—H⋯O hydrogen bonds in the structure of compound (II)[link] (Table 2[link]): one of these links the two mol­ecules within the selected asymmetric unit and the two others link these bimolecular aggregates into complex sheets, whose formation is readily analysed in terms of two one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The hydrogen bond having atom C227 as the donor links bimolecular aggregates related by translation to form a C22(16) chain running parallel to the [010] direction (Fig. 5[link]), and that having atom C116 as the donor links aggregates related by a 21 screw axis into C22(17) chains running parallel to the [001] direction (Fig. 6[link]). The combination of the orthogonal chains along [010] and [001] generates a sheet lying parallel to (100). Two sheets of this type, related to one another by the glide planes, pass through each unit cell but there are no direction-specific inter­actions between adjacent sheets.

[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded C22(16) chain running parallel to the [010] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted, and the hydrogen bonds are drawn as dashed lines.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded C22(17) chain running parallel to the [001] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted, and the hydrogen bonds are drawn as dashed lines.

4. Database survey

The structures of Schiff bases derived from hydroxyaryl aldehydes have recently been the subject of a general survey, in which a number of structural errors, often involving misplaced H atoms, were pointed out (Blagus et al., 2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]). Closely related to the present structures are those of (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone (III) (De et al., 2009[De, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Ind. J. Chem. 48B, 595-598.]), and of the previously recorded polymorphs of (II)[link] (Zbačnik et al., 2015[Zbačnik, M., Nogalo, I., Cinčić, D. & Kaitner, B. (2015). CrystEngComm, 17, 7870-7877.]).

Compound (III) is isomorphous with compound (I)[link]: as in (I)[link], the structure of (III) contains an intra­molecular O—H⋯N hydrogen bond and the non-H atoms are effectively coplanar. The structure of (III) also contains an inter­molecular C—H⋯O hydrogen bond, although this is nowhere mentioned in the original report (De et al., 2009[De, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Ind. J. Chem. 48B, 595-598.]); this inter­action forms C(8) chains along [010], exactly the same as those in the structure of (I)[link], so that (I)[link] and (III) are, in fact, isostructural despite their different patterns of substitution.

Three other polymorphic forms of compound (II)[link] have recently been reported and are described as forms I, II and II,I respectively (Zbačnik et al., 2015[Zbačnik, M., Nogalo, I., Cinčić, D. & Kaitner, B. (2015). CrystEngComm, 17, 7870-7877.]). Form I is ortho­rhom­bic in space group Pna21 with Z′ = 2, and forms II and III both crystallize in space group P212121 with Z′ = 1, so that the Pca21 form reported here can be regarded as form IV. All three forms, I–III, can be crystallized from ethanol solutions under different conditions and a crucial factor in determining which polymorph is obtained appears to be the filtration process used prior to crystallization. By contrast, the form described here was crystallized from a solution in di­chloro­methane. In all of the mol­ecules in forms I–III, there is an intra­molecular O—H⋯N hydrogen bond and, in every case, the non-H atoms are effectively co-planar as found here for (I)[link] and (II)[link]. The supra­molecular assembly differs in all three polymorphs I–III: form II contains no inter­molecular hydrogen bonds; in form III two C—H⋯O hydrogen bonds generate a C(8)C(10)[R21(6)] chain of rings; and in form I, three C—H⋯O hydrogen bonds generate sheets in which the component sub-structures both involve mol­ecules related by an n-glide plane, in contrast to the sheets found for form IV reported here.

5. Synthesis and crystallization

For the synthesis of compounds (I)[link] and (II)[link], 3-acetyl aniline (0.740 mmol) and a catalytic qu­antity of acetic acid were added to solution of the appropriate aldehyde, 5-fluoro­salicyl­aldehyde for (I)[link] or 3-meth­oxy­salicyl­aldehyde for (II)[link] (0.740 mmol) in ethanol (20 cm3), and these mixtures were then heated under reflux for 5 h. The mixtures were then cooled to ambient temperature and the solvent was removed under reduced pressure. The solid residues were then washed with cold ethanol and dried under reduced pressure. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­methyl­sulfoxide for (I)[link] and in di­chloro­methane for (II)[link]: m.p. for (I)[link] 362–364 K and m.p. for (II)[link] 352–354 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For compound (II)[link], one bad outlier reflection (8,1,3) was omitted from the data set before the final refinements. All H atoms were located in difference-Fourier maps. The C-bound H atoms were subsequently treated as riding atoms in geometrically idealized positions: C—H 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms. The methyl groups were permitted to rotate but not to tilt. For the H atoms bonded to O atoms, the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O), giving the O—H distances shown in Tables 1[link] and 2[link]. The correct orientation of the structure of (II)[link] relative to the polar axis direction was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), x = −0.04 (16) calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 1493 quotients of the type [(I+)−(I)]/[(I+)+(I)], and by means of the Hooft y parameter (Hooft et al., 2010[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.]), y = −0.03 (16). In the final analysis of variance for (I)[link] there was a large value, 1.859, of K = [mean(Fo2)/mean(Fc2)] for the group of 4258 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.008; the corresponding value for (II)[link] was 2.1539 for 565 reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.009.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H12FNO2 C16H15NO3
Mr 257.26 269.29
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pca21
Temperature (K) 294 294
a, b, c (Å) 14.9527 (5), 5.5152 (2), 16.6918 (5) 19.1904 (4), 5.33856 (12), 26.5678 (6)
α, β, γ (°) 90, 114.739 (2), 90 90, 90, 90
V3) 1250.19 (7) 2721.85 (10)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.84 0.75
Crystal size (mm) 0.15 × 0.15 × 0.10 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEX3 Bruker APEX3
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.848, 0.919 0.907, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 15703, 2452, 1764 51776, 5393, 3796
Rint 0.041 0.117
(sin θ/λ)max−1) 0.619 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.04 0.048, 0.113, 1.02
No. of reflections 2452 5393
No. of parameters 176 371
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.12 0.11, −0.13
Absolute structure Flack x determined using 1493 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.04 (16)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) top
Crystal data top
C15H12FNO2F(000) = 536
Mr = 257.26Dx = 1.367 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 14.9527 (5) ÅCell parameters from 2452 reflections
b = 5.5152 (2) Åθ = 3.3–72.5°
c = 16.6918 (5) ŵ = 0.84 mm1
β = 114.739 (2)°T = 294 K
V = 1250.19 (7) Å3Block, yellow
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Bruker APEX3
diffractometer
2452 independent reflections
Radiation source: microfocus sealed tube1764 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.041
φ and ω scansθmax = 72.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1818
Tmin = 0.848, Tmax = 0.919k = 66
15703 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3677P]
where P = (Fo2 + 2Fc2)/3
2452 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35562 (11)0.5843 (3)0.53906 (9)0.0566 (4)
C110.39602 (12)0.7592 (3)0.60710 (11)0.0529 (4)
C120.36799 (12)0.7897 (3)0.67598 (11)0.0539 (4)
H120.32190.68510.68120.065*
C130.40781 (12)0.9740 (3)0.73703 (11)0.0551 (4)
C140.47738 (14)1.1282 (4)0.72986 (13)0.0672 (5)
H140.50411.25310.77040.081*
C150.50686 (15)1.0962 (4)0.66268 (14)0.0750 (6)
H150.55401.19870.65830.090*
C160.46702 (14)0.9138 (4)0.60227 (12)0.0655 (5)
H160.48780.89320.55740.079*
C170.37489 (14)0.9972 (4)0.80988 (12)0.0635 (5)
O170.31869 (12)0.8495 (3)0.81717 (10)0.0859 (5)
C180.41085 (18)1.2043 (5)0.87234 (15)0.0900 (7)
H18A0.38401.19310.91530.135*
H18B0.39031.35390.84040.135*
H18C0.48141.19950.90160.135*
C270.29372 (13)0.4249 (3)0.53959 (10)0.0554 (4)
H270.27590.42160.58670.066*
C210.25071 (13)0.2505 (3)0.46968 (10)0.0541 (4)
C220.27440 (15)0.2459 (4)0.39638 (12)0.0632 (5)
O220.33757 (13)0.4080 (3)0.38812 (10)0.0858 (5)
H220.361 (2)0.512 (5)0.4408 (19)0.129*
C230.23177 (18)0.0728 (4)0.33148 (13)0.0774 (6)
H230.24730.06950.28300.093*
C240.16706 (17)0.0935 (4)0.33765 (13)0.0776 (6)
H240.13860.20940.29380.093*
C250.14467 (15)0.0872 (4)0.40930 (13)0.0701 (5)
F250.08044 (11)0.2522 (3)0.41531 (9)0.1050 (5)
C260.18467 (14)0.0810 (4)0.47482 (11)0.0631 (5)
H260.16780.08190.52250.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0650 (9)0.0630 (9)0.0489 (8)0.0097 (7)0.0308 (7)0.0060 (7)
C110.0543 (9)0.0585 (10)0.0503 (9)0.0096 (8)0.0263 (7)0.0124 (8)
C120.0550 (9)0.0571 (10)0.0556 (9)0.0021 (8)0.0290 (8)0.0028 (8)
C130.0542 (9)0.0569 (10)0.0556 (10)0.0015 (8)0.0243 (8)0.0026 (8)
C140.0680 (12)0.0636 (11)0.0681 (11)0.0095 (9)0.0266 (9)0.0000 (9)
C150.0710 (13)0.0798 (14)0.0795 (13)0.0147 (11)0.0366 (11)0.0115 (12)
C160.0664 (11)0.0795 (13)0.0614 (11)0.0038 (10)0.0372 (9)0.0150 (10)
C170.0646 (11)0.0673 (12)0.0634 (11)0.0009 (10)0.0314 (9)0.0068 (9)
O170.1074 (11)0.0916 (11)0.0868 (10)0.0230 (9)0.0682 (9)0.0232 (8)
C180.0975 (16)0.0946 (17)0.0870 (15)0.0151 (14)0.0476 (13)0.0330 (13)
C270.0641 (10)0.0641 (11)0.0434 (8)0.0101 (9)0.0279 (8)0.0076 (8)
C210.0636 (10)0.0573 (10)0.0416 (8)0.0157 (8)0.0222 (7)0.0076 (7)
C220.0782 (12)0.0663 (11)0.0528 (10)0.0190 (10)0.0349 (9)0.0058 (9)
O220.1131 (12)0.0961 (11)0.0753 (9)0.0030 (9)0.0660 (9)0.0058 (8)
C230.1021 (16)0.0819 (14)0.0559 (11)0.0201 (13)0.0406 (11)0.0040 (11)
C240.0948 (15)0.0731 (13)0.0556 (11)0.0175 (12)0.0222 (10)0.0091 (10)
C250.0775 (13)0.0646 (12)0.0601 (11)0.0036 (10)0.0209 (10)0.0051 (10)
F250.1246 (11)0.1000 (10)0.0836 (9)0.0353 (9)0.0367 (8)0.0144 (8)
C260.0735 (12)0.0698 (12)0.0454 (9)0.0064 (10)0.0245 (8)0.0051 (9)
Geometric parameters (Å, º) top
N1—C271.279 (2)C18—H18B0.9600
N1—C111.418 (2)C18—H18C0.9600
C11—C121.389 (2)C27—C211.440 (2)
C11—C161.390 (2)C27—H270.9300
C12—C131.385 (2)C21—C261.388 (3)
C12—H120.9300C21—C221.409 (2)
C13—C141.387 (2)C22—O221.349 (2)
C13—C171.496 (2)C22—C231.383 (3)
C14—C151.377 (3)O22—H220.98 (3)
C14—H140.9300C23—C241.368 (3)
C15—C161.371 (3)C23—H230.9300
C15—H150.9300C24—C251.371 (3)
C16—H160.9300C24—H240.9300
C17—O171.213 (2)C25—F251.357 (2)
C17—C181.487 (3)C25—C261.366 (3)
C18—H18A0.9600C26—H260.9300
C27—N1—C11121.93 (14)C17—C18—H18C109.5
C12—C11—C16118.43 (17)H18A—C18—H18C109.5
C12—C11—N1124.77 (15)H18B—C18—H18C109.5
C16—C11—N1116.78 (15)N1—C27—C21122.19 (15)
C13—C12—C11120.82 (16)N1—C27—H27118.9
C13—C12—H12119.6C21—C27—H27118.9
C11—C12—H12119.6C26—C21—C22119.03 (17)
C12—C13—C14119.56 (16)C26—C21—C27119.20 (15)
C12—C13—C17118.34 (16)C22—C21—C27121.76 (17)
C14—C13—C17122.09 (17)O22—C22—C23119.35 (17)
C15—C14—C13119.92 (19)O22—C22—C21121.21 (17)
C15—C14—H14120.0C23—C22—C21119.4 (2)
C13—C14—H14120.0C22—O22—H22107.5 (17)
C16—C15—C14120.28 (18)C24—C23—C22120.82 (18)
C16—C15—H15119.9C24—C23—H23119.6
C14—C15—H15119.9C22—C23—H23119.6
C15—C16—C11120.97 (17)C23—C24—C25119.2 (2)
C15—C16—H16119.5C23—C24—H24120.4
C11—C16—H16119.5C25—C24—H24120.4
O17—C17—C18120.53 (17)F25—C25—C26118.85 (18)
O17—C17—C13120.10 (17)F25—C25—C24119.1 (2)
C18—C17—C13119.37 (18)C26—C25—C24122.1 (2)
C17—C18—H18A109.5C25—C26—C21119.48 (17)
C17—C18—H18B109.5C25—C26—H26120.3
H18A—C18—H18B109.5C21—C26—H26120.3
C27—N1—C11—C125.5 (3)C11—N1—C27—C21178.53 (15)
C27—N1—C11—C16176.20 (16)N1—C27—C21—C26179.41 (16)
C16—C11—C12—C131.8 (2)N1—C27—C21—C220.1 (3)
N1—C11—C12—C13176.54 (16)C26—C21—C22—O22179.49 (17)
C11—C12—C13—C140.7 (3)C27—C21—C22—O221.0 (3)
C11—C12—C13—C17179.86 (16)C26—C21—C22—C230.2 (3)
C12—C13—C14—C150.5 (3)C27—C21—C22—C23179.31 (17)
C17—C13—C14—C15178.60 (18)O22—C22—C23—C24179.71 (18)
C13—C14—C15—C160.6 (3)C21—C22—C23—C240.0 (3)
C14—C15—C16—C110.4 (3)C22—C23—C24—C250.0 (3)
C12—C11—C16—C151.6 (3)C23—C24—C25—F25179.98 (19)
N1—C11—C16—C15176.83 (17)C23—C24—C25—C260.3 (3)
C12—C13—C17—O173.8 (3)F25—C25—C26—C21179.80 (16)
C14—C13—C17—O17175.26 (19)C24—C25—C26—C210.5 (3)
C12—C13—C17—C18175.50 (18)C22—C21—C26—C250.5 (3)
C14—C13—C17—C185.4 (3)C27—C21—C26—C25179.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···N10.98 (3)1.72 (3)2.607 (2)148 (3)
C27—H27···O17i0.932.583.475 (3)163
Symmetry code: (i) x+1/2, y1/2, z+3/2.
(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) top
Crystal data top
C16H15NO3Dx = 1.314 Mg m3
Mr = 269.29Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21Cell parameters from 5394 reflections
a = 19.1904 (4) Åθ = 3.3–72.6°
b = 5.33856 (12) ŵ = 0.75 mm1
c = 26.5678 (6) ÅT = 294 K
V = 2721.85 (10) Å3Block, yellow
Z = 80.10 × 0.10 × 0.05 mm
F(000) = 1136
Data collection top
Bruker APEX3
diffractometer
5393 independent reflections
Radiation source: microfocus sealed tube3796 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.117
φ and ω scansθmax = 72.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2323
Tmin = 0.907, Tmax = 0.963k = 66
51776 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.4368P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5393 reflectionsΔρmax = 0.11 e Å3
371 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack x determined using 1493 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.73276 (17)0.3158 (7)0.39187 (12)0.0502 (8)
C1110.6779 (2)0.4896 (8)0.38707 (15)0.0466 (10)
C1120.6379 (2)0.5213 (8)0.34388 (15)0.0475 (10)
H1120.64530.41690.31640.057*
C1130.5874 (2)0.7053 (8)0.34117 (15)0.0485 (10)
C1140.5762 (3)0.8623 (9)0.38243 (18)0.0610 (11)
H1140.54310.98930.38070.073*
C1150.6145 (3)0.8276 (10)0.42579 (18)0.0673 (13)
H1150.60660.92970.45360.081*
C1160.6641 (2)0.6437 (9)0.42814 (17)0.0613 (12)
H1160.68910.62120.45780.074*
C1170.5463 (2)0.7282 (9)0.29372 (17)0.0535 (11)
O1170.55324 (18)0.5744 (7)0.26015 (13)0.0739 (10)
C1180.4965 (3)0.9408 (11)0.28736 (19)0.0750 (15)
H11A0.47410.92800.25520.112*
H11B0.52141.09650.28930.112*
H11C0.46200.93460.31350.112*
C1270.7464 (2)0.1542 (8)0.35777 (15)0.0495 (10)
H1270.71850.14990.32920.059*
C1210.8030 (2)0.0210 (8)0.36174 (14)0.0453 (10)
C1220.8458 (2)0.0276 (8)0.40460 (14)0.0459 (9)
C1230.8976 (2)0.2119 (9)0.40885 (15)0.0520 (11)
C1240.9068 (2)0.3823 (9)0.37035 (16)0.0577 (11)
H1240.94070.50590.37330.069*
C1250.8660 (2)0.3715 (9)0.32720 (17)0.0584 (11)
H1250.87370.48430.30110.070*
C1260.8145 (2)0.1951 (8)0.32308 (16)0.0555 (11)
H1260.78700.19060.29430.067*
O1220.83809 (16)0.1383 (6)0.44236 (10)0.0596 (8)
H1220.798 (3)0.267 (10)0.433 (2)0.089*
O1230.93514 (16)0.2049 (7)0.45239 (12)0.0740 (10)
C1280.9848 (3)0.3972 (10)0.4596 (2)0.0769 (15)
H12A0.96200.55710.45830.115*
H12B1.00680.37650.49170.115*
H12C1.01930.38860.43350.115*
N210.49089 (17)0.1872 (7)0.10711 (13)0.0520 (9)
C2110.5456 (2)0.0084 (9)0.11255 (15)0.0477 (10)
C2120.58545 (19)0.0190 (9)0.15570 (15)0.0486 (10)
H2120.57810.08740.18290.058*
C2130.6363 (2)0.2045 (8)0.15866 (15)0.0482 (10)
C2140.6471 (2)0.3607 (9)0.11801 (17)0.0579 (11)
H2140.68030.48750.11990.069*
C2150.6087 (2)0.3286 (9)0.07452 (17)0.0634 (12)
H2150.61700.43090.04680.076*
C2160.5582 (2)0.1458 (9)0.07194 (17)0.0589 (12)
H2160.53240.12620.04260.071*
C2170.6772 (2)0.2248 (9)0.20644 (17)0.0540 (11)
O2170.67061 (18)0.0695 (7)0.23932 (13)0.0769 (10)
C2180.7275 (3)0.4370 (10)0.21282 (19)0.0759 (15)
H21A0.70230.59240.21380.114*
H21B0.75950.43900.18510.114*
H21C0.75280.41580.24370.114*
C2270.4769 (2)0.3452 (9)0.14214 (16)0.0494 (11)
H2270.50370.34310.17130.059*
C2210.4212 (2)0.5259 (9)0.13805 (15)0.0483 (10)
C2220.3792 (2)0.5367 (9)0.09519 (15)0.0544 (11)
C2230.3269 (2)0.7193 (10)0.09223 (16)0.0629 (13)
C2240.3180 (3)0.8857 (9)0.13109 (18)0.0626 (13)
H2240.28421.00980.12860.075*
C2250.3588 (2)0.8708 (9)0.17392 (18)0.0600 (12)
H2250.35170.98330.20020.072*
C2260.4092 (2)0.6926 (8)0.17789 (17)0.0553 (11)
H2260.43580.68130.20710.066*
O2220.38787 (19)0.3768 (8)0.05600 (12)0.0797 (12)
H2220.425 (3)0.274 (12)0.063 (2)0.119*
O2230.28893 (19)0.7128 (8)0.04865 (12)0.0957 (14)
C2280.2377 (3)0.9052 (14)0.0424 (2)0.109 (2)
H22A0.26031.06550.04100.163*
H22B0.21250.87740.01170.163*
H22C0.20590.90180.07030.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0449 (19)0.061 (2)0.0451 (19)0.0023 (18)0.0030 (15)0.0026 (18)
C1110.038 (2)0.052 (3)0.050 (2)0.003 (2)0.0001 (16)0.0036 (19)
C1120.051 (3)0.048 (2)0.044 (2)0.001 (2)0.0012 (17)0.0011 (18)
C1130.046 (2)0.046 (2)0.054 (2)0.0002 (19)0.0016 (18)0.004 (2)
C1140.062 (3)0.054 (3)0.067 (3)0.008 (2)0.003 (2)0.008 (2)
C1150.071 (3)0.072 (3)0.059 (3)0.002 (3)0.002 (2)0.024 (2)
C1160.060 (3)0.075 (3)0.049 (2)0.007 (3)0.005 (2)0.007 (2)
C1170.050 (2)0.051 (3)0.060 (3)0.006 (2)0.001 (2)0.005 (2)
O1170.090 (2)0.069 (2)0.063 (2)0.0239 (19)0.0219 (17)0.0097 (19)
C1180.077 (3)0.075 (4)0.074 (3)0.024 (3)0.004 (3)0.004 (3)
C1270.045 (2)0.056 (3)0.047 (2)0.004 (2)0.0084 (18)0.005 (2)
C1210.043 (2)0.048 (2)0.045 (2)0.008 (2)0.0013 (17)0.006 (2)
C1220.045 (2)0.053 (2)0.040 (2)0.006 (2)0.0003 (16)0.0062 (18)
C1230.043 (2)0.065 (3)0.047 (2)0.003 (2)0.0026 (18)0.011 (2)
C1240.049 (2)0.062 (3)0.062 (3)0.004 (2)0.004 (2)0.010 (2)
C1250.059 (3)0.057 (3)0.059 (3)0.004 (2)0.001 (2)0.002 (2)
C1260.052 (2)0.062 (3)0.053 (3)0.008 (2)0.007 (2)0.001 (2)
O1220.0591 (18)0.075 (2)0.0451 (16)0.0062 (16)0.0082 (14)0.0004 (15)
O1230.069 (2)0.097 (3)0.0564 (19)0.024 (2)0.0184 (17)0.0036 (18)
C1280.065 (3)0.089 (4)0.077 (4)0.016 (3)0.018 (3)0.014 (3)
N210.0439 (19)0.062 (2)0.050 (2)0.0086 (18)0.0011 (15)0.0127 (18)
C2110.042 (2)0.053 (3)0.048 (2)0.003 (2)0.0002 (17)0.0074 (19)
C2120.041 (2)0.058 (3)0.046 (2)0.001 (2)0.0011 (17)0.0033 (19)
C2130.044 (2)0.053 (2)0.048 (2)0.003 (2)0.0008 (17)0.0063 (19)
C2140.053 (3)0.055 (3)0.065 (3)0.006 (2)0.001 (2)0.001 (2)
C2150.065 (3)0.063 (3)0.063 (3)0.002 (3)0.004 (2)0.010 (2)
C2160.054 (3)0.069 (3)0.054 (3)0.000 (2)0.009 (2)0.002 (2)
C2170.052 (2)0.055 (3)0.054 (3)0.007 (2)0.003 (2)0.012 (2)
O2170.088 (3)0.078 (2)0.064 (2)0.023 (2)0.0262 (18)0.005 (2)
C2180.082 (4)0.078 (3)0.067 (3)0.031 (3)0.010 (3)0.011 (3)
C2270.038 (2)0.059 (3)0.051 (3)0.006 (2)0.0052 (18)0.008 (2)
C2210.039 (2)0.058 (3)0.047 (2)0.002 (2)0.0019 (17)0.010 (2)
C2220.047 (2)0.073 (3)0.043 (2)0.015 (2)0.0048 (17)0.007 (2)
C2230.055 (3)0.089 (4)0.044 (2)0.021 (3)0.005 (2)0.015 (2)
C2240.060 (3)0.067 (3)0.061 (3)0.016 (2)0.012 (2)0.010 (2)
C2250.061 (3)0.058 (3)0.061 (3)0.001 (2)0.005 (2)0.004 (2)
C2260.052 (2)0.059 (3)0.054 (2)0.007 (2)0.007 (2)0.001 (2)
O2220.079 (2)0.117 (3)0.0437 (17)0.045 (2)0.0040 (16)0.004 (2)
O2230.093 (3)0.143 (4)0.0508 (18)0.067 (3)0.0126 (18)0.000 (2)
C2280.097 (4)0.151 (6)0.078 (4)0.070 (4)0.010 (3)0.022 (4)
Geometric parameters (Å, º) top
N11—C1271.278 (5)N21—C2271.285 (5)
N11—C1111.409 (5)N21—C2111.427 (5)
C111—C1121.391 (5)C211—C2161.378 (6)
C111—C1161.392 (6)C211—C2121.386 (5)
C112—C1131.382 (6)C212—C2131.393 (6)
C112—H1120.9300C212—H2120.9300
C113—C1141.397 (6)C213—C2141.380 (6)
C113—C1171.492 (6)C213—C2171.497 (6)
C114—C1151.379 (7)C214—C2151.381 (6)
C114—H1140.9300C214—H2140.9300
C115—C1161.369 (6)C215—C2161.378 (6)
C115—H1150.9300C215—H2150.9300
C116—H1160.9300C216—H2160.9300
C117—O1171.219 (5)C217—O2171.211 (5)
C117—C1181.494 (7)C217—C2181.497 (6)
C118—H11A0.9600C218—H21A0.9600
C118—H11B0.9600C218—H21B0.9600
C118—H11C0.9600C218—H21C0.9600
C127—C1211.437 (5)C227—C2211.443 (6)
C127—H1270.9300C227—H2270.9300
C121—C1261.403 (6)C221—C2221.397 (6)
C121—C1221.405 (5)C221—C2261.402 (6)
C122—O1221.346 (5)C222—O2221.357 (6)
C122—C1231.403 (6)C222—C2231.401 (6)
C123—O1231.363 (5)C223—O2231.369 (5)
C123—C1241.380 (6)C223—C2241.373 (7)
C124—C1251.389 (6)C224—C2251.384 (7)
C124—H1240.9300C224—H2240.9300
C125—C1261.369 (6)C225—C2261.361 (6)
C125—H1250.9300C225—H2250.9300
C126—H1260.9300C226—H2260.9300
O122—H1221.06 (5)O222—H2220.93 (6)
O123—C1281.414 (5)O223—C2281.432 (6)
C128—H12A0.9600C228—H22A0.9600
C128—H12B0.9600C228—H22B0.9600
C128—H12C0.9600C228—H22C0.9600
C127—N11—C111122.2 (4)C227—N21—C211121.3 (4)
C112—C111—C116118.0 (4)C216—C211—C212119.2 (4)
C112—C111—N11124.5 (4)C216—C211—N21116.7 (4)
C116—C111—N11117.4 (4)C212—C211—N21124.1 (4)
C113—C112—C111121.1 (4)C211—C212—C213120.5 (4)
C113—C112—H112119.4C211—C212—H212119.7
C111—C112—H112119.4C213—C212—H212119.7
C112—C113—C114119.6 (4)C214—C213—C212119.4 (4)
C112—C113—C117118.2 (4)C214—C213—C217122.7 (4)
C114—C113—C117122.2 (4)C212—C213—C217117.9 (4)
C115—C114—C113119.5 (4)C213—C214—C215120.0 (4)
C115—C114—H114120.3C213—C214—H214120.0
C113—C114—H114120.3C215—C214—H214120.0
C116—C115—C114120.4 (4)C216—C215—C214120.3 (4)
C116—C115—H115119.8C216—C215—H215119.8
C114—C115—H115119.8C214—C215—H215119.8
C115—C116—C111121.4 (4)C215—C216—C211120.5 (4)
C115—C116—H116119.3C215—C216—H216119.8
C111—C116—H116119.3C211—C216—H216119.8
O117—C117—C113120.4 (4)O217—C217—C213120.5 (4)
O117—C117—C118119.9 (4)O217—C217—C218120.3 (4)
C113—C117—C118119.7 (4)C213—C217—C218119.3 (4)
C117—C118—H11A109.5C217—C218—H21A109.5
C117—C118—H11B109.5C217—C218—H21B109.5
H11A—C118—H11B109.5H21A—C218—H21B109.5
C117—C118—H11C109.5C217—C218—H21C109.5
H11A—C118—H11C109.5H21A—C218—H21C109.5
H11B—C118—H11C109.5H21B—C218—H21C109.5
N11—C127—C121122.8 (4)N21—C227—C221122.6 (4)
N11—C127—H127118.6N21—C227—H227118.7
C121—C127—H127118.6C221—C227—H227118.7
C126—C121—C122119.0 (4)C222—C221—C226119.7 (4)
C126—C121—C127119.8 (4)C222—C221—C227121.1 (4)
C122—C121—C127121.2 (4)C226—C221—C227119.3 (4)
O122—C122—C123118.6 (3)O222—C222—C221122.0 (4)
O122—C122—C121121.5 (4)O222—C222—C223118.8 (4)
C123—C122—C121119.8 (4)C221—C222—C223119.2 (4)
O123—C123—C124125.4 (4)O223—C223—C224125.9 (4)
O123—C123—C122115.1 (4)O223—C223—C222114.3 (4)
C124—C123—C122119.5 (4)C224—C223—C222119.8 (4)
C123—C124—C125120.8 (4)C223—C224—C225120.7 (4)
C123—C124—H124119.6C223—C224—H224119.6
C125—C124—H124119.6C225—C224—H224119.6
C126—C125—C124120.1 (4)C226—C225—C224120.4 (4)
C126—C125—H125120.0C226—C225—H225119.8
C124—C125—H125120.0C224—C225—H225119.8
C125—C126—C121120.8 (4)C225—C226—C221120.1 (4)
C125—C126—H126119.6C225—C226—H226119.9
C121—C126—H126119.6C221—C226—H226119.9
C122—O122—H122109 (3)C222—O222—H222108 (4)
C123—O123—C128116.8 (4)C223—O223—C228116.5 (4)
O123—C128—H12A109.5O223—C228—H22A109.5
O123—C128—H12B109.5O223—C228—H22B109.5
H12A—C128—H12B109.5H22A—C228—H22B109.5
O123—C128—H12C109.5O223—C228—H22C109.5
H12A—C128—H12C109.5H22A—C228—H22C109.5
H12B—C128—H12C109.5H22B—C228—H22C109.5
C127—N11—C111—C1126.6 (6)C227—N21—C211—C216177.4 (4)
C127—N11—C111—C116174.9 (4)C227—N21—C211—C2123.2 (6)
C116—C111—C112—C1132.0 (6)C216—C211—C212—C2131.8 (6)
N11—C111—C112—C113176.5 (4)N21—C211—C212—C213177.6 (4)
C111—C112—C113—C1140.1 (6)C211—C212—C213—C2140.4 (6)
C111—C112—C113—C117179.9 (4)C211—C212—C213—C217179.7 (4)
C112—C113—C114—C1151.6 (7)C212—C213—C214—C2151.5 (7)
C117—C113—C114—C115178.2 (4)C217—C213—C214—C215178.5 (4)
C113—C114—C115—C1161.2 (8)C213—C214—C215—C2161.8 (7)
C114—C115—C116—C1110.9 (7)C214—C215—C216—C2110.4 (7)
C112—C111—C116—C1152.4 (6)C212—C211—C216—C2151.4 (7)
N11—C111—C116—C115176.2 (4)N21—C211—C216—C215178.1 (4)
C112—C113—C117—O1176.3 (6)C214—C213—C217—O217173.1 (4)
C114—C113—C117—O117173.5 (4)C212—C213—C217—O2176.9 (6)
C112—C113—C117—C118173.7 (4)C214—C213—C217—C2185.9 (7)
C114—C113—C117—C1186.5 (7)C212—C213—C217—C218174.2 (4)
C111—N11—C127—C121178.8 (4)C211—N21—C227—C221179.1 (4)
N11—C127—C121—C126179.4 (4)N21—C227—C221—C2220.2 (6)
N11—C127—C121—C1221.6 (6)N21—C227—C221—C226179.9 (4)
C126—C121—C122—O122178.5 (4)C226—C221—C222—O222178.8 (4)
C127—C121—C122—O1223.7 (6)C227—C221—C222—O2221.0 (7)
C126—C121—C122—C1232.1 (6)C226—C221—C222—C2231.8 (6)
C127—C121—C122—C123175.7 (4)C227—C221—C222—C223178.4 (4)
O122—C122—C123—O1230.8 (6)O222—C222—C223—O2230.6 (7)
C121—C122—C123—O123178.6 (4)C221—C222—C223—O223180.0 (4)
O122—C122—C123—C124179.4 (4)O222—C222—C223—C224178.9 (5)
C121—C122—C123—C1241.2 (6)C221—C222—C223—C2240.5 (7)
O123—C123—C124—C125179.4 (4)O223—C223—C224—C225178.7 (5)
C122—C123—C124—C1250.9 (7)C222—C223—C224—C2251.9 (7)
C123—C124—C125—C1262.0 (7)C223—C224—C225—C2261.0 (7)
C124—C125—C126—C1211.0 (7)C224—C225—C226—C2211.4 (7)
C122—C121—C126—C1251.0 (6)C222—C221—C226—C2252.8 (7)
C127—C121—C126—C125176.8 (4)C227—C221—C226—C225177.4 (4)
C124—C123—O123—C1283.7 (7)C224—C223—O223—C2283.2 (8)
C122—C123—O123—C128176.1 (4)C222—C223—O223—C228176.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O122—H122···N111.06 (6)1.68 (6)2.604 (4)142 (5)
O222—H222···N210.92 (6)1.79 (6)2.603 (5)147 (5)
C116—H116···O223i0.932.503.347 (6)152
C127—H127···O2170.932.593.496 (5)164
C227—H227···O117ii0.932.583.487 (5)164
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z.
 

Acknowledgements

MG thanks the UGC (India) for the award of a Rajeev Gandhi fellowship and HSY thanks the University of Mysore for research facilities.

References

First citationBlagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.  CAS
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDe, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Ind. J. Chem. 48B, 595–598.  CAS
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals
First citationHameed, A., Al-Rashida, M., Uroos, M., Ali, S. A. & Khan, K. M. (2017). Expert Opin. Ther. Pat. 27, 63–79.  Web of Science CrossRef CAS PubMed
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.  Web of Science CrossRef CAS IUCr Journals
First citationJeevadason, A. W., Murugavel, K. & Neelakantan, M. A. (2014). Renewable Sustainable Energy Rev. 36, 220–227.
First citationJia, Y. & Li, J. (2015). Chem. Rev. 115, 1597–1621.  Web of Science CrossRef CAS PubMed
First citationKumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181–187.  CAS
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationRani, A., Kumar, M., Khare, R. & Tuli, H. S. (2015). J. Biol. Chem. Sci. 2, 62–91.
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationZbačnik, M., Nogalo, I., Cinčić, D. & Kaitner, B. (2015). CrystEngComm, 17, 7870–7877.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds