research communications
N-(4-nitrophenyl)benzamide
of 2,3-dimethoxy-aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, bChemistry Department, Science Faculty, King Saud University, Riyadh, Saudi Arabia, cSinop University, Environmental Health Programme, 57000 Sinop, Turkey, and dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: necmid@omu.edu.tr
In the title compound, C15H14N2O5, the benzene rings are nearly coplanar, making a dihedral angle of 4.89 (8)°. An intramolecular N—H⋯O hydrogen bond occurs between the imino and methoxy groups. In the crystal, weak C—H⋯O hydrogen bonds link the molecules into supramolecular chains propagating along the a-axis direction. π–π stacking is observed between parallel benzene rings of neighbouring chains, the centroid-to-centroid distance being 3.6491 (10) Å. Three-dimensional Hirshfeld surface analyses and two-dimensional fingerprint plots have been used to analyse the intermolecular interactions present in the crystal.
Keywords: crystal structure; nitrophenyl; methylacetamide; benzamide; dimethoxybenzene; Hirshfeld surface.
CCDC reference: 1580287
1. Chemical context
et al., 2005; Valeur & Bradley, 2009). Many amide derivatives have been found to possess antitumor, antimicrobial, anti-HIV, anti-inflammatory, anticonvulsant, antibacterial, antifungal, analgesic and anticancer properties (Kushwaha et al., 2011; Fu et al., 2010; Carbonnelle et al., 2005; Siddiqui et al., 2008). Benzamides and their derivatives are compounds of biological and pharmaceutical importance. A variety of benzamide derivatives have been synthesized by the interaction of aniline derivatives that carry electron-donating groups (anisidines, toluidines) and acyl chlorides (2,3-dimethoxybenzoyl chloride and 3-acetoxy-2-methylbenzoyl chloride) in a slightly basic medium (Cakmak et al., 2016; Demir et al., 2015).
have a very important place in both organic and biological chemistry. They are used as building blocks for natural products such as proteins and However, are not restricted to biological systems, but also have a wide range of uses in pharmaceutical chemistry (Khalafi-Nezhad2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are found to be in good agreement with those in analogous structures (Demir et al., 2015; Tahir et al., 2011). In the molecule, the benzene rings are nearly coplanar, with a dihedral angle of 4.89 (8)°. An intramolecular N—H⋯O hydrogen bond (Table 1) occurs between the imino and methoxy groups.
3. Supramolecular features
In the crystal, adjacent molecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction (Table 1, Fig. 2). π–π stacking is observed between parallel benzene rings of adjacent chains, the centroid-to-centroid distance being 3.6491 (10) Å.
4. Hirshfeld surface analysis
Three-dimensional Hirshfeld surfaces (HS) were generated using Crystal Explorer 3.1 (Wolff et al., 2013) based on the results of the single crystal X-ray diffraction studies. Two-dimensional fingerprint plots (FPs) provide a visual representation of crystal-packing interactions in the structure. The HS is a useful tool for describing the surface characteristics and gaining additional insight into the intermolecular interactions of the molecules.
The molecular Hirshfeld surface, dnorm, is depicted in Fig. 3 and mapped over the range −0.1763 to 1.2643 Å. Strong hydrogen-bond interactions, such as C—H⋯O, are seen as a bright-red area on the Hirshfeld surfaces (Şen et al., 2017). The fingerprint plots over the Hirshfeld surfaces illustrate the significant differences between the intermolecular interaction patterns. In Fig. 4, it is observed Ninside⋯Houtside = 2.3%, Cinside⋯Houtside = 15.7%, Oinside⋯Houtside = 29.7%, Hinside⋯Houtside = 38% and all atomsinside⋯all atomsoutside = 100% of the total interactions. Fig. 4 shows that the major contributions are from H⋯H (38%) and O⋯H (30%) interactions. Fig. 5 illustrates the distribution of positive and negative potential over the Hirshfeld surfaces. Blue regions correspond to positive electrostatic potential (indicating hydrogen-bond donors) and the red regions to negative electrostatic potential (indicating hydrogen-bond acceptors) (Kumar et al., 2013).
5. IR spectroscopic analyses
The FT–IR spectrum of 2,3-dimethoxy-N-(4-nitrophenyl)benzamide, shown in Fig. 6, has several characterization bands. The first characteristic absorption band is at 3311 cm−1 and was assigned to the N—H stretching vibration. The second remarkable very strong vibrational band is located at 1689 cm−1 and can be attributed to the C=O stretching vibration. Another group wavenumber is the C—N stretching vibration that appears at 862 cm−1. This vibration frequency belongs to the nitro group attached to the phenyl ring at the 4-position. The asymmetrical and symmetrical stretching vibrations of the nitro group are observed at 1549 and 1327 cm−1, respectively. In the IR spectrum, peaks corresponding to –C=O– stretching and –NH– stretching indicate the presence of an amide linkage. These values are in agreement with those previously reported for similar compounds (Cakmak et al., 2016; Demir et al., 2015).
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016) for the 2,3-dimethyl-N-(phenyl)benzamide skeleton gave 17 hits. One of these compounds, viz. 2,3-dimethoxy-N-(4-methylphenyl)benzamide, also named as 2,3-dimethoxy-N-(p-tolyl)benzamide (UYALEN; Cakmak et al., 2016) is similar to the title compound. However, here the two aryl rings are inclined to one another by ca 34.16°, despite the presence of an intramolecular N—H⋯Omethoxy hydrogen bond. A search for the 4-nitrophenylbenzamide skeleton gave 16 hits. They include 4-nitrophenylbenzamide itself, also called benz-p-nitroanilide (BUTDID; Du Plessis et al., 1983) and two polymorphs (orthorhombic and monoclinic) of 4′-nitrosalicylanilide (respectively, KADZEU and KADZIY; Etter et al., 1988). Here, the aryl rings are inclined to one another by ca 62.30° in BUTDID, 11.24 (10)° in KADZEU, and 3.02 (12) and 2.69 (12)° in the two independent molecules of the monoclinic polymorph of 4′-nitrosalicylanilide, i.e. KADZIY. The same dihedral angle in the title compound is 4.89 (9)°. Only in BUTDID, with a dihedral angle of ca 62.30°, is there no intramolecular N—H⋯O hydrogen present.
7. Synthesis and crystallization
To a solution of 4-nitroaniline (10 mmol) and triethylamine (10 mmol) in THF (10 ml) was added dropwise a THF (10 ml) solution of 2,3-dimethoxybenzoyl chloride (11 mmol) at room temperature. The reaction mixture was stirred at room temperature for 15 h and then the resulting white salt precipitate was filtered off and then 150 ml water was added dropwise to the filtrate. The precipitate was filtered off and washed several times with water to remove excessive aniline derivative and trimethylamine hydrochloride salt. The crude product was crystallized from acetonitrile (yield 2.09 g 63%; m.p. 448–451 K; Demir et al., 2015; Cakmak et al., 2016).
8. Refinement
Crystal data, data collection and structure . The imino-H atom was located in a difference-Fourier map. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1580287
https://doi.org/10.1107/S2056989017017741/xu5912sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017017741/xu5912Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017017741/xu5912Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C15H14N2O5 | Z = 2 |
Mr = 302.28 | F(000) = 316 |
Triclinic, P1 | Dx = 1.419 Mg m−3 |
a = 6.9293 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3270 (5) Å | Cell parameters from 12957 reflections |
c = 15.7411 (11) Å | θ = 2.6–27.5° |
α = 94.198 (6)° | µ = 0.11 mm−1 |
β = 96.189 (6)° | T = 296 K |
γ = 116.053 (5)° | Prism, colorless |
V = 707.27 (9) Å3 | 0.74 × 0.49 × 0.28 mm |
Stoe IPDS 2 diffractometer | 2776 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2011 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.109 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.6° |
rotation method scans | h = −8→8 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −9→9 |
Tmin = 0.947, Tmax = 0.972 | l = −19→19 |
10204 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0364P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2776 reflections | Δρmax = 0.16 e Å−3 |
203 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.64070 (15) | 0.29058 (17) | 0.80665 (6) | 0.0545 (3) | |
O5 | 0.60933 (17) | 0.26544 (19) | 0.97197 (7) | 0.0616 (3) | |
N2 | 0.4382 (2) | 0.2366 (2) | 0.64515 (8) | 0.0511 (3) | |
O3 | 0.10391 (19) | 0.2209 (2) | 0.63299 (8) | 0.0808 (4) | |
C13 | 0.4424 (2) | 0.2492 (2) | 0.83248 (9) | 0.0471 (3) | |
C4 | 0.4797 (2) | 0.2459 (2) | 0.56018 (9) | 0.0459 (3) | |
C8 | 0.2622 (2) | 0.2150 (2) | 0.77272 (10) | 0.0488 (4) | |
O2 | 0.8200 (3) | 0.2760 (3) | 0.30063 (10) | 0.1064 (5) | |
N1 | 0.6417 (3) | 0.2623 (2) | 0.30988 (11) | 0.0768 (5) | |
C7 | 0.2601 (2) | 0.2247 (2) | 0.67740 (10) | 0.0517 (4) | |
C12 | 0.4247 (2) | 0.2346 (2) | 0.91990 (10) | 0.0507 (4) | |
C1 | 0.5861 (3) | 0.2588 (2) | 0.39713 (10) | 0.0570 (4) | |
C3 | 0.3267 (3) | 0.2228 (3) | 0.49000 (10) | 0.0549 (4) | |
H3 | 0.188086 | 0.202409 | 0.498155 | 0.066* | |
O1 | 0.5080 (3) | 0.2514 (3) | 0.25036 (9) | 0.1153 (6) | |
C5 | 0.6860 (2) | 0.2752 (2) | 0.54688 (10) | 0.0540 (4) | |
H5 | 0.788868 | 0.291175 | 0.593672 | 0.065* | |
C9 | 0.0660 (2) | 0.1701 (3) | 0.80232 (11) | 0.0598 (4) | |
H9 | −0.055930 | 0.146485 | 0.763333 | 0.072* | |
C6 | 0.7391 (3) | 0.2808 (3) | 0.46522 (11) | 0.0597 (4) | |
H6 | 0.876591 | 0.299130 | 0.456262 | 0.072* | |
C11 | 0.2278 (3) | 0.1919 (3) | 0.94704 (10) | 0.0610 (4) | |
H11 | 0.215193 | 0.184597 | 1.005063 | 0.073* | |
C2 | 0.3818 (3) | 0.2305 (3) | 0.40828 (10) | 0.0594 (4) | |
H2B | 0.281017 | 0.216468 | 0.361048 | 0.071* | |
C10 | 0.0500 (3) | 0.1603 (3) | 0.88803 (12) | 0.0667 (5) | |
H10 | −0.081928 | 0.131915 | 0.906628 | 0.080* | |
C14 | 0.6008 (3) | 0.2573 (3) | 1.06211 (10) | 0.0672 (5) | |
H14A | 0.740231 | 0.281308 | 1.091532 | 0.101* | |
H14B | 0.563274 | 0.360514 | 1.084938 | 0.101* | |
H14C | 0.493006 | 0.124535 | 1.070342 | 0.101* | |
C15 | 0.8027 (3) | 0.5006 (3) | 0.83037 (13) | 0.0752 (5) | |
H15A | 0.935274 | 0.518241 | 0.810544 | 0.113* | |
H15B | 0.751827 | 0.589244 | 0.804407 | 0.113* | |
H15C | 0.828921 | 0.534368 | 0.891963 | 0.113* | |
H2 | 0.540 (3) | 0.244 (3) | 0.6846 (12) | 0.072 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0428 (5) | 0.0755 (8) | 0.0474 (6) | 0.0287 (5) | 0.0087 (4) | 0.0056 (5) |
O5 | 0.0594 (6) | 0.0816 (8) | 0.0443 (6) | 0.0319 (6) | 0.0082 (5) | 0.0108 (5) |
N2 | 0.0453 (7) | 0.0696 (9) | 0.0424 (7) | 0.0301 (6) | 0.0038 (5) | 0.0075 (6) |
O3 | 0.0560 (7) | 0.1396 (13) | 0.0604 (7) | 0.0554 (8) | 0.0078 (5) | 0.0211 (7) |
C13 | 0.0438 (7) | 0.0507 (9) | 0.0508 (8) | 0.0236 (6) | 0.0127 (6) | 0.0076 (6) |
C4 | 0.0485 (8) | 0.0452 (8) | 0.0443 (7) | 0.0217 (6) | 0.0051 (6) | 0.0057 (6) |
C8 | 0.0440 (7) | 0.0521 (9) | 0.0522 (8) | 0.0228 (6) | 0.0102 (6) | 0.0078 (7) |
O2 | 0.1207 (13) | 0.1259 (14) | 0.0872 (11) | 0.0572 (11) | 0.0587 (10) | 0.0277 (9) |
N1 | 0.1039 (13) | 0.0702 (10) | 0.0590 (9) | 0.0362 (9) | 0.0319 (9) | 0.0164 (7) |
C7 | 0.0443 (8) | 0.0595 (10) | 0.0522 (8) | 0.0245 (7) | 0.0057 (6) | 0.0076 (7) |
C12 | 0.0531 (8) | 0.0515 (9) | 0.0494 (8) | 0.0245 (7) | 0.0104 (6) | 0.0094 (7) |
C1 | 0.0736 (10) | 0.0493 (9) | 0.0486 (8) | 0.0258 (8) | 0.0177 (7) | 0.0102 (7) |
C3 | 0.0518 (8) | 0.0631 (10) | 0.0505 (9) | 0.0272 (7) | 0.0043 (6) | 0.0090 (7) |
O1 | 0.1461 (15) | 0.1591 (17) | 0.0487 (8) | 0.0731 (13) | 0.0207 (9) | 0.0256 (9) |
C5 | 0.0496 (8) | 0.0629 (10) | 0.0515 (8) | 0.0278 (7) | 0.0061 (6) | 0.0063 (7) |
C9 | 0.0451 (8) | 0.0729 (11) | 0.0647 (10) | 0.0278 (8) | 0.0127 (7) | 0.0157 (8) |
C6 | 0.0586 (9) | 0.0623 (11) | 0.0634 (10) | 0.0293 (8) | 0.0201 (8) | 0.0107 (8) |
C11 | 0.0670 (10) | 0.0690 (11) | 0.0549 (9) | 0.0325 (8) | 0.0256 (8) | 0.0196 (8) |
C2 | 0.0682 (10) | 0.0594 (10) | 0.0472 (8) | 0.0273 (8) | 0.0010 (7) | 0.0092 (7) |
C10 | 0.0523 (9) | 0.0820 (13) | 0.0743 (11) | 0.0318 (9) | 0.0277 (8) | 0.0247 (9) |
C14 | 0.0816 (12) | 0.0716 (12) | 0.0448 (9) | 0.0317 (9) | 0.0075 (8) | 0.0086 (8) |
C15 | 0.0497 (9) | 0.0840 (14) | 0.0778 (12) | 0.0158 (9) | 0.0176 (8) | 0.0110 (10) |
O4—C13 | 1.3849 (16) | C1—C6 | 1.371 (2) |
O4—C15 | 1.441 (2) | C3—C2 | 1.379 (2) |
O5—C12 | 1.3612 (18) | C3—H3 | 0.9300 |
O5—C14 | 1.4311 (19) | C5—C6 | 1.373 (2) |
N2—C7 | 1.3547 (19) | C5—H5 | 0.9300 |
N2—C4 | 1.3983 (19) | C9—C10 | 1.370 (2) |
N2—H2 | 0.870 (19) | C9—H9 | 0.9300 |
O3—C7 | 1.2115 (18) | C6—H6 | 0.9300 |
C13—C8 | 1.394 (2) | C11—C10 | 1.380 (2) |
C13—C12 | 1.402 (2) | C11—H11 | 0.9300 |
C4—C3 | 1.391 (2) | C2—H2B | 0.9300 |
C4—C5 | 1.392 (2) | C10—H10 | 0.9300 |
C8—C9 | 1.393 (2) | C14—H14A | 0.9600 |
C8—C7 | 1.506 (2) | C14—H14B | 0.9600 |
O2—N1 | 1.221 (2) | C14—H14C | 0.9600 |
N1—O1 | 1.216 (2) | C15—H15A | 0.9600 |
N1—C1 | 1.465 (2) | C15—H15B | 0.9600 |
C12—C11 | 1.383 (2) | C15—H15C | 0.9600 |
C1—C2 | 1.370 (2) | ||
C13—O4—C15 | 113.96 (12) | C6—C5—H5 | 119.7 |
C12—O5—C14 | 117.60 (13) | C4—C5—H5 | 119.7 |
C7—N2—C4 | 129.19 (13) | C10—C9—C8 | 120.98 (15) |
C7—N2—H2 | 113.0 (12) | C10—C9—H9 | 119.5 |
C4—N2—H2 | 117.7 (12) | C8—C9—H9 | 119.5 |
O4—C13—C8 | 120.97 (12) | C1—C6—C5 | 118.91 (15) |
O4—C13—C12 | 118.37 (12) | C1—C6—H6 | 120.5 |
C8—C13—C12 | 120.61 (13) | C5—C6—H6 | 120.5 |
C3—C4—C5 | 119.50 (14) | C10—C11—C12 | 119.99 (14) |
C3—C4—N2 | 123.89 (13) | C10—C11—H11 | 120.0 |
C5—C4—N2 | 116.58 (13) | C12—C11—H11 | 120.0 |
C9—C8—C13 | 118.36 (14) | C1—C2—C3 | 119.54 (15) |
C9—C8—C7 | 116.01 (13) | C1—C2—H2B | 120.2 |
C13—C8—C7 | 125.63 (13) | C3—C2—H2B | 120.2 |
O1—N1—O2 | 123.34 (17) | C9—C10—C11 | 120.66 (14) |
O1—N1—C1 | 118.39 (18) | C9—C10—H10 | 119.7 |
O2—N1—C1 | 118.27 (18) | C11—C10—H10 | 119.7 |
O3—C7—N2 | 122.79 (14) | O5—C14—H14A | 109.5 |
O3—C7—C8 | 120.31 (13) | O5—C14—H14B | 109.5 |
N2—C7—C8 | 116.90 (12) | H14A—C14—H14B | 109.5 |
O5—C12—C11 | 125.07 (14) | O5—C14—H14C | 109.5 |
O5—C12—C13 | 115.56 (13) | H14A—C14—H14C | 109.5 |
C11—C12—C13 | 119.37 (14) | H14B—C14—H14C | 109.5 |
C2—C1—C6 | 121.87 (15) | O4—C15—H15A | 109.5 |
C2—C1—N1 | 119.17 (16) | O4—C15—H15B | 109.5 |
C6—C1—N1 | 118.95 (16) | H15A—C15—H15B | 109.5 |
C2—C3—C4 | 119.64 (15) | O4—C15—H15C | 109.5 |
C2—C3—H3 | 120.2 | H15A—C15—H15C | 109.5 |
C4—C3—H3 | 120.2 | H15B—C15—H15C | 109.5 |
C6—C5—C4 | 120.53 (14) | ||
C15—O4—C13—C8 | 107.52 (16) | O1—N1—C1—C2 | 4.1 (3) |
C15—O4—C13—C12 | −74.91 (17) | O2—N1—C1—C2 | −175.90 (16) |
C7—N2—C4—C3 | −6.9 (3) | O1—N1—C1—C6 | −176.93 (17) |
C7—N2—C4—C5 | 174.65 (15) | O2—N1—C1—C6 | 3.1 (2) |
O4—C13—C8—C9 | 178.74 (14) | C5—C4—C3—C2 | −0.4 (2) |
C12—C13—C8—C9 | 1.2 (2) | N2—C4—C3—C2 | −178.75 (15) |
O4—C13—C8—C7 | −2.0 (2) | C3—C4—C5—C6 | −0.2 (2) |
C12—C13—C8—C7 | −179.54 (15) | N2—C4—C5—C6 | 178.27 (14) |
C4—N2—C7—O3 | −0.2 (3) | C13—C8—C9—C10 | 0.2 (2) |
C4—N2—C7—C8 | 179.49 (14) | C7—C8—C9—C10 | −179.11 (16) |
C9—C8—C7—O3 | 9.6 (2) | C2—C1—C6—C5 | −0.3 (3) |
C13—C8—C7—O3 | −169.65 (16) | N1—C1—C6—C5 | −179.30 (15) |
C9—C8—C7—N2 | −170.15 (14) | C4—C5—C6—C1 | 0.6 (2) |
C13—C8—C7—N2 | 10.6 (2) | O5—C12—C11—C10 | −178.99 (15) |
C14—O5—C12—C11 | −1.3 (2) | C13—C12—C11—C10 | 1.3 (2) |
C14—O5—C12—C13 | 178.43 (14) | C6—C1—C2—C3 | −0.2 (3) |
O4—C13—C12—O5 | 0.7 (2) | N1—C1—C2—C3 | 178.71 (15) |
C8—C13—C12—O5 | 178.26 (14) | C4—C3—C2—C1 | 0.6 (2) |
O4—C13—C12—C11 | −179.54 (14) | C8—C9—C10—C11 | −0.9 (3) |
C8—C13—C12—C11 | −2.0 (2) | C12—C11—C10—C9 | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4 | 0.870 (19) | 1.924 (19) | 2.6805 (16) | 144.6 (17) |
C5—H5···O3i | 0.93 | 2.48 | 3.2597 (19) | 141 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181–194. CrossRef CAS Google Scholar
Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556. Web of Science CrossRef PubMed CAS Google Scholar
Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582–591. CSD CrossRef CAS Google Scholar
Du Plessis, M. P., Modro, T. A. & Nassimbeni, L. R. (1983). J. Crystallogr. Spectrosc. Res. 13, 179–189. CAS Google Scholar
Etter, M. C., Urbańczyk-Lipkowska, Z., Ameli, T. M. & Panunto, T. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 491–507. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, J., Cheng, K., Zhang, Z.-M., Fang, R.-Q. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 2638–2643. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalafi-Nezhad, A., Parhami, A., Soltani Rad, M. N. & Zarea, A. (2005). Tetrahedron Lett. 46, 6879–6882. CAS Google Scholar
Kumar, S. M., Manjunath, B., Lingaraju, G., Abdoh, M., Sadashiva, M. & Lokanath, N. (2013). Cryst. Struct. Theory Appl. 02, 124–131. CAS Google Scholar
Kushwaha, N., Saini, R. K. & Kushwaha, S. K. (2011). Int. J. Chem. Tech. Res. (USA), 3, 203–209. CAS Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445–454. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). Stoe & Cie, Darmstadt, Germany. Google Scholar
Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631. Web of Science CrossRef PubMed CAS Google Scholar
Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2013). Crystal Explorer. University of Western Australia, Perth, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.