research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3-dimeth­­oxy-N-(4-nitro­phen­yl)benzamide

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, bChemistry Department, Science Faculty, King Saud University, Riyadh, Saudi Arabia, cSinop University, Environmental Health Programme, 57000 Sinop, Turkey, and dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: necmid@omu.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 28 November 2017; accepted 12 December 2017; online 1 January 2018)

In the title compound, C15H14N2O5, the benzene rings are nearly coplanar, making a dihedral angle of 4.89 (8)°. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and meth­oxy groups. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the a-axis direction. ππ stacking is observed between parallel benzene rings of neighbouring chains, the centroid-to-centroid distance being 3.6491 (10) Å. Three-dimensional Hirshfeld surface analyses and two-dimensional fingerprint plots have been used to analyse the inter­molecular inter­actions present in the crystal.

1. Chemical context

Amides have a very important place in both organic and biological chemistry. They are used as building blocks for natural products such as proteins and peptides. However, amides are not restricted to biological systems, but also have a wide range of uses in pharmaceutical chemistry (Khalafi-Nezhad et al., 2005[Khalafi-Nezhad, A., Parhami, A., Soltani Rad, M. N. & Zarea, A. (2005). Tetrahedron Lett. 46, 6879-6882.]; Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]). Many amide derivatives have been found to possess anti­tumor, anti­microbial, anti-HIV, anti-inflammatory, anti­convulsant, anti­bacterial, anti­fungal, analgesic and anti­cancer properties (Kushwaha et al., 2011[Kushwaha, N., Saini, R. K. & Kushwaha, S. K. (2011). Int. J. Chem. Tech. Res. (USA), 3, 203-209.]; Fu et al., 2010[Fu, J., Cheng, K., Zhang, Z.-M., Fang, R.-Q. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 2638-2643.]; Carbonnelle et al., 2005[Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546-556.]; Siddiqui et al., 2008[Siddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445-454.]). Benzamides and their derivatives are compounds of biological and pharmaceutical importance. A variety of benzamide derivatives have been synthesized by the inter­action of aniline derivatives that carry electron-donating groups (anisidines, toluidines) and acyl chlorides (2,3-di­meth­oxy­benzoyl chloride and 3-acet­oxy-2-methyl­benzoyl chloride) in a slightly basic medium (Cakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]; Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bond distances and angles are found to be in good agreement with those in analogous structures (Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]; Tahir et al., 2011[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In the mol­ecule, the benzene rings are nearly coplanar, with a dihedral angle of 4.89 (8)°. An intra­molecular N—H⋯O hydrogen bond (Table 1[link]) occurs between the imino and meth­oxy groups.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.87 (2) 1.924 (19) 2.6805 (16) 144.6 (17)
C5—H5⋯O3i 0.93 2.48 3.2597 (19) 141
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The intramolecular N—HċO (Table 1[link]) hydrogen bond is shown as a double dashed line.

3. Supra­molecular features

In the crystal, adjacent mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the a-axis direction (Table 1[link], Fig. 2[link]). ππ stacking is observed between parallel benzene rings of adjacent chains, the centroid-to-centroid distance being 3.6491 (10) Å.

[Figure 2]
Figure 2
Packing of the title compound in the unit cell. Dashed lines indicate the C—H⋯O hydrogen bonds (see Table 1[link]).

4. Hirshfeld surface analysis

Three-dimensional Hirshfeld surfaces (HS) were generated using Crystal Explorer 3.1 (Wolff et al., 2013[Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2013). Crystal Explorer. University of Western Australia, Perth, Australia.]) based on the results of the single crystal X-ray diffraction studies. Two-dimensional fingerprint plots (FPs) provide a visual representation of crystal-packing inter­actions in the structure. The HS is a useful tool for describing the surface characteristics and gaining additional insight into the inter­molecular inter­actions of the mol­ecules.

The mol­ecular Hirshfeld surface, dnorm, is depicted in Fig. 3[link] and mapped over the range −0.1763 to 1.2643 Å. Strong hydrogen-bond inter­actions, such as C—H⋯O, are seen as a bright-red area on the Hirshfeld surfaces (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]). The fingerprint plots over the Hirshfeld surfaces illustrate the significant differences between the inter­molecular inter­action patterns. In Fig. 4[link], it is observed Ninside⋯Houtside = 2.3%, Cinside⋯Houtside = 15.7%, Oinside⋯Houtside = 29.7%, Hinside⋯Houtside = 38% and all atomsinside⋯all atomsoutside = 100% of the total inter­actions. Fig. 4[link] shows that the major contributions are from H⋯H (38%) and O⋯H (30%) inter­actions. Fig. 5[link] illustrates the distribution of positive and negative potential over the Hirshfeld surfaces. Blue regions correspond to positive electrostatic potential (indicating hydrogen-bond donors) and the red regions to negative electrostatic potential (indicating hydrogen-bond acceptors) (Kumar et al., 2013[Kumar, S. M., Manjunath, B., Lingaraju, G., Abdoh, M., Sadashiva, M. & Lokanath, N. (2013). Cryst. Struct. Theory Appl. 02, 124-131.]).

[Figure 3]
Figure 3
Hirshfeld dnorm (a) for 2,3-dimeth­oxy-N-(4-nitro­phen­yl)benzamide and (b) showing the hydrogen bonding.
[Figure 4]
Figure 4
Hirshfeld surface fingerprint of the title compound, (a) Ninside⋯Houtside (2.3%), (b) Cinside⋯Houtside (15.7%), (c) Oinside⋯Houtside (29.7%), (d) Hinside⋯Houtside (38%), (e) all atomsinside⋯all atomsoutside (100% of total inter­actions).
[Figure 5]
Figure 5
Electrostatic potential mapped on the Hirshfeld surface with ±0.25 au

5. IR spectroscopic analyses

The FT–IR spectrum of 2,3-dimeth­oxy-N-(4-nitro­phen­yl)benzamide, shown in Fig. 6[link], has several characterization bands. The first characteristic absorption band is at 3311 cm−1 and was assigned to the N—H stretching vibration. The second remarkable very strong vibrational band is located at 1689 cm−1 and can be attributed to the C=O stretching vibration. Another group wavenumber is the C—N stretching vibration that appears at 862 cm−1. This vibration frequency belongs to the nitro group attached to the phenyl ring at the 4-position. The asymmetrical and symmetrical stretching vibrations of the nitro group are observed at 1549 and 1327 cm−1, respectively. In the IR spectrum, peaks corresponding to –C=O– stretching and –NH– stretching indicate the presence of an amide linkage. These values are in agreement with those previously reported for similar compounds (Cakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]; Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]).

[Figure 6]
Figure 6
The FT–IR spectrum of the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,3-dimethyl-N-(phen­yl)benzamide skeleton gave 17 hits. One of these compounds, viz. 2,3-dimeth­oxy-N-(4-methyl­phen­yl)benzamide, also named as 2,3-dimeth­oxy-N-(p-tol­yl)benzamide (UYALEN; Cakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]) is similar to the title compound. However, here the two aryl rings are inclined to one another by ca 34.16°, despite the presence of an intra­molecular N—H⋯Ometh­oxy hydrogen bond. A search for the 4-nitro­phenyl­benzamide skeleton gave 16 hits. They include 4-nitro­phenyl­benzamide itself, also called benz-p-nitro­anilide (BUTDID; Du Plessis et al., 1983[Du Plessis, M. P., Modro, T. A. & Nassimbeni, L. R. (1983). J. Crystallogr. Spectrosc. Res. 13, 179-189.]) and two polymorphs (ortho­rhom­bic and monoclinic) of 4′-nitro­salicylanilide (respectively, KADZEU and KADZIY; Etter et al., 1988[Etter, M. C., Urbańczyk-Lipkowska, Z., Ameli, T. M. & Panunto, T. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 491-507.]). Here, the aryl rings are inclined to one another by ca 62.30° in BUTDID, 11.24 (10)° in KADZEU, and 3.02 (12) and 2.69 (12)° in the two independent mol­ecules of the monoclinic polymorph of 4′-nitro­salicylanilide, i.e. KADZIY. The same dihedral angle in the title compound is 4.89 (9)°. Only in BUTDID, with a dihedral angle of ca 62.30°, is there no intra­molecular N—H⋯O hydrogen present.

7. Synthesis and crystallization

To a solution of 4-nitro­aniline (10 mmol) and tri­ethyl­amine (10 mmol) in THF (10 ml) was added dropwise a THF (10 ml) solution of 2,3-di­meth­oxy­benzoyl chloride (11 mmol) at room temperature. The reaction mixture was stirred at room temperature for 15 h and then the resulting white salt precipitate was filtered off and then 150 ml water was added dropwise to the filtrate. The precipitate was filtered off and washed several times with water to remove excessive aniline derivative and tri­methyl­amine hydro­chloride salt. The crude product was crystallized from aceto­nitrile (yield 2.09 g 63%; m.p. 448–451 K; Demir et al., 2015[Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582-591.]; Cakmak et al., 2016[Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181-194.]).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The imino-H atom was located in a difference-Fourier map. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H14N2O5
Mr 302.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.9293 (5), 7.3270 (5), 15.7411 (11)
α, β, γ (°) 94.198 (6), 96.189 (6), 116.053 (5)
V3) 707.27 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.74 × 0.49 × 0.28
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.947, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 10204, 2776, 2011
Rint 0.109
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.09
No. of reflections 2776
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2,3-Dimethoxy-N-(4-nitrophenyl)benzamide top
Crystal data top
C15H14N2O5Z = 2
Mr = 302.28F(000) = 316
Triclinic, P1Dx = 1.419 Mg m3
a = 6.9293 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3270 (5) ÅCell parameters from 12957 reflections
c = 15.7411 (11) Åθ = 2.6–27.5°
α = 94.198 (6)°µ = 0.11 mm1
β = 96.189 (6)°T = 296 K
γ = 116.053 (5)°Prism, colorless
V = 707.27 (9) Å30.74 × 0.49 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2776 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2011 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.109
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.6°
rotation method scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.947, Tmax = 0.972l = 1919
10204 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0364P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2776 reflectionsΔρmax = 0.16 e Å3
203 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.64070 (15)0.29058 (17)0.80665 (6)0.0545 (3)
O50.60933 (17)0.26544 (19)0.97197 (7)0.0616 (3)
N20.4382 (2)0.2366 (2)0.64515 (8)0.0511 (3)
O30.10391 (19)0.2209 (2)0.63299 (8)0.0808 (4)
C130.4424 (2)0.2492 (2)0.83248 (9)0.0471 (3)
C40.4797 (2)0.2459 (2)0.56018 (9)0.0459 (3)
C80.2622 (2)0.2150 (2)0.77272 (10)0.0488 (4)
O20.8200 (3)0.2760 (3)0.30063 (10)0.1064 (5)
N10.6417 (3)0.2623 (2)0.30988 (11)0.0768 (5)
C70.2601 (2)0.2247 (2)0.67740 (10)0.0517 (4)
C120.4247 (2)0.2346 (2)0.91990 (10)0.0507 (4)
C10.5861 (3)0.2588 (2)0.39713 (10)0.0570 (4)
C30.3267 (3)0.2228 (3)0.49000 (10)0.0549 (4)
H30.1880860.2024090.4981550.066*
O10.5080 (3)0.2514 (3)0.25036 (9)0.1153 (6)
C50.6860 (2)0.2752 (2)0.54688 (10)0.0540 (4)
H50.7888680.2911750.5936720.065*
C90.0660 (2)0.1701 (3)0.80232 (11)0.0598 (4)
H90.0559300.1464850.7633330.072*
C60.7391 (3)0.2808 (3)0.46522 (11)0.0597 (4)
H60.8765910.2991300.4562620.072*
C110.2278 (3)0.1919 (3)0.94704 (10)0.0610 (4)
H110.2151930.1845971.0050630.073*
C20.3818 (3)0.2305 (3)0.40828 (10)0.0594 (4)
H2B0.2810170.2164680.3610480.071*
C100.0500 (3)0.1603 (3)0.88803 (12)0.0667 (5)
H100.0819280.1319150.9066280.080*
C140.6008 (3)0.2573 (3)1.06211 (10)0.0672 (5)
H14A0.7402310.2813081.0915320.101*
H14B0.5632740.3605141.0849380.101*
H14C0.4930060.1245351.0703420.101*
C150.8027 (3)0.5006 (3)0.83037 (13)0.0752 (5)
H15A0.9352740.5182410.8105440.113*
H15B0.7518270.5892440.8044070.113*
H15C0.8289210.5343680.8919630.113*
H20.540 (3)0.244 (3)0.6846 (12)0.072 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0428 (5)0.0755 (8)0.0474 (6)0.0287 (5)0.0087 (4)0.0056 (5)
O50.0594 (6)0.0816 (8)0.0443 (6)0.0319 (6)0.0082 (5)0.0108 (5)
N20.0453 (7)0.0696 (9)0.0424 (7)0.0301 (6)0.0038 (5)0.0075 (6)
O30.0560 (7)0.1396 (13)0.0604 (7)0.0554 (8)0.0078 (5)0.0211 (7)
C130.0438 (7)0.0507 (9)0.0508 (8)0.0236 (6)0.0127 (6)0.0076 (6)
C40.0485 (8)0.0452 (8)0.0443 (7)0.0217 (6)0.0051 (6)0.0057 (6)
C80.0440 (7)0.0521 (9)0.0522 (8)0.0228 (6)0.0102 (6)0.0078 (7)
O20.1207 (13)0.1259 (14)0.0872 (11)0.0572 (11)0.0587 (10)0.0277 (9)
N10.1039 (13)0.0702 (10)0.0590 (9)0.0362 (9)0.0319 (9)0.0164 (7)
C70.0443 (8)0.0595 (10)0.0522 (8)0.0245 (7)0.0057 (6)0.0076 (7)
C120.0531 (8)0.0515 (9)0.0494 (8)0.0245 (7)0.0104 (6)0.0094 (7)
C10.0736 (10)0.0493 (9)0.0486 (8)0.0258 (8)0.0177 (7)0.0102 (7)
C30.0518 (8)0.0631 (10)0.0505 (9)0.0272 (7)0.0043 (6)0.0090 (7)
O10.1461 (15)0.1591 (17)0.0487 (8)0.0731 (13)0.0207 (9)0.0256 (9)
C50.0496 (8)0.0629 (10)0.0515 (8)0.0278 (7)0.0061 (6)0.0063 (7)
C90.0451 (8)0.0729 (11)0.0647 (10)0.0278 (8)0.0127 (7)0.0157 (8)
C60.0586 (9)0.0623 (11)0.0634 (10)0.0293 (8)0.0201 (8)0.0107 (8)
C110.0670 (10)0.0690 (11)0.0549 (9)0.0325 (8)0.0256 (8)0.0196 (8)
C20.0682 (10)0.0594 (10)0.0472 (8)0.0273 (8)0.0010 (7)0.0092 (7)
C100.0523 (9)0.0820 (13)0.0743 (11)0.0318 (9)0.0277 (8)0.0247 (9)
C140.0816 (12)0.0716 (12)0.0448 (9)0.0317 (9)0.0075 (8)0.0086 (8)
C150.0497 (9)0.0840 (14)0.0778 (12)0.0158 (9)0.0176 (8)0.0110 (10)
Geometric parameters (Å, º) top
O4—C131.3849 (16)C1—C61.371 (2)
O4—C151.441 (2)C3—C21.379 (2)
O5—C121.3612 (18)C3—H30.9300
O5—C141.4311 (19)C5—C61.373 (2)
N2—C71.3547 (19)C5—H50.9300
N2—C41.3983 (19)C9—C101.370 (2)
N2—H20.870 (19)C9—H90.9300
O3—C71.2115 (18)C6—H60.9300
C13—C81.394 (2)C11—C101.380 (2)
C13—C121.402 (2)C11—H110.9300
C4—C31.391 (2)C2—H2B0.9300
C4—C51.392 (2)C10—H100.9300
C8—C91.393 (2)C14—H14A0.9600
C8—C71.506 (2)C14—H14B0.9600
O2—N11.221 (2)C14—H14C0.9600
N1—O11.216 (2)C15—H15A0.9600
N1—C11.465 (2)C15—H15B0.9600
C12—C111.383 (2)C15—H15C0.9600
C1—C21.370 (2)
C13—O4—C15113.96 (12)C6—C5—H5119.7
C12—O5—C14117.60 (13)C4—C5—H5119.7
C7—N2—C4129.19 (13)C10—C9—C8120.98 (15)
C7—N2—H2113.0 (12)C10—C9—H9119.5
C4—N2—H2117.7 (12)C8—C9—H9119.5
O4—C13—C8120.97 (12)C1—C6—C5118.91 (15)
O4—C13—C12118.37 (12)C1—C6—H6120.5
C8—C13—C12120.61 (13)C5—C6—H6120.5
C3—C4—C5119.50 (14)C10—C11—C12119.99 (14)
C3—C4—N2123.89 (13)C10—C11—H11120.0
C5—C4—N2116.58 (13)C12—C11—H11120.0
C9—C8—C13118.36 (14)C1—C2—C3119.54 (15)
C9—C8—C7116.01 (13)C1—C2—H2B120.2
C13—C8—C7125.63 (13)C3—C2—H2B120.2
O1—N1—O2123.34 (17)C9—C10—C11120.66 (14)
O1—N1—C1118.39 (18)C9—C10—H10119.7
O2—N1—C1118.27 (18)C11—C10—H10119.7
O3—C7—N2122.79 (14)O5—C14—H14A109.5
O3—C7—C8120.31 (13)O5—C14—H14B109.5
N2—C7—C8116.90 (12)H14A—C14—H14B109.5
O5—C12—C11125.07 (14)O5—C14—H14C109.5
O5—C12—C13115.56 (13)H14A—C14—H14C109.5
C11—C12—C13119.37 (14)H14B—C14—H14C109.5
C2—C1—C6121.87 (15)O4—C15—H15A109.5
C2—C1—N1119.17 (16)O4—C15—H15B109.5
C6—C1—N1118.95 (16)H15A—C15—H15B109.5
C2—C3—C4119.64 (15)O4—C15—H15C109.5
C2—C3—H3120.2H15A—C15—H15C109.5
C4—C3—H3120.2H15B—C15—H15C109.5
C6—C5—C4120.53 (14)
C15—O4—C13—C8107.52 (16)O1—N1—C1—C24.1 (3)
C15—O4—C13—C1274.91 (17)O2—N1—C1—C2175.90 (16)
C7—N2—C4—C36.9 (3)O1—N1—C1—C6176.93 (17)
C7—N2—C4—C5174.65 (15)O2—N1—C1—C63.1 (2)
O4—C13—C8—C9178.74 (14)C5—C4—C3—C20.4 (2)
C12—C13—C8—C91.2 (2)N2—C4—C3—C2178.75 (15)
O4—C13—C8—C72.0 (2)C3—C4—C5—C60.2 (2)
C12—C13—C8—C7179.54 (15)N2—C4—C5—C6178.27 (14)
C4—N2—C7—O30.2 (3)C13—C8—C9—C100.2 (2)
C4—N2—C7—C8179.49 (14)C7—C8—C9—C10179.11 (16)
C9—C8—C7—O39.6 (2)C2—C1—C6—C50.3 (3)
C13—C8—C7—O3169.65 (16)N1—C1—C6—C5179.30 (15)
C9—C8—C7—N2170.15 (14)C4—C5—C6—C10.6 (2)
C13—C8—C7—N210.6 (2)O5—C12—C11—C10178.99 (15)
C14—O5—C12—C111.3 (2)C13—C12—C11—C101.3 (2)
C14—O5—C12—C13178.43 (14)C6—C1—C2—C30.2 (3)
O4—C13—C12—O50.7 (2)N1—C1—C2—C3178.71 (15)
C8—C13—C12—O5178.26 (14)C4—C3—C2—C10.6 (2)
O4—C13—C12—C11179.54 (14)C8—C9—C10—C110.9 (3)
C8—C13—C12—C112.0 (2)C12—C11—C10—C90.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.870 (19)1.924 (19)2.6805 (16)144.6 (17)
C5—H5···O3i0.932.483.2597 (19)141
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationCakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181–194.  CrossRef CAS Google Scholar
First citationCarbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582–591.  CSD CrossRef CAS Google Scholar
First citationDu Plessis, M. P., Modro, T. A. & Nassimbeni, L. R. (1983). J. Crystallogr. Spectrosc. Res. 13, 179–189.  CAS Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Ameli, T. M. & Panunto, T. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 491–507.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, J., Cheng, K., Zhang, Z.-M., Fang, R.-Q. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 2638–2643.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalafi-Nezhad, A., Parhami, A., Soltani Rad, M. N. & Zarea, A. (2005). Tetrahedron Lett. 46, 6879–6882.  CAS Google Scholar
First citationKumar, S. M., Manjunath, B., Lingaraju, G., Abdoh, M., Sadashiva, M. & Lokanath, N. (2013). Cryst. Struct. Theory Appl. 02, 124–131.  CAS Google Scholar
First citationKushwaha, N., Saini, R. K. & Kushwaha, S. K. (2011). Int. J. Chem. Tech. Res. (USA), 3, 203–209.  CAS Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445–454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). Stoe & Cie, Darmstadt, GermanyGoogle Scholar
First citationValeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2013). Crystal Explorer. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds