research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(piperazin-1-ium-κN4)bis­­(thio­sulfato-κS)zinc(II) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National Institute of Technology Kurukshetra, Haryana 136 119, India
*Correspondence e-mail: apaul@nitkkr.ac.in

Edited by A. M. Chippindale, University of Reading, England (Received 27 October 2017; accepted 9 January 2018; online 19 January 2018)

In the title compound, [Zn(C4H11N2)2(S2O3)2]·2H2O, two thio­sulfate ions coordinate to the zinc(II) atom through the terminal S atoms. The tetra­hedral coordination around the ZnII ion is completed by ligating to two N atoms of two piperazinium ions. The remaining two N atoms of the piperazinium ions are diprotonated and do not coordinate to the metal centre. In the crystal, however, they are involved in N—H⋯Owater and N—H⋯Osulfato hydrogen bonds. Together, a series of N—H⋯O and O—H⋯O hydrogen bonds, involving the O atoms of the thio­sulfate ions and the water mol­ecules as acceptors and the hydrogen atoms of the piperazinium ions and the water mol­ecules as donors, form a three-dimensional supra­molecuar structure. Within this framework there are a number of intra- and inter­molecular C—H⋯O and C—H⋯S contacts present.

1. Chemical context

Over the last few decades, a large number of amine-templated metal complexes and compounds with extended structures have been synthesized in the presence of a number of inorganic anions (Férey, 2008[Férey, G. (2008). Chem. Soc. Rev. 37, 191-214.]). One series of anions, namely the sulfur-containing oxoanions, and in particular sulfates and sulfites, are widely used in the synthesis of higher dimensional inorganic compounds because of their multidentate coordin­ation capacity towards metal ions (Rao et al., 2006[Rao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375-387.]). In these examples, the anions bind to the metal cations through the oxygen atoms. The thio­sulfate ion is a new example of an sulfur oxoanion used in amine-templated synthesis, although the reactivity of this ligand is less than that of the sulfate and sulfite ions. In this heteroatomic ligand, the terminal S atom, as well as the O atoms, can bind to a range of metal ions. However, the long S—S bond is unstable under acidic conditions or at high temperature. Hence, the thio­sulfate anion has not, to date, been explored extensively as a network-building unit for higher dimensional structures (Paul et al., 2011[Paul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741-5749.]). Despite these stability complications, Baggio and co-workers have synthesized a few mol­ecular and one-dimensional structures containing thio­sulfate anions that are connected to the metal through oxygen as well as sulfur atoms (Baggio et al., 1996[Baggio, R., Baggio, S., Pardo, M. I. & Garland, M. T. (1996). Acta Cryst. C52, 1939-1942.], 1997[Baggio, S., Pardo, M. I., Baggio, R. & Garland, M. T. (1997). Acta Cryst. C53, 727-729.]; Freire et al., 2001[Freire, E., Baggio, S., Baggio, R. & Mombrú, A. (2001). Acta Cryst. C57, 14-17.]; Harvey et al., 2004[Harvey, M., Baggio, S., Pardo, H. & Baggio, R. (2004). Acta Cryst. C60, m79-m81.]). Our continuing synthetic efforts using the thio­sulfate anion have resulted in the synthesis of some new three-dimensional structures in the family of cadmium–thio­sulfate hybrid compounds formed in the presence of organic linkers (Paul et al., 2009a[Paul, A. K., Madras, G. & Natarajan, S. (2009a). CrystEngComm, 11, 55-57.],b[Paul, A. K., Madras, G. & Natarajan, S. (2009b). Phys. Chem. Chem. Phys. 11, 11285-11296.], 2010[Paul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. 39, 2263-2279.]). It is noteworthy that all of the reported metal–thio­sulfate compounds are synthesized in the presence of nitro­gen-containing aromatic organic linkers. Aromatic ligands play a dual role in metal–thio­sulfate formation as they increase the dimensionality of the local structure and increase structure stabilization via secondary inter­actions, such as hydrogen bonds. Recently, Natarajan and co-workers (Karthik & Natarajan, 2016[Karthik, R. & Natarajan, S. (2016). Cryst. Growth Des. 16, 2239-2248.]) have reported on some three-dimensional zinc–thio­sulfate hybrid structures with aromatic N-donor organic linkers. Metal–thio­sulfate compounds prepared in the presence of aliphatic amines are, however, rare (Paul, 2016[Paul, A. K. (2016). J. Mol. Struct. 1125, 696-704.]) and require investigation. The title compound, is the first example of an aliphatic-amine-templated zinc thio­sulfate compound. Its synthesis and crystal structure are reported on herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. In the complex, the Zn2+ ion is coordinated by two sulfur atoms of the thio­sulfate ligands (S1 and S3) and two nitro­gen atoms from the piperazinium ions (N1 and N3), in an approximately tetra­hedral geometry (ZnS2N2, CN = 4). The Zn—S bond lengths are 2.2927 (4) Å for Zn1—S1 and 2.3324 (4) Å for Zn1—S3. The Zn—N bond lengths are 2.0879 (13) Å for Zn1—N1 and 2.0727 (12) Å for Zn1—N3. The N/S—Zn1—S/N bond angles lie in the range 101.24 (4) to 116.79 (2)°, confirming the tetra­hedral nature of the zinc ions. Within the two thio­sulfate ligands, the S—S bond lengths are 2.0511 (5) Å for S1—S2 and 2.0332 (5) Å for S3—S4. The S—O bond lengths vary from 1.4437 (14) to 1.4623 (13) Å, while the O—S—O angles vary from 104.53 (5) to 112.85 (10)°, which is indicative of a fairly regular tetra­hedral arrangement. In the mol­ecular unit, the two thio­sulfate units are bonded to the zinc(II) ion only through the terminal S atoms, and the oxygen atoms are uncoordinated. In addition, only one nitro­gen atom of each piperazinium ion is bonded to the zinc(II) ion, the second being diprotonated in each case.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with atom labelling and showing 50% probability displacement ellipsoids.

3. Supra­molecular features

The supra­molecular architecture (Fig. 2[link]) arises from a three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds involving the uncoordinated oxygen atoms of the thio­sulfate ligands, the protonated piperazine units and the lattice water mol­ecules (Table 1[link]). These inter­molecular inter­actions lead to the formation of a supra­molecular framework. Within this framework there are a number of intra- and inter­molecular C—H⋯O and C—H⋯S contacts present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.83 (2) 2.25 (2) 3.041 (2) 160 (2)
N2—H2AN⋯O6ii 0.95 (3) 1.80 (3) 2.730 (2) 166 (2)
N2—H2BN⋯O10 0.93 (2) 1.89 (2) 2.811 (3) 170 (2)
N3—H3⋯O3i 0.84 (2) 2.03 (2) 2.853 (2) 166 (2)
N4—H4AN⋯O20 0.87 (2) 2.09 (2) 2.892 (2) 154 (2)
N4—H4BN⋯O5iii 0.94 (2) 1.84 (2) 2.763 (2) 169 (2)
O10—H10A⋯O4 0.85 (3) 1.94 (4) 2.780 (2) 175 (3)
O10—H10B⋯O1iv 0.76 (3) 2.02 (3) 2.777 (2) 176 (4)
O20—H20A⋯O1v 0.82 (3) 2.02 (3) 2.804 (2) 163 (3)
O20—H20B⋯O5vi 0.74 (3) 2.17 (3) 2.866 (2) 158 (3)
C3—H3A⋯O6iv 0.97 2.45 3.221 (2) 136
C4—H4A⋯O3 0.97 2.49 3.175 (3) 128
C4—H4B⋯O4 0.97 2.54 3.463 (2) 159
C5—H5B⋯S3 0.97 2.86 3.453 (2) 120
C8—H8B⋯O2 0.97 2.50 3.318 (2) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) -x+1, -y, -z; (v) -x, -y+1, -z; (vi) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.9, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for zinc–thio­sulfato complexes gave 12 hits, all involving aromatic amines and/or thio­ureas. Díaz de Vivar et al. (2006[Díaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. C62, m192-m194.]) have described a mol­ecular zinc–thio­sulfate complex prepared in the presence of a tridentate aromatic ligand, viz. aqua(thio­sulfato-κO,S)[2,4,6-tris­(2-pyrid­yl)-1,3,5-triazine-N,N′,N′′]zinc(II) hemihydrate (CSD refcode: WEHTOT). The thio­sulfate ligand is coordinated to the zinc ions through S and O atoms, forming octa­hedral zinc centres. In addition, a zinc–thio­sulfate complex containing both one-dimensional cationic and anionic chains has been reported by the same authors, viz. catena-[(μ2-4,4′-bi­pyridine-κN,N′)tetra­aqua­zinc(II) bis­(μ2-4,4′-bi­pyridine-κN,N′)(μ2-thio­sulfato-κO,S)bis­(thio­sulfato-κS)dizinc(II) dihydrate] [PEYLEL; Díaz de Vivar et al., 2007[Díaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m123-m125.]). Both types of chain contain 4,4′-bi­pyridine ligands as linkers.

Karthik & Natarajan (2016[Karthik, R. & Natarajan, S. (2016). Cryst. Growth Des. 16, 2239-2248.]) have recently reported four higher-dimensional zinc–thio­sulfate compounds synthesized in the presence of various aromatic ligands, viz. catena-[bis­(μ-4,4′-bi­pyridine)­bis­(μ-thio­sulfato)­dizinc] (IJUWER), catena-[(μ-4,4′-propane-1,3-diyldi­pyridine)(μ-thio­sulfato)­zinc] (IJU­WIV), and catena-[bis­(μ-4,4′-ethene-1,2-diyldi­pyridine)­bis­(μ-thio­sulfato)­dizinc dihydrate] (IJUWOB) and catena-[bis­(μ-4,4′-ethane-1,2-diyldi­pyridine)­bis­(μ-thio­sulfato)­dizinc (μ-4,4′-ethane-1,2-diyldi­pyridine)(μ-thio­sulfato)­zinc trihydrate] (IJUWUH).

A number of mol­ecular cadmium–thio­sulfate and manganese–thio­sulfate structures have been reported by Baggio and co-workers (Baggio et al., 1996[Baggio, R., Baggio, S., Pardo, M. I. & Garland, M. T. (1996). Acta Cryst. C52, 1939-1942.], 1997[Baggio, S., Pardo, M. I., Baggio, R. & Garland, M. T. (1997). Acta Cryst. C53, 727-729.]; Freire et al., 2001[Freire, E., Baggio, S., Baggio, R. & Mombrú, A. (2001). Acta Cryst. C57, 14-17.]; Harvey et al., 2004[Harvey, M., Baggio, S., Pardo, H. & Baggio, R. (2004). Acta Cryst. C60, m79-m81.]). They were synthesized in the presence of 2,2′-bi­pyridine or 1,10-phenanthroline.

There are a few examples in which zero-dimensional cadmium–thio­sulfate compounds form simple dinuclear complexes, in which the thio­sulfate unit is bound to the metal through both the sulfur and the oxygen atoms. As expected, the structures are stabilized through C—H⋯O hydrogen-bonding inter­actions and ππ inter­actions. One cadmium thio­sulfate compound, bis­(propane-1,3-di­amine)(thio­sulfato)cadmium (CSD refcode: ORUJOC), which was reported recently, was isolated in the presence of the aliphatic amine 1,3-di­amino­propane (Paul, 2016[Paul, A. K. (2016). J. Mol. Struct. 1125, 696-704.]). One mol­ecular piperazinium thio­sulfate monohydrate structure has been reported, (piperazinediium thio­sulfate monohydrate; CSD refcode: AROWUA; Srinivasan et al., 2011[Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55-61.]), in which the protonated aliphatic amine and thio­sulfate units are linked together through extensive hydrogen bonds. It is noteworthy that there are no previous examples in the literature of zinc–thio­sulfate structures that crystallize in the presence of aliphatic amines.

5. Synthesis and crystallization

Zn(NO3)2·6H2O (0.297 g, 1 mmol) was dissolved in 5 ml distilled water. Then (NH4)2S2O3 (0.296 g, 2 mmol) was added to the solution, which was stirred for 15 min. Piperazine (0.172 g, 2 mmol) was dissolved separately in distilled water (5 ml) and the solution poured into the initial reaction mixture until the pH was 8. The resulting solution was left undisturbed and after 1 week, colourless block-shaped crystals were obtained. The product was filtered and washed with cold water. The yield was approximately 85% based on Zn metal. Elemental analysis calculated for C8H26N4O8S4Zn: C 19.20, H 5.24, N 11.20%; found: C 19.27, H 5.29, N 11.16%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH, NH2 and water H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C4H11N2)2(S2O3)2]·2H2O
Mr 499.94
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.7631 (1), 10.5623 (2), 11.6072 (2)
α, β, γ (°) 113.736 (1), 98.761 (1), 91.472 (1)
V3) 967.49 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.74
Crystal size (mm) 0.22 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.700, 0.768
No. of measured, independent and observed [I > 2σ(I)] reflections 19938, 7607, 5927
Rint 0.027
(sin θ/λ)max−1) 0.782
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.01
No. of reflections 7607
No. of parameters 266
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.36
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis(piperazin-1-ium-κN4)bis(thiosulfato-κS)zinc(II) dihydrate top
Crystal data top
[Zn(C4H11N2)2(S2O3)2]·2H2OZ = 2
Mr = 499.94F(000) = 520
Triclinic, P1Dx = 1.716 Mg m3
a = 8.7631 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5623 (2) ÅCell parameters from 3790 reflections
c = 11.6072 (2) Åθ = 2.0–26.0°
α = 113.736 (1)°µ = 1.74 mm1
β = 98.761 (1)°T = 293 K
γ = 91.472 (1)°Block, colorless
V = 967.49 (3) Å30.22 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
7607 independent reflections
Radiation source: fine-focus sealed tube5927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 33.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.700, Tmax = 0.768k = 169
19938 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
7607 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.36403 (2)0.36678 (2)0.17364 (2)0.02307 (5)
S10.19769 (4)0.23705 (4)0.01347 (4)0.02921 (8)
S20.28149 (4)0.31755 (4)0.12806 (4)0.02866 (8)
S30.31486 (6)0.34577 (4)0.35739 (4)0.03543 (10)
S40.27051 (4)0.13632 (4)0.29154 (4)0.02567 (8)
O10.22237 (19)0.21735 (14)0.25891 (12)0.0508 (4)
O20.22392 (19)0.45077 (14)0.10572 (15)0.0541 (4)
O30.44978 (15)0.32601 (19)0.09909 (15)0.0612 (4)
O40.40860 (15)0.06807 (14)0.25701 (14)0.0486 (3)
O50.2234 (2)0.11500 (13)0.39847 (14)0.0544 (4)
O60.14635 (14)0.09045 (13)0.18082 (13)0.0435 (3)
N10.59630 (14)0.33597 (13)0.16071 (13)0.0261 (2)
H10.627 (2)0.3885 (19)0.1297 (18)0.033 (5)*
N20.86568 (17)0.19550 (17)0.20334 (16)0.0381 (3)
H2AN0.968 (3)0.172 (2)0.194 (2)0.053 (6)*
H2BN0.831 (3)0.149 (2)0.249 (2)0.058 (7)*
N30.34859 (14)0.57724 (12)0.22385 (12)0.0225 (2)
H30.396 (2)0.5979 (17)0.1754 (17)0.024 (4)*
N40.24360 (17)0.84404 (13)0.37115 (13)0.0298 (3)
H4AN0.186 (2)0.8219 (19)0.4161 (19)0.037 (5)*
H4BN0.229 (2)0.937 (2)0.3879 (19)0.043 (5)*
C10.69716 (19)0.37986 (18)0.28807 (16)0.0381 (4)
H1A0.6544300.3341140.3353050.046*
H1B0.6961560.4792330.3352890.046*
C20.8636 (2)0.34663 (19)0.2805 (2)0.0454 (5)
H2A0.9113240.3992700.2413160.055*
H2B0.9223200.3723260.3659010.055*
C30.7752 (2)0.1542 (2)0.07222 (18)0.0421 (4)
H3A0.7774410.0554080.0227800.051*
H3B0.8212640.2037700.0295940.051*
C40.60942 (19)0.18742 (16)0.07979 (15)0.0315 (3)
H4A0.5529760.1641700.0058690.038*
H4B0.5611980.1299300.1142330.038*
C50.4203 (2)0.66344 (15)0.35818 (15)0.0327 (3)
H5A0.5289020.6474990.3708240.039*
H5B0.3703120.6345140.4138330.039*
C60.40821 (19)0.81761 (15)0.39612 (16)0.0330 (3)
H6A0.4509340.8686220.4862150.040*
H6B0.4677900.8498360.3475630.040*
C70.17408 (19)0.76190 (16)0.23399 (16)0.0333 (3)
H7A0.2278490.7913580.1805290.040*
H7B0.0659480.7784540.2192880.040*
C80.18624 (17)0.60873 (15)0.19857 (16)0.0308 (3)
H8A0.1247510.5782580.2471020.037*
H8B0.1436940.5571120.1085120.037*
O100.72416 (18)0.05969 (17)0.32966 (15)0.0460 (3)
H10A0.629 (4)0.060 (3)0.303 (3)0.098 (11)*
H10B0.742 (3)0.015 (3)0.313 (3)0.074 (10)*
O200.01440 (19)0.7318 (2)0.44092 (18)0.0557 (4)
H20A0.082 (4)0.729 (3)0.383 (3)0.092 (11)*
H20B0.048 (3)0.776 (3)0.497 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02461 (8)0.02117 (8)0.02345 (8)0.00381 (6)0.00452 (6)0.00900 (6)
S10.02902 (18)0.03198 (19)0.02573 (17)0.00689 (14)0.00212 (13)0.01250 (15)
S20.02756 (17)0.0354 (2)0.02670 (18)0.00130 (14)0.00454 (13)0.01668 (15)
S30.0560 (3)0.02537 (18)0.02544 (18)0.00262 (17)0.01059 (17)0.01015 (15)
S40.02671 (16)0.02414 (17)0.03090 (18)0.00813 (13)0.01197 (13)0.01342 (14)
O10.0746 (10)0.0502 (8)0.0237 (6)0.0060 (7)0.0030 (6)0.0132 (5)
O20.0744 (10)0.0403 (7)0.0630 (9)0.0151 (7)0.0259 (8)0.0316 (7)
O30.0291 (6)0.1148 (13)0.0692 (10)0.0021 (7)0.0074 (6)0.0689 (10)
O40.0356 (7)0.0524 (8)0.0618 (9)0.0251 (6)0.0179 (6)0.0229 (7)
O50.0985 (12)0.0319 (6)0.0513 (8)0.0170 (7)0.0449 (8)0.0242 (6)
O60.0308 (6)0.0364 (7)0.0466 (7)0.0042 (5)0.0010 (5)0.0021 (5)
N10.0255 (6)0.0260 (6)0.0290 (6)0.0060 (5)0.0052 (5)0.0132 (5)
N20.0270 (7)0.0479 (9)0.0476 (9)0.0152 (6)0.0120 (6)0.0253 (7)
N30.0239 (5)0.0217 (5)0.0234 (6)0.0036 (4)0.0068 (4)0.0097 (5)
N40.0379 (7)0.0219 (6)0.0331 (7)0.0078 (5)0.0141 (6)0.0119 (5)
C10.0325 (8)0.0364 (9)0.0334 (8)0.0085 (7)0.0011 (6)0.0040 (7)
C20.0257 (8)0.0450 (10)0.0570 (12)0.0036 (7)0.0024 (8)0.0156 (9)
C30.0425 (9)0.0500 (11)0.0373 (9)0.0219 (8)0.0164 (7)0.0172 (8)
C40.0335 (8)0.0311 (8)0.0273 (7)0.0101 (6)0.0061 (6)0.0087 (6)
C50.0377 (8)0.0255 (7)0.0294 (7)0.0066 (6)0.0024 (6)0.0085 (6)
C60.0351 (8)0.0231 (7)0.0342 (8)0.0025 (6)0.0018 (6)0.0065 (6)
C70.0349 (8)0.0307 (8)0.0336 (8)0.0105 (6)0.0027 (6)0.0133 (6)
C80.0248 (7)0.0269 (7)0.0361 (8)0.0044 (5)0.0028 (6)0.0091 (6)
O100.0428 (8)0.0457 (8)0.0492 (8)0.0068 (6)0.0067 (6)0.0197 (7)
O200.0445 (8)0.0857 (12)0.0441 (9)0.0215 (8)0.0168 (7)0.0300 (9)
Geometric parameters (Å, º) top
Zn1—N32.0727 (12)N4—H4BN0.93 (2)
Zn1—N12.0879 (13)C1—C21.516 (2)
Zn1—S12.2927 (4)C1—H1A0.9700
Zn1—S32.3324 (4)C1—H1B0.9700
S1—S22.0511 (5)C2—H2A0.9700
S2—O21.4437 (14)C2—H2B0.9700
S2—O31.4539 (14)C3—C41.510 (2)
S2—O11.4606 (13)C3—H3A0.9700
S3—S42.0332 (5)C3—H3B0.9700
S4—O41.4507 (12)C4—H4A0.9700
S4—O61.4546 (13)C4—H4B0.9700
S4—O51.4623 (13)C5—C61.518 (2)
N1—C11.487 (2)C5—H5A0.9700
N1—C41.4876 (19)C5—H5B0.9700
N1—H10.83 (2)C6—H6A0.9700
N2—C21.485 (2)C6—H6B0.9700
N2—C31.489 (2)C7—C81.511 (2)
N2—H2AN0.95 (2)C7—H7A0.9700
N2—H2BN0.93 (2)C7—H7B0.9700
N3—C51.4779 (19)C8—H8A0.9700
N3—C81.4820 (18)C8—H8B0.9700
N3—H30.837 (18)O10—H10A0.85 (3)
N4—C61.484 (2)O10—H10B0.76 (3)
N4—C71.491 (2)O20—H20A0.81 (3)
N4—H4AN0.87 (2)O20—H20B0.74 (3)
N3—Zn1—N1105.78 (5)N1—C1—H1B108.9
N3—Zn1—S1110.79 (3)C2—C1—H1B108.9
N1—Zn1—S1112.90 (4)H1A—C1—H1B107.7
N3—Zn1—S3101.24 (4)N2—C2—C1109.22 (14)
N1—Zn1—S3108.21 (4)N2—C2—H2A109.8
S1—Zn1—S3116.788 (16)C1—C2—H2A109.8
S2—S1—Zn198.167 (18)N2—C2—H2B109.8
O2—S2—O3112.85 (10)C1—C2—H2B109.8
O2—S2—O1110.61 (9)H2A—C2—H2B108.3
O3—S2—O1111.04 (10)N2—C3—C4109.77 (14)
O2—S2—S1109.71 (6)N2—C3—H3A109.7
O3—S2—S1107.00 (6)C4—C3—H3A109.7
O1—S2—S1105.27 (6)N2—C3—H3B109.7
S4—S3—Zn1101.05 (2)C4—C3—H3B109.7
O4—S4—O6110.47 (8)H3A—C3—H3B108.2
O4—S4—O5111.17 (9)N1—C4—C3113.09 (14)
O6—S4—O5112.02 (9)N1—C4—H4A109.0
O4—S4—S3110.45 (6)C3—C4—H4A109.0
O6—S4—S3108.00 (6)N1—C4—H4B109.0
O5—S4—S3104.53 (5)C3—C4—H4B109.0
C1—N1—C4110.39 (12)H4A—C4—H4B107.8
C1—N1—Zn1112.60 (10)N3—C5—C6113.06 (12)
C4—N1—Zn1109.65 (9)N3—C5—H5A109.0
C1—N1—H1105.4 (13)C6—C5—H5A109.0
C4—N1—H1112.1 (13)N3—C5—H5B109.0
Zn1—N1—H1106.6 (13)C6—C5—H5B109.0
C2—N2—C3110.50 (14)H5A—C5—H5B107.8
C2—N2—H2AN111.5 (13)N4—C6—C5110.10 (13)
C3—N2—H2AN107.0 (14)N4—C6—H6A109.6
C2—N2—H2BN107.5 (14)C5—C6—H6A109.6
C3—N2—H2BN114.4 (14)N4—C6—H6B109.6
H2AN—N2—H2BN106.1 (19)C5—C6—H6B109.6
C5—N3—C8110.20 (12)H6A—C6—H6B108.2
C5—N3—Zn1112.71 (9)N4—C7—C8110.19 (13)
C8—N3—Zn1111.95 (9)N4—C7—H7A109.6
C5—N3—H3109.2 (12)C8—C7—H7A109.6
C8—N3—H3106.3 (12)N4—C7—H7B109.6
Zn1—N3—H3106.2 (12)C8—C7—H7B109.6
C6—N4—C7110.40 (12)H7A—C7—H7B108.1
C6—N4—H4AN113.4 (13)N3—C8—C7112.29 (12)
C7—N4—H4AN107.0 (13)N3—C8—H8A109.1
C6—N4—H4BN114.3 (13)C7—C8—H8A109.1
C7—N4—H4BN106.1 (13)N3—C8—H8B109.1
H4AN—N4—H4BN105.1 (17)C7—C8—H8B109.1
N1—C1—C2113.43 (15)H8A—C8—H8B107.9
N1—C1—H1A108.9H10A—O10—H10B109 (3)
C2—C1—H1A108.9H20A—O20—H20B100 (3)
C4—N1—C1—C252.0 (2)C8—N3—C5—C653.62 (19)
Zn1—N1—C1—C2174.88 (12)Zn1—N3—C5—C6179.47 (11)
C3—N2—C2—C159.1 (2)C7—N4—C6—C557.01 (18)
N1—C1—C2—N256.1 (2)N3—C5—C6—N455.66 (19)
C2—N2—C3—C459.4 (2)C6—N4—C7—C858.03 (18)
C1—N1—C4—C351.76 (19)C5—N3—C8—C754.16 (18)
Zn1—N1—C4—C3176.37 (11)Zn1—N3—C8—C7179.56 (11)
N2—C3—C4—N156.0 (2)N4—C7—C8—N356.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.83 (2)2.25 (2)3.041 (2)160 (2)
N2—H2AN···O6ii0.95 (3)1.80 (3)2.730 (2)166 (2)
N2—H2BN···O100.93 (2)1.89 (2)2.811 (3)170 (2)
N3—H3···O3i0.84 (2)2.03 (2)2.853 (2)166 (2)
N4—H4AN···O200.87 (2)2.09 (2)2.892 (2)154 (2)
N4—H4BN···O5iii0.94 (2)1.84 (2)2.763 (2)169 (2)
O10—H10A···O40.85 (3)1.94 (4)2.780 (2)175 (3)
O10—H10B···O1iv0.76 (3)2.02 (3)2.777 (2)176 (4)
O20—H20A···O1v0.82 (3)2.02 (3)2.804 (2)163 (3)
O20—H20B···O5vi0.74 (3)2.17 (3)2.866 (2)158 (3)
C3—H3A···O6iv0.972.453.221 (2)136
C4—H4A···O30.972.493.175 (3)128
C4—H4B···O40.972.543.463 (2)159
C5—H5B···S30.972.863.453 (2)120
C8—H8B···O20.972.503.318 (2)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x, y+1, z+1.
 

Acknowledgements

The author thanks Professor S. Natarajan for providing facilities.

Funding information

The author thanks the SERB and DST, India, for research grants.

References

First citationBaggio, R., Baggio, S., Pardo, M. I. & Garland, M. T. (1996). Acta Cryst. C52, 1939–1942.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBaggio, S., Pardo, M. I., Baggio, R. & Garland, M. T. (1997). Acta Cryst. C53, 727–729.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDíaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. C62, m192–m194.  CSD CrossRef IUCr Journals Google Scholar
First citationDíaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m123–m125.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFérey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed Google Scholar
First citationFreire, E., Baggio, S., Baggio, R. & Mombrú, A. (2001). Acta Cryst. C57, 14–17.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Pardo, H. & Baggio, R. (2004). Acta Cryst. C60, m79–m81.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthik, R. & Natarajan, S. (2016). Cryst. Growth Des. 16, 2239–2248.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K. (2016). J. Mol. Struct. 1125, 696–704.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741–5749.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaul, A. K., Madras, G. & Natarajan, S. (2009a). CrystEngComm, 11, 55–57.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K., Madras, G. & Natarajan, S. (2009b). Phys. Chem. Chem. Phys. 11, 11285–11296.  PubMed Google Scholar
First citationPaul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. 39, 2263–2279.  CSD CrossRef CAS PubMed Google Scholar
First citationRao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55–61.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds