research communications
κN4)bis(thiosulfato-κS)zinc(II) dihydrate
of bis(piperazin-1-ium-aDepartment of Chemistry, National Institute of Technology Kurukshetra, Haryana 136 119, India
*Correspondence e-mail: apaul@nitkkr.ac.in
In the title compound, [Zn(C4H11N2)2(S2O3)2]·2H2O, two thiosulfate ions coordinate to the zinc(II) atom through the terminal S atoms. The tetrahedral coordination around the ZnII ion is completed by ligating to two N atoms of two piperazinium ions. The remaining two N atoms of the piperazinium ions are diprotonated and do not coordinate to the metal centre. In the crystal, however, they are involved in N—H⋯Owater and N—H⋯Osulfato hydrogen bonds. Together, a series of N—H⋯O and O—H⋯O hydrogen bonds, involving the O atoms of the thiosulfate ions and the water molecules as acceptors and the hydrogen atoms of the piperazinium ions and the water molecules as donors, form a three-dimensional supramolecuar structure. Within this framework there are a number of intra- and intermolecular C—H⋯O and C—H⋯S contacts present.
Keywords: crystal structure; zinc thiosulfate; piperazine; hydrogen bonding.
CCDC reference: 1571150
1. Chemical context
Over the last few decades, a large number of amine-templated metal complexes and compounds with extended structures have been synthesized in the presence of a number of inorganic anions (Férey, 2008). One series of anions, namely the sulfur-containing oxoanions, and in particular sulfates and sulfites, are widely used in the synthesis of higher dimensional inorganic compounds because of their multidentate coordination capacity towards metal ions (Rao et al., 2006). In these examples, the anions bind to the metal cations through the oxygen atoms. The thiosulfate ion is a new example of an sulfur oxoanion used in amine-templated synthesis, although the reactivity of this ligand is less than that of the sulfate and sulfite ions. In this heteroatomic ligand, the terminal S atom, as well as the O atoms, can bind to a range of metal ions. However, the long S—S bond is unstable under acidic conditions or at high temperature. Hence, the thiosulfate anion has not, to date, been explored extensively as a network-building unit for higher dimensional structures (Paul et al., 2011). Despite these stability complications, Baggio and co-workers have synthesized a few molecular and one-dimensional structures containing thiosulfate anions that are connected to the metal through oxygen as well as sulfur atoms (Baggio et al., 1996, 1997; Freire et al., 2001; Harvey et al., 2004). Our continuing synthetic efforts using the thiosulfate anion have resulted in the synthesis of some new three-dimensional structures in the family of cadmium–thiosulfate hybrid compounds formed in the presence of organic linkers (Paul et al., 2009a,b, 2010). It is noteworthy that all of the reported metal–thiosulfate compounds are synthesized in the presence of nitrogen-containing aromatic organic linkers. Aromatic ligands play a dual role in metal–thiosulfate formation as they increase the dimensionality of the local structure and increase structure stabilization via secondary interactions, such as hydrogen bonds. Recently, Natarajan and co-workers (Karthik & Natarajan, 2016) have reported on some three-dimensional zinc–thiosulfate hybrid structures with aromatic N-donor organic linkers. Metal–thiosulfate compounds prepared in the presence of aliphatic are, however, rare (Paul, 2016) and require investigation. The title compound, is the first example of an aliphatic-amine-templated zinc thiosulfate compound. Its synthesis and are reported on herein.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. In the complex, the Zn2+ ion is coordinated by two sulfur atoms of the thiosulfate ligands (S1 and S3) and two nitrogen atoms from the piperazinium ions (N1 and N3), in an approximately tetrahedral geometry (ZnS2N2, CN = 4). The Zn—S bond lengths are 2.2927 (4) Å for Zn1—S1 and 2.3324 (4) Å for Zn1—S3. The Zn—N bond lengths are 2.0879 (13) Å for Zn1—N1 and 2.0727 (12) Å for Zn1—N3. The N/S—Zn1—S/N bond angles lie in the range 101.24 (4) to 116.79 (2)°, confirming the tetrahedral nature of the zinc ions. Within the two thiosulfate ligands, the S—S bond lengths are 2.0511 (5) Å for S1—S2 and 2.0332 (5) Å for S3—S4. The S—O bond lengths vary from 1.4437 (14) to 1.4623 (13) Å, while the O—S—O angles vary from 104.53 (5) to 112.85 (10)°, which is indicative of a fairly regular tetrahedral arrangement. In the molecular unit, the two thiosulfate units are bonded to the zinc(II) ion only through the terminal S atoms, and the oxygen atoms are uncoordinated. In addition, only one nitrogen atom of each piperazinium ion is bonded to the zinc(II) ion, the second being diprotonated in each case.
3. Supramolecular features
The supramolecular architecture (Fig. 2) arises from a three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds involving the uncoordinated oxygen atoms of the thiosulfate ligands, the protonated piperazine units and the lattice water molecules (Table 1). These intermolecular interactions lead to the formation of a supramolecular framework. Within this framework there are a number of intra- and intermolecular C—H⋯O and C—H⋯S contacts present (Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 35.9, last update May 2017; Groom et al., 2016) for zinc–thiosulfato complexes gave 12 hits, all involving aromatic and/or thioureas. Díaz de Vivar et al. (2006) have described a molecular zinc–thiosulfate complex prepared in the presence of a tridentate aromatic ligand, viz. aqua(thiosulfato-κO,S)[2,4,6-tris(2-pyridyl)-1,3,5-triazine-N,N′,N′′]zinc(II) hemihydrate (CSD refcode: WEHTOT). The thiosulfate ligand is coordinated to the zinc ions through S and O atoms, forming octahedral zinc centres. In addition, a zinc–thiosulfate complex containing both one-dimensional cationic and anionic chains has been reported by the same authors, viz. catena-[(μ2-4,4′-bipyridine-κN,N′)tetraaquazinc(II) bis(μ2-4,4′-bipyridine-κN,N′)(μ2-thiosulfato-κO,S)bis(thiosulfato-κS)dizinc(II) dihydrate] [PEYLEL; Díaz de Vivar et al., 2007). Both types of chain contain 4,4′-bipyridine ligands as linkers.
Karthik & Natarajan (2016) have recently reported four higher-dimensional zinc–thiosulfate compounds synthesized in the presence of various aromatic ligands, viz. catena-[bis(μ-4,4′-bipyridine)bis(μ-thiosulfato)dizinc] (IJUWER), catena-[(μ-4,4′-propane-1,3-diyldipyridine)(μ-thiosulfato)zinc] (IJUWIV), and catena-[bis(μ-4,4′-ethene-1,2-diyldipyridine)bis(μ-thiosulfato)dizinc dihydrate] (IJUWOB) and catena-[bis(μ-4,4′-ethane-1,2-diyldipyridine)bis(μ-thiosulfato)dizinc (μ-4,4′-ethane-1,2-diyldipyridine)(μ-thiosulfato)zinc trihydrate] (IJUWUH).
A number of molecular cadmium–thiosulfate and manganese–thiosulfate structures have been reported by Baggio and co-workers (Baggio et al., 1996, 1997; Freire et al., 2001; Harvey et al., 2004). They were synthesized in the presence of 2,2′-bipyridine or 1,10-phenanthroline.
There are a few examples in which zero-dimensional cadmium–thiosulfate compounds form simple dinuclear complexes, in which the thiosulfate unit is bound to the metal through both the sulfur and the oxygen atoms. As expected, the structures are stabilized through C—H⋯O hydrogen-bonding interactions and π–π interactions. One cadmium thiosulfate compound, bis(propane-1,3-diamine)(thiosulfato)cadmium (CSD refcode: ORUJOC), which was reported recently, was isolated in the presence of the aliphatic amine 1,3-diaminopropane (Paul, 2016). One molecular piperazinium thiosulfate monohydrate structure has been reported, (piperazinediium thiosulfate monohydrate; CSD refcode: AROWUA; Srinivasan et al., 2011), in which the protonated aliphatic amine and thiosulfate units are linked together through extensive hydrogen bonds. It is noteworthy that there are no previous examples in the literature of zinc–thiosulfate structures that crystallize in the presence of aliphatic amines.
5. Synthesis and crystallization
Zn(NO3)2·6H2O (0.297 g, 1 mmol) was dissolved in 5 ml distilled water. Then (NH4)2S2O3 (0.296 g, 2 mmol) was added to the solution, which was stirred for 15 min. Piperazine (0.172 g, 2 mmol) was dissolved separately in distilled water (5 ml) and the solution poured into the initial reaction mixture until the pH was 8. The resulting solution was left undisturbed and after 1 week, colourless block-shaped crystals were obtained. The product was filtered and washed with cold water. The yield was approximately 85% based on Zn metal. Elemental analysis calculated for C8H26N4O8S4Zn: C 19.20, H 5.24, N 11.20%; found: C 19.27, H 5.29, N 11.16%.
6. Refinement
Crystal data, data collection and structure . The NH, NH2 and water H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1571150
https://doi.org/10.1107/S2056989018000555/cq2022sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000555/cq2022Isup2.hkl
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Zn(C4H11N2)2(S2O3)2]·2H2O | Z = 2 |
Mr = 499.94 | F(000) = 520 |
Triclinic, P1 | Dx = 1.716 Mg m−3 |
a = 8.7631 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5623 (2) Å | Cell parameters from 3790 reflections |
c = 11.6072 (2) Å | θ = 2.0–26.0° |
α = 113.736 (1)° | µ = 1.74 mm−1 |
β = 98.761 (1)° | T = 293 K |
γ = 91.472 (1)° | Block, colorless |
V = 967.49 (3) Å3 | 0.22 × 0.18 × 0.16 mm |
Bruker SMART APEX CCD area detector diffractometer | 7607 independent reflections |
Radiation source: fine-focus sealed tube | 5927 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 33.7°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −13→13 |
Tmin = 0.700, Tmax = 0.768 | k = −16→9 |
19938 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3 |
7607 reflections | (Δ/σ)max < 0.001 |
266 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.36403 (2) | 0.36678 (2) | 0.17364 (2) | 0.02307 (5) | |
S1 | 0.19769 (4) | 0.23705 (4) | −0.01347 (4) | 0.02921 (8) | |
S2 | 0.28149 (4) | 0.31755 (4) | −0.12806 (4) | 0.02866 (8) | |
S3 | 0.31486 (6) | 0.34577 (4) | 0.35739 (4) | 0.03543 (10) | |
S4 | 0.27051 (4) | 0.13632 (4) | 0.29154 (4) | 0.02567 (8) | |
O1 | 0.22237 (19) | 0.21735 (14) | −0.25891 (12) | 0.0508 (4) | |
O2 | 0.22392 (19) | 0.45077 (14) | −0.10572 (15) | 0.0541 (4) | |
O3 | 0.44978 (15) | 0.32601 (19) | −0.09909 (15) | 0.0612 (4) | |
O4 | 0.40860 (15) | 0.06807 (14) | 0.25701 (14) | 0.0486 (3) | |
O5 | 0.2234 (2) | 0.11500 (13) | 0.39847 (14) | 0.0544 (4) | |
O6 | 0.14635 (14) | 0.09045 (13) | 0.18082 (13) | 0.0435 (3) | |
N1 | 0.59630 (14) | 0.33597 (13) | 0.16071 (13) | 0.0261 (2) | |
H1 | 0.627 (2) | 0.3885 (19) | 0.1297 (18) | 0.033 (5)* | |
N2 | 0.86568 (17) | 0.19550 (17) | 0.20334 (16) | 0.0381 (3) | |
H2AN | 0.968 (3) | 0.172 (2) | 0.194 (2) | 0.053 (6)* | |
H2BN | 0.831 (3) | 0.149 (2) | 0.249 (2) | 0.058 (7)* | |
N3 | 0.34859 (14) | 0.57724 (12) | 0.22385 (12) | 0.0225 (2) | |
H3 | 0.396 (2) | 0.5979 (17) | 0.1754 (17) | 0.024 (4)* | |
N4 | 0.24360 (17) | 0.84404 (13) | 0.37115 (13) | 0.0298 (3) | |
H4AN | 0.186 (2) | 0.8219 (19) | 0.4161 (19) | 0.037 (5)* | |
H4BN | 0.229 (2) | 0.937 (2) | 0.3879 (19) | 0.043 (5)* | |
C1 | 0.69716 (19) | 0.37986 (18) | 0.28807 (16) | 0.0381 (4) | |
H1A | 0.654430 | 0.334114 | 0.335305 | 0.046* | |
H1B | 0.696156 | 0.479233 | 0.335289 | 0.046* | |
C2 | 0.8636 (2) | 0.34663 (19) | 0.2805 (2) | 0.0454 (5) | |
H2A | 0.911324 | 0.399270 | 0.241316 | 0.055* | |
H2B | 0.922320 | 0.372326 | 0.365901 | 0.055* | |
C3 | 0.7752 (2) | 0.1542 (2) | 0.07222 (18) | 0.0421 (4) | |
H3A | 0.777441 | 0.055408 | 0.022780 | 0.051* | |
H3B | 0.821264 | 0.203770 | 0.029594 | 0.051* | |
C4 | 0.60942 (19) | 0.18742 (16) | 0.07979 (15) | 0.0315 (3) | |
H4A | 0.552976 | 0.164170 | −0.005869 | 0.038* | |
H4B | 0.561198 | 0.129930 | 0.114233 | 0.038* | |
C5 | 0.4203 (2) | 0.66344 (15) | 0.35818 (15) | 0.0327 (3) | |
H5A | 0.528902 | 0.647499 | 0.370824 | 0.039* | |
H5B | 0.370312 | 0.634514 | 0.413833 | 0.039* | |
C6 | 0.40821 (19) | 0.81761 (15) | 0.39612 (16) | 0.0330 (3) | |
H6A | 0.450934 | 0.868622 | 0.486215 | 0.040* | |
H6B | 0.467790 | 0.849836 | 0.347563 | 0.040* | |
C7 | 0.17408 (19) | 0.76190 (16) | 0.23399 (16) | 0.0333 (3) | |
H7A | 0.227849 | 0.791358 | 0.180529 | 0.040* | |
H7B | 0.065948 | 0.778454 | 0.219288 | 0.040* | |
C8 | 0.18624 (17) | 0.60873 (15) | 0.19857 (16) | 0.0308 (3) | |
H8A | 0.124751 | 0.578258 | 0.247102 | 0.037* | |
H8B | 0.143694 | 0.557112 | 0.108512 | 0.037* | |
O10 | 0.72416 (18) | 0.05969 (17) | 0.32966 (15) | 0.0460 (3) | |
H10A | 0.629 (4) | 0.060 (3) | 0.303 (3) | 0.098 (11)* | |
H10B | 0.742 (3) | −0.015 (3) | 0.313 (3) | 0.074 (10)* | |
O20 | −0.01440 (19) | 0.7318 (2) | 0.44092 (18) | 0.0557 (4) | |
H20A | −0.082 (4) | 0.729 (3) | 0.383 (3) | 0.092 (11)* | |
H20B | −0.048 (3) | 0.776 (3) | 0.497 (3) | 0.070 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02461 (8) | 0.02117 (8) | 0.02345 (8) | 0.00381 (6) | 0.00452 (6) | 0.00900 (6) |
S1 | 0.02902 (18) | 0.03198 (19) | 0.02573 (17) | −0.00689 (14) | 0.00212 (13) | 0.01250 (15) |
S2 | 0.02756 (17) | 0.0354 (2) | 0.02670 (18) | 0.00130 (14) | 0.00454 (13) | 0.01668 (15) |
S3 | 0.0560 (3) | 0.02537 (18) | 0.02544 (18) | −0.00262 (17) | 0.01059 (17) | 0.01015 (15) |
S4 | 0.02671 (16) | 0.02414 (17) | 0.03090 (18) | 0.00813 (13) | 0.01197 (13) | 0.01342 (14) |
O1 | 0.0746 (10) | 0.0502 (8) | 0.0237 (6) | 0.0060 (7) | 0.0030 (6) | 0.0132 (5) |
O2 | 0.0744 (10) | 0.0403 (7) | 0.0630 (9) | 0.0151 (7) | 0.0259 (8) | 0.0316 (7) |
O3 | 0.0291 (6) | 0.1148 (13) | 0.0692 (10) | −0.0021 (7) | 0.0074 (6) | 0.0689 (10) |
O4 | 0.0356 (7) | 0.0524 (8) | 0.0618 (9) | 0.0251 (6) | 0.0179 (6) | 0.0229 (7) |
O5 | 0.0985 (12) | 0.0319 (6) | 0.0513 (8) | 0.0170 (7) | 0.0449 (8) | 0.0242 (6) |
O6 | 0.0308 (6) | 0.0364 (7) | 0.0466 (7) | 0.0042 (5) | 0.0010 (5) | 0.0021 (5) |
N1 | 0.0255 (6) | 0.0260 (6) | 0.0290 (6) | 0.0060 (5) | 0.0052 (5) | 0.0132 (5) |
N2 | 0.0270 (7) | 0.0479 (9) | 0.0476 (9) | 0.0152 (6) | 0.0120 (6) | 0.0253 (7) |
N3 | 0.0239 (5) | 0.0217 (5) | 0.0234 (6) | 0.0036 (4) | 0.0068 (4) | 0.0097 (5) |
N4 | 0.0379 (7) | 0.0219 (6) | 0.0331 (7) | 0.0078 (5) | 0.0141 (6) | 0.0119 (5) |
C1 | 0.0325 (8) | 0.0364 (9) | 0.0334 (8) | 0.0085 (7) | −0.0011 (6) | 0.0040 (7) |
C2 | 0.0257 (8) | 0.0450 (10) | 0.0570 (12) | 0.0036 (7) | −0.0024 (8) | 0.0156 (9) |
C3 | 0.0425 (9) | 0.0500 (11) | 0.0373 (9) | 0.0219 (8) | 0.0164 (7) | 0.0172 (8) |
C4 | 0.0335 (8) | 0.0311 (8) | 0.0273 (7) | 0.0101 (6) | 0.0061 (6) | 0.0087 (6) |
C5 | 0.0377 (8) | 0.0255 (7) | 0.0294 (7) | 0.0066 (6) | −0.0024 (6) | 0.0085 (6) |
C6 | 0.0351 (8) | 0.0231 (7) | 0.0342 (8) | 0.0025 (6) | 0.0018 (6) | 0.0065 (6) |
C7 | 0.0349 (8) | 0.0307 (8) | 0.0336 (8) | 0.0105 (6) | 0.0027 (6) | 0.0133 (6) |
C8 | 0.0248 (7) | 0.0269 (7) | 0.0361 (8) | 0.0044 (5) | 0.0028 (6) | 0.0091 (6) |
O10 | 0.0428 (8) | 0.0457 (8) | 0.0492 (8) | 0.0068 (6) | 0.0067 (6) | 0.0197 (7) |
O20 | 0.0445 (8) | 0.0857 (12) | 0.0441 (9) | 0.0215 (8) | 0.0168 (7) | 0.0300 (9) |
Zn1—N3 | 2.0727 (12) | N4—H4BN | 0.93 (2) |
Zn1—N1 | 2.0879 (13) | C1—C2 | 1.516 (2) |
Zn1—S1 | 2.2927 (4) | C1—H1A | 0.9700 |
Zn1—S3 | 2.3324 (4) | C1—H1B | 0.9700 |
S1—S2 | 2.0511 (5) | C2—H2A | 0.9700 |
S2—O2 | 1.4437 (14) | C2—H2B | 0.9700 |
S2—O3 | 1.4539 (14) | C3—C4 | 1.510 (2) |
S2—O1 | 1.4606 (13) | C3—H3A | 0.9700 |
S3—S4 | 2.0332 (5) | C3—H3B | 0.9700 |
S4—O4 | 1.4507 (12) | C4—H4A | 0.9700 |
S4—O6 | 1.4546 (13) | C4—H4B | 0.9700 |
S4—O5 | 1.4623 (13) | C5—C6 | 1.518 (2) |
N1—C1 | 1.487 (2) | C5—H5A | 0.9700 |
N1—C4 | 1.4876 (19) | C5—H5B | 0.9700 |
N1—H1 | 0.83 (2) | C6—H6A | 0.9700 |
N2—C2 | 1.485 (2) | C6—H6B | 0.9700 |
N2—C3 | 1.489 (2) | C7—C8 | 1.511 (2) |
N2—H2AN | 0.95 (2) | C7—H7A | 0.9700 |
N2—H2BN | 0.93 (2) | C7—H7B | 0.9700 |
N3—C5 | 1.4779 (19) | C8—H8A | 0.9700 |
N3—C8 | 1.4820 (18) | C8—H8B | 0.9700 |
N3—H3 | 0.837 (18) | O10—H10A | 0.85 (3) |
N4—C6 | 1.484 (2) | O10—H10B | 0.76 (3) |
N4—C7 | 1.491 (2) | O20—H20A | 0.81 (3) |
N4—H4AN | 0.87 (2) | O20—H20B | 0.74 (3) |
N3—Zn1—N1 | 105.78 (5) | N1—C1—H1B | 108.9 |
N3—Zn1—S1 | 110.79 (3) | C2—C1—H1B | 108.9 |
N1—Zn1—S1 | 112.90 (4) | H1A—C1—H1B | 107.7 |
N3—Zn1—S3 | 101.24 (4) | N2—C2—C1 | 109.22 (14) |
N1—Zn1—S3 | 108.21 (4) | N2—C2—H2A | 109.8 |
S1—Zn1—S3 | 116.788 (16) | C1—C2—H2A | 109.8 |
S2—S1—Zn1 | 98.167 (18) | N2—C2—H2B | 109.8 |
O2—S2—O3 | 112.85 (10) | C1—C2—H2B | 109.8 |
O2—S2—O1 | 110.61 (9) | H2A—C2—H2B | 108.3 |
O3—S2—O1 | 111.04 (10) | N2—C3—C4 | 109.77 (14) |
O2—S2—S1 | 109.71 (6) | N2—C3—H3A | 109.7 |
O3—S2—S1 | 107.00 (6) | C4—C3—H3A | 109.7 |
O1—S2—S1 | 105.27 (6) | N2—C3—H3B | 109.7 |
S4—S3—Zn1 | 101.05 (2) | C4—C3—H3B | 109.7 |
O4—S4—O6 | 110.47 (8) | H3A—C3—H3B | 108.2 |
O4—S4—O5 | 111.17 (9) | N1—C4—C3 | 113.09 (14) |
O6—S4—O5 | 112.02 (9) | N1—C4—H4A | 109.0 |
O4—S4—S3 | 110.45 (6) | C3—C4—H4A | 109.0 |
O6—S4—S3 | 108.00 (6) | N1—C4—H4B | 109.0 |
O5—S4—S3 | 104.53 (5) | C3—C4—H4B | 109.0 |
C1—N1—C4 | 110.39 (12) | H4A—C4—H4B | 107.8 |
C1—N1—Zn1 | 112.60 (10) | N3—C5—C6 | 113.06 (12) |
C4—N1—Zn1 | 109.65 (9) | N3—C5—H5A | 109.0 |
C1—N1—H1 | 105.4 (13) | C6—C5—H5A | 109.0 |
C4—N1—H1 | 112.1 (13) | N3—C5—H5B | 109.0 |
Zn1—N1—H1 | 106.6 (13) | C6—C5—H5B | 109.0 |
C2—N2—C3 | 110.50 (14) | H5A—C5—H5B | 107.8 |
C2—N2—H2AN | 111.5 (13) | N4—C6—C5 | 110.10 (13) |
C3—N2—H2AN | 107.0 (14) | N4—C6—H6A | 109.6 |
C2—N2—H2BN | 107.5 (14) | C5—C6—H6A | 109.6 |
C3—N2—H2BN | 114.4 (14) | N4—C6—H6B | 109.6 |
H2AN—N2—H2BN | 106.1 (19) | C5—C6—H6B | 109.6 |
C5—N3—C8 | 110.20 (12) | H6A—C6—H6B | 108.2 |
C5—N3—Zn1 | 112.71 (9) | N4—C7—C8 | 110.19 (13) |
C8—N3—Zn1 | 111.95 (9) | N4—C7—H7A | 109.6 |
C5—N3—H3 | 109.2 (12) | C8—C7—H7A | 109.6 |
C8—N3—H3 | 106.3 (12) | N4—C7—H7B | 109.6 |
Zn1—N3—H3 | 106.2 (12) | C8—C7—H7B | 109.6 |
C6—N4—C7 | 110.40 (12) | H7A—C7—H7B | 108.1 |
C6—N4—H4AN | 113.4 (13) | N3—C8—C7 | 112.29 (12) |
C7—N4—H4AN | 107.0 (13) | N3—C8—H8A | 109.1 |
C6—N4—H4BN | 114.3 (13) | C7—C8—H8A | 109.1 |
C7—N4—H4BN | 106.1 (13) | N3—C8—H8B | 109.1 |
H4AN—N4—H4BN | 105.1 (17) | C7—C8—H8B | 109.1 |
N1—C1—C2 | 113.43 (15) | H8A—C8—H8B | 107.9 |
N1—C1—H1A | 108.9 | H10A—O10—H10B | 109 (3) |
C2—C1—H1A | 108.9 | H20A—O20—H20B | 100 (3) |
C4—N1—C1—C2 | 52.0 (2) | C8—N3—C5—C6 | −53.62 (19) |
Zn1—N1—C1—C2 | 174.88 (12) | Zn1—N3—C5—C6 | −179.47 (11) |
C3—N2—C2—C1 | 59.1 (2) | C7—N4—C6—C5 | −57.01 (18) |
N1—C1—C2—N2 | −56.1 (2) | N3—C5—C6—N4 | 55.66 (19) |
C2—N2—C3—C4 | −59.4 (2) | C6—N4—C7—C8 | 58.03 (18) |
C1—N1—C4—C3 | −51.76 (19) | C5—N3—C8—C7 | 54.16 (18) |
Zn1—N1—C4—C3 | −176.37 (11) | Zn1—N3—C8—C7 | −179.56 (11) |
N2—C3—C4—N1 | 56.0 (2) | N4—C7—C8—N3 | −56.96 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.83 (2) | 2.25 (2) | 3.041 (2) | 160 (2) |
N2—H2AN···O6ii | 0.95 (3) | 1.80 (3) | 2.730 (2) | 166 (2) |
N2—H2BN···O10 | 0.93 (2) | 1.89 (2) | 2.811 (3) | 170 (2) |
N3—H3···O3i | 0.84 (2) | 2.03 (2) | 2.853 (2) | 166 (2) |
N4—H4AN···O20 | 0.87 (2) | 2.09 (2) | 2.892 (2) | 154 (2) |
N4—H4BN···O5iii | 0.94 (2) | 1.84 (2) | 2.763 (2) | 169 (2) |
O10—H10A···O4 | 0.85 (3) | 1.94 (4) | 2.780 (2) | 175 (3) |
O10—H10B···O1iv | 0.76 (3) | 2.02 (3) | 2.777 (2) | 176 (4) |
O20—H20A···O1v | 0.82 (3) | 2.02 (3) | 2.804 (2) | 163 (3) |
O20—H20B···O5vi | 0.74 (3) | 2.17 (3) | 2.866 (2) | 158 (3) |
C3—H3A···O6iv | 0.97 | 2.45 | 3.221 (2) | 136 |
C4—H4A···O3 | 0.97 | 2.49 | 3.175 (3) | 128 |
C4—H4B···O4 | 0.97 | 2.54 | 3.463 (2) | 159 |
C5—H5B···S3 | 0.97 | 2.86 | 3.453 (2) | 120 |
C8—H8B···O2 | 0.97 | 2.50 | 3.318 (2) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x+1, −y, −z; (v) −x, −y+1, −z; (vi) −x, −y+1, −z+1. |
Acknowledgements
The author thanks Professor S. Natarajan for providing facilities.
Funding information
The author thanks the SERB and DST, India, for research grants.
References
Baggio, R., Baggio, S., Pardo, M. I. & Garland, M. T. (1996). Acta Cryst. C52, 1939–1942. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Baggio, S., Pardo, M. I., Baggio, R. & Garland, M. T. (1997). Acta Cryst. C53, 727–729. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Díaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. C62, m192–m194. CSD CrossRef IUCr Journals Google Scholar
Díaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m123–m125. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Férey, G. (2008). Chem. Soc. Rev. 37, 191–214. Web of Science PubMed Google Scholar
Freire, E., Baggio, S., Baggio, R. & Mombrú, A. (2001). Acta Cryst. C57, 14–17. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harvey, M., Baggio, S., Pardo, H. & Baggio, R. (2004). Acta Cryst. C60, m79–m81. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Karthik, R. & Natarajan, S. (2016). Cryst. Growth Des. 16, 2239–2248. CSD CrossRef CAS Google Scholar
Paul, A. K. (2016). J. Mol. Struct. 1125, 696–704. CSD CrossRef CAS Google Scholar
Paul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741–5749. Web of Science CSD CrossRef CAS Google Scholar
Paul, A. K., Madras, G. & Natarajan, S. (2009a). CrystEngComm, 11, 55–57. CSD CrossRef CAS Google Scholar
Paul, A. K., Madras, G. & Natarajan, S. (2009b). Phys. Chem. Chem. Phys. 11, 11285–11296. PubMed Google Scholar
Paul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. 39, 2263–2279. CSD CrossRef CAS PubMed Google Scholar
Rao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375–387. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55–61. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.