research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic polymorph of chlorido­(di­methyl sulfoxide-κO)tri­phenyl­tin(IV)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sgne0281@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 December 2017; accepted 7 January 2018; online 12 January 2018)

The crystal structure of the title tin complex, [Sn(C6H5)3Cl(C2H6OS)], (I), has been reported with one mol­ecule in the asymmetric unit in an ortho­rhom­bic cell [Kumar et al. (2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.]). Acta Cryst. E65, m1602–m1603]. While using SnPh3Cl as a starting material for a reaction for which the products were recrystallized over a very long time (six months) from dimethyl sulfoxide (DMSO), a new polymorph was obtained for (I), with two independent mol­ecules in the asymmetric unit of a monoclinic cell. The coordination geometry of the Sn centres remains unchanged, with the Cl ion and the DMSO mol­ecule in the apical positions and the phenyl C atoms in the equatorial positions of a trigonal bipyramid. The main difference between the polymorphs is the relative orientation of the phenyl rings in the equatorial plane, reflecting a degree of free rotation of these groups about their Sn—C bonds. In the crystal, mol­ecules are linked into [010] chains mediated by weak C—H⋯O inter­actions.

1. Chemical context

The Dakar research group and others worldwide have been focusing for a long time on the study of inter­actions of ammonium salts of oxyacids with metallic halides, to obtain adducts and complexes in which the oxyanion behaves as a ligand through its O atoms (Diassé-Sarr & Diop, 2011[Diassé-Sarr, A. & Diop, L. (2011). St. Cerc. St. CICBIA, 12, 203-205.]; Pouye et al., 2014[Pouye, S. F., Cissé, I., Diop, L. & Diop, L. A. D. (2014). St. Cerc. St. CICBIA, 15, 149-153.]; Toure et al., 2016[Toure, A., Diop, L., Diop, C. A. K. & Oliver, A. G. (2016). Acta Cryst. E72, 1830-1832.]; Sarr et al., 2016[Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.]; Ng & Hook, 1999[Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310-312.]). The main advantage of this general strategy is the high solubility of the ammonium salts in common organic solvents, which facilitates the development of traditional synthetic methods in solution. The well-known flip side is that separation and purification procedures are almost always necessary, and that such syntheses are not in line with the principles of Green Chemistry, since solvent is an intrinsic waste.

However, from time to time, when the recrystallization is the method of purification, as-yet undiscovered polymorphs of unreacted materials, products or by-products, are emerging. In such instances, the involved chemistry may be of little inter­est, while the chemical crystallography of the unexpected polymorph(s) may be of significant inter­est, even in borderline cases like the disappearing polymorphs (Bučar et al., 2015[Bučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972-6993.]). Actually, the propensity of a given mol­ecule to crystallize in various polymorphic forms is still difficult to predict (Price, 2009[Price, S. L. (2009). Acc. Chem. Res. 42, 117-126.]), and, for example, Ostwald's `law of stages' that states it is the least stable polymorph that crystallizes first, is of limited inter­est for concrete crystallizations (Threlfall, 2003[Threlfall, T. (2003). Org. Process Res. Dev. 7, 1017-1027.]). The current situation is thus that a significant number of new polymorphs are still obtained serendipitously, using a technique that could be coined as crystallization by oblivion. The herein reported title compound, (I)[link], a new monoclinic polymorph of a frequently used starting material in tin chemistry, was obtained in this way: in one of our research programs, we have initiated the study of the inter­actions between [CH3NH2(CH2)2NH2CH3]SO4 and SnPh3Cl in a mixture of CH2Cl2 and dimethyl sulfoxide (DMSO) as solvent. One of the products obtained in an attempt of crystallization carried out over a very long time was the adduct obtained by addition of DMSO to the starting material SnPh3Cl, to form [SnPh3Cl(DMSO)]. The crystal structure of this compound has been reported previously, in space group P212121 (Kumar et al., 2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.]; CSD refcode: RUGYOI, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In that case, crystals were obtained by dissolving SnPh3Cl in hot DMSO, affording fine colourless crystals by solvent evaporation over three days.

[Scheme 1]

2. Structural commentary

Instead of the known ortho­rhom­bic structure of the title compound, we crystallized a monoclinic polymorph, in space group P21, with two mol­ecules in the asymmetric unit (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit for the new monoclinic phase of the title compound, with displacement ellipsoids at the 30% probability level. The inset is a fit between independent mol­ecules, based on all non-H atoms (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), evidencing the rotation of one phenyl ring.

The independent mol­ecules display different conformations, as a consequence of a degree of free rotation of the phenyl groups about their Sn—C bonds. An overlay between both mol­ecules gives deviations as high as 1.7 Å, and the rotation of one phenyl group is obvious (Fig. 1[link], inset). This conformational flexibility seems to be the reason why the compound has at least two stable polymorphs, even if the trigonal–bipyramidal geometry for the Sn centre is retained. The relative orientation of the phenyl rings in the observed conformers may be estimated using the dihedral angles formed by the rings in each mol­ecule. These angles span a large range, from 28.3 (4) to 87.2° (Table 1[link]). As a consequence, the orientation of the DMSO mol­ecule with respect to the SnPh3 core is also variable. In the ortho­rhom­bic phase, the S—Me groups of DMSO are staggered with the Sn—C bonds; in the new monoclinic phase, one complex displays a similar conformation, while in the other the S—Me groups are eclipsed with the Sn—C bonds (Fig. 2[link]). The resulting simulated powder diffraction patterns for each polymorph are, as expected, also very different (Fig. 2[link]).

Table 1
Relative orientation (°) of the phenyl rings in the three conformers of the title mol­ecule

Rings are arbitrarily labelled φi (i = 1, 2, 3) to compute the dihedral angles δi. For (I)[link], δi angles were calculated with SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Dihedral angle P212121 phasea P21 phase, mol­ecule 1 P21 phase, mol­ecule 2
δ1 = φ1/φ2 63.5 65.1 (2) 53.6 (3)
δ2 = φ2/φ3 70.7 65.1 (2) 59.1 (3)
δ3 = φ1/φ3 87.2 28.3 (4) 39.2 (3)
Note: (a) Kumar et al., 2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.].
[Figure 2]
Figure 2
A comparison of the observed conformers for the title compound, viewed down the Cl—Sn—O axis (top: the previously known polymorph; bottom: the new P21 polymorph). Note the different orientations observed for the apical DMSO mol­ecule. The calculated powder patterns displayed on the right show that both polymorphs are crystallographically very different. Patterns were calculated with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; 5 < 2θ < 40°, λ = 1.54056 Å, FWHM = 0.2°).

With such contrasting features for the dimorphic phases of [SnPh3Cl(DMSO)], obtained basically from DMSO solutions using short and long evaporation times, one could expect the apparition of other phases under different conditions of crystallization, for example by varying the solvent or the temperature of crystallization.

3. Supra­molecular features

In the extended structure of the ortho­rhom­bic phase, one methyl group in DMSO forms weak C—H⋯Cl and C—H⋯π inter­actions, and mol­ecules related by the 21 screw axis in the [010] direction feature ππ inter­actions between two phenyl rings, separated by 3.934 (3) Å (Kumar et al., 2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.]). In the monoclinic form, mol­ecules related through the 21 axis in space group P21 no longer form ππ inter­actions. The supra­molecular structure of (I)[link] is based rather on weak C—H⋯Cl contacts involving, as in the first polymorph, the methyl groups of the DMSO mol­ecule as donor, with H⋯Cl separations ranging from 2.82 to 2.94 Å. The resulting supra­molecular one-dimensional structure is a zigzag chain of alternating Sn1 and Sn2 independent mol­ecules, running along the screw axis (Fig. 3[link]). The absence of other stabilizing inter­molecular contacts may suggest a less thermodynamically stable crystal, compared to the ortho­rhom­bic crystal obtained by fast crystallization, in contradiction with Ostwald's rule (Threlfall, 2003[Threlfall, T. (2003). Org. Process Res. Dev. 7, 1017-1027.]). However, the crystal structures are in agreement with the calculated densities for both polymorphs: 1.562 g cm−3 for the ortho­rhom­bic form and 1.514 g cm−3 for the less stable monoclinic form reported here.

[Figure 3]
Figure 3
Part of the crystal structure of the title polymorph, showing the supra­molecular network formed along the screw axis 21 in space group P21. Dashed bonds represent C—H⋯Cl inter­molecular contacts. [Symmetry codes: (i) −1 + x, y, −1 + z; (ii) 1 − x, −[{1\over 2}] + y, 1 − z; (iii) −x, −[{1\over 2}] + y, −z.]

4. Database survey

According to the CSD (V5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), DMSO is a good coordinating solvent for tin: 64 hits may be recovered, in which the average value for the bond length Sn—O is 2.27 (11) Å for 105 instances. The bond length characterizing the coordination of DMSO in the monoclinic polymorph is very long compared to this average: the bond lengths Sn1—O1 and Sn2—O2 are 2.487 (4) and 2.368 (4) Å, respectively, reflecting a coordination of limited strength. Again, the ortho­rhom­bic form seems to be stabilized by comparison with the monoclinic form, as the DMSO is more tightly coordinated, with Sn—O(DMSO) = 2.311 (3) Å (Kumar et al., 2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.]).

5. Synthesis and crystallization

[CH3NH2(CH2)2NH2CH3]SO4 has been synthesized on allowing CH3NH(CH2)2NHCH3 to react with H2SO4 in water in a 1:1 ratio. Slow evaporation of the resulting solution at 300 K gave after six weeks a yellowish viscous liquid supposed to be [CH3NH2(CH2)2NH2CH3]SO4 (L). When L (0.024 g, 0.130 mmol) dissolved in 50 ml of a 1:1 water/ethanol mixture was reacted with SnPh3Cl (0.100 g, 0.260 mmol) dissolved in a 1:1 di­chloro­methane/methanol mixture (50 ml), a slightly cloudy solution was obtained and filtered. The filtrate, when submitted to a slow solvent evaporation at 300 K over three days, produced a powder, which was redissolved in DMSO. Slow solvent evaporation at 300 K over six months afforded colourless blocks of (I)[link] suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) =1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The absolute configuration was assigned on the basis of the refinement of the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C6H5)3Cl(C2H6OS)]
Mr 463.57
Crystal system, space group Monoclinic, P21
Temperature (K) 297
a, b, c (Å) 8.81934 (18), 15.3698 (3), 15.4209 (3)
β (°) 103.294 (2)
V3) 2034.31 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.49
Crystal size (mm) 0.48 × 0.30 × 0.23
 
Data collection
Diffractometer Rigaku OD Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.880, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 133515, 14767, 10835
Rint 0.051
(sin θ/λ)max−1) 0.767
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.04
No. of reflections 14767
No. of parameters 437
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.48, −0.75
Absolute structure Flack x determined using 4338 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.039 (6)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

Chlorido(dimethyl sulfoxide-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3Cl(C2H6OS)]F(000) = 928
Mr = 463.57Dx = 1.514 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.81934 (18) ÅCell parameters from 28302 reflections
b = 15.3698 (3) Åθ = 3.3–25.8°
c = 15.4209 (3) ŵ = 1.49 mm1
β = 103.294 (2)°T = 297 K
V = 2034.31 (7) Å3Block, colourless
Z = 40.48 × 0.30 × 0.23 mm
Data collection top
Rigaku OD Xcalibur Atlas Gemini
diffractometer
14767 independent reflections
Radiation source: Enhance (Mo) X-ray Source10835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.5564 pixels mm-1θmax = 33.0°, θmin = 3.0°
ω scansh = 1313
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
k = 2323
Tmin = 0.880, Tmax = 0.941l = 2323
133515 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0301P)2 + 1.1572P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14767 reflectionsΔρmax = 1.48 e Å3
437 parametersΔρmin = 0.74 e Å3
1 restraintAbsolute structure: Flack x determined using 4338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.039 (6)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.34055 (4)0.62754 (2)0.81374 (2)0.04086 (8)
Cl10.14377 (15)0.71185 (10)0.70653 (11)0.0575 (3)
S10.6727 (2)0.60605 (13)0.98769 (13)0.0760 (5)
O10.5508 (5)0.5538 (3)0.9246 (3)0.0626 (10)
C10.6394 (12)0.5930 (10)1.0910 (6)0.154 (7)
H1A0.5304480.6009271.0884280.232*
H1B0.6985770.6352311.1307560.232*
H1C0.6702870.5355481.1123500.232*
C20.8465 (9)0.5461 (9)1.0021 (7)0.121 (3)
H2A0.8295880.4881051.0211270.182*
H2B0.9263070.5737061.0464030.182*
H2C0.8783780.5436180.9466990.182*
C30.3347 (6)0.7082 (3)0.9248 (3)0.0440 (11)
C40.2591 (8)0.6773 (4)0.9877 (4)0.0589 (15)
H40.2098880.6234500.9788330.071*
C50.2546 (9)0.7242 (5)1.0634 (5)0.0741 (19)
H50.2020980.7027001.1047030.089*
C60.3290 (10)0.8032 (6)1.0764 (5)0.084 (2)
H60.3293550.8346201.1279940.101*
C70.4025 (9)0.8362 (5)1.0150 (6)0.084 (2)
H70.4496450.8906231.0238320.101*
C80.4066 (8)0.7885 (4)0.9395 (5)0.0661 (16)
H80.4582690.8107220.8981470.079*
C90.2087 (6)0.5120 (3)0.8110 (3)0.0419 (11)
C100.2788 (9)0.4313 (4)0.8150 (4)0.0579 (14)
H100.3852180.4269730.8186180.070*
C110.1885 (11)0.3558 (4)0.8136 (4)0.075 (2)
H110.2361120.3015690.8164620.090*
C120.0321 (11)0.3608 (5)0.8082 (5)0.080 (2)
H120.0263610.3104140.8080450.096*
C130.0371 (9)0.4402 (6)0.8030 (5)0.076 (2)
H130.1438320.4438170.7987110.091*
C140.0488 (7)0.5163 (4)0.8039 (4)0.0578 (14)
H140.0006950.5700400.7998420.069*
C150.5039 (5)0.6303 (4)0.7325 (3)0.0449 (10)
C160.6395 (7)0.6785 (4)0.7522 (5)0.0625 (15)
H160.6657340.7092820.8054630.075*
C170.7363 (8)0.6816 (6)0.6940 (7)0.087 (2)
H170.8257100.7157350.7073480.105*
C180.7026 (10)0.6354 (7)0.6177 (7)0.099 (3)
H180.7695860.6372200.5790730.119*
C190.5686 (12)0.5852 (6)0.5964 (6)0.097 (3)
H190.5460930.5528160.5440260.116*
C200.4687 (8)0.5835 (4)0.6535 (4)0.0616 (15)
H200.3774990.5509090.6388750.074*
Sn20.21662 (4)0.54546 (2)0.32336 (2)0.04487 (8)
Cl20.03762 (16)0.62413 (13)0.27444 (12)0.0729 (4)
S20.52976 (17)0.39472 (10)0.33520 (9)0.0526 (3)
O20.4552 (4)0.4702 (3)0.3724 (3)0.0534 (9)
C210.7148 (10)0.4347 (6)0.3252 (8)0.111 (4)
H21A0.7005020.4759380.2771820.166*
H21B0.7775660.3871830.3131900.166*
H21C0.7660400.4626500.3797610.166*
C220.5951 (9)0.3236 (4)0.4253 (5)0.0731 (18)
H22A0.6518750.3559470.4756440.110*
H22B0.6619690.2803550.4089520.110*
H22C0.5072840.2957840.4404330.110*
C230.1457 (6)0.4846 (4)0.4317 (3)0.0465 (11)
C240.1469 (7)0.3946 (4)0.4382 (4)0.0604 (14)
H240.1861220.3613480.3980090.073*
C250.0900 (9)0.3541 (6)0.5046 (5)0.082 (2)
H250.0876110.2936350.5072760.098*
C260.0380 (9)0.4017 (8)0.5655 (5)0.091 (3)
H260.0029010.3741220.6108130.109*
C270.0370 (9)0.4904 (7)0.5604 (5)0.084 (2)
H270.0008940.5229370.6023740.101*
C280.0893 (7)0.5321 (5)0.4932 (4)0.0683 (16)
H280.0863860.5925210.4896350.082*
C290.1821 (6)0.4685 (4)0.2058 (3)0.0449 (11)
C300.2624 (8)0.4840 (5)0.1406 (4)0.0627 (16)
H300.3336520.5295060.1475140.075*
C310.2388 (10)0.4330 (6)0.0654 (5)0.081 (2)
H310.2924240.4452300.0214730.097*
C320.1357 (10)0.3636 (6)0.0544 (5)0.083 (2)
H320.1220270.3284010.0042000.099*
C330.0542 (9)0.3475 (5)0.1184 (5)0.077 (2)
H330.0163180.3016580.1117620.093*
C340.0780 (7)0.4004 (4)0.1930 (4)0.0608 (15)
H340.0216840.3894950.2360200.073*
C350.3540 (6)0.6620 (4)0.3340 (4)0.0477 (12)
C360.2896 (8)0.7420 (4)0.3393 (4)0.0596 (15)
H360.1843430.7457180.3392150.072*
C370.3757 (9)0.8177 (4)0.3449 (5)0.0664 (17)
H370.3293040.8713490.3492980.080*
C380.5283 (9)0.8128 (5)0.3439 (5)0.0745 (19)
H380.5865150.8636550.3473230.089*
C390.5983 (9)0.7348 (5)0.3381 (6)0.087 (2)
H390.7035610.7322560.3379420.104*
C400.5110 (8)0.6591 (5)0.3323 (6)0.074 (2)
H400.5579480.6057510.3272310.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04052 (16)0.03857 (15)0.04383 (16)0.00402 (14)0.01042 (12)0.00110 (15)
Cl10.0418 (6)0.0626 (8)0.0669 (8)0.0044 (6)0.0100 (6)0.0178 (7)
S10.0559 (9)0.0893 (13)0.0750 (11)0.0037 (8)0.0011 (8)0.0046 (9)
O10.065 (2)0.055 (2)0.057 (2)0.007 (2)0.0088 (18)0.000 (2)
C10.082 (6)0.30 (2)0.070 (5)0.013 (8)0.003 (5)0.019 (8)
C20.066 (5)0.174 (10)0.117 (7)0.033 (6)0.008 (5)0.025 (8)
C30.046 (3)0.040 (2)0.044 (3)0.001 (2)0.006 (2)0.003 (2)
C40.072 (4)0.048 (3)0.059 (4)0.004 (3)0.019 (3)0.002 (3)
C50.082 (5)0.089 (5)0.059 (4)0.019 (4)0.031 (4)0.005 (4)
C60.089 (5)0.091 (5)0.070 (5)0.011 (4)0.014 (4)0.033 (4)
C70.084 (5)0.072 (5)0.095 (6)0.016 (4)0.021 (4)0.037 (4)
C80.069 (4)0.061 (4)0.068 (4)0.014 (3)0.015 (3)0.015 (3)
C90.050 (3)0.043 (3)0.034 (2)0.008 (2)0.010 (2)0.0001 (19)
C100.076 (4)0.048 (3)0.049 (3)0.004 (3)0.013 (3)0.002 (2)
C110.124 (7)0.041 (3)0.059 (4)0.017 (4)0.018 (4)0.005 (3)
C120.116 (7)0.074 (5)0.054 (4)0.049 (5)0.026 (4)0.008 (3)
C130.070 (4)0.103 (6)0.059 (4)0.045 (4)0.021 (3)0.011 (4)
C140.056 (3)0.066 (4)0.055 (3)0.012 (3)0.021 (3)0.004 (3)
C150.034 (2)0.049 (2)0.052 (3)0.005 (2)0.0104 (18)0.007 (3)
C160.043 (3)0.067 (4)0.076 (4)0.002 (2)0.010 (3)0.012 (3)
C170.046 (4)0.094 (6)0.130 (7)0.007 (3)0.038 (4)0.029 (5)
C180.079 (5)0.110 (6)0.133 (8)0.018 (5)0.074 (5)0.026 (7)
C190.128 (8)0.101 (6)0.074 (5)0.036 (5)0.047 (5)0.001 (4)
C200.060 (4)0.068 (4)0.061 (4)0.002 (3)0.023 (3)0.007 (3)
Sn20.03997 (16)0.04791 (18)0.04579 (17)0.00040 (15)0.00790 (13)0.00084 (15)
Cl20.0441 (7)0.0668 (8)0.0983 (11)0.0105 (8)0.0033 (7)0.0098 (10)
S20.0523 (8)0.0547 (7)0.0489 (7)0.0072 (6)0.0076 (6)0.0020 (6)
O20.0425 (19)0.056 (2)0.059 (2)0.0104 (17)0.0079 (17)0.0024 (18)
C210.082 (5)0.080 (5)0.196 (11)0.022 (4)0.086 (7)0.031 (6)
C220.081 (5)0.070 (4)0.070 (4)0.020 (3)0.020 (4)0.015 (3)
C230.037 (2)0.062 (3)0.040 (2)0.001 (2)0.008 (2)0.002 (2)
C240.063 (4)0.064 (3)0.055 (3)0.005 (3)0.016 (3)0.009 (3)
C250.085 (5)0.087 (5)0.073 (5)0.007 (4)0.016 (4)0.027 (4)
C260.062 (4)0.163 (9)0.050 (4)0.007 (5)0.016 (3)0.023 (5)
C270.071 (5)0.139 (8)0.050 (4)0.008 (5)0.027 (3)0.019 (4)
C280.066 (4)0.080 (5)0.061 (4)0.005 (3)0.019 (3)0.011 (3)
C290.044 (3)0.054 (3)0.036 (2)0.005 (2)0.010 (2)0.004 (2)
C300.060 (4)0.078 (4)0.055 (3)0.002 (3)0.023 (3)0.012 (3)
C310.093 (5)0.109 (6)0.050 (4)0.028 (5)0.032 (4)0.015 (4)
C320.104 (6)0.088 (5)0.050 (4)0.026 (5)0.005 (4)0.013 (4)
C330.089 (5)0.076 (4)0.057 (4)0.015 (4)0.004 (4)0.012 (3)
C340.062 (4)0.070 (4)0.051 (3)0.013 (3)0.014 (3)0.007 (3)
C350.047 (3)0.049 (3)0.045 (3)0.003 (2)0.007 (2)0.001 (2)
C360.059 (4)0.060 (3)0.057 (4)0.003 (3)0.007 (3)0.007 (3)
C370.080 (5)0.049 (3)0.063 (4)0.000 (3)0.003 (3)0.001 (3)
C380.084 (5)0.059 (4)0.078 (5)0.021 (4)0.012 (4)0.005 (3)
C390.065 (4)0.066 (4)0.137 (8)0.020 (3)0.035 (5)0.003 (4)
C400.052 (4)0.064 (4)0.109 (6)0.001 (3)0.026 (4)0.004 (4)
Geometric parameters (Å, º) top
Sn1—C152.115 (4)Sn2—C292.127 (5)
Sn1—C92.118 (5)Sn2—C232.130 (5)
Sn1—C32.125 (5)Sn2—C352.147 (6)
Sn1—Cl12.4708 (14)Sn2—O22.368 (4)
Sn1—O12.487 (4)Sn2—Cl22.5061 (14)
S1—O11.505 (4)S2—O21.510 (4)
S1—C11.697 (10)S2—C221.757 (6)
S1—C21.758 (9)S2—C211.784 (8)
C1—H1A0.9600C21—H21A0.9600
C1—H1B0.9600C21—H21B0.9600
C1—H1C0.9600C21—H21C0.9600
C2—H2A0.9600C22—H22A0.9600
C2—H2B0.9600C22—H22B0.9600
C2—H2C0.9600C22—H22C0.9600
C3—C41.381 (8)C23—C281.378 (8)
C3—C81.383 (8)C23—C241.386 (8)
C4—C51.379 (9)C24—C251.388 (9)
C4—H40.9300C24—H240.9300
C5—C61.373 (11)C25—C261.351 (12)
C5—H50.9300C25—H250.9300
C6—C71.362 (12)C26—C271.364 (13)
C6—H60.9300C26—H260.9300
C7—C81.384 (9)C27—C281.385 (10)
C7—H70.9300C27—H270.9300
C8—H80.9300C28—H280.9300
C9—C101.381 (8)C29—C341.377 (8)
C9—C141.390 (8)C29—C301.377 (8)
C10—C111.405 (9)C30—C311.375 (10)
C10—H100.9300C30—H300.9300
C11—C121.364 (11)C31—C321.386 (12)
C11—H110.9300C31—H310.9300
C12—C131.359 (12)C32—C331.370 (11)
C12—H120.9300C32—H320.9300
C13—C141.391 (9)C33—C341.385 (9)
C13—H130.9300C33—H330.9300
C14—H140.9300C34—H340.9300
C15—C161.381 (8)C35—C361.366 (8)
C15—C201.387 (8)C35—C401.391 (8)
C16—C171.375 (10)C36—C371.381 (9)
C16—H160.9300C36—H360.9300
C17—C181.348 (13)C37—C381.351 (10)
C17—H170.9300C37—H370.9300
C18—C191.386 (13)C38—C391.361 (11)
C18—H180.9300C38—H380.9300
C19—C201.382 (10)C39—C401.386 (9)
C19—H190.9300C39—H390.9300
C20—H200.9300C40—H400.9300
C15—Sn1—C9116.8 (2)C29—Sn2—C23114.4 (2)
C15—Sn1—C3127.7 (2)C29—Sn2—C35119.8 (2)
C9—Sn1—C3112.9 (2)C23—Sn2—C35124.7 (2)
C15—Sn1—Cl193.59 (13)C29—Sn2—O286.73 (16)
C9—Sn1—Cl197.39 (15)C23—Sn2—O286.23 (17)
C3—Sn1—Cl195.16 (14)C35—Sn2—O286.50 (18)
C15—Sn1—O185.09 (16)C29—Sn2—Cl293.96 (14)
C9—Sn1—O187.17 (17)C23—Sn2—Cl292.53 (14)
C3—Sn1—O182.21 (17)C35—Sn2—Cl294.06 (16)
Cl1—Sn1—O1175.36 (11)O2—Sn2—Cl2178.75 (11)
O1—S1—C1107.0 (5)O2—S2—C22105.6 (3)
O1—S1—C2105.9 (4)O2—S2—C21104.8 (3)
C1—S1—C298.8 (5)C22—S2—C2198.2 (4)
S1—O1—Sn1120.6 (2)S2—O2—Sn2133.4 (2)
S1—C1—H1A109.5S2—C21—H21A109.5
S1—C1—H1B109.5S2—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
S1—C1—H1C109.5S2—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
S1—C2—H2A109.5S2—C22—H22A109.5
S1—C2—H2B109.5S2—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
S1—C2—H2C109.5S2—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
C4—C3—C8118.0 (5)C28—C23—C24118.5 (6)
C4—C3—Sn1118.1 (4)C28—C23—Sn2121.6 (5)
C8—C3—Sn1123.9 (4)C24—C23—Sn2119.8 (4)
C5—C4—C3121.8 (6)C23—C24—C25120.3 (7)
C5—C4—H4119.1C23—C24—H24119.9
C3—C4—H4119.1C25—C24—H24119.9
C6—C5—C4118.7 (7)C26—C25—C24120.4 (8)
C6—C5—H5120.7C26—C25—H25119.8
C4—C5—H5120.7C24—C25—H25119.8
C7—C6—C5121.0 (7)C25—C26—C27120.1 (7)
C7—C6—H6119.5C25—C26—H26120.0
C5—C6—H6119.5C27—C26—H26120.0
C6—C7—C8119.7 (7)C26—C27—C28120.4 (7)
C6—C7—H7120.1C26—C27—H27119.8
C8—C7—H7120.1C28—C27—H27119.8
C3—C8—C7120.7 (7)C23—C28—C27120.3 (7)
C3—C8—H8119.6C23—C28—H28119.8
C7—C8—H8119.6C27—C28—H28119.8
C10—C9—C14118.8 (5)C34—C29—C30117.7 (5)
C10—C9—Sn1120.9 (4)C34—C29—Sn2120.3 (4)
C14—C9—Sn1120.3 (4)C30—C29—Sn2122.0 (5)
C9—C10—C11119.7 (7)C31—C30—C29120.9 (7)
C9—C10—H10120.2C31—C30—H30119.5
C11—C10—H10120.2C29—C30—H30119.5
C12—C11—C10121.1 (7)C30—C31—C32120.6 (7)
C12—C11—H11119.5C30—C31—H31119.7
C10—C11—H11119.5C32—C31—H31119.7
C13—C12—C11119.2 (6)C33—C32—C31119.3 (7)
C13—C12—H12120.4C33—C32—H32120.4
C11—C12—H12120.4C31—C32—H32120.4
C12—C13—C14121.2 (7)C32—C33—C34119.2 (7)
C12—C13—H13119.4C32—C33—H33120.4
C14—C13—H13119.4C34—C33—H33120.4
C9—C14—C13120.1 (6)C29—C34—C33122.2 (6)
C9—C14—H14120.0C29—C34—H34118.9
C13—C14—H14120.0C33—C34—H34118.9
C16—C15—C20118.6 (5)C36—C35—C40117.3 (6)
C16—C15—Sn1123.7 (4)C36—C35—Sn2121.4 (4)
C20—C15—Sn1117.7 (4)C40—C35—Sn2121.3 (5)
C17—C16—C15120.8 (7)C35—C36—C37122.2 (6)
C17—C16—H16119.6C35—C36—H36118.9
C15—C16—H16119.6C37—C36—H36118.9
C18—C17—C16120.5 (7)C38—C37—C36119.2 (7)
C18—C17—H17119.8C38—C37—H37120.4
C16—C17—H17119.8C36—C37—H37120.4
C17—C18—C19120.3 (7)C37—C38—C39121.2 (7)
C17—C18—H18119.8C37—C38—H38119.4
C19—C18—H18119.8C39—C38—H38119.4
C20—C19—C18119.6 (8)C38—C39—C40119.3 (7)
C20—C19—H19120.2C38—C39—H39120.3
C18—C19—H19120.2C40—C39—H39120.3
C19—C20—C15120.2 (7)C39—C40—C35120.8 (7)
C19—C20—H20119.9C39—C40—H40119.6
C15—C20—H20119.9C35—C40—H40119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl2i0.962.833.555 (9)134
C21—H21B···Cl1ii0.962.823.716 (9)156
C22—H22B···Cl1ii0.962.943.813 (7)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1.
Relative orientation of the phenyl rings in the three conformers of the title molecule top
Rings are arbitrarily labelled φi (i = 1, 2, 3) to compute the dihedral angles δi. For (I), δi angles were calculated with SHELXL2016/6 (Sheldrick, 2015b).
Dihedral angle (°)P212121 phaseaP21 phase, molecule 1P21 phase, molecule 2
δ1 = φ1/φ263.565.1 (2)53.6 (3)
δ2 = φ2/φ370.765.1 (2)59.1 (3)
δ3 = φ1/φ387.228.3 (4)39.2 (3)
Note: (a) Kumar et al., 2009.
 

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the Universidad Autónoma de Puebla (Mexico) for financial support.

References

First citationBučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972–6993.  Google Scholar
First citationDiassé-Sarr, A. & Diop, L. (2011). St. Cerc. St. CICBIA, 12, 203–205.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602–m1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310–312.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPouye, S. F., Cissé, I., Diop, L. & Diop, L. A. D. (2014). St. Cerc. St. CICBIA, 15, 149–153.  Google Scholar
First citationPrice, S. L. (2009). Acc. Chem. Res. 42, 117–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThrelfall, T. (2003). Org. Process Res. Dev. 7, 1017–1027.  Web of Science CrossRef CAS Google Scholar
First citationToure, A., Diop, L., Diop, C. A. K. & Oliver, A. G. (2016). Acta Cryst. E72, 1830–1832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds