research communications
II piperidine-dithiocarbamate and pentanuclear CuI—I cluster units
of a new mixed-metal coordination polymer consisting of NiaDepartment of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan, bResearch and Utilization Division, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and cResearch Institute for Science and Technology, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
*Correspondence e-mail: okubo_t@chem.kindai.ac.jp
A new heterometallic CuI–NiII coordination polymer, poly[[tetra-μ3-iodido-μ2-iodido-bis(μ3-piperidine-1-dithiocarbamato)propionitrilepentacopper(I)nickel(II)] chloroform monosolvate], {[CuI5NiIII5(C6H10NS2)2(C3H5N)]·CHCl3}n, has been synthesized and structurally characterized. This coordination polymer consists of an NiII mononuclear unit of NiII(Pip-dtc)2 (Pip-dtc− is piperidine-1-dithiocarbamate) and a pentanuclear copper(I) cluster unit of Cu5I5(CH3CH2CN). The NiII ion, which lies on an inversion centre, is surrounded by four S atoms in a square-planar coordination geometry while all CuI ions have distorted tetrahedral coordination geometries. In the pentanuclear copper(I) cluster unit, a mirror plane passes through one CuI ion and three I ions. All the S atoms in NiII(Pip-dtc) are also coordinated by the CuI ions, forming an infinite zigzag chain structure along the b-axis direction. The chains are weakly connected by solvent CHCl3 molecules via Cl⋯I [3.653 (1) Å] and Cl⋯S [3.4370 (1) Å] short-contact interactions.
Keywords: crystal structure; nickel(II); copper(I); heterometal; coordination polymer; dithiocarbamate.
CCDC reference: 1816493
1. Chemical context
The crystal engineering of coordination polymers is one of the most attractive areas in the field of materials science because their characteristic assembled structures and electronic states bearing features of organic–inorganic hybrid materials have new chemical and/or physical properties such as et al., 2003), gas adsorption (Kitagawa et al., 2004), conductivity (Givaja et al., 2012), magnetism (Sato et al., 1996) and optical properties (Watanabe et al., 2017). The design and synthesis of coordination polymers have drawn much interest; in particular, the establishment of a rational synthetic method for preparing heterometallic coordination polymers is important in developing the chemistry of coordination complexes because of the unique coordination networks created by the combination of several metal ions with versatile coordination geometries (Ghosh et al., 2018). Metal complexes with dithiocarbamate (dtc) derivatives are some of the most useful building units to form heterometallic coordination polymers (Engelhardt et al., 1988, 1989; Healy et al., 1989; Tokoro et al., 1995; Okubo et al., 2012) because one can employ a variety of mononuclear metal complexes as building units for coordination polymers owing to the coordination ability of the sulfur atoms in the dithiocarbamate complexes. In this paper, we report the synthesis and X-ray of the title new heterometallic CuI–NiII coordination polymer.
(Yaghi2. Structural commentary
The title compound (Fig. 1) has an infinite chain structure consisting of a mononuclear NiII dithiocarbamate unit NiII(Pip-dtc)2 (Pip–dtc− = piperidine-dithiocarbamate) and a pentanuclear CuI cluster unit Cu5I5(CH3CH2CN). The NiII ion, which lies on an inversion centre, is surrounded by four S atoms from the dithiocarbamate ligands in a square-planar coordination geometry. The four S atoms in NiII(Pip-dtc)2 are also coordinated by the CuI ions in the CuI cluster unit, forming an infinite zigzag chain along the b-axis direction (Fig. 2). In the CuI cluster unit, a mirror plane passes through one CuI ion (Cu2) and three I ions (I1, I3 and I4). The five CuI ions in the cluster create a distorted square-pyramidal structure bridged by five iodide ions, where four CuI ions [Cu1, Cu1i, Cu3 and Cu3i; symmetry code: (i) x, −y + , z] construct the basal plane and atom Cu2 is in the apical position. Atom I3 bridges the four basal CuI ions to stabilize the plane structure, while atoms I1 and I2 each bridge the two basal CuI ions and the apical CuI ion (Cu2). Atom I4 bridges the two basal CuI ions (Cu3 and Cu3i). One propionitrile ligand is coordinated to the apical CuI ion. In this cluster, the Cu1⋯Cu2 and Cu1⋯Cu3 distances of 2.6920 (6) and 2.7883 (3) Å, respectively, are shorter than the sum of the van der Waals radii for Cu⋯Cu (2.80 Å). In order to confirm the of the copper ions, a bond-valence-sum (BVS) calculation was performed (Brese & O'Keeffe, 1991). The estimated BVS values for atoms Cu1, Cu2 and Cu3 are 1.08, 1.10 and 1.08, respectively, indicating their monovalent oxidation states.
3. Supramolecular features
Fig. 3 shows a packing diagram of zigzag chains alternately injected. The shortest I⋯I and I⋯S separations between the chains are 4.8100 (3) and 6.6517 (3) Å, respectively, which are greater than the sums of the van der Waals radii for I⋯I (3.96 Å) and I⋯S (3.78 Å). These chains are connected by solvent CHCl3 molecules via Cl⋯I [3.653 (1) Å] and Cl⋯S [3.4370 (1) Å] contacts (Fig. 4), which are shorter than the sums of the van der Waals radii for Cl⋯I (3.73 Å) and Cl⋯S (3.55 Å), forming an undulating sheet parallel to (10).
4. Spectroscopic properties
UV–vis–NIR spectra of the mononuclear NiII dithiocarbamate complex, NiII(Pip-dtc)2, and the title coordination polymer, 1, were acquired using a U–4100 UV/VIS/NIR Spectrophotometer (HITACHI). Fig. 5 shows the diffuse-reflection spectra converted from the diffusion-reflectance (R) spectra using the Kubelka–Munk function: f(R) = (1 − R)2/2R (Kubelka, 1948). NiII(Pip-dtc)2 shows two small absorption bands originating from the d–d transition of the NiII ion at 480 and 630 nm, as well as large absorption bands based on the charge-transfer transitions in the region of wavelengths less than 450 nm. On the other hand, 1 shows an absorption band at 680 nm, close to the wavelength (630 nm) of the d–d transition of NiII(Pip-dtc)2, but the of the d–d transition shifts to the NIR region because of the formation of the energy band structure.
5. Database survey
A search of the Cambridge Structural Database (version 5.38, update May 2017; Groom et al., 2016) for heterometallic coordination polymers with transition metal dithiocarbamate complexes and bridging copper-halides gave 11 hits: four heterometallic Co–Cu coordination polymers [refcodes GIJDEI and GIJDIM (Engelhardt et al., 1988), SATWOZ and SATWUF (Healy et al., 1989)], two heterometallic Cr–Cu coordination polymers (refcodes KEBREO and KEBRIS; Engelhardt et al., 1989), two heterometallic Ni–Cu coordination polymers (refcodes UZENIY and UZENOE; Okubo et al., 2012), two heterometallic Pt–Cu coordination polymers (refcodes ZENDAX and ZENDEB; Tokoro et al., 1995), and one heterometallic Rh–Cu coordination polymer (refcode KEBRAK; Engelhardt et al., 1989).
6. Synthesis and crystallization
The title compound was synthesized by the reaction of a CHCl3 solution (20 mL) of NiII(Pip-dtc)2 (0.114 g, 0.1 mmol) and a 1:1 acetone/propionitrile solution (20 mL) of CuI (0.042g, 0.6 mmol). The reaction mixture was filtered, and dark-orange [black in CIF?] single crystals were obtained after letting the filtered solution stand for one day at room temperature. Yield: 56.7%. Analysis calculated for C16H26Cl3Cu5I5N3NiS4: C 12.76, H 1.74, N 2.79%; found: C 12.86, H 2.02, N 2.76%.
7. details
Crystal data, data collection and structure . H atoms were located in a difference-Fourier map and then they were treated as constrained or restrained atoms.
details are summarized in Table 1Supporting information
CCDC reference: 1816493
https://doi.org/10.1107/S2056989018000750/is5484sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000750/is5484Isup3.hkl
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2017); software used to prepare material for publication: CrystalStructure (Rigaku, 2017).[Cu5NiI5(C6H10NS2)2(C3H5N)]·CHCl3 | F(000) = 1392 |
Mr = 1505.90 | Dx = 2.770 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 11.6906 (4) Å | Cell parameters from 10013 reflections |
b = 13.2597 (3) Å | θ = 3.5–31.7° |
c = 12.6351 (4) Å | µ = 8.15 mm−1 |
β = 112.829 (4)° | T = 100 K |
V = 1805.19 (11) Å3 | Block, black |
Z = 2 | 0.10 × 0.05 × 0.02 mm |
Rigaku XtaLAB P200 diffractometer | 5007 reflections with I > 2σ(I) |
Detector resolution: 5.811 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 31.5°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | h = −16→15 |
Tmin = 0.547, Tmax = 0.850 | k = −19→17 |
22696 measured reflections | l = −18→17 |
5667 independent reflections |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0175P)2 + 1.401P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5667 reflections | Δρmax = 2.37 e Å−3 |
192 parameters | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.07870 (3) | 0.35696 (2) | 0.22826 (3) | 0.01492 (6) | |
Cu2 | 0.06118 (4) | 0.250000 | 0.40244 (4) | 0.01831 (9) | |
Cu3 | −0.17631 (3) | 0.36078 (2) | 0.09941 (3) | 0.01699 (6) | |
I1 | 0.27076 (2) | 0.250000 | 0.36316 (2) | 0.01584 (5) | |
I2 | −0.07921 (2) | 0.41447 (2) | 0.31791 (2) | 0.01423 (4) | |
I3 | −0.01641 (2) | 0.250000 | 0.03136 (2) | 0.01220 (5) | |
I4 | −0.37218 (2) | 0.250000 | 0.04357 (2) | 0.01957 (5) | |
C1 | 0.2475 (2) | 0.49357 (15) | 0.13153 (19) | 0.0107 (4) | |
C2 | 0.4150 (2) | 0.50565 (19) | 0.32142 (19) | 0.0160 (4) | |
H2A | 0.452733 | 0.443559 | 0.364245 | 0.019* | |
H2B | 0.346889 | 0.526878 | 0.344631 | 0.019* | |
C3 | 0.5122 (3) | 0.5885 (2) | 0.3494 (2) | 0.0232 (5) | |
H3A | 0.547669 | 0.600974 | 0.433227 | 0.028* | |
H3B | 0.472716 | 0.651752 | 0.310579 | 0.028* | |
C4 | 0.6153 (2) | 0.5587 (2) | 0.3103 (2) | 0.0261 (6) | |
H4A | 0.675553 | 0.614794 | 0.325656 | 0.031* | |
H4B | 0.659849 | 0.499170 | 0.354421 | 0.031* | |
C5 | 0.5627 (2) | 0.5341 (2) | 0.1827 (2) | 0.0230 (5) | |
H5A | 0.630165 | 0.508520 | 0.160911 | 0.028* | |
H5B | 0.529464 | 0.596390 | 0.138249 | 0.028* | |
C6 | 0.4598 (2) | 0.4552 (2) | 0.1520 (2) | 0.0180 (5) | |
H6A | 0.420231 | 0.447714 | 0.067571 | 0.022* | |
H6B | 0.495615 | 0.389276 | 0.185189 | 0.022* | |
C7 | 0.1007 (3) | 0.250000 | 0.6602 (3) | 0.0204 (7) | |
C8 | 0.1078 (4) | 0.250000 | 0.7786 (3) | 0.0293 (9) | |
H8 | 0.0609 (16) | 0.18967 (4) | 0.785 (3) | 0.035* | |
C9 | 0.2415 (3) | 0.250000 | 0.8654 (3) | 0.0208 (7) | |
H9A | 0.239 (2) | 0.250000 | 0.9419 (10) | 0.031* | |
H9B | 0.2854 (9) | 0.31033 (4) | 0.8565 (13) | 0.031* | |
C10 | 0.2395 (3) | 0.750000 | 0.5209 (3) | 0.0186 (7) | |
H10 | 0.199610 | 0.750000 | 0.578017 | 0.022* | |
N1 | 0.36544 (17) | 0.48550 (15) | 0.19678 (16) | 0.0126 (4) | |
N2 | 0.0960 (3) | 0.250000 | 0.5678 (3) | 0.0208 (6) | |
S1 | 0.13029 (5) | 0.51728 (4) | 0.18070 (5) | 0.01093 (10) | |
S2 | −0.18105 (5) | 0.52020 (4) | 0.01647 (5) | 0.01091 (10) | |
Cl1 | 0.40231 (9) | 0.750000 | 0.59606 (10) | 0.0355 (2) | |
Cl2 | 0.19291 (7) | 0.64075 (6) | 0.43626 (7) | 0.03187 (16) | |
Ni1 | 0.000000 | 0.500000 | 0.000000 | 0.00975 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01456 (13) | 0.01491 (13) | 0.01762 (14) | 0.00098 (11) | 0.00879 (11) | 0.00196 (11) |
Cu2 | 0.0192 (2) | 0.0224 (2) | 0.01331 (18) | 0.000 | 0.00625 (16) | 0.000 |
Cu3 | 0.01664 (14) | 0.01694 (13) | 0.01690 (14) | −0.00328 (11) | 0.00597 (11) | 0.00057 (11) |
I1 | 0.00947 (9) | 0.01538 (9) | 0.02001 (10) | 0.000 | 0.00278 (7) | 0.000 |
I2 | 0.01474 (7) | 0.01642 (7) | 0.01366 (7) | 0.00173 (5) | 0.00783 (5) | −0.00004 (5) |
I3 | 0.01564 (10) | 0.00914 (8) | 0.01352 (9) | 0.000 | 0.00751 (7) | 0.000 |
I4 | 0.01104 (10) | 0.01378 (9) | 0.03178 (12) | 0.000 | 0.00600 (9) | 0.000 |
C1 | 0.0116 (10) | 0.0087 (9) | 0.0119 (9) | −0.0013 (7) | 0.0046 (8) | 0.0007 (7) |
C2 | 0.0137 (10) | 0.0211 (11) | 0.0115 (10) | −0.0031 (9) | 0.0030 (8) | −0.0021 (8) |
C3 | 0.0184 (12) | 0.0244 (13) | 0.0228 (13) | −0.0074 (10) | 0.0036 (10) | −0.0061 (10) |
C4 | 0.0134 (11) | 0.0374 (15) | 0.0252 (13) | −0.0086 (11) | 0.0049 (10) | 0.0037 (12) |
C5 | 0.0120 (11) | 0.0350 (14) | 0.0224 (12) | −0.0010 (10) | 0.0073 (9) | 0.0076 (11) |
C6 | 0.0119 (10) | 0.0259 (12) | 0.0175 (11) | 0.0024 (9) | 0.0070 (8) | −0.0015 (9) |
C7 | 0.0152 (15) | 0.0261 (17) | 0.0176 (16) | 0.000 | 0.0038 (13) | 0.000 |
C8 | 0.0218 (18) | 0.050 (3) | 0.0166 (17) | 0.000 | 0.0082 (14) | 0.000 |
C9 | 0.0230 (18) | 0.0214 (16) | 0.0178 (16) | 0.000 | 0.0079 (14) | 0.000 |
C10 | 0.0164 (16) | 0.0209 (16) | 0.0188 (16) | 0.000 | 0.0070 (13) | 0.000 |
N1 | 0.0090 (8) | 0.0164 (9) | 0.0125 (8) | −0.0003 (7) | 0.0043 (7) | −0.0020 (7) |
N2 | 0.0186 (14) | 0.0245 (15) | 0.0178 (14) | 0.000 | 0.0054 (11) | 0.000 |
S1 | 0.0094 (2) | 0.0128 (2) | 0.0110 (2) | −0.00043 (19) | 0.00435 (18) | −0.00117 (18) |
S2 | 0.0106 (2) | 0.0120 (2) | 0.0101 (2) | −0.00024 (19) | 0.00394 (18) | −0.00100 (18) |
Cl1 | 0.0190 (4) | 0.0285 (5) | 0.0436 (6) | 0.000 | −0.0048 (4) | 0.000 |
Cl2 | 0.0251 (3) | 0.0354 (4) | 0.0314 (3) | 0.0004 (3) | 0.0068 (3) | −0.0173 (3) |
Ni1 | 0.00797 (17) | 0.01081 (17) | 0.00993 (17) | −0.00041 (14) | 0.00288 (14) | −0.00080 (14) |
Cu1—S1 | 2.3505 (6) | C4—H4A | 0.9900 |
Cu1—I2 | 2.6259 (3) | C4—H4B | 0.9900 |
Cu1—I1 | 2.6435 (4) | C5—C6 | 1.526 (4) |
Cu1—I3 | 2.7001 (4) | C5—H5A | 0.9900 |
Cu2—N2 | 1.968 (3) | C5—H5B | 0.9900 |
Cu2—I1 | 2.6820 (5) | C6—N1 | 1.476 (3) |
Cu2—I2 | 2.6889 (3) | C6—H6A | 0.9900 |
Cu2—I2i | 2.6889 (3) | C6—H6B | 0.9900 |
Cu3—S2 | 2.3505 (6) | C7—N2 | 1.147 (5) |
Cu3—I4 | 2.5778 (4) | C7—C8 | 1.466 (5) |
Cu3—I2 | 2.6429 (4) | C8—C9 | 1.521 (5) |
Cu3—I3 | 2.7637 (4) | C8—H8 | 0.9901 (10) |
C1—N1 | 1.307 (3) | C8—H8i | 0.9901 (10) |
C1—S2ii | 1.734 (2) | C9—H9A | 0.9800 (10) |
C1—S1 | 1.739 (2) | C9—H9B | 0.9800 (10) |
C2—N1 | 1.476 (3) | C9—H9Bi | 0.9800 (10) |
C2—C3 | 1.521 (3) | C10—Cl2 | 1.757 (2) |
C2—H2A | 0.9900 | C10—Cl2iii | 1.757 (2) |
C2—H2B | 0.9900 | C10—Cl1 | 1.767 (4) |
C3—C4 | 1.523 (4) | C10—H10 | 1.0000 |
C3—H3A | 0.9900 | S1—Ni1 | 2.2106 (5) |
C3—H3B | 0.9900 | S2—Ni1 | 2.2219 (5) |
C4—C5 | 1.521 (4) | ||
Cu1···Cu2 | 2.6920 (5) | Cu1···Cu1i | 2.8366 (6) |
Cu1···Cu3 | 2.7883 (4) | Cu3···Cu3i | 2.9378 (6) |
S1—Cu1—I2 | 98.089 (17) | S2ii—C1—S1 | 108.58 (12) |
S1—Cu1—I1 | 114.335 (17) | N1—C2—C3 | 109.1 (2) |
I2—Cu1—I1 | 116.170 (13) | N1—C2—H2A | 109.9 |
S1—Cu1—Cu2 | 142.553 (19) | C3—C2—H2A | 109.9 |
I2—Cu1—Cu2 | 60.730 (11) | N1—C2—H2B | 109.9 |
I1—Cu1—Cu2 | 60.344 (12) | C3—C2—H2B | 109.9 |
S1—Cu1—I3 | 107.115 (17) | H2A—C2—H2B | 108.3 |
I2—Cu1—I3 | 116.286 (12) | C2—C3—C4 | 110.6 (2) |
I1—Cu1—I3 | 104.798 (11) | C2—C3—H3A | 109.5 |
Cu2—Cu1—I3 | 109.985 (12) | C4—C3—H3A | 109.5 |
S1—Cu1—Cu3 | 99.008 (17) | C2—C3—H3B | 109.5 |
I2—Cu1—Cu3 | 58.346 (10) | C4—C3—H3B | 109.5 |
I1—Cu1—Cu3 | 146.557 (14) | H3A—C3—H3B | 108.1 |
Cu2—Cu1—Cu3 | 94.797 (15) | C5—C4—C3 | 110.8 (2) |
I3—Cu1—Cu3 | 60.446 (10) | C5—C4—H4A | 109.5 |
S1—Cu1—Cu1i | 154.742 (15) | C3—C4—H4A | 109.5 |
I2—Cu1—Cu1i | 106.881 (7) | C5—C4—H4B | 109.5 |
I1—Cu1—Cu1i | 57.554 (7) | C3—C4—H4B | 109.5 |
Cu2—Cu1—Cu1i | 58.208 (8) | H4A—C4—H4B | 108.1 |
I3—Cu1—Cu1i | 58.314 (7) | C4—C5—C6 | 111.8 (2) |
Cu3—Cu1—Cu1i | 91.040 (8) | C4—C5—H5A | 109.3 |
N2—Cu2—I1 | 111.67 (9) | C6—C5—H5A | 109.3 |
N2—Cu2—I2 | 105.34 (5) | C4—C5—H5B | 109.3 |
I1—Cu2—I2 | 112.776 (11) | C6—C5—H5B | 109.3 |
N2—Cu2—I2i | 105.34 (5) | H5A—C5—H5B | 107.9 |
I1—Cu2—I2i | 112.776 (12) | N1—C6—C5 | 110.5 (2) |
I2—Cu2—I2i | 108.395 (17) | N1—C6—H6A | 109.6 |
N2—Cu2—Cu1 | 144.91 (4) | C5—C6—H6A | 109.6 |
I1—Cu2—Cu1 | 58.933 (12) | N1—C6—H6B | 109.6 |
I2—Cu2—Cu1 | 58.418 (9) | C5—C6—H6B | 109.6 |
I2i—Cu2—Cu1 | 109.322 (16) | H6A—C6—H6B | 108.1 |
N2—Cu2—Cu1i | 144.90 (4) | N2—C7—C8 | 179.5 (4) |
I1—Cu2—Cu1i | 58.932 (12) | C7—C8—C9 | 111.8 (3) |
I2—Cu2—Cu1i | 109.322 (16) | C7—C8—H8 | 105.5 (19) |
I2i—Cu2—Cu1i | 58.419 (9) | C9—C8—H8 | 112.9 (16) |
Cu1—Cu2—Cu1i | 63.585 (16) | C7—C8—H8i | 105.5 (19) |
S2—Cu3—I4 | 121.711 (19) | C9—C8—H8i | 112.9 (17) |
S2—Cu3—I2 | 98.612 (17) | H8—C8—H8i | 107.80 (19) |
I4—Cu3—I2 | 114.539 (14) | C8—C9—H9A | 107.0 (15) |
S2—Cu3—I3 | 103.950 (17) | C8—C9—H9B | 110.8 (8) |
I4—Cu3—I3 | 104.370 (12) | H9A—C9—H9B | 109.44 (16) |
I2—Cu3—I3 | 113.573 (12) | C8—C9—H9Bi | 110.8 (8) |
S2—Cu3—Cu1 | 96.405 (18) | H9A—C9—H9Bi | 109.44 (16) |
I4—Cu3—Cu1 | 141.671 (14) | H9B—C9—H9Bi | 109.4 (2) |
I2—Cu3—Cu1 | 57.751 (10) | Cl2—C10—Cl2iii | 111.1 (2) |
I3—Cu3—Cu1 | 58.198 (10) | Cl2—C10—Cl1 | 110.00 (14) |
S2—Cu3—Cu3i | 154.073 (15) | Cl2iii—C10—Cl1 | 110.00 (14) |
I4—Cu3—Cu3i | 55.263 (8) | Cl2—C10—H10 | 108.6 |
I2—Cu3—Cu3i | 105.626 (7) | Cl2iii—C10—H10 | 108.6 |
I3—Cu3—Cu3i | 57.894 (7) | Cl1—C10—H10 | 108.6 |
Cu1—Cu3—Cu3i | 88.961 (8) | C1—N1—C2 | 122.64 (19) |
Cu1—I1—Cu1i | 64.893 (14) | C1—N1—C6 | 122.8 (2) |
Cu1—I1—Cu2 | 60.724 (11) | C2—N1—C6 | 114.55 (18) |
Cu1i—I1—Cu2 | 60.724 (11) | C7—N2—Cu2 | 171.6 (3) |
Cu1—I2—Cu3 | 63.902 (10) | C1—S1—Ni1 | 86.27 (7) |
Cu1—I2—Cu2 | 60.851 (12) | C1—S1—Cu1 | 104.11 (7) |
Cu3—I2—Cu2 | 98.341 (12) | Ni1—S1—Cu1 | 91.60 (2) |
Cu1—I3—Cu1i | 63.372 (13) | C1ii—S2—Ni1 | 86.04 (8) |
Cu1—I3—Cu3 | 61.356 (10) | C1ii—S2—Cu3 | 108.01 (7) |
Cu1i—I3—Cu3 | 94.530 (11) | Ni1—S2—Cu3 | 94.29 (2) |
Cu1—I3—Cu3i | 94.530 (11) | S1—Ni1—S1ii | 180.0 |
Cu1i—I3—Cu3i | 61.357 (10) | S1—Ni1—S2ii | 79.02 (2) |
Cu3—I3—Cu3i | 64.211 (13) | S1ii—Ni1—S2ii | 100.98 (2) |
Cu3—I4—Cu3i | 69.475 (15) | S1—Ni1—S2 | 100.98 (2) |
N1—C1—S2ii | 126.40 (18) | S1ii—Ni1—S2 | 79.02 (2) |
N1—C1—S1 | 125.01 (17) | S2ii—Ni1—S2 | 180.0 |
N1—C2—C3—C4 | −57.4 (3) | C3—C2—N1—C1 | −121.9 (2) |
C2—C3—C4—C5 | 56.4 (3) | C3—C2—N1—C6 | 58.3 (3) |
C3—C4—C5—C6 | −53.4 (3) | C5—C6—N1—C1 | 124.8 (2) |
C4—C5—C6—N1 | 51.7 (3) | C5—C6—N1—C2 | −55.4 (3) |
S2ii—C1—N1—C2 | 175.50 (17) | N1—C1—S1—Ni1 | −176.18 (19) |
S1—C1—N1—C2 | −6.1 (3) | S2ii—C1—S1—Ni1 | 2.44 (9) |
S2ii—C1—N1—C6 | −4.7 (3) | N1—C1—S1—Cu1 | −85.46 (19) |
S1—C1—N1—C6 | 173.69 (18) | S2ii—C1—S1—Cu1 | 93.16 (10) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y+1, −z; (iii) x, −y+3/2, z. |
Funding information
This work was partly supported by a Grant–in–Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332–0012, Japan. Part of the work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities 2014–2018, subsidy from MEXT and Kindai University.
References
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371–2373. CSD CrossRef CAS Web of Science Google Scholar
Engelhardt, L. M., Healy, P. C., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 885–893. CSD CrossRef CAS Google Scholar
Ghosh, S., Roy, S., Liu, C.-M. & Mohanta, S. (2018). Dalton Trans. 47 doi: 10.1039/c7dt04032f. Any update? Google Scholar
Givaja, G., Amo-Ochoa, P., Gómez-García, C. J. & Zamora, F. (2012). Chem. Soc. Rev. 41, 115–147. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Healy, P. C., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 971–976. CSD CrossRef Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Kubelka, P. (1948). J. Opt. Soc. Am. 38, 448–457. CrossRef PubMed CAS Google Scholar
Okubo, T., Tanaka, N., Anma, H., Kim, K. H., Maekawa, M. & Kuroda-Sowa, T. (2012). Polymers, 4, 1613–1626. CSD CrossRef Google Scholar
Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan Google Scholar
Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704–705. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tokoro, K., Ebihara, M. & Kawamura, T. (1995). Acta Cryst. C51, 2010–2013. CSD CrossRef CAS IUCr Journals Google Scholar
Watanabe, A., Kobayashi, A., Saitoh, E., Nagao, Y., Omagari, S., Nakanishi, T., Hasegawa, Y., Sameera, W. M. C., Yoshida, M. & Kato, M. (2017). Inorg. Chem. 56, 3005–3013. CrossRef CAS PubMed Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.