research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2,3,8,9,14,15-hexa­methyl-5,6,11,12,17,18-hexa­aza­tri­naphthyl­ene and 2,3,8,9,14,15-hexa­phenyl-5,6,11,12,17,18-hexa­za­tri­naphthyl­ene di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universit t Oldenburg, 26129 Oldenburg, Germany
*Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 December 2017; accepted 11 January 2018; online 16 January 2018)

The crystal structures of two substituted HATN (hexa­aza­tri­naphthyl­ene) derivatives, namely 2,3,8,9,14,15-hexa­methyl- and 2,3,8,9,14,15-hexa­phenyl-5,6,11,12,17,18- hexa­zatri­naphthyl­ene (HATNMe6 and HATNPh6), are reported. Whereas the structure of the methyl-substituted derivative (HATNMe6) contains no solvent mol­ecules (C30H24N6), the hexa­phenyl-substituted structure (HATNPh6) contains two mol­ecules of di­chloro­methane (C60H36N6·2CH2Cl2). This class of planar bridging ligands is known for its electron-deficient systems and its ability to form ππ stacking inter­actions. Indeed, in both crystal structures strong ππ stacking inter­actions are observed, but with different packing features. The di­chloro­methane mol­ecules in the crystal structure of HATNPh6 are situated in the voids and are involved in C—H⋯N contacts to the nitro­gen atoms of the pyrazine units.

1. Chemical context

Over the last decades, hexa­aza­tri­phenyl­ene (HAT) and its derivatives have shown numerous applications in magnetic materials, semiconductors, sensors and polymers for energy storage (Segura et al., 2015[Segura, J. L., Juárez, R., Ramos, M. & Seoane, C. (2015). Chem. Soc. Rev. 44, 6850-6885.]). These electron-deficient, aromatic and planar systems are known for their excellent ππ stacking ability (Alfonso & Stoeckli-Evans, 2001[Alfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242-o244.]) and their three potential chelating positions to form metal complexes. Therefore, a variety of metal HAT or HATN (hexa­aza­tri­naphthyl­ene) complexes are known (Kitagawa & Masaoka, 2003[Kitagawa, S. & Masaoka, S. (2003). Coord. Chem. Rev. 246, 73-88.]). Complexes with ruthenium (HATN; Ghumaan et al., 2007[Ghumaan, S., Sarkar, B., Patil, M. P., Fiedler, J., Sunoj, R. B., Kaim, W. & Lahiri, G. K. (2007). Polyhedron, 26, 3409-3418.]), rhenium (HATN; Roy & Kubiak, 2010[Roy, S. & Kubiak, C. P. (2010). Dalton Trans. 39, 10937-10943.]), cobalt (HATN; Moilanen et al., 2016[Moilanen, J. O., Chilton, N. F., Day, B. M., Pugh, T. & Layfield, R. A. (2016). Angew. Chem. Int. Ed. 55, 5521-5525.]) and titanium (HATNMe6; Piglosiewicz et al., 2005[Piglosiewicz, I. M., Beckhaus, R., Saak, W. & Haase, D. (2005). J. Am. Chem. Soc. 127, 14190-14191.]) have been investigated, in particular due to their inter­esting electrochemical, photophysical and magnetic properties. The synthesis, electrochemical and photophysical properties of the title compounds HATNMe6 (1) (Catalano et al., 1994[Catalano, V. J., Larson, W. E., Olmstead, M. M. & Gray, H. B. (1994). Inorg. Chem. 33, 4502-4509.]; Fraser et al., 2011[Fraser, M. G., Clark, C. A., Horvath, R., Lind, S. J., Blackman, A. G., Sun, X.-Z., George, M. W. & Gordon, K. C. (2011). Inorg. Chem. 50, 6093-6106.]) and HATNPh6 (2) (Gao et al., 2009[Gao, B., Liu, Y., Geng, Y., Cheng, Y., Wang, L., Jing, X. & Wang, F. (2009). Tetrahedron Lett. 50, 1649-1652.]) have already been published. Herein we report on the corresponding crystal structures of the two HATN derivatives.

2. Structural commentary

The title compound HATNMe6 (1) crystallizes without solvent mol­ecules in the ortho­rhom­bic space group Pbcn with four formula units per unit cell and half a mol­ecule of HATNMe6 in the asymmetric unit, the other half being completed by twofold rotation symmetry (Fig. 1[link]). The mol­ecule is nearly planar with a slight deviation of the outer annulated benzene rings [2.25 (6)° for C8–C13 and 4.09 (6)° for C4–C6i; symmetry code: (i) 1 – x, y, 1/2 – z]. The central six-membered ring of 1 exhibits three longer (C1—C2, C3—C3i: average 1.474 Å) and three shorter (C2—C3, C1—C1i: average 1.427 Å) C—C bonds. The C—C bonds at the annulated benzene rings show differences in bond lengths. While the outermost bonds (C10—C11 and C6—C6i, respectively) are elongated (average 1.438 Å) the bonds to the left and right of these bonds (C5—C6, C9—C10, C11—C12) are shortened (average 1.366 Å).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of 1 with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are given as spheres of arbitrary size. Unlabelled atoms are generated by the symmetry operation (1 − x, y, [{1\over 2}] − z).

HATNPh6 (2) crystallizes with two mol­ecules of CH2Cl2 in the triclinic space group P[\overline{1}] with two formula units per unit cell (Fig. 2[link]). The mol­ecule is, aside from the terminal phenyl groups, nearly planar with a slight deviation of the outer annulated benzene rings [9.97 (6)° for C43–C48, 8.96 (6)° for C7–C12, and 4.11 (6)° for C25–C30]. The terminal phenyl groups do not lie in this plane and are twisted [dihedral angles between the least-squares planes of the six-membered central ring system and the phenyl rings: 47.60 (7)° for C49–C54, 54.11 (7)° for C55–C60, 32.99 (6)° for C19–C24, 47.26 (6)° for C13–C18, 46.74 (6)° for C31–C36 and 44.26 (7)° for C37–C42]. The central six-membered ring of 2, like in HATNMe6 (1), exhibits three longer (C2—C3, C4—C5, C6—C1; average 1.474 Å) and three shorter (C1—C2, C3—C4, C5—C6; average 1.430 Å) C—C bonds. These distances are slightly shorter in comparison with HATN (Alfonso & Stoeckli-Evans, 2001[Alfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242-o244.]; average 1.48 and 1.43 Å) but still longer than known for HAT(CONH2)6 (Beeson et al., 1996[Beeson, J. C., Czarnik, A. W., Fitzgerald, L. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 724-729.]; average 1.46 and 1.41 Å). As has been noted for HATNMe6 (1) above as well as for HATN (Alfonso & Stoeckli-Evans, 2001[Alfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242-o244.]), the annulated benzene ring shows differences in C—C bond lengths. For 2, the outermost bonds (C9—C10, C27—C28 and C45—C46, respectively) are elongated (average 1.449 Å) and the bonds to the left and right of these bonds (C8—C9, C10—C11, C26—C27, C28—C29, C44—C45, C46—C47) are shortened (average 1.379 Å).

[Figure 2]
Figure 2
The structures of the mol­ecular entities in 2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary size.

3. Supra­molecular features

As a result of the ππ stacking ability of tri­naphthyl­ene derivatives HATNMe6 (1) and HATNPh6 (2), these mol­ecules stack in layers in their respective crystal structures. In the crystal packing of HATNMe6 (1), a herringbone-like arrangement of mol­ecules is observed (Figs. 3[link] and 4[link]). Individual mol­ecules are arranged in layers and have a short plane–to–plane distance (defined by the central rings) of 3.3602 (5) Å. However, the ππ overlap occurs only in small areas, as shown by the rather large parallel displacement of the mol­ecules with an angle of 31.52° and a shift of 5.48 Å between the centroids. The resulting layers within the herringbone-like structure stack at an angle of 63.1° to each other.

[Figure 3]
Figure 3
A view along the b axis showing parts of the ππ inter­actions between the parallel displaced HATNMe6 (1) mol­ecules. H atoms have been omitted for clarity. Colour code: C grey, N blue spheres.
[Figure 4]
Figure 4
View along the b axis showing the packing of HATNMe6 (1) in a herringbone-like arrangement. H atoms have been omitted for clarity. Colour code: C grey, N blue spheres.

The mol­ecules of HATNPh6 (2) form centrosymmetric dimers that are stacked perfectly parallel by van der Waals inter­actions but with a parallel displaced π-stacking. The plane-to-plane distance (defined by the central rings) within a dimer of 3.2518 (5) Å is shorter compared to the corres­ponding distance in 1. This distance, as well as the short centroid-to-centroid distance of 3.4018 (7) Å are both at the lower limit of ranges known for metal complexes with aromatic nitro­gen-containing ligands (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). The plane-to-plane distance between adjacent dimers is 3.15 Å. The parallel displacement between the layers (Fig. 5[link]) is much shorter than for HATNMe6 (1), with an angle of 16.8° and a shift of approximately 1 Å. Comparing the plane-to-plane distances of the title compounds with related derivatives like HATN (Alfonso & Stoeckli-Evans, 2001[Alfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242-o244.]; 3.66 Å) and HAT(CONH2)6 (Beeson et al., 1996[Beeson, J. C., Czarnik, A. W., Fitzgerald, L. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 724-729.]; 3.31 Å), the dimers of HATNPh6 (2) have the shortest contact and the shortest displacement in π-stacking. Further inter­actions between the terminal phenyl rings and the pyrazines rings inter­connect the dimers. The di­chloro­methane solvent mol­ecules are located near the electron lone pairs of the N atoms in the voids of the packed mol­ecules. They bridge two mol­ecules of 2 and consolidate the crystal packing through weak C—H⋯N hydrogen-bonding inter­actions (Table 1[link], Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C61—H61A⋯N1i 0.99 2.46 3.2380 (17) 135
C61—H61B⋯N2 0.99 2.40 3.2745 (17) 146
C61—H61B⋯N3 0.99 2.61 3.4923 (18) 149
C62—H62A⋯N4 0.99 2.58 3.2547 (17) 126
C62—H62A⋯N5 0.99 2.46 3.4381 (17) 169
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 5]
Figure 5
View along the plane defined by the central ring of HATNPh6 mol­ecules showing ππ inter­actions of the parallel displaced mol­ecules. H atoms and solvent mol­ecules are omitted for clarity. Colour code: C grey, N blue spheres.
[Figure 6]
Figure 6
Packing diagram of HATNPh6 (2) viewed along the plane defined by the central ring of the mol­ecules. H atoms have been omitted for clarity. Dashed lines represent hydrogen bonds. Colour code: C grey, N blue, Cl green spheres.

4. Synthesis and crystallization

Hexaketo­cyclo­hexane octa­hydrate and 4,5-diphenyl-1,2-di­amine were prepared according to published procedures (Fatiadi & Sager, 1962[Fatiadi, A. J. & Sager, W. F. (1962). Org. Synth. 42, 90.]; Shao et al., 2012[Shao, J., Chang, J. & Chi, C. (2012). Org. Biomol. Chem. 10, 7045-7052.]; Gao et al., 2009[Gao, B., Liu, Y., Geng, Y., Cheng, Y., Wang, L., Jing, X. & Wang, F. (2009). Tetrahedron Lett. 50, 1649-1652.]).

Synthesis of 1. HATNMe6 was synthesized by a published procedure (Catalano et al., 1994[Catalano, V. J., Larson, W. E., Olmstead, M. M. & Gray, H. B. (1994). Inorg. Chem. 33, 4502-4509.]). Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of a benzene solution of 1.

Synthesis of 2. HATNPh6 was synthesized based on a literature method (Gao et al., 2009[Gao, B., Liu, Y., Geng, Y., Cheng, Y., Wang, L., Jing, X. & Wang, F. (2009). Tetrahedron Lett. 50, 1649-1652.]). 4,5-diphenyl-1,2-di­amine (1.8 g, 6.9 mmol) and hexa­keto­cyclo­hexane octa­hydrate (0.54 g, 1.72 mmol) in 100 ml acetic acid were heated up to 373 K for 36 h under a nitro­gen atmosphere. After cooling to room temperature the reaction mixture was filtrated and the resulting yellow solid was washed with plenty of water and 2 M KOH solution. The solid was suspended in a mixture of di­chloro­methane (100 ml) and a saturated K2CO3 solution (100 ml) overnight in order to remove all traces of acetic acid. After filtration and washing with water, the solid was dried in a vacuum to give 2 as a yellow solid in 72% yield. Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of a CH2Cl2 solution of 2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bound to C atoms were located from difference-Fourier maps but were subsequently fixed to idealized positions using appropriate riding models.

Table 2
Experimental details

  1 2
Crystal data
Chemical formula C30H24N6 C60H36N6·2CH2Cl2
Mr 468.55 1010.80
Crystal system, space group Orthorhombic, Pbcn Triclinic, P[\overline{1}]
Temperature (K) 153 100
a, b, c (Å) 11.6178 (8), 15.7762 (8), 12.8621 (7) 9.2629 (4), 16.3829 (6), 18.4366 (6)
α, β, γ (°) 90, 90, 90 64.2659 (13), 78.2616 (15), 88.3530 (17)
V3) 2357.4 (2) 2461.98 (16)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.29
Crystal size (mm) 0.50 × 0.38 × 0.25 0.30 × 0.12 × 0.10
 
Data collection
Diffractometer Stoe IPDS Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.970, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23121, 2361, 1286 87137, 14377, 11804
Rint 0.057 0.043
(sin θ/λ)max−1) 0.621 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 0.75 0.039, 0.107, 1.02
No. of reflections 2361 14377
No. of parameters 166 649
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15 0.84, −0.84
Computer programs: IPDS (Stoe, 1999[Stoe (1999). IPDS. Stoe & Cie, Darmstadt, Germany.]), APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), X-RED (Stoe, 2002[Stoe (2002). X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT2013/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: IPDS (Stoe, 1999) for (1); APEX2 (Bruker, 2013) for (2). Cell refinement: IPDS (Stoe, 1999) for (1); SAINT (Bruker, 2013) for (2). Data reduction: X-RED (Stoe, 2002) for (1); SAINT (Bruker, 2013) for (2). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (1); SHELXS2013/1 (Sheldrick, 2015a) for (2). For both structures, program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1) top
Crystal data top
C30H24N6Dx = 1.320 Mg m3
Mr = 468.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5493 reflections
a = 11.6178 (8) Åθ = 2.3–26.2°
b = 15.7762 (8) ŵ = 0.08 mm1
c = 12.8621 (7) ÅT = 153 K
V = 2357.4 (2) Å3Prism, yellow
Z = 40.50 × 0.38 × 0.25 mm
F(000) = 984
Data collection top
Stoe IPDS
diffractometer
Rint = 0.057
Radiation source: sealed tubeθmax = 26.2°, θmin = 2.6°
φ scansh = 1414
23121 measured reflectionsk = 1919
2361 independent reflectionsl = 1516
1286 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.75(Δ/σ)max < 0.001
2361 reflectionsΔρmax = 0.16 e Å3
166 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56074 (10)0.64519 (8)0.34566 (8)0.0255 (3)
N20.62730 (10)0.49478 (7)0.43437 (8)0.0265 (3)
N30.56076 (10)0.34059 (8)0.33894 (7)0.0252 (3)
C10.53175 (13)0.57382 (8)0.29813 (10)0.0226 (3)
C20.56581 (11)0.49314 (9)0.34649 (9)0.0225 (3)
C30.53343 (12)0.41546 (9)0.29893 (9)0.0225 (3)
C40.52959 (12)0.71863 (9)0.29846 (10)0.0247 (3)
C50.55513 (12)0.79701 (10)0.34611 (10)0.0283 (3)
H50.5926910.7973430.4117150.034*
C60.52734 (13)0.87212 (9)0.30047 (11)0.0314 (4)
C70.55470 (17)0.95456 (11)0.35433 (13)0.0502 (5)
H7A0.5792760.9430760.4258450.075*
H7B0.4859520.9905400.3552340.075*
H7C0.6166730.9836450.3169240.075*
C80.65625 (12)0.41882 (9)0.47584 (10)0.0246 (3)
C90.72310 (13)0.41486 (9)0.56818 (10)0.0288 (4)
H90.7450940.4660610.6016000.035*
C100.75658 (12)0.33909 (9)0.61015 (10)0.0281 (3)
C110.72339 (12)0.26111 (9)0.56134 (10)0.0266 (3)
C120.65713 (13)0.26394 (9)0.47327 (10)0.0269 (3)
H120.6334970.2123310.4417610.032*
C130.62308 (11)0.34154 (9)0.42814 (9)0.0238 (3)
C140.82859 (14)0.33631 (11)0.70797 (11)0.0398 (4)
H14A0.8469970.3942340.7298950.060*
H14B0.9000370.3052440.6942360.060*
H14C0.7854190.3076480.7631840.060*
C150.76172 (14)0.17752 (9)0.60460 (11)0.0367 (4)
H15A0.7290410.1314820.5628310.055*
H15B0.7352620.1721940.6766540.055*
H15C0.8459310.1742420.6026130.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (6)0.0259 (7)0.0237 (5)0.0006 (6)0.0010 (5)0.0007 (5)
N20.0279 (6)0.0280 (7)0.0235 (6)0.0014 (6)0.0026 (5)0.0015 (5)
N30.0279 (6)0.0277 (7)0.0201 (5)0.0003 (6)0.0001 (5)0.0010 (5)
C10.0211 (7)0.0255 (9)0.0213 (6)0.0007 (6)0.0018 (6)0.0005 (5)
C20.0209 (7)0.0265 (8)0.0201 (6)0.0010 (7)0.0028 (6)0.0001 (6)
C30.0224 (7)0.0259 (8)0.0191 (6)0.0008 (6)0.0034 (6)0.0006 (5)
C40.0225 (7)0.0271 (9)0.0244 (7)0.0003 (7)0.0010 (6)0.0011 (6)
C50.0274 (8)0.0313 (9)0.0262 (7)0.0004 (7)0.0058 (6)0.0017 (6)
C60.0311 (8)0.0272 (9)0.0360 (8)0.0017 (7)0.0061 (6)0.0015 (6)
C70.0685 (13)0.0294 (10)0.0526 (9)0.0004 (9)0.0288 (9)0.0037 (8)
C80.0236 (8)0.0277 (9)0.0225 (7)0.0009 (6)0.0014 (6)0.0025 (6)
C90.0311 (9)0.0301 (9)0.0254 (7)0.0031 (7)0.0033 (6)0.0006 (6)
C100.0267 (8)0.0323 (9)0.0253 (6)0.0006 (7)0.0011 (6)0.0061 (6)
C110.0261 (8)0.0287 (9)0.0252 (7)0.0031 (6)0.0044 (6)0.0049 (6)
C120.0306 (8)0.0257 (8)0.0246 (7)0.0003 (6)0.0025 (6)0.0011 (5)
C130.0238 (7)0.0277 (8)0.0198 (6)0.0012 (7)0.0027 (5)0.0010 (6)
C140.0426 (9)0.0399 (10)0.0370 (8)0.0030 (8)0.0141 (7)0.0061 (7)
C150.0385 (10)0.0365 (10)0.0350 (8)0.0033 (8)0.0042 (7)0.0063 (6)
Geometric parameters (Å, º) top
N1—C11.3248 (17)C7—H7C0.9800
N1—C41.3571 (18)C8—C131.4181 (19)
N2—C21.3374 (15)C8—C91.4205 (19)
N2—C81.3541 (18)C9—C101.368 (2)
N3—C31.3270 (17)C9—H90.9500
N3—C131.3568 (16)C10—C111.434 (2)
C1—C1i1.441 (3)C10—C141.5115 (19)
C1—C21.4709 (19)C11—C121.3703 (19)
C2—C31.4203 (19)C11—C151.4990 (19)
C3—C3i1.479 (3)C12—C131.4115 (19)
C4—C51.412 (2)C12—H120.9500
C4—C4i1.424 (3)C14—H14A0.9800
C5—C61.361 (2)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—C6i1.445 (3)C15—H15A0.9800
C6—C71.507 (2)C15—H15B0.9800
C7—H7A0.9800C15—H15C0.9800
C7—H7B0.9800
C1—N1—C4116.83 (11)C13—C8—C9118.20 (12)
C2—N2—C8116.65 (12)C10—C9—C8121.58 (14)
C3—N3—C13116.47 (12)C10—C9—H9119.2
N1—C1—C1i121.77 (8)C8—C9—H9119.2
N1—C1—C2118.16 (12)C9—C10—C11120.03 (12)
C1i—C1—C2120.07 (7)C9—C10—C14120.74 (14)
N2—C2—C3121.48 (13)C11—C10—C14119.24 (13)
N2—C2—C1118.97 (13)C12—C11—C10119.02 (13)
C3—C2—C1119.55 (11)C12—C11—C15120.17 (13)
N3—C3—C2122.52 (12)C10—C11—C15120.81 (12)
N3—C3—C3i117.11 (7)C11—C12—C13121.71 (13)
C2—C3—C3i120.37 (8)C11—C12—H12119.1
N1—C4—C5119.83 (12)C13—C12—H12119.1
N1—C4—C4i121.37 (7)N3—C13—C12119.18 (13)
C5—C4—C4i118.80 (8)N3—C13—C8121.36 (12)
C6—C5—C4121.70 (12)C12—C13—C8119.45 (11)
C6—C5—H5119.1C10—C14—H14A109.5
C4—C5—H5119.1C10—C14—H14B109.5
C5—C6—C6i119.44 (8)H14A—C14—H14B109.5
C5—C6—C7120.19 (13)C10—C14—H14C109.5
C6i—C6—C7120.36 (9)H14A—C14—H14C109.5
C6—C7—H7A109.5H14B—C14—H14C109.5
C6—C7—H7B109.5C11—C15—H15A109.5
H7A—C7—H7B109.5C11—C15—H15B109.5
C6—C7—H7C109.5H15A—C15—H15B109.5
H7A—C7—H7C109.5C11—C15—H15C109.5
H7B—C7—H7C109.5H15A—C15—H15C109.5
N2—C8—C13121.52 (12)H15B—C15—H15C109.5
N2—C8—C9120.27 (13)
C4—N1—C1—C1i1.1 (2)C2—N2—C8—C130.12 (18)
C4—N1—C1—C2179.08 (13)C2—N2—C8—C9178.97 (12)
C8—N2—C2—C30.44 (17)N2—C8—C9—C10178.02 (13)
C8—N2—C2—C1179.87 (12)C13—C8—C9—C100.9 (2)
N1—C1—C2—N21.96 (18)C8—C9—C10—C110.5 (2)
C1i—C1—C2—N2178.26 (15)C8—C9—C10—C14179.46 (14)
N1—C1—C2—C3178.35 (13)C9—C10—C11—C120.7 (2)
C1i—C1—C2—C31.4 (2)C14—C10—C11—C12179.35 (13)
C13—N3—C3—C20.70 (18)C9—C10—C11—C15178.43 (14)
C13—N3—C3—C3i179.36 (15)C14—C10—C11—C151.56 (19)
N2—C2—C3—N30.77 (19)C10—C11—C12—C131.5 (2)
C1—C2—C3—N3179.54 (13)C15—C11—C12—C13177.59 (13)
N2—C2—C3—C3i179.28 (15)C3—N3—C13—C12178.55 (12)
C1—C2—C3—C3i0.4 (2)C3—N3—C13—C80.36 (17)
C1—N1—C4—C5178.39 (14)C11—C12—C13—N3177.78 (13)
C1—N1—C4—C4i1.1 (2)C11—C12—C13—C81.2 (2)
N1—C4—C5—C6178.74 (15)N2—C8—C13—N30.1 (2)
C4i—C4—C5—C61.7 (2)C9—C8—C13—N3178.96 (13)
C4—C5—C6—C6i1.5 (3)N2—C8—C13—C12178.83 (14)
C4—C5—C6—C7179.25 (15)C9—C8—C13—C120.04 (18)
Symmetry code: (i) x+1, y, z+1/2.
2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2) top
Crystal data top
C60H36N6·2CH2Cl2Z = 2
Mr = 1010.80F(000) = 1044
Triclinic, P1Dx = 1.364 Mg m3
a = 9.2629 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.3829 (6) ÅCell parameters from 9893 reflections
c = 18.4366 (6) Åθ = 2.3–30.0°
α = 64.2659 (13)°µ = 0.29 mm1
β = 78.2616 (15)°T = 100 K
γ = 88.3530 (17)°Block, yellow
V = 2461.98 (16) Å30.30 × 0.12 × 0.10 mm
Data collection top
Bruker APEX-II CCD
diffractometer
11804 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.043
φ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.970, Tmax = 1.000k = 2323
87137 measured reflectionsl = 2525
14377 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.050P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
14377 reflections(Δ/σ)max = 0.001
649 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11926 (11)0.44967 (7)0.60814 (6)0.01193 (18)
N20.18060 (11)0.60400 (7)0.45277 (6)0.01252 (19)
N30.41523 (11)0.61360 (7)0.33603 (6)0.01264 (19)
N40.59471 (11)0.46401 (7)0.36209 (6)0.01232 (19)
N50.53889 (11)0.31547 (7)0.51241 (6)0.01196 (18)
N60.27642 (11)0.29872 (7)0.62955 (6)0.01280 (19)
C10.22651 (12)0.45307 (8)0.54672 (7)0.0107 (2)
C20.25958 (12)0.53194 (8)0.46923 (7)0.0111 (2)
C30.38735 (12)0.53672 (8)0.40497 (7)0.0110 (2)
C40.47903 (12)0.46219 (8)0.41903 (7)0.0109 (2)
C50.44562 (13)0.38091 (8)0.49903 (7)0.0110 (2)
C60.31672 (12)0.37406 (8)0.55998 (7)0.0113 (2)
C70.04205 (13)0.52505 (8)0.59315 (7)0.0116 (2)
C80.06780 (13)0.53019 (8)0.65653 (7)0.0132 (2)
H80.0888840.4793640.7091040.016*
C90.14549 (13)0.60696 (8)0.64431 (7)0.0128 (2)
C100.12054 (13)0.68304 (8)0.56292 (7)0.0128 (2)
C110.01485 (13)0.67705 (8)0.50117 (7)0.0142 (2)
H110.0005540.7257390.4473690.017*
C120.07124 (13)0.60140 (8)0.51484 (7)0.0122 (2)
C130.24727 (13)0.60780 (8)0.71806 (7)0.0140 (2)
C140.34319 (14)0.53190 (9)0.77210 (8)0.0175 (2)
H140.3447090.4804830.7610370.021*
C150.43664 (15)0.53104 (10)0.84210 (8)0.0229 (3)
H150.5021560.4794260.8781820.028*
C160.43391 (16)0.60558 (11)0.85904 (9)0.0244 (3)
H160.4979060.6051960.9065360.029*
C170.33734 (16)0.68085 (10)0.80636 (9)0.0233 (3)
H170.3346990.7316290.8182610.028*
C180.24461 (15)0.68200 (9)0.73633 (8)0.0181 (2)
H180.1789300.7336550.7006110.022*
C190.20291 (13)0.76731 (8)0.53886 (7)0.0139 (2)
C200.35316 (14)0.76736 (9)0.57128 (8)0.0161 (2)
H200.4047300.7131780.6141740.019*
C210.42778 (14)0.84646 (9)0.54103 (8)0.0185 (2)
H210.5293030.8459220.5644150.022*
C220.35570 (15)0.92581 (9)0.47732 (8)0.0197 (3)
H220.4083160.9787490.4558460.024*
C230.20617 (15)0.92744 (9)0.44508 (8)0.0193 (2)
H230.1557380.9817900.4018450.023*
C240.13024 (14)0.84933 (9)0.47618 (8)0.0172 (2)
H240.0273810.8513950.4546970.021*
C250.53512 (13)0.61711 (8)0.27859 (7)0.0127 (2)
C260.57330 (13)0.69798 (8)0.20488 (7)0.0144 (2)
H260.5166970.7491100.1980400.017*
C270.69015 (13)0.70462 (8)0.14283 (7)0.0134 (2)
C280.77379 (13)0.62586 (8)0.15212 (7)0.0136 (2)
C290.74119 (13)0.54812 (8)0.22552 (7)0.0145 (2)
H290.7991470.4974940.2324950.017*
C300.62378 (13)0.54171 (8)0.29071 (7)0.0124 (2)
C310.72725 (13)0.79506 (8)0.07089 (7)0.0135 (2)
C320.61387 (14)0.84510 (9)0.03578 (8)0.0161 (2)
H320.5153740.8187810.0547910.019*
C330.64453 (15)0.93319 (9)0.02681 (8)0.0183 (2)
H330.5668240.9668070.0500290.022*
C340.78795 (15)0.97199 (9)0.05534 (8)0.0184 (2)
H340.8085941.0322440.0977790.022*
C350.90129 (15)0.92247 (9)0.02165 (8)0.0186 (2)
H350.9997850.9488520.0415680.022*
C360.87189 (14)0.83442 (9)0.04111 (8)0.0168 (2)
H360.9502470.8010270.0637480.020*
C370.88799 (14)0.62319 (8)0.08340 (7)0.0145 (2)
C380.86264 (15)0.65702 (9)0.00340 (8)0.0192 (2)
H380.7744430.6861530.0084360.023*
C390.96540 (16)0.64836 (10)0.05883 (8)0.0222 (3)
H390.9468880.6715170.1128370.027*
C401.09477 (16)0.60612 (9)0.04259 (9)0.0226 (3)
H401.1645110.6001560.0852740.027*
C411.12205 (15)0.57251 (9)0.03644 (9)0.0206 (3)
H411.2106380.5436700.0478430.025*
C421.01925 (14)0.58124 (9)0.09874 (8)0.0172 (2)
H421.0385960.5583140.1525560.021*
C430.50237 (13)0.23986 (8)0.58462 (7)0.0120 (2)
C440.59874 (13)0.16847 (8)0.60277 (7)0.0136 (2)
H440.6916800.1766930.5663820.016*
C450.56063 (13)0.08732 (8)0.67207 (7)0.0127 (2)
C460.41889 (13)0.07453 (8)0.72707 (7)0.0132 (2)
C470.32768 (13)0.14531 (8)0.71244 (7)0.0142 (2)
H470.2367930.1375460.7503180.017*
C480.36715 (13)0.22959 (8)0.64178 (7)0.0126 (2)
C490.67019 (13)0.01680 (8)0.68874 (7)0.0133 (2)
C500.74324 (14)0.00492 (9)0.62584 (8)0.0165 (2)
H500.7174860.0222630.5734470.020*
C510.85324 (15)0.06598 (9)0.63947 (8)0.0197 (3)
H510.9014090.0807900.5965000.024*
C520.89332 (15)0.10554 (9)0.71539 (8)0.0198 (3)
H520.9700250.1462960.7240940.024*
C530.82030 (15)0.08504 (9)0.77862 (8)0.0189 (2)
H530.8465030.1122950.8308960.023*
C540.70939 (14)0.02491 (9)0.76543 (8)0.0162 (2)
H540.6592860.0118600.8091410.019*
C550.36807 (13)0.01519 (8)0.79842 (7)0.0143 (2)
C560.36616 (16)0.09418 (9)0.78719 (8)0.0212 (3)
H560.3976450.0908070.7335420.025*
C570.31856 (18)0.17757 (9)0.85392 (9)0.0259 (3)
H570.3162300.2307430.8455380.031*
C580.27434 (16)0.18366 (9)0.93285 (9)0.0226 (3)
H580.2430540.2408930.9785010.027*
C590.27614 (15)0.10594 (9)0.94456 (8)0.0184 (2)
H590.2465410.1099430.9985150.022*
C600.32114 (14)0.02160 (8)0.87767 (8)0.0153 (2)
H600.3198010.0316420.8861430.018*
Cl10.11062 (5)0.83590 (3)0.26669 (2)0.03512 (10)
Cl20.17654 (4)0.72871 (3)0.17281 (2)0.02962 (9)
C610.10609 (16)0.72602 (9)0.27127 (8)0.0218 (3)
H61A0.0029800.6993040.2917840.026*
H61B0.1656170.6868430.3105970.026*
Cl30.70558 (5)0.30628 (3)0.27367 (2)0.03072 (9)
Cl40.84801 (4)0.18745 (2)0.40649 (2)0.02374 (8)
C620.78838 (16)0.29773 (9)0.35492 (9)0.0208 (3)
H62A0.7162640.3119950.3947310.025*
H62B0.8740640.3427470.3324680.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0112 (4)0.0113 (4)0.0130 (4)0.0012 (4)0.0023 (4)0.0051 (4)
N20.0130 (4)0.0120 (5)0.0124 (4)0.0027 (4)0.0030 (4)0.0051 (4)
N30.0135 (5)0.0116 (5)0.0116 (4)0.0015 (4)0.0019 (4)0.0044 (4)
N40.0124 (4)0.0119 (5)0.0112 (4)0.0011 (4)0.0016 (4)0.0041 (4)
N50.0127 (4)0.0112 (5)0.0111 (4)0.0017 (4)0.0029 (4)0.0040 (4)
N60.0127 (4)0.0119 (5)0.0120 (4)0.0020 (4)0.0020 (4)0.0040 (4)
C10.0102 (5)0.0105 (5)0.0117 (5)0.0010 (4)0.0033 (4)0.0046 (4)
C20.0110 (5)0.0108 (5)0.0114 (5)0.0011 (4)0.0026 (4)0.0047 (4)
C30.0106 (5)0.0109 (5)0.0110 (5)0.0006 (4)0.0022 (4)0.0043 (4)
C40.0110 (5)0.0107 (5)0.0108 (5)0.0008 (4)0.0025 (4)0.0043 (4)
C50.0112 (5)0.0112 (5)0.0102 (5)0.0005 (4)0.0021 (4)0.0044 (4)
C60.0112 (5)0.0110 (5)0.0115 (5)0.0013 (4)0.0031 (4)0.0046 (4)
C70.0113 (5)0.0113 (5)0.0122 (5)0.0009 (4)0.0024 (4)0.0051 (4)
C80.0128 (5)0.0128 (5)0.0127 (5)0.0003 (4)0.0015 (4)0.0048 (4)
C90.0111 (5)0.0142 (5)0.0135 (5)0.0004 (4)0.0018 (4)0.0070 (4)
C100.0122 (5)0.0120 (5)0.0150 (5)0.0021 (4)0.0034 (4)0.0064 (4)
C110.0150 (5)0.0128 (5)0.0132 (5)0.0034 (4)0.0035 (4)0.0042 (4)
C120.0122 (5)0.0121 (5)0.0121 (5)0.0012 (4)0.0032 (4)0.0049 (4)
C130.0123 (5)0.0162 (6)0.0142 (5)0.0032 (4)0.0038 (4)0.0069 (5)
C140.0157 (6)0.0183 (6)0.0179 (6)0.0006 (5)0.0021 (5)0.0079 (5)
C150.0184 (6)0.0267 (7)0.0185 (6)0.0012 (5)0.0012 (5)0.0072 (5)
C160.0208 (6)0.0340 (8)0.0176 (6)0.0055 (6)0.0006 (5)0.0129 (6)
C170.0267 (7)0.0270 (7)0.0212 (6)0.0066 (6)0.0037 (5)0.0160 (6)
C180.0190 (6)0.0181 (6)0.0174 (6)0.0019 (5)0.0021 (5)0.0089 (5)
C190.0152 (5)0.0140 (5)0.0146 (5)0.0040 (4)0.0051 (4)0.0075 (5)
C200.0152 (5)0.0163 (6)0.0190 (6)0.0027 (4)0.0039 (5)0.0098 (5)
C210.0140 (5)0.0202 (6)0.0252 (6)0.0056 (5)0.0055 (5)0.0132 (5)
C220.0216 (6)0.0173 (6)0.0236 (6)0.0089 (5)0.0095 (5)0.0104 (5)
C230.0228 (6)0.0140 (6)0.0185 (6)0.0033 (5)0.0044 (5)0.0048 (5)
C240.0158 (6)0.0175 (6)0.0178 (6)0.0037 (5)0.0022 (5)0.0080 (5)
C250.0127 (5)0.0127 (5)0.0120 (5)0.0010 (4)0.0023 (4)0.0048 (4)
C260.0150 (5)0.0117 (5)0.0138 (5)0.0025 (4)0.0031 (4)0.0032 (4)
C270.0135 (5)0.0125 (5)0.0121 (5)0.0011 (4)0.0031 (4)0.0032 (4)
C280.0129 (5)0.0142 (5)0.0117 (5)0.0007 (4)0.0015 (4)0.0044 (4)
C290.0142 (5)0.0128 (5)0.0139 (5)0.0028 (4)0.0012 (4)0.0043 (4)
C300.0131 (5)0.0114 (5)0.0117 (5)0.0010 (4)0.0026 (4)0.0041 (4)
C310.0153 (5)0.0117 (5)0.0108 (5)0.0008 (4)0.0014 (4)0.0030 (4)
C320.0140 (5)0.0176 (6)0.0137 (5)0.0018 (4)0.0018 (4)0.0046 (5)
C330.0222 (6)0.0172 (6)0.0135 (5)0.0059 (5)0.0049 (5)0.0046 (5)
C340.0265 (7)0.0135 (6)0.0117 (5)0.0006 (5)0.0018 (5)0.0033 (5)
C350.0179 (6)0.0164 (6)0.0171 (6)0.0037 (5)0.0008 (5)0.0051 (5)
C360.0155 (6)0.0153 (6)0.0169 (6)0.0012 (4)0.0032 (5)0.0047 (5)
C370.0158 (5)0.0126 (5)0.0122 (5)0.0013 (4)0.0007 (4)0.0043 (4)
C380.0226 (6)0.0170 (6)0.0150 (6)0.0012 (5)0.0023 (5)0.0052 (5)
C390.0304 (7)0.0204 (6)0.0127 (6)0.0022 (5)0.0003 (5)0.0063 (5)
C400.0258 (7)0.0195 (6)0.0197 (6)0.0052 (5)0.0071 (5)0.0108 (5)
C410.0176 (6)0.0182 (6)0.0236 (6)0.0008 (5)0.0026 (5)0.0098 (5)
C420.0177 (6)0.0158 (6)0.0154 (6)0.0005 (5)0.0008 (5)0.0054 (5)
C430.0136 (5)0.0116 (5)0.0104 (5)0.0013 (4)0.0021 (4)0.0048 (4)
C440.0137 (5)0.0138 (5)0.0122 (5)0.0032 (4)0.0017 (4)0.0052 (4)
C450.0148 (5)0.0125 (5)0.0112 (5)0.0032 (4)0.0031 (4)0.0055 (4)
C460.0156 (5)0.0116 (5)0.0113 (5)0.0012 (4)0.0027 (4)0.0041 (4)
C470.0143 (5)0.0130 (5)0.0122 (5)0.0013 (4)0.0006 (4)0.0035 (4)
C480.0129 (5)0.0120 (5)0.0121 (5)0.0014 (4)0.0025 (4)0.0046 (4)
C490.0143 (5)0.0102 (5)0.0134 (5)0.0018 (4)0.0024 (4)0.0035 (4)
C500.0197 (6)0.0153 (6)0.0144 (5)0.0038 (5)0.0033 (5)0.0067 (5)
C510.0227 (6)0.0182 (6)0.0196 (6)0.0066 (5)0.0030 (5)0.0105 (5)
C520.0206 (6)0.0162 (6)0.0233 (6)0.0073 (5)0.0063 (5)0.0090 (5)
C530.0228 (6)0.0162 (6)0.0172 (6)0.0062 (5)0.0079 (5)0.0056 (5)
C540.0189 (6)0.0151 (6)0.0144 (5)0.0044 (5)0.0035 (5)0.0065 (5)
C550.0143 (5)0.0117 (5)0.0135 (5)0.0012 (4)0.0022 (4)0.0028 (4)
C560.0297 (7)0.0156 (6)0.0164 (6)0.0010 (5)0.0013 (5)0.0066 (5)
C570.0372 (8)0.0130 (6)0.0238 (7)0.0034 (6)0.0002 (6)0.0073 (5)
C580.0266 (7)0.0133 (6)0.0200 (6)0.0026 (5)0.0006 (5)0.0015 (5)
C590.0193 (6)0.0169 (6)0.0137 (5)0.0003 (5)0.0000 (5)0.0033 (5)
C600.0153 (5)0.0136 (5)0.0147 (5)0.0012 (4)0.0015 (4)0.0048 (5)
Cl10.0569 (3)0.01799 (17)0.02317 (17)0.00789 (16)0.00341 (17)0.00389 (14)
Cl20.03465 (19)0.0337 (2)0.01836 (16)0.00290 (15)0.00656 (14)0.00909 (14)
C610.0273 (7)0.0158 (6)0.0156 (6)0.0027 (5)0.0028 (5)0.0013 (5)
Cl30.0449 (2)0.02792 (18)0.01921 (16)0.00109 (16)0.01175 (15)0.00788 (14)
Cl40.02025 (15)0.02240 (16)0.02590 (16)0.00880 (12)0.00300 (12)0.00941 (13)
C620.0233 (6)0.0187 (6)0.0233 (6)0.0049 (5)0.0087 (5)0.0106 (5)
Geometric parameters (Å, º) top
N1—C11.3278 (15)C31—C321.4001 (17)
N1—C71.3588 (15)C32—C331.3925 (18)
N2—C21.3231 (15)C32—H320.9500
N2—C121.3513 (15)C33—C341.3854 (19)
N3—C31.3279 (15)C33—H330.9500
N3—C251.3529 (15)C34—C351.3875 (19)
N4—C41.3296 (15)C34—H340.9500
N4—C301.3585 (15)C35—C361.3923 (18)
N5—C51.3268 (15)C35—H350.9500
N5—C431.3528 (15)C36—H360.9500
N6—C61.3286 (15)C37—C421.3978 (18)
N6—C481.3567 (15)C37—C381.4004 (17)
C1—C21.4305 (16)C38—C391.3899 (18)
C1—C61.4763 (16)C38—H380.9500
C2—C31.4713 (16)C39—C401.387 (2)
C3—C41.4263 (16)C39—H390.9500
C4—C51.4755 (16)C40—C411.391 (2)
C5—C61.4328 (16)C40—H400.9500
C7—C81.4159 (16)C41—C421.3915 (18)
C7—C121.4192 (16)C41—H410.9500
C8—C91.3851 (16)C42—H420.9500
C8—H80.9500C43—C441.4136 (16)
C9—C101.4526 (17)C43—C481.4244 (16)
C9—C131.4939 (16)C44—C451.3759 (17)
C10—C111.3792 (16)C44—H440.9500
C10—C191.4934 (16)C45—C461.4440 (16)
C11—C121.4103 (16)C45—C491.4868 (16)
C11—H110.9500C46—C471.3770 (17)
C13—C181.3973 (17)C46—C551.4905 (16)
C13—C141.3984 (18)C47—C481.4179 (16)
C14—C151.3948 (18)C47—H470.9500
C14—H140.9500C49—C541.3977 (17)
C15—C161.388 (2)C49—C501.3979 (17)
C15—H150.9500C50—C511.3891 (18)
C16—C171.391 (2)C50—H500.9500
C16—H160.9500C51—C521.3880 (19)
C17—C181.3907 (18)C51—H510.9500
C17—H170.9500C52—C531.3911 (19)
C18—H180.9500C52—H520.9500
C19—C201.3987 (17)C53—C541.3858 (17)
C19—C241.4075 (18)C53—H530.9500
C20—C211.3949 (17)C54—H540.9500
C20—H200.9500C55—C601.3949 (17)
C21—C221.386 (2)C55—C561.3976 (18)
C21—H210.9500C56—C571.3889 (19)
C22—C231.3877 (19)C56—H560.9500
C22—H220.9500C57—C581.389 (2)
C23—C241.3915 (18)C57—H570.9500
C23—H230.9500C58—C591.3818 (19)
C24—H240.9500C58—H580.9500
C25—C261.4124 (16)C59—C601.3957 (17)
C25—C301.4237 (16)C59—H590.9500
C26—C271.3736 (17)C60—H600.9500
C26—H260.9500Cl1—C611.7665 (14)
C27—C281.4489 (17)Cl2—C611.7812 (14)
C27—C311.4865 (16)C61—H61A0.9900
C28—C291.3798 (17)C61—H61B0.9900
C28—C371.4920 (16)Cl3—C621.7695 (14)
C29—C301.4155 (16)Cl4—C621.7713 (14)
C29—H290.9500C62—H62A0.9900
C31—C361.3983 (17)C62—H62B0.9900
C1—N1—C7116.30 (10)C33—C32—C31120.44 (12)
C2—N2—C12116.39 (10)C33—C32—H32119.8
C3—N3—C25116.16 (10)C31—C32—H32119.8
C4—N4—C30116.49 (10)C34—C33—C32120.24 (12)
C5—N5—C43116.77 (10)C34—C33—H33119.9
C6—N6—C48116.57 (10)C32—C33—H33119.9
N1—C1—C2121.85 (10)C33—C34—C35119.71 (12)
N1—C1—C6118.82 (10)C33—C34—H34120.1
C2—C1—C6119.30 (10)C35—C34—H34120.1
N2—C2—C1122.22 (10)C34—C35—C36120.55 (12)
N2—C2—C3117.20 (10)C34—C35—H35119.7
C1—C2—C3120.56 (10)C36—C35—H35119.7
N3—C3—C4122.47 (10)C35—C36—C31120.13 (12)
N3—C3—C2117.23 (10)C35—C36—H36119.9
C4—C3—C2120.26 (10)C31—C36—H36119.9
N4—C4—C3121.81 (10)C42—C37—C38118.35 (11)
N4—C4—C5118.87 (10)C42—C37—C28120.41 (11)
C3—C4—C5119.32 (10)C38—C37—C28121.10 (11)
N5—C5—C6121.65 (10)C39—C38—C37120.58 (13)
N5—C5—C4117.87 (10)C39—C38—H38119.7
C6—C5—C4120.48 (10)C37—C38—H38119.7
N6—C6—C5121.95 (10)C40—C39—C38120.43 (13)
N6—C6—C1118.34 (10)C40—C39—H39119.8
C5—C6—C1119.70 (10)C38—C39—H39119.8
N1—C7—C8120.43 (11)C39—C40—C41119.76 (12)
N1—C7—C12121.41 (10)C39—C40—H40120.1
C8—C7—C12118.14 (10)C41—C40—H40120.1
C9—C8—C7122.09 (11)C40—C41—C42119.84 (13)
C9—C8—H8119.0C40—C41—H41120.1
C7—C8—H8119.0C42—C41—H41120.1
C8—C9—C10119.46 (10)C41—C42—C37121.05 (12)
C8—C9—C13117.04 (11)C41—C42—H42119.5
C10—C9—C13123.45 (10)C37—C42—H42119.5
C11—C10—C9118.05 (10)N5—C43—C44119.26 (10)
C11—C10—C19116.27 (11)N5—C43—C48121.46 (11)
C9—C10—C19125.65 (10)C44—C43—C48119.27 (11)
C10—C11—C12122.52 (11)C45—C44—C43121.32 (11)
C10—C11—H11118.7C45—C44—H44119.3
C12—C11—H11118.7C43—C44—H44119.3
N2—C12—C11118.80 (11)C44—C45—C46119.37 (11)
N2—C12—C7121.68 (11)C44—C45—C49118.20 (11)
C11—C12—C7119.51 (11)C46—C45—C49122.40 (10)
C18—C13—C14118.81 (11)C47—C46—C45119.76 (11)
C18—C13—C9121.17 (11)C47—C46—C55119.40 (11)
C14—C13—C9119.97 (11)C45—C46—C55120.83 (10)
C15—C14—C13120.58 (12)C46—C47—C48121.10 (11)
C15—C14—H14119.7C46—C47—H47119.4
C13—C14—H14119.7C48—C47—H47119.4
C16—C15—C14119.99 (13)N6—C48—C47119.90 (11)
C16—C15—H15120.0N6—C48—C43121.16 (11)
C14—C15—H15120.0C47—C48—C43118.94 (11)
C15—C16—C17119.89 (12)C54—C49—C50118.52 (11)
C15—C16—H16120.1C54—C49—C45121.15 (11)
C17—C16—H16120.1C50—C49—C45120.21 (11)
C16—C17—C18120.19 (13)C51—C50—C49120.42 (12)
C16—C17—H17119.9C51—C50—H50119.8
C18—C17—H17119.9C49—C50—H50119.8
C17—C18—C13120.53 (13)C52—C51—C50120.52 (12)
C17—C18—H18119.7C52—C51—H51119.7
C13—C18—H18119.7C50—C51—H51119.7
C20—C19—C24117.96 (11)C51—C52—C53119.49 (12)
C20—C19—C10122.87 (11)C51—C52—H52120.3
C24—C19—C10118.98 (11)C53—C52—H52120.3
C21—C20—C19120.42 (12)C54—C53—C52120.07 (12)
C21—C20—H20119.8C54—C53—H53120.0
C19—C20—H20119.8C52—C53—H53120.0
C22—C21—C20120.84 (12)C53—C54—C49120.96 (11)
C22—C21—H21119.6C53—C54—H54119.5
C20—C21—H21119.6C49—C54—H54119.5
C21—C22—C23119.57 (12)C60—C55—C56118.87 (11)
C21—C22—H22120.2C60—C55—C46120.40 (11)
C23—C22—H22120.2C56—C55—C46120.73 (11)
C22—C23—C24119.89 (12)C57—C56—C55120.45 (12)
C22—C23—H23120.1C57—C56—H56119.8
C24—C23—H23120.1C55—C56—H56119.8
C23—C24—C19121.27 (12)C56—C57—C58120.36 (13)
C23—C24—H24119.4C56—C57—H57119.8
C19—C24—H24119.4C58—C57—H57119.8
N3—C25—C26118.94 (11)C59—C58—C57119.58 (12)
N3—C25—C30121.74 (11)C59—C58—H58120.2
C26—C25—C30119.32 (11)C57—C58—H58120.2
C27—C26—C25121.72 (11)C58—C59—C60120.47 (12)
C27—C26—H26119.1C58—C59—H59119.8
C25—C26—H26119.1C60—C59—H59119.8
C26—C27—C28119.20 (11)C55—C60—C59120.26 (12)
C26—C27—C31117.00 (11)C55—C60—H60119.9
C28—C27—C31123.74 (11)C59—C60—H60119.9
C29—C28—C27119.15 (11)Cl1—C61—Cl2111.51 (7)
C29—C28—C37118.19 (11)Cl1—C61—H61A109.3
C27—C28—C37122.53 (11)Cl2—C61—H61A109.3
C28—C29—C30121.82 (11)Cl1—C61—H61B109.3
C28—C29—H29119.1Cl2—C61—H61B109.3
C30—C29—H29119.1H61A—C61—H61B108.0
N4—C30—C29120.21 (11)Cl3—C62—Cl4111.38 (7)
N4—C30—C25121.24 (10)Cl3—C62—H62A109.4
C29—C30—C25118.52 (11)Cl4—C62—H62A109.4
C36—C31—C32118.92 (11)Cl3—C62—H62B109.4
C36—C31—C27121.40 (11)Cl4—C62—H62B109.4
C32—C31—C27119.51 (11)H62A—C62—H62B108.0
C7—N1—C1—C20.39 (16)C25—C26—C27—C281.87 (18)
C7—N1—C1—C6178.51 (10)C25—C26—C27—C31175.41 (11)
C12—N2—C2—C13.53 (16)C26—C27—C28—C294.81 (18)
C12—N2—C2—C3174.71 (10)C31—C27—C28—C29172.28 (11)
N1—C1—C2—N23.64 (17)C26—C27—C28—C37171.17 (11)
C6—C1—C2—N2178.24 (10)C31—C27—C28—C3711.75 (18)
N1—C1—C2—C3174.54 (10)C27—C28—C29—C302.96 (18)
C6—C1—C2—C33.57 (16)C37—C28—C29—C30173.19 (11)
C25—N3—C3—C41.04 (16)C4—N4—C30—C29177.43 (11)
C25—N3—C3—C2178.61 (10)C4—N4—C30—C250.63 (16)
N2—C2—C3—N31.24 (16)C28—C29—C30—N4179.89 (11)
C1—C2—C3—N3177.04 (10)C28—C29—C30—C251.78 (18)
N2—C2—C3—C4178.87 (10)N3—C25—C30—N42.53 (18)
C1—C2—C3—C40.59 (16)C26—C25—C30—N4177.19 (11)
C30—N4—C4—C31.96 (16)N3—C25—C30—C29175.56 (11)
C30—N4—C4—C5177.66 (10)C26—C25—C30—C294.72 (17)
N3—C3—C4—N42.97 (18)C26—C27—C31—C36130.02 (13)
C2—C3—C4—N4179.52 (10)C28—C27—C31—C3647.12 (18)
N3—C3—C4—C5176.64 (10)C26—C27—C31—C3245.20 (16)
C2—C3—C4—C50.86 (16)C28—C27—C31—C32137.66 (13)
C43—N5—C5—C63.42 (16)C36—C31—C32—C331.07 (18)
C43—N5—C5—C4177.02 (10)C27—C31—C32—C33174.26 (11)
N4—C4—C5—N54.35 (16)C31—C32—C33—C340.42 (19)
C3—C4—C5—N5175.28 (10)C32—C33—C34—C350.43 (19)
N4—C4—C5—C6176.09 (10)C33—C34—C35—C360.6 (2)
C3—C4—C5—C64.28 (16)C34—C35—C36—C310.1 (2)
C48—N6—C6—C52.78 (16)C32—C31—C36—C350.90 (19)
C48—N6—C6—C1176.00 (10)C27—C31—C36—C35174.34 (12)
N5—C5—C6—N66.51 (18)C29—C28—C37—C4243.08 (17)
C4—C5—C6—N6173.94 (10)C27—C28—C37—C42140.91 (13)
N5—C5—C6—C1172.25 (10)C29—C28—C37—C38132.67 (13)
C4—C5—C6—C17.29 (16)C27—C28—C37—C3843.34 (18)
N1—C1—C6—N67.57 (16)C42—C37—C38—C390.43 (19)
C2—C1—C6—N6174.26 (10)C28—C37—C38—C39175.40 (12)
N1—C1—C6—C5171.24 (10)C37—C38—C39—C400.1 (2)
C2—C1—C6—C56.93 (16)C38—C39—C40—C410.2 (2)
C1—N1—C7—C8175.81 (10)C39—C40—C41—C420.2 (2)
C1—N1—C7—C122.53 (16)C40—C41—C42—C370.2 (2)
N1—C7—C8—C9177.93 (11)C38—C37—C42—C410.48 (19)
C12—C7—C8—C90.46 (17)C28—C37—C42—C41175.38 (12)
C7—C8—C9—C103.64 (18)C5—N5—C43—C44179.04 (11)
C7—C8—C9—C13173.85 (11)C5—N5—C43—C482.65 (16)
C8—C9—C10—C112.59 (17)N5—C43—C44—C45174.46 (11)
C13—C9—C10—C11174.73 (11)C48—C43—C44—C453.89 (18)
C8—C9—C10—C19175.49 (11)C43—C44—C45—C460.48 (18)
C13—C9—C10—C197.18 (18)C43—C44—C45—C49177.63 (11)
C9—C10—C11—C121.63 (18)C44—C45—C46—C474.07 (17)
C19—C10—C11—C12179.89 (11)C49—C45—C46—C47173.96 (11)
C2—N2—C12—C11178.93 (11)C44—C45—C46—C55174.32 (11)
C2—N2—C12—C70.57 (17)C49—C45—C46—C557.66 (17)
C10—C11—C12—N2174.68 (11)C45—C46—C47—C483.20 (18)
C10—C11—C12—C74.83 (18)C55—C46—C47—C48175.21 (11)
N1—C7—C12—N22.59 (18)C6—N6—C48—C47176.64 (11)
C8—C7—C12—N2175.78 (11)C6—N6—C48—C433.29 (17)
N1—C7—C12—C11177.91 (11)C46—C47—C48—N6178.90 (11)
C8—C7—C12—C113.71 (17)C46—C47—C48—C431.18 (18)
C8—C9—C13—C18131.14 (13)N5—C43—C48—N66.33 (18)
C10—C9—C13—C1846.24 (17)C44—C43—C48—N6175.36 (11)
C8—C9—C13—C1446.20 (16)N5—C43—C48—C47173.60 (11)
C10—C9—C13—C14136.41 (12)C44—C43—C48—C474.71 (17)
C18—C13—C14—C151.27 (19)C44—C45—C49—C54128.73 (13)
C9—C13—C14—C15178.68 (12)C46—C45—C49—C5449.32 (17)
C13—C14—C15—C160.6 (2)C44—C45—C49—C5047.16 (17)
C14—C15—C16—C170.3 (2)C46—C45—C49—C50134.79 (13)
C15—C16—C17—C180.7 (2)C54—C49—C50—C510.62 (19)
C16—C17—C18—C130.0 (2)C45—C49—C50—C51175.38 (12)
C14—C13—C18—C170.95 (19)C49—C50—C51—C520.7 (2)
C9—C13—C18—C17178.32 (12)C50—C51—C52—C531.3 (2)
C11—C10—C19—C20143.00 (12)C51—C52—C53—C540.6 (2)
C9—C10—C19—C2035.12 (18)C52—C53—C54—C490.8 (2)
C11—C10—C19—C2431.82 (16)C50—C49—C54—C531.35 (19)
C9—C10—C19—C24150.07 (12)C45—C49—C54—C53174.61 (12)
C24—C19—C20—C210.87 (18)C47—C46—C55—C6054.54 (16)
C10—C19—C20—C21174.00 (11)C45—C46—C55—C60127.07 (13)
C19—C20—C21—C221.38 (19)C47—C46—C55—C56125.28 (14)
C20—C21—C22—C232.2 (2)C45—C46—C55—C5653.11 (17)
C21—C22—C23—C240.8 (2)C60—C55—C56—C570.1 (2)
C22—C23—C24—C191.5 (2)C46—C55—C56—C57179.94 (13)
C20—C19—C24—C232.31 (19)C55—C56—C57—C581.0 (2)
C10—C19—C24—C23172.76 (11)C56—C57—C58—C590.8 (2)
C3—N3—C25—C26178.15 (11)C57—C58—C59—C600.4 (2)
C3—N3—C25—C301.57 (17)C56—C55—C60—C591.33 (19)
N3—C25—C26—C27177.36 (11)C46—C55—C60—C59178.84 (12)
C30—C25—C26—C272.91 (18)C58—C59—C60—C551.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C61—H61A···N1i0.992.463.2380 (17)135
C61—H61B···N20.992.403.2745 (17)146
C61—H61B···N30.992.613.4923 (18)149
C62—H62A···N40.992.583.2547 (17)126
C62—H62A···N50.992.463.4381 (17)169
Symmetry code: (i) x, y+1, z+1.
 

Funding information

We like to thank the Lower Saxony State for a Lichtenberg Fellowship to Pia Fangmann.

References

First citationAlfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeeson, J. C., Czarnik, A. W., Fitzgerald, L. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 724–729.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatalano, V. J., Larson, W. E., Olmstead, M. M. & Gray, H. B. (1994). Inorg. Chem. 33, 4502–4509.  CSD CrossRef CAS Web of Science Google Scholar
First citationFatiadi, A. J. & Sager, W. F. (1962). Org. Synth. 42, 90.  Google Scholar
First citationFraser, M. G., Clark, C. A., Horvath, R., Lind, S. J., Blackman, A. G., Sun, X.-Z., George, M. W. & Gordon, K. C. (2011). Inorg. Chem. 50, 6093–6106.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGao, B., Liu, Y., Geng, Y., Cheng, Y., Wang, L., Jing, X. & Wang, F. (2009). Tetrahedron Lett. 50, 1649–1652.  Web of Science CrossRef CAS Google Scholar
First citationGhumaan, S., Sarkar, B., Patil, M. P., Fiedler, J., Sunoj, R. B., Kaim, W. & Lahiri, G. K. (2007). Polyhedron, 26, 3409–3418.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKitagawa, S. & Masaoka, S. (2003). Coord. Chem. Rev. 246, 73–88.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoilanen, J. O., Chilton, N. F., Day, B. M., Pugh, T. & Layfield, R. A. (2016). Angew. Chem. Int. Ed. 55, 5521–5525.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiglosiewicz, I. M., Beckhaus, R., Saak, W. & Haase, D. (2005). J. Am. Chem. Soc. 127, 14190–14191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoy, S. & Kubiak, C. P. (2010). Dalton Trans. 39, 10937–10943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSegura, J. L., Juárez, R., Ramos, M. & Seoane, C. (2015). Chem. Soc. Rev. 44, 6850–6885.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShao, J., Chang, J. & Chi, C. (2012). Org. Biomol. Chem. 10, 7045–7052.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (1999). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe (2002). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds