research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of tetra­aqua­bis­­(isonicotinamide-κN1)cobalt(II) fumarate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, and bKing Saud University, Faculty of Science, Department of Chemistry, Riyadh, Saudi Arabia
*Correspondence e-mail: sevgi.koroglu@omu.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 7 January 2018; accepted 17 January 2018; online 26 January 2018)

The reaction of cobalt(II) with fumaric acid (H2fum) and isonicotinamide in a basic solution produces the title salt, [Co(C6H6N2O)2(H2O)4](C4H2O4). In the complex cation, the CoII atom, located on an inversion centre, is coordinated by two isonicotinamide and four water mol­ecules in a distorted N2O4 octa­hedral geometry. The fumarate anion is located on another inversion centre and is linked to neighbouring complex cations via O—H⋯O and N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds. In the crystal, the complex cations are further linked by O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architectecture. Hirshfeld surface analyses (dnorm surfaces and two-dimensional fingerprint plots) for the title compound are presented and discussed.

1. Chemical context

Metal carboxyl­ates have attracted intense attention because of their inter­esting framework topologies (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). Among metal carboxyl­ates, fumarate dianions (fum) have good conformational freedom and they possess some desirable features such as being versatile ligands because of the four electron-donor oxygen atoms they carry, and their ability to link inorganic moieties (Zheng et al., 2003[Zheng, Y.-Q., Sun, J. & Lin, J.-L. (2003). J. Mol. Struct. 650, 49-56.]). Moreover, metal fumarates exhibit interesting structural varieties.

[Scheme 1]

Di­carb­oxy­lic acids such as fumaric acid and amides have been particularly useful in creating many supra­molecular structures involving isonicotinamide and a variety of carb­oxy­lic acid mol­ecules (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164-168.]; Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]). Di­carb­oxy­lic acid ligands are utilized in the synthesis of a wide variety of metal carboxyl­ates. For this reason they have been investigated extensively, both experimentally and computationally. We describe herein the synthesis, structural features and Hirshfeld surface analysis of the title salt.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The CoII cation and midpoint of the C=C bond of the fumarate anion are each located on an inversion centre. In the complex cation, the CoII atom is coordinated to two isonicotinamide ligands and four water mol­ecules in a distorted N2O4 octa­hedral geometry. The fumarate anion interacts with neighboring complex cations via O—H⋯O and N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O5i 0.86 1.96 2.814 (2) 171
O2—H2B⋯O4ii 0.86 1.88 2.7165 (19) 165
O3—H3A⋯O1iii 0.86 1.95 2.792 (2) 168
O3—H3B⋯O4 0.86 1.82 2.6652 (19) 172
N2—H2C⋯O5iv 0.86 2.13 2.955 (2) 160
N2—H2D⋯O1v 0.86 2.47 3.288 (3) 159
C1—H1⋯O4vi 0.93 2.41 3.322 (2) 168
C2—H2⋯O1v 0.93 2.30 3.225 (3) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x-1, y, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) –x + 1, −y + 1, −z + 1; (vii) –x + 1, −y + 1, −z + 2.]

3. Supra­molecular features

In the crystal, the fumarate anions and complex cations are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds; the complex cations also interact with each other through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
Packing of the title compound in the unit cell. Dashed lines indicate hydrogen bonds.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]) was used to analyse the inter­actions in the crystal and fingerprint plots mapped over dnorm (Figs. 3[link] and 4[link]) were generated. The contact distances to the closest atom inside (di) and outside (de) of the Hirshfeld surface are used to analyse the inter­molecular inter­actions via the mapping of dnorm. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −1.227 (red) to 1.279 (blue). Many studies on Hirshfeld surfaces can be found in the literature (see, for example, Şen et al., 2018[Şen, F., Çapan, İ., Dincer, M. & Cukurovali, A. (2018). J. Mol. Struct. 1155, 278-287.]; Yaman et al., 2018[Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41-44.]).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped with dnorm. The red spots indicate the regions of the donor–acceptor inter­actions.
[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surfaces for the title structure.

In a dnorm surface, any inter­molecular inter­actions will appear as red spots. The red spots indicate the regions of donor–acceptor inter­actions. There are many red spots in the dnorm surface (Fig. 3[link]), which are usually on the O-acceptor atoms involved in the inter­actions listed in Table 1[link]. Strong hydrogen-bond inter­actions, such as O—H⋯O, are seen as a bright-red areas on the Hirshfeld surfaces (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]).

The fingerprint plot for the title complex is presented in Fig. 5[link]. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 35.5% (Fig. 6[link]b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O, N—H⋯O and O—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (35.9%) (Fig. 6[link]a). The C⋯C/C⋯C contacts have a sharp spike between the O⋯H and H⋯O spikes (5.7%) (Fig. 6[link]d). The contribution of the other inter­molecular contacts to the Hirshfeld surfaces is C⋯H/H⋯C (10.3%) (Fig. 6[link]c).

[Figure 5]
Figure 5
A fingerprint plot of the title complex.
[Figure 6]
Figure 6
(a) O⋯H/H⋯O, (b) H⋯H/H⋯H, (c) C⋯H/H⋯C and (d) C⋯C/C⋯C contacts in the title complex, showing the percentages of contacts contributing to the total Hirshfeld surface area.

5. Database survey

A search of the Cambridge Structural Database for fumaric acid and isonicotinamide revealed the presence of seven structures: isonicotinohyrazide nicotinamide fumaric acid (Aitipamula et al., 2013[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877-5887.]), catena-poly[[aqua­bis­[N-(pyridin-3-yl)isonicotinamide-κN1)copper(II)]-(μ2-fumarato-κO,O′)-(Qiblawi & LaDuca, 2012[Qiblawi, S. H. & LaDuca, R. L. (2012). Acta Cryst. E68, m1514.]), bis­(isonicotinamide) fumaric acid (Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]), catena-[bis­(μ2-fumarato)bis­(μ2-3-pyridyl­isonicotinamide)­dizinctrihydrate] (Uebler et al., 2013[Uebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586-1596.]) and catena-[bis­(μ-but-2-enedioato)bis­(μ-pyridine-4-carbohydrazide)dizinc(II)] (Naskar et al., 2017[Naskar, K., Dey, A., Dutta, B., Ahmed, F., Sen, C., Mir, M. H., Roy, P. P. & Sinha, C. (2017). Cryst. Growth Des. 17, 3267-3276.]). In these compounds, the C—H⋯O hydrogen bonds have H⋯O distances ranging from 2.56 to 3.59 Å and C⋯O distances ranging from 3.27 to 3.96 Å. The N—H⋯O hydrogen bonds have H⋯O distances ranging from 1.86 to 2.33 Å and N⋯O distances ranging from 2.82 to 3.15 Å.

6. Synthesis and crystallization

An aqueous solution of fumaric acid (26 mmol, 3 g) in water was added to a solution of NaOH (52 mmol, 2.07 g) while stirring. A solution of CoCl2·6H2O (25 mmol, 6.19 g) in water was added. The reaction mixture was stirred for an hour at room temperature. The pink mixture was filtered and left to dry. The pink crystals (0.88 mmol, 0.20 g) were dissolved in water and added to an aqueous solution of isonicotinamide (1.75 mmol, 0.21 g). The resulting suspension was filtered and allowed to crystallize for five weeks at room temperature yielding orange block-shaped crystals suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound and C-bound hydrogen atoms were positioned geometrically and treated as riding: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C,N). Water H atoms were found in a difference-Fourier map, restrained with O—H = 0.85 Å and refined with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C6H6N2O)2(H2O)4](C4H2O4)
Mr 489.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.6914 (10), 10.0106 (11), 11.3811 (12)
β (°) 113.416 (3)
V3) 1013.22 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.25 × 0.19 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Analytical (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.394, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19963, 1962, 1830
Rint 0.032
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.14
No. of reflections 1962
No. of parameters 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Tetraaquabis(isonicotinamide-κN1)cobalt(II) fumarate top
Crystal data top
[Co(C6H6N2O)2(H2O)4](C4H2O4)F(000) = 506
Mr = 489.30Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6914 (10) ÅCell parameters from 9553 reflections
b = 10.0106 (11) Åθ = 3.1–28.3°
c = 11.3811 (12) ŵ = 0.91 mm1
β = 113.416 (3)°T = 296 K
V = 1013.22 (19) Å3Block, orange
Z = 20.25 × 0.19 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
1830 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: analytical
(X-RED32; Stoe & Cie, 2002)
θmax = 26.0°, θmin = 3.1°
Tmin = 0.394, Tmax = 0.746h = 1111
19963 measured reflectionsk = 1212
1962 independent reflectionsl = 1413
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.1735P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1962 reflectionsΔρmax = 0.35 e Å3
144 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01658 (12)
O30.60307 (15)0.65750 (13)0.62150 (13)0.0237 (3)
H3A0.6964040.6602640.6350170.035*
H3B0.5945750.6468600.6929160.035*
O20.39661 (15)0.64187 (13)0.35319 (13)0.0240 (3)
H2A0.3689230.6041650.2798360.036*
H2B0.4589530.7044450.3582000.036*
O40.55105 (17)0.63859 (14)0.83392 (14)0.0283 (3)
O10.09235 (17)0.70328 (16)0.68073 (17)0.0365 (4)
O50.72605 (18)0.48025 (16)0.88934 (16)0.0356 (4)
N10.31337 (18)0.52596 (16)0.55744 (16)0.0208 (3)
C70.6189 (2)0.54056 (19)0.90123 (18)0.0221 (4)
C30.1007 (2)0.5713 (2)0.66124 (18)0.0216 (4)
C80.5656 (2)0.48648 (19)0.99864 (19)0.0239 (4)
H80.6298710.4299511.0614280.029*
N20.0347 (3)0.5112 (2)0.7922 (2)0.0491 (6)
H2C0.1021550.5235210.8224130.059*
H2D0.0208260.4409360.8128610.059*
C40.1453 (2)0.6727 (2)0.6015 (2)0.0268 (4)
H40.1039780.7576650.5945490.032*
C20.1627 (2)0.4464 (2)0.6655 (2)0.0297 (5)
H20.1344410.3752480.7035640.036*
C60.0163 (2)0.6003 (2)0.7141 (2)0.0279 (4)
C50.2516 (2)0.64642 (19)0.5523 (2)0.0263 (4)
H50.2817570.7158920.5136270.032*
C10.2671 (2)0.4283 (2)0.6126 (2)0.0275 (4)
H10.3073960.3433820.6156910.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01724 (19)0.01624 (19)0.0214 (2)0.00028 (12)0.01310 (14)0.00056 (13)
O30.0239 (7)0.0251 (7)0.0276 (7)0.0036 (6)0.0162 (6)0.0033 (6)
O20.0259 (7)0.0220 (7)0.0258 (7)0.0015 (5)0.0121 (6)0.0031 (5)
O40.0421 (8)0.0219 (7)0.0319 (7)0.0059 (6)0.0264 (7)0.0046 (6)
O10.0332 (8)0.0303 (8)0.0602 (11)0.0001 (7)0.0334 (8)0.0075 (7)
O50.0354 (8)0.0430 (9)0.0409 (9)0.0129 (7)0.0284 (7)0.0091 (7)
N10.0207 (8)0.0199 (8)0.0274 (8)0.0003 (6)0.0154 (7)0.0003 (6)
C70.0262 (9)0.0217 (9)0.0234 (9)0.0018 (8)0.0151 (8)0.0023 (8)
C30.0178 (9)0.0268 (10)0.0247 (9)0.0017 (7)0.0134 (7)0.0023 (8)
C80.0282 (10)0.0240 (10)0.0243 (10)0.0033 (8)0.0155 (8)0.0037 (7)
N20.0411 (12)0.0675 (15)0.0591 (14)0.0163 (11)0.0416 (11)0.0225 (11)
C40.0285 (10)0.0182 (9)0.0425 (12)0.0012 (8)0.0234 (9)0.0016 (8)
C20.0303 (10)0.0270 (10)0.0428 (12)0.0024 (9)0.0261 (10)0.0110 (9)
C60.0208 (9)0.0359 (12)0.0330 (11)0.0056 (9)0.0170 (8)0.0089 (9)
C50.0300 (10)0.0191 (9)0.0397 (11)0.0005 (8)0.0245 (9)0.0032 (8)
C10.0274 (10)0.0204 (10)0.0432 (12)0.0039 (8)0.0229 (9)0.0058 (8)
Geometric parameters (Å, º) top
Co1—O3i2.0731 (13)C7—C81.498 (3)
Co1—O32.0731 (13)C3—C21.380 (3)
Co1—O2i2.1171 (13)C3—C41.383 (3)
Co1—O22.1171 (13)C3—C61.509 (3)
Co1—N12.1694 (16)C8—C8ii1.313 (4)
Co1—N1i2.1694 (16)C8—H80.9300
O3—H3A0.8556N2—C61.320 (3)
O3—H3B0.8555N2—H2C0.8600
O2—H2A0.8564N2—H2D0.8600
O2—H2B0.8564C4—C51.380 (3)
O4—C71.258 (2)C4—H40.9300
O1—C61.236 (3)C2—C11.379 (3)
O5—C71.254 (2)C2—H20.9300
N1—C11.332 (3)C5—H50.9300
N1—C51.337 (2)C1—H10.9300
O3i—Co1—O3180.0O4—C7—C8118.86 (17)
O3i—Co1—O2i88.15 (6)C2—C3—C4117.75 (17)
O3—Co1—O2i91.85 (6)C2—C3—C6123.14 (18)
O3i—Co1—O291.85 (6)C4—C3—C6119.07 (18)
O3—Co1—O288.15 (6)C8ii—C8—C7124.4 (2)
O2i—Co1—O2180.0C8ii—C8—H8117.8
O3i—Co1—N193.08 (6)C7—C8—H8117.8
O3—Co1—N186.92 (6)C6—N2—H2C120.0
O2i—Co1—N191.85 (6)C6—N2—H2D120.0
O2—Co1—N188.15 (6)H2C—N2—H2D120.0
O3i—Co1—N1i86.92 (6)C5—C4—C3119.29 (18)
O3—Co1—N1i93.08 (6)C5—C4—H4120.4
O2i—Co1—N1i88.14 (6)C3—C4—H4120.4
O2—Co1—N1i91.85 (6)C1—C2—C3119.26 (18)
N1—Co1—N1i180.0C1—C2—H2120.4
Co1—O3—H3A109.8C3—C2—H2120.4
Co1—O3—H3B109.6O1—C6—N2123.2 (2)
H3A—O3—H3B109.1O1—C6—C3119.28 (19)
Co1—O2—H2A109.9N2—C6—C3117.5 (2)
Co1—O2—H2B109.8N1—C5—C4123.21 (18)
H2A—O2—H2B109.1N1—C5—H5118.4
C1—N1—C5117.00 (16)C4—C5—H5118.4
C1—N1—Co1122.07 (13)N1—C1—C2123.47 (19)
C5—N1—Co1120.48 (13)N1—C1—H1118.3
O5—C7—O4124.37 (18)C2—C1—H1118.3
O5—C7—C8116.71 (18)
O5—C7—C8—C8ii161.6 (3)C2—C3—C6—N215.6 (3)
O4—C7—C8—C8ii15.7 (4)C4—C3—C6—N2166.7 (2)
C2—C3—C4—C51.8 (3)C1—N1—C5—C40.4 (3)
C6—C3—C4—C5179.59 (19)Co1—N1—C5—C4172.01 (17)
C4—C3—C2—C11.1 (3)C3—C4—C5—N11.1 (3)
C6—C3—C2—C1178.8 (2)C5—N1—C1—C21.2 (3)
C2—C3—C6—O1162.7 (2)Co1—N1—C1—C2171.10 (17)
C4—C3—C6—O114.9 (3)C3—C2—C1—N10.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.861.962.814 (2)171
O2—H2B···O4iii0.861.882.7165 (19)165
O3—H3A···O1iv0.861.952.792 (2)168
O3—H3B···O40.861.822.6652 (19)172
N2—H2C···O5v0.862.132.955 (2)160
N2—H2D···O1vi0.862.473.288 (3)159
C1—H1···O4vii0.932.413.322 (2)168
C2—H2···O1vi0.932.303.225 (3)173
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y, z; (v) x1, y, z; (vi) x, y1/2, z+3/2; (vii) x+1, y1/2, z+3/2.
 

Funding information

This research project was supported by a grant from the `Research Center of the Female Scientific and Medical Colleges', Deanship of Scientific Research, King Saud University.

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationAitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877–5887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaskar, K., Dey, A., Dutta, B., Ahmed, F., Sen, C., Mir, M. H., Roy, P. P. & Sinha, C. (2017). Cryst. Growth Des. 17, 3267–3276.  CSD CrossRef CAS Google Scholar
First citationQiblawi, S. H. & LaDuca, R. L. (2012). Acta Cryst. E68, m1514.  CSD CrossRef IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationŞen, F., Çapan, İ., Dincer, M. & Cukurovali, A. (2018). J. Mol. Struct. 1155, 278–287.  Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar
First citationUebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586–1596.  CSD CrossRef CAS Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-Q., Sun, J. & Lin, J.-L. (2003). J. Mol. Struct. 650, 49–56.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds