research communications
H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate
of the triethylammonium salt of 3-[(4-hydroxy-3-methoxyphenyl)(4-hydroxy-2-oxo-2aDepartment of Chemistry, Abdul Wali Khan University Mardan, Pakistan, bDepartment of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan, and cInstitut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
*Correspondence e-mail: ikram@awkum.edu.pk, carola.schulzke@uni-greifswald.de
The reaction between 3,3′-[(3-methoxy-4-hydroxyphenyl)methanediyl]bis(4-hydroxy-2H-chromen-2-one) and triethylamine in methanol yielded the title compound triethylammonium 3-[(4-hydroxy-3-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate, C6H16N+·C26H17O8− or (NHEt3)+(C26H17O8)−, which crystallized directly from its methanolic mother liquor. The non-deprotonated coumarol substituent shares its H atom with the deprotonated coumarolate substituent in a short negative charge-assisted hydrogen bond in which the freely refined H atom is moved from its parent O atom towards the acceptor O atom, elongating the covalent O—H bond to 1.18 (3) Å. The respective H atom can therefore be described as being shared by two alcohol O atoms, culminating in the formation of an eight-membered ring.
Keywords: crystal structure; 4-hydroxy-3-methoxyphenyl dicoumarol; 4-hydroxycoumarin derivatives; negative charge-assisted hydrogen bonds; short intramolecular hydrogen bonds.
CCDC reference: 1818945
1. Chemical context
Requisite chemotherapeutical treatments of cancer and inhibition of bacterial activities encourage the design of drugs that can effectively target the affected cells or respective pathogens (Nolan et al., 2007; Jung & Park, 2009).
4-Hydroxy coumarine and its derivatives have been developed and exploited by various researchers in this context (Nolan et al., 2007; Tavolari et al., 2008; Jung & Park, 2009; Li et al., 2015; David, 2017). In biological tests with 3,3′-[(3-methoxy-4-hydroxyphenyl)methanediyl]bis(4-hydroxy-2H-chromen-2-one), much lower than expected cytotoxic activity was found (Rehman et al., 2013), which may be attributed to insufficient solubility. The hydrophobic nature of this compound is most likely due to strong intramolecular hydrogen bonding between the two coumarol moieties via two O—H⋯O=C interactions, which was confirmed for the solid state by X-ray structural analysis of this compound (Bandyopadhyay, 2015) and close relatives (Manolov et al., 2006; Stanchev et al., 2007).
Hydrophobic molecules are not only ineffective inside biological fluids but they may also accumulate inside an organism. Increasing the solubility by increasing the hydrophilicity of potentially bioactive molecules may be achieved by converting them into salts (Smith et al., 2009). Therefore, the synthesis of readily soluble ammonium salts of dicoumarol derivatives is of considerable importance. Herein, a crystallographically characterized example (being only the fourth of its kind) is discussed with a focus on its structural aspects.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The deprotonation of one hydroxy-coumarin substituent but not the other leads to a short intramolecular negative charge-assisted hydrogen bond between the two hydroxy-coumarin substituents. The formation of such intramolecular hydrogen bonds between hydroxy-coumarin substituents is rare though not unprecedented (Kolos et al., 2007; Vijayalakshmi et al., 2001; Waheed & Ahmed, 2016). Recently, Bengiat and coworkers surveyed the occurrence of negative charge-assisted hydrogen bonds (–CAHB) in the Cambridge Structural Database (Groom et al., 2016) in general (Bengiat et al., 2016a), covering 19 such compounds although excluding the report by Waheed & Ahmed (2016), which was published later that year. Bengiat et al. (2016b) also discovered the shortest distance between donor and acceptor oxygen atoms of such intermolecular interactions to be 2.404 (3) Å, whereas in all other examples the distance was given as at least 2.430 Å (Bengiat et al., 2016a). The metrical parameters of the intramolecular –CAHB in the title compound are D⋯A 2.4139 (15) Å and D—H⋯A 169 (2)°. The distance of the freely refined hydrogen atom to its parent atom O3 is elongated to 1.18 (3) Å, while the H⋯A hydrogen-bond length to O6 is rather short at only 1.24 (3) Å. This interaction is therefore the second shortest such –CAHB overall and the shortest intramolecular one. In the three related deprotonated dicoumarols, the D⋯A distances range from 2.423 Å (Waheed & Ahmed, 2016) to 2.491 Å (Kolos et al., 2007). Based on the short, and hence strong, intramolecular hydrogen bond, an eight membered ring is formed (C1/C2/C10/O3/H3O/O6/C19/C11). The distances between the alcohol oxygen atoms and bound carbon atoms are 1.3005 (16) Å (O3—C10) and 1.2939 (17) Å (O6—C19); i.e. both very similar and both significantly shorter than those reported for non-deprotonated derivatives, which range from 1.331 to 1.338 Å (Stanchev et al., 2007). This is in accordance with both alcohol functions being deprotonated and protonated to a certain extent at the same time, as was also found in one related structure of a salt (Vijayalakshmi et al., 2001) but not in the other two analogous structures (Kolos et al., 2007; Waheed & Ahmed, 2016).
The ammonium hydrogen atom, which was refined freely, exhibits a hydrogen bond to the carbonyl oxygen atom of the deprotonated coumarol substituent (N1—H1N⋯O4) with D⋯A = 2.7727 (19) Å and D-–H⋯A = 164.5 (18)°.
All of the C—C1—C angles around the central methine carbon atom [C11—C1—C2 = 116.48 (12), C11—C1—C20 = 114.44 (12), C2—C1—C20 = 110.79 (11)°] are slightly widened compared to the ideal tetrahedral value. As this is most pronounced for the angle involving the two coumarin substituents, it is most likely based on ; Vijayalakshmi et al., 2001). The planarity of the two benzopyran moieties (C2/C3/O2/C4–C10, and C11/C12/O5/C13–C19) support this conclusion, with the largest deviations from the planes found for C2 [0.089 (1) Å; carbon atom binding the central methine carbon C1] and for C18 [0.020 (1) Å]. The dihedral angle between these planes is 50.84 (4)° and they form angles with the phenyl ring plane of 76.24 (5) and 59.40 (5)°, respectively.
The bond lengths involving the two pyran oxygen atoms [O2—C3 = 1.3773 (18), O2—C4 =1.3692 (17), O5—C12 = 1.3789 (18) and O5—C13 = 1.365 (2) Å] are similar as observed previously, indicating conjugation between the six-membered rings in the two benzopyran systems (Alcock & Hough, 1972Notable differences to the neutral parent molecule (Bandyopadhyay, 2015) comprise (i) the orientation of the hydroxy coumarin substituents (in the neutral structure one is flipped so that the lactone and alcohol moieties face each other, whereas in the present case alcohol faces alcohol and lactone faces lactone), (ii) a contraction [1.516 (2) Å, C1—C11] and elongation [1.5277 (19) Å, C1—C2] of the methine-to-benzopyran-carbon-atom distances of the deprotonated and non-deprotonated substituents compared to the neutral structure (1.520 and 1.521 Å) and (iii) a higher molecular symmetry including the orientation of the 4-hydroxy-3-methoxyphenyl substituent of the neutral molecule compared to the anion of the title compound, emphasized by the torsion angles between the phenyl moiety and the two benzopyrane moieties, which are much more distinct in the anion [C2—C1—C20—C25 = 124.22 (15) and C11—C1—C20—C21 = 169.11 (13)° vs 153.28 and 163.81° in the neutral molecule].
3. Supramolecular features
The crystal packing appears to be dominated by intermolecular hydrogen-bonding interactions. No parallel alignments of the aromatic systems (phenyl, benzopyran) in a stacking fashion are observed, i.e. π–π interactions are not present.
The alcohol oxygen atom of the 4-hydroxy-3-methoxyphenyl substituent (O8) bridges the adjacent cation and anion by hydrogen bonding as a classical donor [O8—H8O⋯O1(−x + , y + , −z + ); D⋯A = 2.4139 (15) Å] and as acceptor [O8⋯H27B—C27(−x + , y + , −z + ); D⋯A = 3.257 (2) Å] in a non-classical hydrogen bond from an amine methyl group (Table 1; Fig. 2, top). The ammonium cations bridge adjacent anions by the intra-formula classical hydrogen bond (N1—H1N⋯O4; see above) and the non-classical donation towards O8 [C27—H27B⋯O8(−x + , y − , −z + ; D⋯A = 3.257 (2) (19) Å]. Supported by the hydrogen bond with the carbonyl oxygen atom O1 as acceptor [O1⋯H8O—O8(−x + , y − , −z + ); D⋯A = 2.6488 (16) Å], these interactions form infinite flat chains with `up and down'-pointing benzopyrane moieties protruding along b (Fig. 2, bottom left). The packing diagram exhibits a zigzag pattern along b in which adjacent chains are aligned in a zipper-like fashion (Fig. 2, bottom right).
4. Synthesis and crystallization
3,3′-[(3-Methoxy-4-hydroxyphenyl)methanediyl]bis(4-hydroxy-2H-chromen-2-one) was synthesized following essentially the reported procedure (Rehman et al., 2013). 20 mmol of 3-methoxy-4-hydroxybenzaldehyde dissolved in anyhydrous ethanol was added to 50 mmol of an ethanolic solution of 4-hydroxycoumarin. The resulting mixture was refluxed at 393 K for 3 h. Upon cooling, a solid white powder was obtained, which was washed with 10% copious ethanolic/n-hexane solution. The subsequent deprotonation of 3,3′-[(3-methoxy-4-hydroxyphenyl)methanediyl]bis(4-hydroxy-2H-chromen-2-one) was carried out by adding 1 mL of triethylamine to its methanolic solution. The resulting transparent yellowish solution was left standing overnight to grow transparent crystals of triethylammonium 3-[(4-hydroxy-3-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate.
5. Refinement
Crystal data, data collection and structure . The three hydrogen atoms bound to heteroatoms (N1, O3, O8) were freely refined. Carbon-bound hydrogen atoms were placed in calculated positions, and refined with a riding-model approximation: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Hydrogen-bonding interactions were identified and analysed using PLATON (Spek, 2009) and finally calculated using the HTAB instruction in SHELXL (together with EQIV) (Sheldrick, 2015b).
Supporting information
CCDC reference: 1818945
https://doi.org/10.1107/S2056989018001561/lh5866sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001561/lh5866Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001561/lh5866Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2010); cell
X-AREA (Stoe & Cie, 2010); data reduction: X-AREA (Stoe & Cie, 2010); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and Mercury (Macrae et al., 2006).C6H16N+·C26H17O8− | F(000) = 2368 |
Mr = 559.59 | Dx = 1.326 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.408 (4) Å | Cell parameters from 31667 reflections |
b = 13.518 (3) Å | θ = 6.3–59.2° |
c = 21.714 (4) Å | µ = 0.10 mm−1 |
β = 100.16 (3)° | T = 170 K |
V = 5607 (2) Å3 | Prism, colourless |
Z = 8 | 0.44 × 0.39 × 0.37 mm |
Stoe IPDS2T diffractometer | 7726 independent reflections |
Radiation source: fine-focus sealed tube | 4433 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.054 |
ω scans | θmax = 29.6°, θmin = 3.2° |
Absorption correction: numerical (X-RED32 and X-SHAPE; Stoe & Cie, 2010) | h = −26→26 |
Tmin = 0.784, Tmax = 0.927 | k = −18→18 |
31033 measured reflections | l = −29→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max < 0.001 |
7726 reflections | Δρmax = 0.44 e Å−3 |
386 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65404 (7) | 0.33340 (8) | 0.59806 (5) | 0.0450 (3) | |
O2 | 0.71609 (6) | 0.37291 (7) | 0.52747 (5) | 0.0351 (2) | |
O3 | 0.72176 (6) | 0.66489 (7) | 0.57698 (5) | 0.0349 (2) | |
O4 | 0.54117 (6) | 0.42562 (8) | 0.68855 (5) | 0.0392 (3) | |
O5 | 0.46745 (5) | 0.54780 (8) | 0.66496 (5) | 0.0413 (3) | |
O6 | 0.61390 (6) | 0.72322 (8) | 0.60507 (5) | 0.0380 (3) | |
O7 | 0.89787 (6) | 0.52052 (8) | 0.78148 (5) | 0.0432 (3) | |
O8 | 0.88267 (5) | 0.69683 (8) | 0.82643 (5) | 0.0382 (3) | |
C1 | 0.65911 (7) | 0.52333 (10) | 0.65646 (6) | 0.0283 (3) | |
H1 | 0.653226 | 0.456518 | 0.674616 | 0.034* | |
C2 | 0.68601 (7) | 0.50216 (10) | 0.59576 (6) | 0.0274 (3) | |
C3 | 0.68308 (8) | 0.40112 (10) | 0.57585 (6) | 0.0307 (3) | |
C4 | 0.75438 (8) | 0.43890 (10) | 0.49954 (7) | 0.0304 (3) | |
C5 | 0.79254 (9) | 0.40104 (12) | 0.45636 (7) | 0.0380 (3) | |
H5 | 0.791402 | 0.332382 | 0.446889 | 0.046* | |
C6 | 0.83190 (9) | 0.46504 (12) | 0.42771 (7) | 0.0397 (4) | |
H6 | 0.859256 | 0.440327 | 0.398885 | 0.048* | |
C7 | 0.83193 (9) | 0.56603 (12) | 0.44068 (7) | 0.0391 (4) | |
H7 | 0.858278 | 0.609993 | 0.419785 | 0.047* | |
C8 | 0.79410 (8) | 0.60231 (11) | 0.48347 (7) | 0.0340 (3) | |
H8 | 0.794209 | 0.671288 | 0.491881 | 0.041* | |
C9 | 0.75550 (7) | 0.53842 (10) | 0.51466 (6) | 0.0282 (3) | |
C10 | 0.71880 (7) | 0.57089 (10) | 0.56401 (6) | 0.0280 (3) | |
C11 | 0.58739 (7) | 0.57065 (11) | 0.64990 (6) | 0.0306 (3) | |
C12 | 0.53443 (8) | 0.51111 (11) | 0.66936 (7) | 0.0334 (3) | |
C13 | 0.45011 (8) | 0.64011 (12) | 0.64179 (7) | 0.0384 (4) | |
C14 | 0.38105 (9) | 0.66885 (15) | 0.63775 (9) | 0.0515 (4) | |
H14 | 0.347869 | 0.626144 | 0.651362 | 0.062* | |
C15 | 0.36156 (10) | 0.76085 (16) | 0.61355 (10) | 0.0577 (5) | |
H15 | 0.314319 | 0.781672 | 0.610423 | 0.069* | |
C16 | 0.40959 (9) | 0.82347 (15) | 0.59370 (9) | 0.0517 (5) | |
H16 | 0.395311 | 0.886758 | 0.577164 | 0.062* | |
C17 | 0.47810 (9) | 0.79387 (12) | 0.59795 (8) | 0.0420 (4) | |
H17 | 0.511084 | 0.836923 | 0.584344 | 0.050* | |
C18 | 0.49943 (8) | 0.70091 (11) | 0.62216 (7) | 0.0352 (3) | |
C19 | 0.57071 (7) | 0.66420 (11) | 0.62576 (7) | 0.0313 (3) | |
C20 | 0.71563 (7) | 0.57348 (10) | 0.70423 (6) | 0.0282 (3) | |
C21 | 0.77965 (8) | 0.52424 (10) | 0.72074 (7) | 0.0315 (3) | |
H21 | 0.785784 | 0.461518 | 0.702725 | 0.038* | |
C22 | 0.83384 (7) | 0.56465 (11) | 0.76247 (6) | 0.0313 (3) | |
C23 | 0.82595 (7) | 0.65759 (11) | 0.78824 (6) | 0.0303 (3) | |
C24 | 0.76243 (8) | 0.70469 (11) | 0.77388 (7) | 0.0338 (3) | |
H24 | 0.756016 | 0.766884 | 0.792446 | 0.041* | |
C25 | 0.70744 (8) | 0.66260 (11) | 0.73256 (7) | 0.0331 (3) | |
H25 | 0.663662 | 0.695791 | 0.723776 | 0.040* | |
C26 | 0.90262 (10) | 0.41779 (13) | 0.76835 (9) | 0.0543 (5) | |
H26A | 0.865134 | 0.382110 | 0.783783 | 0.081* | |
H26B | 0.948123 | 0.392467 | 0.789170 | 0.081* | |
H26C | 0.897890 | 0.408094 | 0.723074 | 0.081* | |
H3O | 0.6704 (13) | 0.6889 (17) | 0.5951 (11) | 0.085 (7)* | |
H8O | 0.8688 (10) | 0.7456 (14) | 0.8472 (9) | 0.047 (5)* | |
N1 | 0.43844 (8) | 0.30039 (12) | 0.62696 (7) | 0.0470 (4) | |
C27 | 0.44835 (9) | 0.20824 (14) | 0.66564 (9) | 0.0509 (5) | |
H27A | 0.431136 | 0.220287 | 0.705272 | 0.061* | |
H27B | 0.499039 | 0.193640 | 0.676315 | 0.061* | |
C28 | 0.41125 (13) | 0.11883 (15) | 0.63391 (11) | 0.0694 (6) | |
H28A | 0.360606 | 0.130354 | 0.626276 | 0.104* | |
H28B | 0.422180 | 0.060744 | 0.660876 | 0.104* | |
H28C | 0.426885 | 0.107345 | 0.593994 | 0.104* | |
C29 | 0.46749 (11) | 0.28595 (16) | 0.56641 (9) | 0.0583 (5) | |
H29A | 0.512240 | 0.249257 | 0.576127 | 0.070* | |
H29B | 0.434245 | 0.244931 | 0.537270 | 0.070* | |
C30 | 0.47967 (13) | 0.38019 (16) | 0.53470 (9) | 0.0651 (6) | |
H30A | 0.434859 | 0.413819 | 0.520966 | 0.098* | |
H30B | 0.501585 | 0.366045 | 0.498311 | 0.098* | |
H30C | 0.510589 | 0.422827 | 0.563915 | 0.098* | |
C31 | 0.36666 (10) | 0.34013 (16) | 0.61423 (10) | 0.0604 (5) | |
H31A | 0.334931 | 0.289439 | 0.591806 | 0.072* | |
H31B | 0.365407 | 0.398452 | 0.586472 | 0.072* | |
C32 | 0.34037 (11) | 0.3698 (2) | 0.67264 (10) | 0.0723 (7) | |
H32A | 0.331448 | 0.310448 | 0.695904 | 0.108* | |
H32B | 0.296877 | 0.407609 | 0.661328 | 0.108* | |
H32C | 0.375635 | 0.410813 | 0.698784 | 0.108* | |
H1N | 0.4677 (11) | 0.3515 (15) | 0.6501 (10) | 0.064 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0646 (8) | 0.0275 (5) | 0.0459 (6) | −0.0090 (5) | 0.0180 (6) | 0.0021 (5) |
O2 | 0.0467 (6) | 0.0250 (5) | 0.0350 (5) | −0.0026 (4) | 0.0105 (5) | −0.0019 (4) |
O3 | 0.0372 (6) | 0.0243 (5) | 0.0460 (6) | −0.0043 (4) | 0.0146 (5) | −0.0036 (4) |
O4 | 0.0366 (6) | 0.0435 (6) | 0.0367 (5) | −0.0117 (5) | 0.0039 (4) | 0.0044 (5) |
O5 | 0.0263 (5) | 0.0525 (7) | 0.0458 (6) | −0.0047 (5) | 0.0080 (5) | 0.0017 (5) |
O6 | 0.0306 (6) | 0.0333 (5) | 0.0511 (6) | 0.0003 (4) | 0.0094 (5) | 0.0053 (5) |
O7 | 0.0334 (6) | 0.0446 (6) | 0.0470 (6) | 0.0127 (5) | −0.0056 (5) | −0.0110 (5) |
O8 | 0.0284 (6) | 0.0417 (6) | 0.0427 (6) | −0.0011 (5) | 0.0011 (5) | −0.0143 (5) |
C1 | 0.0270 (7) | 0.0281 (7) | 0.0295 (7) | −0.0029 (5) | 0.0042 (5) | 0.0015 (5) |
C2 | 0.0250 (7) | 0.0277 (6) | 0.0282 (6) | −0.0012 (5) | 0.0012 (5) | 0.0000 (5) |
C3 | 0.0330 (8) | 0.0278 (7) | 0.0300 (7) | −0.0009 (6) | 0.0023 (6) | 0.0018 (5) |
C4 | 0.0316 (7) | 0.0284 (7) | 0.0299 (7) | −0.0019 (6) | 0.0021 (6) | 0.0012 (5) |
C5 | 0.0440 (9) | 0.0333 (8) | 0.0368 (8) | 0.0032 (7) | 0.0074 (7) | −0.0039 (6) |
C6 | 0.0410 (9) | 0.0470 (9) | 0.0326 (8) | 0.0028 (7) | 0.0104 (7) | −0.0022 (6) |
C7 | 0.0401 (9) | 0.0413 (9) | 0.0373 (8) | −0.0039 (7) | 0.0105 (7) | 0.0012 (6) |
C8 | 0.0344 (8) | 0.0315 (7) | 0.0362 (7) | −0.0028 (6) | 0.0068 (6) | 0.0004 (6) |
C9 | 0.0266 (7) | 0.0275 (6) | 0.0289 (7) | −0.0003 (5) | 0.0002 (5) | 0.0008 (5) |
C10 | 0.0255 (7) | 0.0258 (6) | 0.0311 (7) | −0.0009 (5) | 0.0008 (5) | −0.0003 (5) |
C11 | 0.0256 (7) | 0.0362 (7) | 0.0292 (7) | −0.0039 (6) | 0.0031 (5) | −0.0028 (6) |
C12 | 0.0283 (7) | 0.0427 (8) | 0.0284 (7) | −0.0058 (6) | 0.0031 (6) | −0.0041 (6) |
C13 | 0.0278 (8) | 0.0513 (9) | 0.0352 (8) | −0.0002 (7) | 0.0032 (6) | −0.0065 (7) |
C14 | 0.0292 (8) | 0.0706 (12) | 0.0546 (10) | 0.0016 (8) | 0.0072 (7) | −0.0067 (9) |
C15 | 0.0303 (9) | 0.0755 (13) | 0.0647 (12) | 0.0120 (9) | 0.0010 (8) | −0.0129 (10) |
C16 | 0.0396 (10) | 0.0584 (11) | 0.0526 (10) | 0.0135 (9) | −0.0045 (8) | −0.0088 (8) |
C17 | 0.0366 (9) | 0.0457 (9) | 0.0414 (8) | 0.0059 (7) | 0.0003 (7) | −0.0054 (7) |
C18 | 0.0285 (8) | 0.0433 (8) | 0.0318 (7) | 0.0017 (6) | −0.0001 (6) | −0.0067 (6) |
C19 | 0.0271 (7) | 0.0347 (7) | 0.0313 (7) | −0.0037 (6) | 0.0032 (6) | −0.0034 (6) |
C20 | 0.0268 (7) | 0.0301 (7) | 0.0280 (6) | −0.0018 (6) | 0.0055 (5) | 0.0003 (5) |
C21 | 0.0345 (8) | 0.0289 (7) | 0.0302 (7) | 0.0038 (6) | 0.0028 (6) | −0.0027 (5) |
C22 | 0.0266 (7) | 0.0355 (7) | 0.0307 (7) | 0.0043 (6) | 0.0023 (5) | −0.0012 (6) |
C23 | 0.0260 (7) | 0.0351 (7) | 0.0288 (7) | −0.0037 (6) | 0.0025 (5) | −0.0033 (6) |
C24 | 0.0315 (8) | 0.0311 (7) | 0.0385 (8) | 0.0007 (6) | 0.0056 (6) | −0.0081 (6) |
C25 | 0.0261 (7) | 0.0340 (7) | 0.0384 (8) | 0.0030 (6) | 0.0037 (6) | −0.0033 (6) |
C26 | 0.0536 (11) | 0.0461 (10) | 0.0575 (11) | 0.0231 (9) | −0.0055 (9) | −0.0063 (8) |
N1 | 0.0418 (8) | 0.0546 (8) | 0.0391 (7) | −0.0160 (7) | −0.0081 (6) | 0.0083 (6) |
C27 | 0.0362 (9) | 0.0638 (12) | 0.0495 (10) | −0.0042 (8) | −0.0010 (8) | 0.0164 (9) |
C28 | 0.0777 (15) | 0.0541 (12) | 0.0745 (14) | −0.0127 (11) | 0.0082 (12) | 0.0119 (10) |
C29 | 0.0603 (12) | 0.0710 (13) | 0.0402 (9) | −0.0151 (10) | −0.0002 (8) | −0.0013 (9) |
C30 | 0.0820 (15) | 0.0759 (14) | 0.0356 (9) | −0.0231 (12) | 0.0051 (9) | 0.0010 (9) |
C31 | 0.0511 (11) | 0.0590 (12) | 0.0622 (12) | −0.0008 (9) | −0.0145 (9) | 0.0007 (10) |
C32 | 0.0476 (12) | 0.1114 (19) | 0.0579 (12) | −0.0237 (12) | 0.0092 (10) | 0.0128 (12) |
O1—C3 | 1.2183 (17) | C16—C17 | 1.376 (2) |
O2—C4 | 1.3692 (17) | C16—H16 | 0.9500 |
O2—C3 | 1.3773 (18) | C17—C18 | 1.396 (2) |
O3—C10 | 1.3005 (16) | C17—H17 | 0.9500 |
O3—H3O | 1.18 (3) | C18—C19 | 1.459 (2) |
O4—C12 | 1.2275 (18) | C20—C25 | 1.375 (2) |
O5—C13 | 1.365 (2) | C20—C21 | 1.399 (2) |
O5—C12 | 1.3789 (18) | C21—C22 | 1.375 (2) |
O6—C19 | 1.2939 (17) | C21—H21 | 0.9500 |
O6—H3O | 1.24 (3) | C22—C23 | 1.395 (2) |
O7—C22 | 1.3745 (17) | C23—C24 | 1.374 (2) |
O7—C26 | 1.424 (2) | C24—C25 | 1.389 (2) |
O8—C23 | 1.3634 (17) | C24—H24 | 0.9500 |
O8—H8O | 0.869 (19) | C25—H25 | 0.9500 |
C1—C11 | 1.516 (2) | C26—H26A | 0.9800 |
C1—C2 | 1.5277 (19) | C26—H26B | 0.9800 |
C1—C20 | 1.5287 (19) | C26—H26C | 0.9800 |
C1—H1 | 1.0000 | N1—C31 | 1.473 (2) |
C2—C10 | 1.3779 (19) | N1—C27 | 1.496 (2) |
C2—C3 | 1.4307 (19) | N1—C29 | 1.532 (3) |
C4—C9 | 1.384 (2) | N1—H1N | 0.98 (2) |
C4—C5 | 1.391 (2) | C27—C28 | 1.510 (3) |
C5—C6 | 1.374 (2) | C27—H27A | 0.9900 |
C5—H5 | 0.9500 | C27—H27B | 0.9900 |
C6—C7 | 1.394 (2) | C28—H28A | 0.9800 |
C6—H6 | 0.9500 | C28—H28B | 0.9800 |
C7—C8 | 1.372 (2) | C28—H28C | 0.9800 |
C7—H7 | 0.9500 | C29—C30 | 1.487 (3) |
C8—C9 | 1.395 (2) | C29—H29A | 0.9900 |
C8—H8 | 0.9500 | C29—H29B | 0.9900 |
C9—C10 | 1.455 (2) | C30—H30A | 0.9800 |
C11—C19 | 1.385 (2) | C30—H30B | 0.9800 |
C11—C12 | 1.427 (2) | C30—H30C | 0.9800 |
C13—C14 | 1.383 (2) | C31—C32 | 1.503 (3) |
C13—C18 | 1.385 (2) | C31—H31A | 0.9900 |
C14—C15 | 1.377 (3) | C31—H31B | 0.9900 |
C14—H14 | 0.9500 | C32—H32A | 0.9800 |
C15—C16 | 1.383 (3) | C32—H32B | 0.9800 |
C15—H15 | 0.9500 | C32—H32C | 0.9800 |
C4—O2—C3 | 121.30 (11) | C25—C20—C21 | 118.02 (13) |
C10—O3—H3O | 109.5 (11) | C25—C20—C1 | 124.51 (13) |
C13—O5—C12 | 121.49 (12) | C21—C20—C1 | 117.47 (12) |
C19—O6—H3O | 118.4 (11) | C22—C21—C20 | 121.43 (13) |
C22—O7—C26 | 116.76 (13) | C22—C21—H21 | 119.3 |
C23—O8—H8O | 108.6 (12) | C20—C21—H21 | 119.3 |
C11—C1—C2 | 116.48 (12) | O7—C22—C21 | 124.85 (13) |
C11—C1—C20 | 114.44 (12) | O7—C22—C23 | 115.34 (12) |
C2—C1—C20 | 110.79 (11) | C21—C22—C23 | 119.80 (13) |
C11—C1—H1 | 104.5 | O8—C23—C24 | 123.63 (13) |
C2—C1—H1 | 104.5 | O8—C23—C22 | 117.41 (13) |
C20—C1—H1 | 104.5 | C24—C23—C22 | 118.96 (13) |
C10—C2—C3 | 119.32 (13) | C23—C24—C25 | 120.88 (13) |
C10—C2—C1 | 124.31 (12) | C23—C24—H24 | 119.6 |
C3—C2—C1 | 115.99 (12) | C25—C24—H24 | 119.6 |
O1—C3—O2 | 113.83 (12) | C20—C25—C24 | 120.78 (13) |
O1—C3—C2 | 126.45 (14) | C20—C25—H25 | 119.6 |
O2—C3—C2 | 119.72 (12) | C24—C25—H25 | 119.6 |
O2—C4—C9 | 121.00 (13) | O7—C26—H26A | 109.5 |
O2—C4—C5 | 117.01 (12) | O7—C26—H26B | 109.5 |
C9—C4—C5 | 121.98 (14) | H26A—C26—H26B | 109.5 |
C6—C5—C4 | 118.58 (14) | O7—C26—H26C | 109.5 |
C6—C5—H5 | 120.7 | H26A—C26—H26C | 109.5 |
C4—C5—H5 | 120.7 | H26B—C26—H26C | 109.5 |
C5—C6—C7 | 120.38 (15) | C31—N1—C27 | 115.64 (15) |
C5—C6—H6 | 119.8 | C31—N1—C29 | 111.38 (15) |
C7—C6—H6 | 119.8 | C27—N1—C29 | 110.21 (15) |
C8—C7—C6 | 120.37 (15) | C31—N1—H1N | 106.5 (12) |
C8—C7—H7 | 119.8 | C27—N1—H1N | 107.2 (12) |
C6—C7—H7 | 119.8 | C29—N1—H1N | 105.2 (12) |
C7—C8—C9 | 120.32 (14) | N1—C27—C28 | 114.01 (15) |
C7—C8—H8 | 119.8 | N1—C27—H27A | 108.8 |
C9—C8—H8 | 119.8 | C28—C27—H27A | 108.8 |
C4—C9—C8 | 118.30 (14) | N1—C27—H27B | 108.8 |
C4—C9—C10 | 118.59 (13) | C28—C27—H27B | 108.8 |
C8—C9—C10 | 123.06 (13) | H27A—C27—H27B | 107.6 |
O3—C10—C2 | 123.86 (13) | C27—C28—H28A | 109.5 |
O3—C10—C9 | 116.45 (12) | C27—C28—H28B | 109.5 |
C2—C10—C9 | 119.63 (12) | H28A—C28—H28B | 109.5 |
C19—C11—C12 | 119.64 (13) | C27—C28—H28C | 109.5 |
C19—C11—C1 | 124.77 (13) | H28A—C28—H28C | 109.5 |
C12—C11—C1 | 115.57 (13) | H28B—C28—H28C | 109.5 |
O4—C12—O5 | 113.87 (13) | C30—C29—N1 | 113.64 (17) |
O4—C12—C11 | 126.33 (14) | C30—C29—H29A | 108.8 |
O5—C12—C11 | 119.74 (13) | N1—C29—H29A | 108.8 |
O5—C13—C14 | 116.94 (15) | C30—C29—H29B | 108.8 |
O5—C13—C18 | 121.14 (14) | N1—C29—H29B | 108.8 |
C14—C13—C18 | 121.90 (16) | H29A—C29—H29B | 107.7 |
C15—C14—C13 | 118.40 (18) | C29—C30—H30A | 109.5 |
C15—C14—H14 | 120.8 | C29—C30—H30B | 109.5 |
C13—C14—H14 | 120.8 | H30A—C30—H30B | 109.5 |
C14—C15—C16 | 121.12 (17) | C29—C30—H30C | 109.5 |
C14—C15—H15 | 119.4 | H30A—C30—H30C | 109.5 |
C16—C15—H15 | 119.4 | H30B—C30—H30C | 109.5 |
C17—C16—C15 | 119.84 (18) | N1—C31—C32 | 112.94 (17) |
C17—C16—H16 | 120.1 | N1—C31—H31A | 109.0 |
C15—C16—H16 | 120.1 | C32—C31—H31A | 109.0 |
C16—C17—C18 | 120.38 (18) | N1—C31—H31B | 109.0 |
C16—C17—H17 | 119.8 | C32—C31—H31B | 109.0 |
C18—C17—H17 | 119.8 | H31A—C31—H31B | 107.8 |
C13—C18—C17 | 118.36 (15) | C31—C32—H32A | 109.5 |
C13—C18—C19 | 118.82 (14) | C31—C32—H32B | 109.5 |
C17—C18—C19 | 122.80 (15) | H32A—C32—H32B | 109.5 |
O6—C19—C11 | 124.88 (13) | C31—C32—H32C | 109.5 |
O6—C19—C18 | 115.97 (13) | H32A—C32—H32C | 109.5 |
C11—C19—C18 | 119.14 (13) | H32B—C32—H32C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O6 | 1.18 (3) | 1.24 (3) | 2.4139 (15) | 169 (2) |
O8—H8O···O1i | 0.869 (19) | 1.789 (19) | 2.6488 (16) | 170.0 (18) |
C27—H27B···O8ii | 0.99 | 2.31 | 3.257 (2) | 161 |
N1—H1N···O4 | 0.98 (2) | 1.82 (2) | 2.7727 (19) | 164.5 (18) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
CS gratefully acknowledges general financial support from the ERC (project MocoModels).
Funding information
Funding for this research was provided by: FP7 Ideas: European Research Council (grant No. 281257 to Carola Schulzke).
References
Alcock, N. W. & Hough, E. (1972). Acta Cryst. B28, 1957–1960. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bandyopadhyay, D. (2015). CCDC communication, doi: 10.5517/cc1j9kq3 Google Scholar
Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S. & Almog, J. (2016a). Acta Cryst. E72, 399–402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734–8739. Web of Science CSD CrossRef CAS PubMed Google Scholar
David, J. T. (2017). Curr. Drug Targets, 18, 500–510. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jung, J.-C. & Park, O.-S. (2009). Molecules, 14, 4790–4803. Web of Science CrossRef CAS Google Scholar
Kolos, N. N., Gozalishvili, L. L., Yaremenko, F. G., Shishkin, O. V., Shishkina, S. V. & Konovalova, I. S. (2007). Russ. Chem. Bull. 56, 2277–2283. Web of Science CrossRef CAS Google Scholar
Li, J., Sui, Y. P., Xin, J. J., Du, X. L., Li, J. T., Huo, H. R., Ma, H., Wang, W. H., Zhou, H. Y., Zhan, H. D., Wang, Z. J., Li, C., Sui, F. & Li, X. (2015). Bioorg. Med. Chem. Lett. 25, 5520–5523. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Manolov, I., Maichle-Moessmer, C. & Danchev, N. (2006). Eur. J. Med. Chem. 41, 882–890. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nolan, K. A., Zhao, H., Faulder, P. F., Frenkel, A. D., Timson, D. J., Siegel, D., Ross, D., Burke, T. R. Jr, Stratford, I. J. & Bryce, R. A. (2007). J. Med. Chem. 50, 6316–6325. Web of Science CrossRef PubMed CAS Google Scholar
Rehman, S., Ikram, M., Baker, R. J., Zubair, M., Azad, E., Min, S., Riaz, K., Mok, K. H., Kh, & Rehman, S. U. (2013). Chem. Cent. J. 7, 68. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, S. M. & Gums, J. G. (2009). Expert Opin. Drug Metab. Toxicol. 5, 813–822. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanchev, S., Maichle-Mössmer, C. & Manolov, I. (2007). Z. Naturforsch. Teil B, 62, 737–741. CAS Google Scholar
Stoe & Cie (2010). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tavolari, S., Bonafè, M., Marini, M., Ferreri, C., Bartolini, G., Brighenti, E., Manara, S., Tomasi, V., Laufer, S. & Guarnieri, T. (2008). Carcinogenesis, 29, 371–380. Web of Science CrossRef PubMed CAS Google Scholar
Vijayalakshmi, L., Parthasarathi, V., Vora, V., Desai, B. & Shah, A. (2001). Acta Cryst. C57, 817–818. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Waheed, M. & Ahmed, N. (2016). Tetrahedron Lett. 57, 3785–3789. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.