research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 7-eth­­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine

CROSSMARK_Color_square_no_text.svg

aT.R. Ministry of Forestry and Water Affairs, 11th Regional Directorate, 55030, Ilkadım, Samsun, Turkey, bArtvin Coruh University, Science-Technology Research and Application Center, Artvin 08000, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, dSSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and eV.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv 61077, Ukraine
*Correspondence e-mail: sevgi.koroglu@omu.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 January 2018; accepted 13 February 2018; online 20 February 2018)

The title compound, C19H19N5O2, was prepared by the reaction of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-eth­oxy­benzaldehyde. It crystallizes from ethanol in a tetra­gonal space group, with one mol­ecule in the asymmetric unit. The 1,2,4-triazole five-membered ring is planar (maximum deviation = 0.0028 Å). The pyridine and phenyl rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the c-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular inter­actions present in the crystal.

1. Chemical context

The title compound represents a conformationally restricted analogue of so-called Biginelli compounds known to exhibit multiple pharmacological activities. It was selected for a single-crystal X-ray analysis in order to probe the chemical and spatial requirements of some kinds of activity. 4-Aryl-3,4-di­hydro­pyrimidine-2(1H)-ones and -thio­nes, known as Bigin­elli compounds, display a wide spectrum of significant pharma­cological activities (Kappe, 2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). For example, these pyrimidine derivatives were assayed as anti­hypertensive agents, selective α1a-adrenergic receptor antagonists, neuropeptide Y antagonists and were used as a lead for the development of anti­cancer drugs (Kappe, 2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). The Biginelli products have also been found to be potent hepatitis B replication inhibitors (Deres et al., 2003[Deres, K., Schröder, C. H., Paessens, A., Goldmann, S., Hacker, H. J., Weber, O., Krämer, T., Niewöhner, U., Pleiss, U., Stoltefuss, J., Graef, E., Koletzki, D., Masantschek, R. N. A., Reimann, A., Jaeger, R., Gross, R., Beckermann, B., Schlemmer, K. H., Haebich, D. & Rübsamen-Waigmann, H. (2003). Science, 299, 893-896.]).

Recently, the ability of oxygen-bridged azolo­pyrimidine derivatives to inhibit Eg5 activity has been examined (Svetlík et al., 2010[Svetlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073-4076.]). As each of the above activities originates from stereo-selective binding of the drug mol­ecule to its specific receptor, it is of inter­est to design a conformationally restricted probe mol­ecule in order to examine geometric requirements of the given receptor binding site.

Since we had previously synthesized such a rigid type of oxygen-bridged triazolo-pyrimidine derivative, (I)[link] (Gümüş et al., 2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]), we decided to examine the structure of this heterocyclic system by X-ray analysis. A novel Biginelli-like assembly of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-eth­oxy­benzaldehyde has been developed to enable easy access to 7-eth­oxy-5-methyl-2-(pyri­din-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine compounds as representatives of a new class of heterocycles.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one independent mol­ecule (Fig. 1[link]). In the 1,2,4-triazole ring, the average C=N and C—N bond lengths are 1.324 and 1.355 Å, respectively, while the N—N bond is 1.389 (4) Å. These values consistent with literature values (Şen et al., 2017a[Şen, F., Dinçer, M., Yilmaz, I. & Cukurovali, A. (2017a). J. Mol. Struct. 1137, 193-205.],b[Şen, F., Kansiz, S. & Uçar, İ. (2017b). Acta Cryst. C73, 517-524.]; Atalay et al., 2004[Atalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o2119-o2121.]). The 1,2,4-triazole ring is planar with a maximum deviation of 0.0028 Å. The N1/C1–C5 and C12–C17 rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. The dihedral angle between the N1/C1–C5 and C6/N2/N3/C7/N4 rings is 13.1 (2)°, while the latter ring is inclined to the N3/C10–C8/N5/C7 plane by 6.87 (15)°. The C12–C17 and N3/C10–C8/N5/C7 planes form dihedral angles of 7.8 (2) and 88.82 (12)°, respectively, with the C9/C10/O1/C12/C13 plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the N—H⋯N hydrogen bonds link the mol­ecules, forming the supra­molecular chains propagating along the c-axis direction (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N1i 0.86 2.13 2.907 (4) 149
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. Dashed lines denote the inter­molecular N—H⋯N hydrogen bonds.

4. Hirshfeld surface analysis

Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Avustralia.]) was used to analyse the inter­actions in the crystal; fingerprint plots mapped over dnorm (Figs. 3[link] and 4[link]) were generated. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimentional dnorm surfaces mapped over a fixed colour scale of −0.484 (red) to 1.652 (blue). There are two red spots in the dnorm surface (Fig. 3[link]), which are on the N-acceptor atoms involved in the inter­actions listed in Table 1[link]. The red spots indicate the regions of donor–acceptor inter­actions (Kansiz et al., 2018[Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217-220.]; Şen et al., 2017a[Şen, F., Dinçer, M., Yilmaz, I. & Cukurovali, A. (2017a). J. Mol. Struct. 1137, 193-205.],b[Şen, F., Kansiz, S. & Uçar, İ. (2017b). Acta Cryst. C73, 517-524.], 2018[Şen, F., Çapan, İ., Dinçer, M. & Çukurovalı, A. (2018). J. Mol. Struct. 1155, 278-287.]; Yaman et al., 2018[Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41-44.]).

[Figure 3]
Figure 3
The Hirshfeld surface of C19H19N5O2 mapped with dnorm.
[Figure 4]
Figure 4
dnorm mapped on Hirshfeld surfaces to visualize the inter­molecular inter­actions of C19H19N5O2.

The inter­molecular inter­actions of the title compound are shown in the 2D fingerprint plots shown in Fig. 5[link]. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with a contribution to the overall Hirshfeld surface of 52.6% (Fig. 6[link]). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N inter­action, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (16.3%). The whole fingerprint region and all other inter­actions, which are a combination of de and di, are displayed in Fig. 6[link].

[Figure 5]
Figure 5
Fingerprint plot of the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the H⋯H/H⋯H (52.6%), C⋯H/H⋯C (18.9%), N⋯H/H⋯N (16.3%) and O⋯H/H⋯O (7.2%) contacts in the title compound.

5. Database survey

There are no direct precedents for the structure of (I)[link] in the crystallographic literature (CSD Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, there are several precedents for the triazolobenzoxa­diazo­cines, including the structures of 5-(2-hy­droxy­phen­yl)-7-methyl-4,5,6,7-tetra­hydro­[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (Gorobets et al., 2010[Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095-2098.]), ethyl 7-chloro­methyl-5-(2-chloro­phen­yl)-7-hy­droxy-2-methyl­sulfanyl-4,5,6,7-tetra­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate (Huang, 2009[Huang, S. (2009). Acta Cryst. E65, o2671.]) and methyl 5′-(2-hy­droxy­phen­yl)-5′,6′-di­hydro-4′H-spiro­[chromene-2,7′-[1,2,4]triazolo[1,5-a]pyrimidine]-3-carboxyl­ate (Kettmann & Světlík, 2011[Kettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92.]).

6. Synthesis and crystallization

The synthesis of the title compound (Fig. 7[link]) was described by Gümüş et al. (2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]). 3-Amino-5-(pyridin-3-yl)-1,2,4-triazole(1.0 mmol), 2-hy­droxy-3-eth­oxy­benzaldehyde (1.0 mmol), acetone (0.22 mL, 3.0 mmol), and abs. EtOH (2.0 mL) were mixed in a microwave process vial, and then a 4 N solution of HCl in dioxane (0.07 mL, 0.3 mmol) was added. The mixture was irradiated at 423 K for 30 min. The reaction mixture was cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the product. The precipitate was filtered off, washed with EtOH (1.0 mL) and Et2O (3 × 1.0 mL), and dried. Compound (I)[link] was obtained in the form of a white solid. It was recrystallized from ethanol.

[Figure 7]
Figure 7
Synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically [N—H = 0.86 Å, C—H = 0.93 (aromatic), 0.96 (meth­yl) and 0.97 (methyl­ene) Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(N, C) and 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C19H19N5O2
Mr 349.39
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 293
a, c (Å) 17.1509 (8), 11.9033 (7)
V3) 3501.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.54 × 0.34 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). IPDS 2 User Manual. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.959, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 8018, 3629, 2449
Rint 0.053
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 0.90
No. of reflections 3629
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.12
Absolute structure Refined as an inversion twin.
Absolute structure parameter −3 (2)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). IPDS 2 User Manual. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

7-Ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano-1,2,4]-triazolo[1,5-c][1,3,5]benzoxadiazocine top
Crystal data top
C19H19N5O2Dx = 1.326 Mg m3
Mr = 349.39Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 8727 reflections
a = 17.1509 (8) Åθ = 1.7–27.6°
c = 11.9033 (7) ŵ = 0.09 mm1
V = 3501.4 (4) Å3T = 293 K
Z = 8Prism, colorless
F(000) = 14720.54 × 0.34 × 0.16 mm
Data collection top
Stoe IPDS 2
diffractometer
3629 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2449 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.053
rotation method scansθmax = 26.5°, θmin = 1.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2021
Tmin = 0.959, Tmax = 0.984k = 2121
8018 measured reflectionsl = 1413
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.15 e Å3
3629 reflectionsΔρmin = 0.12 e Å3
236 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 3 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0390 (2)0.7259 (2)0.4925 (3)0.0581 (10)
H10.0140210.7163320.5018780.070*
C20.0662 (2)0.7372 (2)0.3863 (3)0.0597 (10)
H20.0329120.7336410.3248880.072*
C30.1444 (2)0.7541 (2)0.3716 (3)0.0558 (9)
H30.1646410.7614270.2999040.067*
C40.19186 (19)0.76002 (19)0.4641 (3)0.0451 (8)
C50.1594 (2)0.7450 (2)0.5683 (3)0.0524 (9)
H50.1917570.7468890.6309590.063*
C60.27446 (19)0.78337 (18)0.4538 (3)0.0433 (8)
C70.3820 (2)0.81015 (19)0.3807 (3)0.0452 (8)
C80.5188 (2)0.8326 (2)0.3714 (3)0.0530 (9)
H80.5576560.8535900.3191600.064*
C90.5062 (2)0.8898 (2)0.4669 (4)0.0575 (10)
H9A0.5558790.9037240.5002820.069*
H9B0.4817870.9369130.4387850.069*
C100.4545 (2)0.85180 (19)0.5536 (3)0.0484 (8)
C110.4295 (2)0.9041 (2)0.6485 (4)0.0620 (11)
H11A0.4014510.9479290.6187280.093*
H11B0.3963820.8755480.6988230.093*
H11C0.4746560.9221840.6883240.093*
C120.53691 (18)0.74016 (18)0.5322 (3)0.0432 (8)
C130.54834 (18)0.75667 (19)0.4207 (3)0.0460 (8)
C140.5883 (2)0.7029 (2)0.3536 (3)0.0557 (10)
H140.5960390.7130030.2776300.067*
C150.6162 (2)0.6352 (2)0.4004 (4)0.0631 (11)
H150.6422150.5993520.3553890.076*
C160.6062 (2)0.6195 (2)0.5133 (3)0.0576 (10)
H160.6256720.5734950.5435680.069*
C170.56737 (19)0.6719 (2)0.5813 (3)0.0471 (8)
C180.5850 (3)0.5943 (3)0.7453 (4)0.0716 (12)
H18A0.6413320.5937040.7380800.086*
H18B0.5642690.5478480.7097380.086*
C190.5622 (3)0.5965 (3)0.8665 (4)0.1006 (17)
H19A0.5824920.5513060.9039410.151*
H19B0.5831330.6426810.9007390.151*
H19C0.5064070.5970260.8725210.151*
N10.08383 (17)0.72774 (19)0.5838 (3)0.0572 (8)
N20.31602 (16)0.80437 (15)0.5418 (2)0.0458 (7)
N30.38723 (15)0.82148 (16)0.4920 (2)0.0442 (7)
N40.31108 (15)0.78598 (17)0.3519 (2)0.0467 (7)
N50.44380 (16)0.82375 (18)0.3130 (2)0.0542 (8)
H5A0.4395540.8269880.2412030.065*
O10.49588 (12)0.78802 (13)0.60565 (18)0.0468 (6)
O20.55363 (14)0.66252 (14)0.6933 (2)0.0567 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.071 (3)0.058 (3)0.0032 (17)0.0068 (19)0.002 (2)
C20.055 (2)0.077 (3)0.048 (2)0.0014 (19)0.0144 (18)0.001 (2)
C30.055 (2)0.070 (2)0.042 (2)0.0003 (18)0.0024 (18)0.0043 (18)
C40.0452 (19)0.051 (2)0.0389 (19)0.0027 (15)0.0019 (16)0.0025 (16)
C50.050 (2)0.065 (2)0.043 (2)0.0048 (17)0.0047 (17)0.0016 (18)
C60.0474 (19)0.0454 (19)0.0370 (19)0.0039 (14)0.0035 (16)0.0014 (16)
C70.052 (2)0.046 (2)0.037 (2)0.0000 (16)0.0011 (17)0.0026 (16)
C80.050 (2)0.054 (2)0.055 (2)0.0108 (17)0.0034 (18)0.0068 (19)
C90.062 (2)0.0416 (19)0.069 (3)0.0079 (16)0.012 (2)0.0020 (19)
C100.052 (2)0.0433 (18)0.050 (2)0.0020 (15)0.0100 (17)0.0025 (17)
C110.070 (3)0.051 (2)0.064 (3)0.0125 (18)0.020 (2)0.0181 (19)
C120.0350 (17)0.0465 (19)0.048 (2)0.0012 (14)0.0029 (15)0.0062 (17)
C130.0388 (19)0.050 (2)0.049 (2)0.0059 (15)0.0008 (16)0.0023 (17)
C140.048 (2)0.066 (2)0.054 (2)0.0040 (18)0.0081 (18)0.0043 (19)
C150.056 (2)0.065 (3)0.068 (3)0.0102 (19)0.014 (2)0.013 (2)
C160.048 (2)0.056 (2)0.069 (3)0.0077 (17)0.0038 (19)0.001 (2)
C170.0395 (19)0.048 (2)0.053 (2)0.0002 (15)0.0013 (16)0.0001 (17)
C180.070 (3)0.072 (3)0.073 (3)0.020 (2)0.002 (2)0.020 (2)
C190.101 (4)0.119 (4)0.082 (3)0.032 (3)0.009 (3)0.039 (3)
N10.0495 (18)0.075 (2)0.0473 (19)0.0042 (15)0.0009 (15)0.0003 (16)
N20.0471 (17)0.0498 (16)0.0404 (17)0.0034 (12)0.0027 (14)0.0044 (13)
N30.0414 (16)0.0491 (16)0.0422 (18)0.0011 (12)0.0038 (13)0.0030 (13)
N40.0436 (17)0.0571 (18)0.0393 (17)0.0005 (14)0.0050 (13)0.0033 (13)
N50.0486 (18)0.073 (2)0.0410 (16)0.0050 (15)0.0034 (14)0.0104 (16)
O10.0494 (13)0.0459 (13)0.0451 (13)0.0082 (10)0.0054 (11)0.0044 (11)
O20.0557 (15)0.0585 (16)0.0559 (16)0.0140 (12)0.0017 (13)0.0087 (13)
Geometric parameters (Å, º) top
C1—N11.331 (5)C10—C111.504 (5)
C1—C21.362 (5)C11—H11A0.9600
C1—H10.9300C11—H11B0.9600
C2—C31.384 (5)C11—H11C0.9600
C2—H20.9300C12—C131.372 (5)
C3—C41.373 (5)C12—O11.390 (4)
C3—H30.9300C12—C171.409 (5)
C4—C51.383 (5)C13—C141.399 (5)
C4—C61.477 (4)C14—C151.374 (5)
C5—N11.343 (4)C14—H140.9300
C5—H50.9300C15—C161.380 (6)
C6—N21.317 (4)C15—H150.9300
C6—N41.367 (4)C16—C171.380 (5)
C7—N41.330 (4)C16—H160.9300
C7—N31.342 (4)C17—O21.364 (4)
C7—N51.352 (4)C18—O21.428 (4)
C8—N51.469 (4)C18—C191.495 (6)
C8—C131.515 (5)C18—H18A0.9700
C8—C91.517 (5)C18—H18B0.9700
C8—H80.9800C19—H19A0.9600
C9—C101.509 (5)C19—H19B0.9600
C9—H9A0.9700C19—H19C0.9600
C9—H9B0.9700N2—N31.389 (4)
C10—O11.443 (4)N5—H5A0.8600
C10—N31.463 (4)
N1—C1—C2123.7 (3)H11A—C11—H11C109.5
N1—C1—H1118.1H11B—C11—H11C109.5
C2—C1—H1118.1C13—C12—O1124.0 (3)
C1—C2—C3118.7 (4)C13—C12—C17121.3 (3)
C1—C2—H2120.7O1—C12—C17114.7 (3)
C3—C2—H2120.7C12—C13—C14119.1 (3)
C4—C3—C2119.2 (3)C12—C13—C8120.3 (3)
C4—C3—H3120.4C14—C13—C8120.6 (3)
C2—C3—H3120.4C15—C14—C13119.7 (4)
C3—C4—C5117.8 (3)C15—C14—H14120.1
C3—C4—C6121.4 (3)C13—C14—H14120.1
C5—C4—C6120.7 (3)C14—C15—C16121.1 (4)
N1—C5—C4123.5 (3)C14—C15—H15119.5
N1—C5—H5118.2C16—C15—H15119.5
C4—C5—H5118.2C17—C16—C15120.3 (4)
N2—C6—N4116.6 (3)C17—C16—H16119.9
N2—C6—C4121.8 (3)C15—C16—H16119.9
N4—C6—C4121.5 (3)O2—C17—C16125.5 (3)
N4—C7—N3111.2 (3)O2—C17—C12116.0 (3)
N4—C7—N5128.1 (3)C16—C17—C12118.5 (3)
N3—C7—N5120.7 (3)O2—C18—C19107.4 (4)
N5—C8—C13112.8 (3)O2—C18—H18A110.2
N5—C8—C9107.2 (3)C19—C18—H18A110.2
C13—C8—C9108.2 (3)O2—C18—H18B110.2
N5—C8—H8109.5C19—C18—H18B110.2
C13—C8—H8109.5H18A—C18—H18B108.5
C9—C8—H8109.5C18—C19—H19A109.5
C10—C9—C8108.5 (3)C18—C19—H19B109.5
C10—C9—H9A110.0H19A—C19—H19B109.5
C8—C9—H9A110.0C18—C19—H19C109.5
C10—C9—H9B110.0H19A—C19—H19C109.5
C8—C9—H9B110.0H19B—C19—H19C109.5
H9A—C9—H9B108.4C1—N1—C5116.8 (3)
O1—C10—N3109.5 (3)C6—N2—N3101.2 (3)
O1—C10—C11105.7 (3)C7—N3—N2109.4 (3)
N3—C10—C11111.3 (3)C7—N3—C10126.8 (3)
O1—C10—C9109.4 (3)N2—N3—C10123.7 (3)
N3—C10—C9105.9 (3)C7—N4—C6101.6 (3)
C11—C10—C9115.1 (3)C7—N5—C8115.0 (3)
C10—C11—H11A109.5C7—N5—H5A122.5
C10—C11—H11B109.5C8—N5—H5A122.5
H11A—C11—H11B109.5C12—O1—C10115.3 (2)
C10—C11—H11C109.5C17—O2—C18117.1 (3)
N1—C1—C2—C32.2 (6)C2—C1—N1—C52.8 (6)
C1—C2—C3—C40.9 (6)C4—C5—N1—C10.4 (5)
C2—C3—C4—C53.0 (5)N4—C6—N2—N30.8 (3)
C2—C3—C4—C6175.7 (3)C4—C6—N2—N3179.3 (3)
C3—C4—C5—N12.5 (5)N4—C7—N3—N20.2 (4)
C6—C4—C5—N1176.2 (3)N5—C7—N3—N2179.3 (3)
C3—C4—C6—N2166.1 (3)N4—C7—N3—C10176.5 (3)
C5—C4—C6—N212.5 (5)N5—C7—N3—C103.0 (5)
C3—C4—C6—N412.4 (5)C6—N2—N3—C70.5 (3)
C5—C4—C6—N4169.0 (3)C6—N2—N3—C10177.0 (3)
N5—C8—C9—C1068.7 (3)O1—C10—N3—C7101.2 (4)
C13—C8—C9—C1053.3 (4)C11—C10—N3—C7142.3 (4)
C8—C9—C10—O167.4 (3)C9—C10—N3—C716.6 (4)
C8—C9—C10—N350.5 (3)O1—C10—N3—N283.0 (4)
C8—C9—C10—C11173.8 (3)C11—C10—N3—N233.5 (4)
O1—C12—C13—C14177.8 (3)C9—C10—N3—N2159.2 (3)
C17—C12—C13—C142.6 (5)N3—C7—N4—C60.2 (4)
O1—C12—C13—C82.9 (5)N5—C7—N4—C6179.7 (3)
C17—C12—C13—C8176.7 (3)N2—C6—N4—C70.7 (4)
N5—C8—C13—C1298.3 (4)C4—C6—N4—C7179.2 (3)
C9—C8—C13—C1220.1 (4)N4—C7—N5—C8166.6 (3)
N5—C8—C13—C1482.4 (4)N3—C7—N5—C814.0 (5)
C9—C8—C13—C14159.2 (3)C13—C8—N5—C770.4 (4)
C12—C13—C14—C150.7 (5)C9—C8—N5—C748.7 (4)
C8—C13—C14—C15178.6 (3)C13—C12—O1—C109.4 (4)
C13—C14—C15—C160.7 (6)C17—C12—O1—C10171.0 (3)
C14—C15—C16—C170.3 (6)N3—C10—O1—C1271.7 (3)
C15—C16—C17—O2179.6 (4)C11—C10—O1—C12168.4 (3)
C15—C16—C17—C121.5 (5)C9—C10—O1—C1243.9 (4)
C13—C12—C17—O2178.7 (3)C16—C17—O2—C182.8 (5)
O1—C12—C17—O20.9 (4)C12—C17—O2—C18179.0 (3)
C13—C12—C17—C163.0 (5)C19—C18—O2—C17179.6 (4)
O1—C12—C17—C16177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N1i0.862.132.907 (4)149
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAtalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o2119–o2121.  CSD CrossRef IUCr Journals Google Scholar
First citationDeres, K., Schröder, C. H., Paessens, A., Goldmann, S., Hacker, H. J., Weber, O., Krämer, T., Niewöhner, U., Pleiss, U., Stoltefuss, J., Graef, E., Koletzki, D., Masantschek, R. N. A., Reimann, A., Jaeger, R., Gross, R., Beckermann, B., Schlemmer, K. H., Haebich, D. & Rübsamen-Waigmann, H. (2003). Science, 299, 893–896.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.  Google Scholar
First citationHuang, S. (2009). Acta Cryst. E65, o2671.  CSD CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.  CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92.  CSD CrossRef IUCr Journals Google Scholar
First citationŞen, F., Çapan, İ., Dinçer, M. & Çukurovalı, A. (2018). J. Mol. Struct. 1155, 278–287.  Google Scholar
First citationŞen, F., Dinçer, M., Yilmaz, I. & Cukurovali, A. (2017a). J. Mol. Struct. 1137, 193–205.  Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017b). Acta Cryst. C73, 517–524.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). IPDS 2 User Manual. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSvetlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073–4076.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Avustralia.  Google Scholar
First citationYaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds