research communications
c][1,3,5]benzoxadiazocine
and Hirshfeld surface analysis of 7-ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-aT.R. Ministry of Forestry and Water Affairs, 11th Regional Directorate, 55030, Ilkadım, Samsun, Turkey, bArtvin Coruh University, Science-Technology Research and Application Center, Artvin 08000, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, dSSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and eV.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv 61077, Ukraine
*Correspondence e-mail: sevgi.koroglu@omu.edu.tr
The title compound, C19H19N5O2, was prepared by the reaction of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hydroxy-3-ethoxybenzaldehyde. It crystallizes from ethanol in a tetragonal with one molecule in the The 1,2,4-triazole five-membered ring is planar (maximum deviation = 0.0028 Å). The pyridine and phenyl rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. In the crystal, N—H⋯N hydrogen bonds link the molecules into supramolecular chains propagating along the c-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the intermolecular interactions present in the crystal.
CCDC reference: 1820439
1. Chemical context
The title compound represents a conformationally restricted analogue of so-called Biginelli compounds known to exhibit multiple pharmacological activities. It was selected for a single-crystal X-ray analysis in order to probe the chemical and spatial requirements of some kinds of activity. 4-Aryl-3,4-dihydropyrimidine-2(1H)-ones and -thiones, known as Biginelli compounds, display a wide spectrum of significant pharmacological activities (Kappe, 2000). For example, these pyrimidine derivatives were assayed as antihypertensive agents, selective α1a-adrenergic receptor antagonists, neuropeptide Y antagonists and were used as a lead for the development of anticancer drugs (Kappe, 2000). The Biginelli products have also been found to be potent hepatitis B replication inhibitors (Deres et al., 2003).
Recently, the ability of oxygen-bridged azolopyrimidine derivatives to inhibit Eg5 activity has been examined (Svetlík et al., 2010). As each of the above activities originates from stereo-selective binding of the drug molecule to its specific receptor, it is of interest to design a conformationally restricted probe molecule in order to examine geometric requirements of the given receptor binding site.
Since we had previously synthesized such a rigid type of oxygen-bridged triazolo-pyrimidine derivative, (I) (Gümüş et al., 2017), we decided to examine the structure of this heterocyclic system by X-ray analysis. A novel Biginelli-like assembly of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hydroxy-3-ethoxybenzaldehyde has been developed to enable easy access to 7-ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine compounds as representatives of a new class of heterocycles.
2. Structural commentary
The ). In the 1,2,4-triazole ring, the average C=N and C—N bond lengths are 1.324 and 1.355 Å, respectively, while the N—N bond is 1.389 (4) Å. These values consistent with literature values (Şen et al., 2017a,b; Atalay et al., 2004). The 1,2,4-triazole ring is planar with a maximum deviation of 0.0028 Å. The N1/C1–C5 and C12–C17 rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. The dihedral angle between the N1/C1–C5 and C6/N2/N3/C7/N4 rings is 13.1 (2)°, while the latter ring is inclined to the N3/C10–C8/N5/C7 plane by 6.87 (15)°. The C12–C17 and N3/C10–C8/N5/C7 planes form dihedral angles of 7.8 (2) and 88.82 (12)°, respectively, with the C9/C10/O1/C12/C13 plane.
of the title compound contains one independent molecule (Fig. 13. Supramolecular features
In the crystal, the N—H⋯N hydrogen bonds link the molecules, forming the supramolecular chains propagating along the c-axis direction (Table 1, Fig. 2).
4. Hirshfeld surface analysis
Crystal Explorer17.5 (Turner et al., 2017) was used to analyse the interactions in the crystal; fingerprint plots mapped over dnorm (Figs. 3 and 4) were generated. The molecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimentional dnorm surfaces mapped over a fixed colour scale of −0.484 (red) to 1.652 (blue). There are two red spots in the dnorm surface (Fig. 3), which are on the N-acceptor atoms involved in the interactions listed in Table 1. The red spots indicate the regions of donor–acceptor interactions (Kansiz et al., 2018; Şen et al., 2017a,b, 2018; Yaman et al., 2018).
The intermolecular interactions of the title compound are shown in the 2D fingerprint plots shown in Fig. 5. The H⋯H interactions appear in the middle of the scattered points in the two-dimensional fingerprint plots with a contribution to the overall Hirshfeld surface of 52.6% (Fig. 6). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N interaction, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond interaction (16.3%). The whole fingerprint region and all other interactions, which are a combination of de and di, are displayed in Fig. 6.
5. Database survey
There are no direct precedents for the structure of (I) in the crystallographic literature (CSD Version 5.38; Groom et al., 2016). However, there are several precedents for the triazolobenzoxadiazocines, including the structures of 5-(2-hydroxyphenyl)-7-methyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (Gorobets et al., 2010), ethyl 7-chloromethyl-5-(2-chlorophenyl)-7-hydroxy-2-methylsulfanyl-4,5,6,7-tetrahydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylate (Huang, 2009) and methyl 5′-(2-hydroxyphenyl)-5′,6′-dihydro-4′H-spiro[chromene-2,7′-[1,2,4]triazolo[1,5-a]pyrimidine]-3-carboxylate (Kettmann & Světlík, 2011).
6. Synthesis and crystallization
The synthesis of the title compound (Fig. 7) was described by Gümüş et al. (2017). 3-Amino-5-(pyridin-3-yl)-1,2,4-triazole(1.0 mmol), 2-hydroxy-3-ethoxybenzaldehyde (1.0 mmol), acetone (0.22 mL, 3.0 mmol), and abs. EtOH (2.0 mL) were mixed in a microwave process vial, and then a 4 N solution of HCl in dioxane (0.07 mL, 0.3 mmol) was added. The mixture was irradiated at 423 K for 30 min. The reaction mixture was cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the product. The precipitate was filtered off, washed with EtOH (1.0 mL) and Et2O (3 × 1.0 mL), and dried. Compound (I) was obtained in the form of a white solid. It was recrystallized from ethanol.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically [N—H = 0.86 Å, C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 (methylene) Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(N, C) and 1.5Ueq(methyl C).
details are summarized in Table 2Supporting information
CCDC reference: 1820439
https://doi.org/10.1107/S2056989018002621/xu5917sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002621/xu5917Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002621/xu5917Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C19H19N5O2 | Dx = 1.326 Mg m−3 |
Mr = 349.39 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 8727 reflections |
a = 17.1509 (8) Å | θ = 1.7–27.6° |
c = 11.9033 (7) Å | µ = 0.09 mm−1 |
V = 3501.4 (4) Å3 | T = 293 K |
Z = 8 | Prism, colorless |
F(000) = 1472 | 0.54 × 0.34 × 0.16 mm |
Stoe IPDS 2 diffractometer | 3629 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2449 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.053 |
rotation method scans | θmax = 26.5°, θmin = 1.7° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −20→21 |
Tmin = 0.959, Tmax = 0.984 | k = −21→21 |
8018 measured reflections | l = −14→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 0.90 | Δρmax = 0.15 e Å−3 |
3629 reflections | Δρmin = −0.12 e Å−3 |
236 parameters | Absolute structure: Refined as an inversion twin. |
0 restraints | Absolute structure parameter: −3 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0390 (2) | 0.7259 (2) | 0.4925 (3) | 0.0581 (10) | |
H1 | −0.014021 | 0.716332 | 0.501878 | 0.070* | |
C2 | 0.0662 (2) | 0.7372 (2) | 0.3863 (3) | 0.0597 (10) | |
H2 | 0.032912 | 0.733641 | 0.324888 | 0.072* | |
C3 | 0.1444 (2) | 0.7541 (2) | 0.3716 (3) | 0.0558 (9) | |
H3 | 0.164641 | 0.761427 | 0.299904 | 0.067* | |
C4 | 0.19186 (19) | 0.76002 (19) | 0.4641 (3) | 0.0451 (8) | |
C5 | 0.1594 (2) | 0.7450 (2) | 0.5683 (3) | 0.0524 (9) | |
H5 | 0.191757 | 0.746889 | 0.630959 | 0.063* | |
C6 | 0.27446 (19) | 0.78337 (18) | 0.4538 (3) | 0.0433 (8) | |
C7 | 0.3820 (2) | 0.81015 (19) | 0.3807 (3) | 0.0452 (8) | |
C8 | 0.5188 (2) | 0.8326 (2) | 0.3714 (3) | 0.0530 (9) | |
H8 | 0.557656 | 0.853590 | 0.319160 | 0.064* | |
C9 | 0.5062 (2) | 0.8898 (2) | 0.4669 (4) | 0.0575 (10) | |
H9A | 0.555879 | 0.903724 | 0.500282 | 0.069* | |
H9B | 0.481787 | 0.936913 | 0.438785 | 0.069* | |
C10 | 0.4545 (2) | 0.85180 (19) | 0.5536 (3) | 0.0484 (8) | |
C11 | 0.4295 (2) | 0.9041 (2) | 0.6485 (4) | 0.0620 (11) | |
H11A | 0.401451 | 0.947929 | 0.618728 | 0.093* | |
H11B | 0.396382 | 0.875548 | 0.698823 | 0.093* | |
H11C | 0.474656 | 0.922184 | 0.688324 | 0.093* | |
C12 | 0.53691 (18) | 0.74016 (18) | 0.5322 (3) | 0.0432 (8) | |
C13 | 0.54834 (18) | 0.75667 (19) | 0.4207 (3) | 0.0460 (8) | |
C14 | 0.5883 (2) | 0.7029 (2) | 0.3536 (3) | 0.0557 (10) | |
H14 | 0.596039 | 0.713003 | 0.277630 | 0.067* | |
C15 | 0.6162 (2) | 0.6352 (2) | 0.4004 (4) | 0.0631 (11) | |
H15 | 0.642215 | 0.599352 | 0.355389 | 0.076* | |
C16 | 0.6062 (2) | 0.6195 (2) | 0.5133 (3) | 0.0576 (10) | |
H16 | 0.625672 | 0.573495 | 0.543568 | 0.069* | |
C17 | 0.56737 (19) | 0.6719 (2) | 0.5813 (3) | 0.0471 (8) | |
C18 | 0.5850 (3) | 0.5943 (3) | 0.7453 (4) | 0.0716 (12) | |
H18A | 0.641332 | 0.593704 | 0.738080 | 0.086* | |
H18B | 0.564269 | 0.547848 | 0.709738 | 0.086* | |
C19 | 0.5622 (3) | 0.5965 (3) | 0.8665 (4) | 0.1006 (17) | |
H19A | 0.582492 | 0.551306 | 0.903941 | 0.151* | |
H19B | 0.583133 | 0.642681 | 0.900739 | 0.151* | |
H19C | 0.506407 | 0.597026 | 0.872521 | 0.151* | |
N1 | 0.08383 (17) | 0.72774 (19) | 0.5838 (3) | 0.0572 (8) | |
N2 | 0.31602 (16) | 0.80437 (15) | 0.5418 (2) | 0.0458 (7) | |
N3 | 0.38723 (15) | 0.82148 (16) | 0.4920 (2) | 0.0442 (7) | |
N4 | 0.31108 (15) | 0.78598 (17) | 0.3519 (2) | 0.0467 (7) | |
N5 | 0.44380 (16) | 0.82375 (18) | 0.3130 (2) | 0.0542 (8) | |
H5A | 0.439554 | 0.826988 | 0.241203 | 0.065* | |
O1 | 0.49588 (12) | 0.78802 (13) | 0.60565 (18) | 0.0468 (6) | |
O2 | 0.55363 (14) | 0.66252 (14) | 0.6933 (2) | 0.0567 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.045 (2) | 0.071 (3) | 0.058 (3) | −0.0032 (17) | −0.0068 (19) | −0.002 (2) |
C2 | 0.055 (2) | 0.077 (3) | 0.048 (2) | −0.0014 (19) | −0.0144 (18) | −0.001 (2) |
C3 | 0.055 (2) | 0.070 (2) | 0.042 (2) | 0.0003 (18) | −0.0024 (18) | 0.0043 (18) |
C4 | 0.0452 (19) | 0.051 (2) | 0.0389 (19) | 0.0027 (15) | −0.0019 (16) | −0.0025 (16) |
C5 | 0.050 (2) | 0.065 (2) | 0.043 (2) | 0.0048 (17) | −0.0047 (17) | −0.0016 (18) |
C6 | 0.0474 (19) | 0.0454 (19) | 0.0370 (19) | 0.0039 (14) | −0.0035 (16) | −0.0014 (16) |
C7 | 0.052 (2) | 0.046 (2) | 0.037 (2) | 0.0000 (16) | −0.0011 (17) | 0.0026 (16) |
C8 | 0.050 (2) | 0.054 (2) | 0.055 (2) | −0.0108 (17) | −0.0034 (18) | 0.0068 (19) |
C9 | 0.062 (2) | 0.0416 (19) | 0.069 (3) | −0.0079 (16) | −0.012 (2) | 0.0020 (19) |
C10 | 0.052 (2) | 0.0433 (18) | 0.050 (2) | 0.0020 (15) | −0.0100 (17) | −0.0025 (17) |
C11 | 0.070 (3) | 0.051 (2) | 0.064 (3) | 0.0125 (18) | −0.020 (2) | −0.0181 (19) |
C12 | 0.0350 (17) | 0.0465 (19) | 0.048 (2) | −0.0012 (14) | −0.0029 (15) | −0.0062 (17) |
C13 | 0.0388 (19) | 0.050 (2) | 0.049 (2) | −0.0059 (15) | −0.0008 (16) | −0.0023 (17) |
C14 | 0.048 (2) | 0.066 (2) | 0.054 (2) | −0.0040 (18) | 0.0081 (18) | −0.0043 (19) |
C15 | 0.056 (2) | 0.065 (3) | 0.068 (3) | 0.0102 (19) | 0.014 (2) | −0.013 (2) |
C16 | 0.048 (2) | 0.056 (2) | 0.069 (3) | 0.0077 (17) | 0.0038 (19) | −0.001 (2) |
C17 | 0.0395 (19) | 0.048 (2) | 0.053 (2) | 0.0002 (15) | −0.0013 (16) | 0.0001 (17) |
C18 | 0.070 (3) | 0.072 (3) | 0.073 (3) | 0.020 (2) | −0.002 (2) | 0.020 (2) |
C19 | 0.101 (4) | 0.119 (4) | 0.082 (3) | 0.032 (3) | 0.009 (3) | 0.039 (3) |
N1 | 0.0495 (18) | 0.075 (2) | 0.0473 (19) | −0.0042 (15) | −0.0009 (15) | 0.0003 (16) |
N2 | 0.0471 (17) | 0.0498 (16) | 0.0404 (17) | 0.0034 (12) | −0.0027 (14) | −0.0044 (13) |
N3 | 0.0414 (16) | 0.0491 (16) | 0.0422 (18) | −0.0011 (12) | −0.0038 (13) | −0.0030 (13) |
N4 | 0.0436 (17) | 0.0571 (18) | 0.0393 (17) | 0.0005 (14) | −0.0050 (13) | 0.0033 (13) |
N5 | 0.0486 (18) | 0.073 (2) | 0.0410 (16) | −0.0050 (15) | −0.0034 (14) | 0.0104 (16) |
O1 | 0.0494 (13) | 0.0459 (13) | 0.0451 (13) | 0.0082 (10) | −0.0054 (11) | −0.0044 (11) |
O2 | 0.0557 (15) | 0.0585 (16) | 0.0559 (16) | 0.0140 (12) | −0.0017 (13) | 0.0087 (13) |
C1—N1 | 1.331 (5) | C10—C11 | 1.504 (5) |
C1—C2 | 1.362 (5) | C11—H11A | 0.9600 |
C1—H1 | 0.9300 | C11—H11B | 0.9600 |
C2—C3 | 1.384 (5) | C11—H11C | 0.9600 |
C2—H2 | 0.9300 | C12—C13 | 1.372 (5) |
C3—C4 | 1.373 (5) | C12—O1 | 1.390 (4) |
C3—H3 | 0.9300 | C12—C17 | 1.409 (5) |
C4—C5 | 1.383 (5) | C13—C14 | 1.399 (5) |
C4—C6 | 1.477 (4) | C14—C15 | 1.374 (5) |
C5—N1 | 1.343 (4) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.380 (6) |
C6—N2 | 1.317 (4) | C15—H15 | 0.9300 |
C6—N4 | 1.367 (4) | C16—C17 | 1.380 (5) |
C7—N4 | 1.330 (4) | C16—H16 | 0.9300 |
C7—N3 | 1.342 (4) | C17—O2 | 1.364 (4) |
C7—N5 | 1.352 (4) | C18—O2 | 1.428 (4) |
C8—N5 | 1.469 (4) | C18—C19 | 1.495 (6) |
C8—C13 | 1.515 (5) | C18—H18A | 0.9700 |
C8—C9 | 1.517 (5) | C18—H18B | 0.9700 |
C8—H8 | 0.9800 | C19—H19A | 0.9600 |
C9—C10 | 1.509 (5) | C19—H19B | 0.9600 |
C9—H9A | 0.9700 | C19—H19C | 0.9600 |
C9—H9B | 0.9700 | N2—N3 | 1.389 (4) |
C10—O1 | 1.443 (4) | N5—H5A | 0.8600 |
C10—N3 | 1.463 (4) | ||
N1—C1—C2 | 123.7 (3) | H11A—C11—H11C | 109.5 |
N1—C1—H1 | 118.1 | H11B—C11—H11C | 109.5 |
C2—C1—H1 | 118.1 | C13—C12—O1 | 124.0 (3) |
C1—C2—C3 | 118.7 (4) | C13—C12—C17 | 121.3 (3) |
C1—C2—H2 | 120.7 | O1—C12—C17 | 114.7 (3) |
C3—C2—H2 | 120.7 | C12—C13—C14 | 119.1 (3) |
C4—C3—C2 | 119.2 (3) | C12—C13—C8 | 120.3 (3) |
C4—C3—H3 | 120.4 | C14—C13—C8 | 120.6 (3) |
C2—C3—H3 | 120.4 | C15—C14—C13 | 119.7 (4) |
C3—C4—C5 | 117.8 (3) | C15—C14—H14 | 120.1 |
C3—C4—C6 | 121.4 (3) | C13—C14—H14 | 120.1 |
C5—C4—C6 | 120.7 (3) | C14—C15—C16 | 121.1 (4) |
N1—C5—C4 | 123.5 (3) | C14—C15—H15 | 119.5 |
N1—C5—H5 | 118.2 | C16—C15—H15 | 119.5 |
C4—C5—H5 | 118.2 | C17—C16—C15 | 120.3 (4) |
N2—C6—N4 | 116.6 (3) | C17—C16—H16 | 119.9 |
N2—C6—C4 | 121.8 (3) | C15—C16—H16 | 119.9 |
N4—C6—C4 | 121.5 (3) | O2—C17—C16 | 125.5 (3) |
N4—C7—N3 | 111.2 (3) | O2—C17—C12 | 116.0 (3) |
N4—C7—N5 | 128.1 (3) | C16—C17—C12 | 118.5 (3) |
N3—C7—N5 | 120.7 (3) | O2—C18—C19 | 107.4 (4) |
N5—C8—C13 | 112.8 (3) | O2—C18—H18A | 110.2 |
N5—C8—C9 | 107.2 (3) | C19—C18—H18A | 110.2 |
C13—C8—C9 | 108.2 (3) | O2—C18—H18B | 110.2 |
N5—C8—H8 | 109.5 | C19—C18—H18B | 110.2 |
C13—C8—H8 | 109.5 | H18A—C18—H18B | 108.5 |
C9—C8—H8 | 109.5 | C18—C19—H19A | 109.5 |
C10—C9—C8 | 108.5 (3) | C18—C19—H19B | 109.5 |
C10—C9—H9A | 110.0 | H19A—C19—H19B | 109.5 |
C8—C9—H9A | 110.0 | C18—C19—H19C | 109.5 |
C10—C9—H9B | 110.0 | H19A—C19—H19C | 109.5 |
C8—C9—H9B | 110.0 | H19B—C19—H19C | 109.5 |
H9A—C9—H9B | 108.4 | C1—N1—C5 | 116.8 (3) |
O1—C10—N3 | 109.5 (3) | C6—N2—N3 | 101.2 (3) |
O1—C10—C11 | 105.7 (3) | C7—N3—N2 | 109.4 (3) |
N3—C10—C11 | 111.3 (3) | C7—N3—C10 | 126.8 (3) |
O1—C10—C9 | 109.4 (3) | N2—N3—C10 | 123.7 (3) |
N3—C10—C9 | 105.9 (3) | C7—N4—C6 | 101.6 (3) |
C11—C10—C9 | 115.1 (3) | C7—N5—C8 | 115.0 (3) |
C10—C11—H11A | 109.5 | C7—N5—H5A | 122.5 |
C10—C11—H11B | 109.5 | C8—N5—H5A | 122.5 |
H11A—C11—H11B | 109.5 | C12—O1—C10 | 115.3 (2) |
C10—C11—H11C | 109.5 | C17—O2—C18 | 117.1 (3) |
N1—C1—C2—C3 | −2.2 (6) | C2—C1—N1—C5 | 2.8 (6) |
C1—C2—C3—C4 | −0.9 (6) | C4—C5—N1—C1 | −0.4 (5) |
C2—C3—C4—C5 | 3.0 (5) | N4—C6—N2—N3 | −0.8 (3) |
C2—C3—C4—C6 | −175.7 (3) | C4—C6—N2—N3 | −179.3 (3) |
C3—C4—C5—N1 | −2.5 (5) | N4—C7—N3—N2 | −0.2 (4) |
C6—C4—C5—N1 | 176.2 (3) | N5—C7—N3—N2 | 179.3 (3) |
C3—C4—C6—N2 | 166.1 (3) | N4—C7—N3—C10 | −176.5 (3) |
C5—C4—C6—N2 | −12.5 (5) | N5—C7—N3—C10 | 3.0 (5) |
C3—C4—C6—N4 | −12.4 (5) | C6—N2—N3—C7 | 0.5 (3) |
C5—C4—C6—N4 | 169.0 (3) | C6—N2—N3—C10 | 177.0 (3) |
N5—C8—C9—C10 | 68.7 (3) | O1—C10—N3—C7 | −101.2 (4) |
C13—C8—C9—C10 | −53.3 (4) | C11—C10—N3—C7 | 142.3 (4) |
C8—C9—C10—O1 | 67.4 (3) | C9—C10—N3—C7 | 16.6 (4) |
C8—C9—C10—N3 | −50.5 (3) | O1—C10—N3—N2 | 83.0 (4) |
C8—C9—C10—C11 | −173.8 (3) | C11—C10—N3—N2 | −33.5 (4) |
O1—C12—C13—C14 | −177.8 (3) | C9—C10—N3—N2 | −159.2 (3) |
C17—C12—C13—C14 | 2.6 (5) | N3—C7—N4—C6 | −0.2 (4) |
O1—C12—C13—C8 | 2.9 (5) | N5—C7—N4—C6 | −179.7 (3) |
C17—C12—C13—C8 | −176.7 (3) | N2—C6—N4—C7 | 0.7 (4) |
N5—C8—C13—C12 | −98.3 (4) | C4—C6—N4—C7 | 179.2 (3) |
C9—C8—C13—C12 | 20.1 (4) | N4—C7—N5—C8 | −166.6 (3) |
N5—C8—C13—C14 | 82.4 (4) | N3—C7—N5—C8 | 14.0 (5) |
C9—C8—C13—C14 | −159.2 (3) | C13—C8—N5—C7 | 70.4 (4) |
C12—C13—C14—C15 | −0.7 (5) | C9—C8—N5—C7 | −48.7 (4) |
C8—C13—C14—C15 | 178.6 (3) | C13—C12—O1—C10 | 9.4 (4) |
C13—C14—C15—C16 | −0.7 (6) | C17—C12—O1—C10 | −171.0 (3) |
C14—C15—C16—C17 | 0.3 (6) | N3—C10—O1—C12 | 71.7 (3) |
C15—C16—C17—O2 | 179.6 (4) | C11—C10—O1—C12 | −168.4 (3) |
C15—C16—C17—C12 | 1.5 (5) | C9—C10—O1—C12 | −43.9 (4) |
C13—C12—C17—O2 | 178.7 (3) | C16—C17—O2—C18 | 2.8 (5) |
O1—C12—C17—O2 | −0.9 (4) | C12—C17—O2—C18 | −179.0 (3) |
C13—C12—C17—C16 | −3.0 (5) | C19—C18—O2—C17 | −179.6 (4) |
O1—C12—C17—C16 | 177.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N1i | 0.86 | 2.13 | 2.907 (4) | 149 |
Symmetry code: (i) −x+1/2, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Atalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o2119–o2121. CSD CrossRef IUCr Journals Google Scholar
Deres, K., Schröder, C. H., Paessens, A., Goldmann, S., Hacker, H. J., Weber, O., Krämer, T., Niewöhner, U., Pleiss, U., Stoltefuss, J., Graef, E., Koletzki, D., Masantschek, R. N. A., Reimann, A., Jaeger, R., Gross, R., Beckermann, B., Schlemmer, K. H., Haebich, D. & Rübsamen-Waigmann, H. (2003). Science, 299, 893–896. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267. Google Scholar
Huang, S. (2009). Acta Cryst. E65, o2671. CSD CrossRef IUCr Journals Google Scholar
Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220. CSD CrossRef IUCr Journals Google Scholar
Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. Web of Science CrossRef PubMed CAS Google Scholar
Kettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92. CSD CrossRef IUCr Journals Google Scholar
Şen, F., Çapan, İ., Dinçer, M. & Çukurovalı, A. (2018). J. Mol. Struct. 1155, 278–287. Google Scholar
Şen, F., Dinçer, M., Yilmaz, I. & Cukurovali, A. (2017a). J. Mol. Struct. 1137, 193–205. Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017b). Acta Cryst. C73, 517–524. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). IPDS 2 User Manual. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Svetlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073–4076. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Avustralia. Google Scholar
Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.