research communications
Crystal water as the molecular glue for obtaining different
ratios: the case of gallic acid tris-caffeine hexahydrateaUniversity of Malta, Msida, MSD 2080, Malta
*Correspondence e-mail: ulrich.baisch@um.edu.mt
The 7H6O5·3C8H10N4O2·6H2O or GAL3CAF·6H2O, is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water molecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the intermolecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two molecules is formed between the carboxylic oxygen of gallic acid and the carbonyl oxygen of caffeine with d(D⋯A) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.
of the hexahydrate of gallic acid and caffeine, CKeywords: crystal structure; organic co-crystal; hydrate; gallic acid; caffeine.
CCDC reference: 1830592
1. Chemical context
Gallic acid and its derivatives are widely known compounds in the pharmaceutical and chemical industry (Nayeem et al., 2016; Clarke et al., 2011). One such example is the dietary polyphenol found in Choerospondiatis fructus, a Mongolian medicinal herb used to treat conditions such as angina pectoris (Zhao et al., 2007). Lately, it has gained a lot of attention as a versatile component in crystal enineering, in particular with regards to co-crystallization and hydratation. Gallic acid could represent an entire microcosm of the special challenges and opportunities afforded by hydrates (Clarke et al., 2011) as it contains two of the most ubiquitous functional groups present in APIs: carboxylic acids and As part of a series of co-crystallization experiments in which both caffeine and gallic acid were used as coformers, single crystals of hydrated gallic acid and caffeine GAL3CAF·6H2O in the ratio gallic acid:caffeine:water of 1:3:6 were obtained and characterized by single-crystal X-ray diffraction. The is reported herein and compared to the different hydrated forms of this GALCAF·0.5H2O reported elsewhere (Clarke et al., 2010). The crystal structures differ greatly because of the different stoichiometry of the coformers. The different number of water molecules is necessary to act as structural glue, thereby facilitating crystallization.
2. Structural commentary
The GAL3CAF·6H2O consists of three independent caffeine molecules and one gallic acid molecule as well as six hydrate water molecules. Gallic acid can be described as a thrice-substituted benzoic acid with hydroxyl groups in both the meta and para positons. Caffeine consists of a purine backbone with carbonyl substituents at positions 2 and 6 (C26, C28, C46, C48, C66, C68) and methyl groups connected to three out of four nitrogen atoms (Fig. 1).
of theBond distances of the aromatic rings and substituents of both types of molecules lie within the expected ranges and exhibit the usual lengths for aromatic, double or single homo- or heteroatomic bonds. Only one nitrogen atom on each of the three caffeine molecules can act as a hydrogen-bond acceptor (N23, N43, N63) with the protonated carbon in the five-membered ring (C22, C42, C62) acting as a weak hydrogen-bond donor. Every molecule exhibits weak intramolecular interactions (Steiner, 2002). Whereas gallic acid forms intermoleclar bonds between two adjacent hydroxyl substituents [O11—H11⋯O10, d(D⋯A) = 2.709 (2) Å], the caffeine molecules form weak interactions between two of three methyl carbons and two carbonyl oxygen or backbone nitrogen atoms, namely C31, C33, C51, C53, C71, C73 as well as O32, N43, O54, O72, and O74. Distances range between 2.71 and 2.95 Å. In comparison, the corresponding intramolecular hydrogen-bonding interactions in the published GALCAF·0.5H2O structure reported in the Cambridge Structural Database (Groom et al., 2016) with code MUPNOB (Clarke et al., 2010) have distances of d(D⋯A)gallic acid = 2.743 (2), 2.712 (2) Å and d(D⋯A)caffeine of 2.78–2.71 Å.
3. Supramolecular features
As a result of the limited number of hydrogen-bond donors and acceptors in both gallic acid and caffeine, the packing strongly depends on (i) the concentration of each of the components in solution as well as (ii) other experimental conditions such as other components in solution, temperature, pressure, etc. In fact, there is a large difference in the way both molecules pack in the crystal lattice.
The GALCAF·0.5H2O (Clarke et al., 2010) has a 1:1:0.5 ratio of gallic acid, caffeine and water molecules. Both molecules form hydrogen-bonded tapes that are built by COO—H⋯N and O—H⋯O interactions [O⋯N = 2.705 (2) Å and O⋯O = 2.703 (2) and 2.750 (2) Å] formed between the hydoxyl substituents on gallic acid molecules and the carbonyl moieties of adjacent caffeine molecules. These tapes are then cross-linked by water molecules that hydrogen-bond with the third hydroxyl group in each gallic acid molecule [O⋯O = 2.857 (1) Å]. The water molecules facilitate the formation of bilayers that stack in an ABAB manner sustained by π–π interactions. The distances between these layers of molecules can be calculated from the distances between the centroids of the aromatic rings of the two molecules and range from 3.3742 (14) to 4.3402 (14) Å. The ratio between classical hydrogen-bond donors and acceptors is 4:4 (four donors and one acceptor on the gallic acid molecule and three acceptors on the caffeine molecule).
ofThe different balance of gallic acid and caffeine in GAL3CAF·6H2O affects the donor/acceptor ratio significantly. There are still only four classical hydrogen-bond donors deriving from the hydroxyl groups on gallic acid, but ten hydrogen-bond acceptors (three on each caffeine and one on gallic acid). This discrepency is equilibrated by inclusion of additional solvent water molecules into the These act as structural glue enabling crystallization in different stoichiometries and thus, compensating for the above imbalance. The water molecules provide the additional hydrogen bonds required to form a crystalline solid. Thus, the majority of hydrogen bonds forming the intermolecular network between gallic acid and caffeine are formed by crystal water (Table 1) with d(D⋯A) ranging from 2.643 (2) to 3.011 (2) Å. Direct classical hydrogen bonding between non-carbon atoms can only be observed between the carboxylic oxygen of gallic acid (O1) and the carbonyl oxygen of caffeine (O32) with d(D⋯A) = 2.672 (2) Å (Fig. 2). Additionally, there is a significant number of weak C—H⋯O interactions present between gallic acid molecules and caffeine molecules and between caffeine molecules themselves (Table 1). One of these interactions is between carboxylic acid and a carbonyl oxygen via hydrogen bonding that is almost parallel to an interaction between the carbonyl oxygen (O2) of the carboxylic group in gallic acid with the adjacent proton of a caffeine methyl substituent (C31) d(D⋯A) 3.326 (3) Å. Another C—H⋯O interaction is notable as it forms a linear chain connecting all caffeine molecules to each other (Fig. 3). These are formed between the only protonated carbon atom in the purine backbone (C22—H22, C42—H42, C62—H62) and the carbonyl oxygen of the next caffeine molecule (O32, O52, O72) with donor–acceptor distances ranging from 3.119 (3) to 3.227 (3) Å. O12 links gallic acid molecules to these chains via additional weak C—H⋯O interactions to C30 [d(D⋯A) 3.247 (3) Å] and C42 [d(D⋯A) = 3.254 (3) Å]. A comparable interaction between the protonated carbon of the purine ring does not exist in the GALCAF·0.5H2O structure.
The GAL3CAF·6H2O can be described as having two types of molecular layers connected via hydrogen-bonding interactions with solvent water molecules. Layers consisting solely of caffeine molecules are stacked alternately with layers composed of caffeine and gallic acid molecules (Fig. 4). The distances between the centroids of the aromatic rings are within the significance range at 3.231 (13) and 4.5028 (13) Å. Thus π-stacking of the aromatic rings is both stronger and weaker in places.
ofThe discussed
provides a good representation of the large impact of weak C—H⋯O interactions and of how solvent molecules can play a crucial role in the formation of crystal structures. All our attempts at obtaining a solventless with the same stoichiometry have failed so far.4. Synthesis and crystallization
The crystals were obtained as a by-product in a reaction aiming for the synthesis of a lanthanide salt. Gel crystallizations were carried out in order to slow the crystallization process down. This technique involves a piece of glassware that allows two solutions to diffuse through a (tetramethylorthosilicate) gel medium. The two sets of reagents then react when they eventually diffuse through the gel. Tetramethylorthosilicate gel (10%) was prepared freshly from 7 mL in 63 mL distilled water using Na2CO3 to make the gel approximately pH 8, and left to set overnight using U-tubes. Solutions were put into the two reservoirs: one contained caffeine (1 mmol, 0.2 g), while a solution containing an excess gallic acid and lanthanide was in the other.
5. Refinement
Crystal data, data collection and structure . Methyl H atoms were refined as riding (C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1830592
https://doi.org/10.1107/S2056989018004528/lh5871sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018004528/lh5871Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018004528/lh5871Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H6O5·3C8H10N4O2·6H2O | F(000) = 908 |
Mr = 860.81 | Dx = 1.501 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.5434 (3) Å | Cell parameters from 27647 reflections |
b = 6.79456 (11) Å | θ = 3.0–29.6° |
c = 18.1390 (4) Å | µ = 0.12 mm−1 |
β = 110.865 (2)° | T = 150 K |
V = 1905.21 (7) Å3 | Plate, clear colourless |
Z = 2 | 0.66 × 0.37 × 0.06 mm |
Rigaku Oxford Diffraction Xcalibur, Atlas, Gemini ultra diffractometer | 8931 reflections with I > 2σ(I) |
Detector resolution: 10.3968 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 29.6°, θmin = 3.0° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2015) | h = −21→22 |
Tmin = 0.946, Tmax = 0.994 | k = −9→9 |
38532 measured reflections | l = −25→24 |
9519 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.051P)2 + 0.2608P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.24 e Å−3 |
9519 reflections | Δρmin = −0.23 e Å−3 |
645 parameters | Absolute structure: Flack x determined using 4000 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.1 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O12 | 0.64601 (10) | 0.3426 (2) | 0.43298 (9) | 0.0237 (3) | |
O74 | 0.39816 (11) | 0.9622 (2) | 0.29064 (9) | 0.0249 (3) | |
O10 | 0.53021 (10) | 0.3054 (3) | 0.63346 (9) | 0.0250 (3) | |
O72 | 0.66076 (10) | 0.8227 (3) | 0.48111 (10) | 0.0279 (3) | |
O102 | 0.71299 (11) | 0.3149 (3) | 0.74098 (9) | 0.0259 (3) | |
O11 | 0.66635 (9) | 0.2955 (2) | 0.58370 (9) | 0.0241 (3) | |
O32 | 0.19013 (10) | 0.3831 (2) | 0.67800 (9) | 0.0257 (3) | |
O34 | −0.00090 (10) | 0.4828 (2) | 0.42738 (9) | 0.0259 (3) | |
O54 | 1.06258 (11) | 0.9604 (3) | 0.70872 (10) | 0.0289 (3) | |
O1 | 0.33315 (11) | 0.4973 (3) | 0.29402 (10) | 0.0292 (4) | |
O100 | 0.61941 (12) | 0.6181 (3) | 0.77785 (10) | 0.0266 (3) | |
O105 | 0.44257 (11) | 0.7234 (3) | 0.69929 (10) | 0.0288 (3) | |
O52 | 1.14078 (10) | 0.9016 (3) | 0.49147 (10) | 0.0300 (4) | |
O2 | 0.27018 (10) | 0.4707 (3) | 0.38411 (10) | 0.0300 (4) | |
O104 | 0.38756 (11) | 0.3238 (3) | 0.66710 (11) | 0.0312 (4) | |
O101 | 0.74791 (12) | 0.9351 (3) | 0.79622 (11) | 0.0325 (4) | |
N27 | 0.09392 (11) | 0.4384 (3) | 0.55358 (11) | 0.0200 (3) | |
N41 | 0.88046 (12) | 1.0593 (3) | 0.59097 (11) | 0.0210 (3) | |
N23 | −0.09763 (11) | 0.5534 (3) | 0.63666 (10) | 0.0203 (3) | |
N67 | 0.52922 (11) | 0.8905 (3) | 0.38714 (11) | 0.0201 (3) | |
N21 | −0.13658 (11) | 0.5677 (3) | 0.50514 (10) | 0.0187 (3) | |
N61 | 0.32462 (12) | 0.9330 (3) | 0.42452 (11) | 0.0216 (4) | |
N63 | 0.41353 (12) | 0.8759 (3) | 0.54870 (11) | 0.0221 (4) | |
O103 | 0.86742 (14) | 0.4935 (4) | 0.77642 (12) | 0.0486 (6) | |
N45 | 1.00201 (12) | 0.9877 (3) | 0.46922 (11) | 0.0213 (4) | |
N47 | 1.10076 (11) | 0.9323 (3) | 0.59887 (11) | 0.0221 (4) | |
N43 | 0.85646 (11) | 1.0770 (3) | 0.46163 (11) | 0.0223 (4) | |
N25 | 0.05332 (11) | 0.4685 (3) | 0.66583 (10) | 0.0200 (3) | |
N65 | 0.54639 (11) | 0.8526 (3) | 0.52143 (10) | 0.0193 (3) | |
C9 | 0.49273 (13) | 0.4032 (3) | 0.39853 (12) | 0.0182 (4) | |
C28 | 0.01160 (13) | 0.4814 (3) | 0.49805 (12) | 0.0185 (4) | |
C68 | 0.43992 (14) | 0.9264 (3) | 0.36060 (12) | 0.0193 (4) | |
C64 | 0.45928 (13) | 0.8801 (3) | 0.49996 (12) | 0.0188 (4) | |
C5 | 0.43204 (13) | 0.3818 (3) | 0.50144 (12) | 0.0185 (4) | |
C22 | −0.16156 (14) | 0.5854 (3) | 0.56754 (12) | 0.0204 (4) | |
C4 | 0.42193 (13) | 0.4139 (3) | 0.42310 (12) | 0.0180 (4) | |
C26 | 0.11628 (13) | 0.4278 (3) | 0.63532 (12) | 0.0198 (4) | |
C3 | 0.33445 (14) | 0.4627 (3) | 0.36677 (12) | 0.0202 (4) | |
C42 | 0.82336 (14) | 1.0955 (3) | 0.51858 (13) | 0.0227 (4) | |
C62 | 0.33233 (14) | 0.9082 (3) | 0.49978 (13) | 0.0241 (4) | |
C6 | 0.51354 (13) | 0.3398 (3) | 0.55560 (12) | 0.0189 (4) | |
C29 | −0.04957 (13) | 0.5192 (3) | 0.53528 (12) | 0.0181 (4) | |
C24 | −0.02878 (13) | 0.5128 (3) | 0.61509 (12) | 0.0182 (4) | |
C8 | 0.57394 (13) | 0.3606 (3) | 0.45261 (12) | 0.0184 (4) | |
C69 | 0.40732 (13) | 0.9150 (3) | 0.42277 (12) | 0.0185 (4) | |
C7 | 0.58546 (13) | 0.3319 (3) | 0.53187 (12) | 0.0183 (4) | |
C49 | 0.95774 (13) | 1.0134 (3) | 0.58130 (13) | 0.0190 (4) | |
C48 | 1.04131 (14) | 0.9686 (3) | 0.63709 (13) | 0.0217 (4) | |
C46 | 1.08429 (14) | 0.9386 (3) | 0.51791 (13) | 0.0219 (4) | |
C30 | −0.19092 (13) | 0.5917 (3) | 0.42252 (12) | 0.0208 (4) | |
H30A | −0.195314 | 0.465826 | 0.394977 | 0.031* | |
H30B | −0.165253 | 0.690518 | 0.398138 | 0.031* | |
H30C | −0.248743 | 0.634908 | 0.418844 | 0.031* | |
C44 | 0.94005 (13) | 1.0249 (3) | 0.50165 (12) | 0.0197 (4) | |
C66 | 0.58361 (14) | 0.8529 (3) | 0.46485 (13) | 0.0206 (4) | |
C71 | 0.60075 (14) | 0.8227 (3) | 0.60429 (13) | 0.0258 (4) | |
H71A | 0.578830 | 0.903248 | 0.637924 | 0.039* | |
H71B | 0.660364 | 0.861399 | 0.612352 | 0.039* | |
H71C | 0.599411 | 0.683589 | 0.618036 | 0.039* | |
C31 | 0.07288 (15) | 0.4634 (4) | 0.75120 (13) | 0.0263 (4) | |
H31A | 0.049780 | 0.341920 | 0.765162 | 0.039* | |
H31B | 0.046261 | 0.577200 | 0.766781 | 0.039* | |
H31C | 0.135692 | 0.467660 | 0.778760 | 0.039* | |
C51 | 0.98219 (16) | 0.9950 (4) | 0.38378 (14) | 0.0280 (5) | |
H51A | 1.028745 | 1.063988 | 0.372886 | 0.042* | |
H51B | 0.927512 | 1.065112 | 0.358458 | 0.042* | |
H51C | 0.977081 | 0.860691 | 0.362901 | 0.042* | |
C50 | 0.86261 (17) | 1.0583 (4) | 0.66409 (15) | 0.0284 (5) | |
C33 | 0.16380 (14) | 0.4060 (4) | 0.52176 (14) | 0.0259 (5) | |
H33A | 0.148733 | 0.294353 | 0.485177 | 0.039* | |
H33B | 0.218050 | 0.377880 | 0.565271 | 0.039* | |
H33C | 0.170850 | 0.524415 | 0.493788 | 0.039* | |
C53 | 1.19054 (14) | 0.8887 (4) | 0.64940 (15) | 0.0301 (5) | |
H53A | 1.225454 | 1.008608 | 0.656930 | 0.045* | |
H53B | 1.214230 | 0.787698 | 0.624216 | 0.045* | |
H53C | 1.191737 | 0.840579 | 0.700719 | 0.045* | |
C73 | 0.57111 (16) | 0.8896 (4) | 0.32820 (15) | 0.0292 (5) | |
H73A | 0.573261 | 0.754593 | 0.309962 | 0.044* | |
H73B | 0.630055 | 0.941262 | 0.351905 | 0.044* | |
H73C | 0.538002 | 0.972313 | 0.283348 | 0.044* | |
H5 | 0.3845 (19) | 0.391 (4) | 0.5203 (16) | 0.022 (6)* | |
H9 | 0.4873 (17) | 0.424 (4) | 0.3426 (16) | 0.017 (6)* | |
H22 | −0.220 (2) | 0.629 (4) | 0.5596 (17) | 0.030 (7)* | |
H1 | 0.282 (2) | 0.521 (5) | 0.2629 (19) | 0.035 (8)* | |
H12 | 0.631 (2) | 0.369 (4) | 0.3832 (19) | 0.031 (7)* | |
H62 | 0.284 (2) | 0.912 (5) | 0.5170 (18) | 0.035 (8)* | |
H10 | 0.482 (3) | 0.308 (6) | 0.641 (2) | 0.061 (11)* | |
C70 | 0.24418 (15) | 0.9659 (4) | 0.35795 (14) | 0.0265 (4) | |
H70A | 0.194877 | 0.947555 | 0.375199 | 0.040* | |
H70B | 0.240186 | 0.871975 | 0.315813 | 0.040* | |
H70C | 0.243510 | 1.100411 | 0.338199 | 0.040* | |
H42 | 0.767 (2) | 1.131 (4) | 0.5092 (18) | 0.033 (7)* | |
H11 | 0.669 (2) | 0.304 (5) | 0.630 (2) | 0.041 (9)* | |
H10G | 0.392 (2) | 0.449 (5) | 0.6864 (19) | 0.036 (8)* | |
H10E | 0.425 (3) | 0.802 (6) | 0.728 (3) | 0.062 (11)* | |
H10F | 0.436 (2) | 0.781 (6) | 0.654 (2) | 0.053 (10)* | |
H10A | 0.718 (2) | 0.192 (6) | 0.760 (2) | 0.056 (10)* | |
H10I | 0.781 (2) | 0.915 (5) | 0.850 (2) | 0.039 (8)* | |
H10C | 0.568 (3) | 0.622 (6) | 0.746 (2) | 0.055 (11)* | |
H10D | 0.634 (2) | 0.518 (5) | 0.7604 (19) | 0.034 (8)* | |
H10B | 0.763 (2) | 0.367 (5) | 0.7558 (19) | 0.033 (8)* | |
H10K | 0.905 (3) | 0.515 (7) | 0.816 (3) | 0.076 (14)* | |
H10L | 0.881 (3) | 0.528 (6) | 0.738 (3) | 0.072 (13)* | |
H10H | 0.389 (3) | 0.243 (7) | 0.709 (3) | 0.077 (13)* | |
H10J | 0.714 (3) | 0.832 (6) | 0.788 (2) | 0.057 (11)* | |
H50A | 0.868 (2) | 0.928 (5) | 0.683 (2) | 0.044 (9)* | |
H50B | 0.803 (3) | 1.094 (6) | 0.651 (2) | 0.063 (11)* | |
H50C | 0.902 (3) | 1.156 (5) | 0.701 (2) | 0.055 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O12 | 0.0148 (7) | 0.0379 (8) | 0.0204 (7) | 0.0037 (6) | 0.0089 (6) | 0.0030 (6) |
O74 | 0.0245 (8) | 0.0298 (7) | 0.0219 (7) | −0.0003 (6) | 0.0102 (6) | 0.0024 (6) |
O10 | 0.0172 (7) | 0.0413 (9) | 0.0174 (7) | 0.0025 (6) | 0.0073 (6) | 0.0042 (6) |
O72 | 0.0165 (7) | 0.0332 (8) | 0.0358 (9) | 0.0021 (6) | 0.0117 (6) | −0.0004 (7) |
O102 | 0.0174 (8) | 0.0367 (9) | 0.0231 (7) | −0.0010 (7) | 0.0065 (6) | −0.0007 (7) |
O11 | 0.0138 (7) | 0.0391 (9) | 0.0191 (7) | 0.0056 (6) | 0.0055 (6) | 0.0018 (6) |
O32 | 0.0144 (7) | 0.0329 (8) | 0.0264 (8) | 0.0030 (6) | 0.0030 (6) | −0.0036 (6) |
O34 | 0.0196 (7) | 0.0384 (9) | 0.0206 (7) | 0.0012 (6) | 0.0081 (6) | −0.0031 (6) |
O54 | 0.0235 (8) | 0.0373 (8) | 0.0233 (8) | 0.0024 (7) | 0.0049 (7) | −0.0005 (7) |
O1 | 0.0149 (7) | 0.0485 (10) | 0.0214 (7) | 0.0049 (7) | 0.0031 (6) | 0.0077 (7) |
O100 | 0.0244 (9) | 0.0339 (9) | 0.0214 (8) | 0.0019 (7) | 0.0081 (7) | −0.0022 (7) |
O105 | 0.0314 (9) | 0.0353 (9) | 0.0236 (8) | 0.0057 (7) | 0.0145 (7) | 0.0029 (7) |
O52 | 0.0197 (8) | 0.0368 (9) | 0.0378 (9) | 0.0017 (6) | 0.0154 (7) | −0.0023 (7) |
O2 | 0.0150 (7) | 0.0467 (10) | 0.0282 (8) | 0.0038 (7) | 0.0075 (7) | 0.0045 (7) |
O104 | 0.0268 (8) | 0.0426 (10) | 0.0290 (8) | 0.0020 (7) | 0.0159 (7) | 0.0003 (8) |
O101 | 0.0279 (9) | 0.0394 (10) | 0.0288 (9) | −0.0025 (8) | 0.0085 (7) | 0.0033 (7) |
N27 | 0.0135 (8) | 0.0242 (8) | 0.0233 (9) | 0.0001 (6) | 0.0078 (7) | −0.0025 (6) |
N41 | 0.0172 (8) | 0.0218 (8) | 0.0262 (9) | 0.0010 (7) | 0.0104 (7) | −0.0017 (7) |
N23 | 0.0164 (8) | 0.0250 (8) | 0.0203 (8) | 0.0000 (7) | 0.0074 (7) | −0.0001 (7) |
N67 | 0.0185 (9) | 0.0222 (8) | 0.0236 (8) | 0.0005 (7) | 0.0122 (7) | 0.0006 (7) |
N21 | 0.0128 (8) | 0.0232 (8) | 0.0200 (8) | 0.0001 (6) | 0.0058 (7) | −0.0005 (6) |
N61 | 0.0144 (8) | 0.0278 (9) | 0.0245 (9) | −0.0001 (7) | 0.0094 (7) | 0.0000 (7) |
N63 | 0.0190 (9) | 0.0281 (9) | 0.0224 (8) | −0.0001 (7) | 0.0111 (7) | 0.0008 (7) |
O103 | 0.0296 (10) | 0.0955 (18) | 0.0216 (9) | −0.0251 (11) | 0.0102 (8) | −0.0029 (10) |
N45 | 0.0164 (8) | 0.0253 (9) | 0.0234 (9) | 0.0010 (7) | 0.0086 (7) | −0.0011 (7) |
N47 | 0.0121 (8) | 0.0251 (8) | 0.0270 (9) | 0.0005 (7) | 0.0046 (7) | −0.0026 (7) |
N43 | 0.0155 (9) | 0.0225 (8) | 0.0268 (9) | 0.0010 (6) | 0.0047 (7) | −0.0012 (7) |
N25 | 0.0146 (8) | 0.0250 (8) | 0.0187 (8) | 0.0013 (6) | 0.0038 (7) | 0.0010 (6) |
N65 | 0.0147 (8) | 0.0231 (8) | 0.0210 (8) | 0.0011 (6) | 0.0073 (7) | 0.0015 (7) |
C9 | 0.0166 (9) | 0.0211 (9) | 0.0177 (9) | −0.0003 (7) | 0.0073 (8) | 0.0000 (7) |
C28 | 0.0156 (9) | 0.0194 (9) | 0.0208 (9) | −0.0013 (7) | 0.0066 (8) | −0.0014 (7) |
C68 | 0.0194 (10) | 0.0170 (9) | 0.0242 (10) | −0.0007 (7) | 0.0110 (8) | −0.0004 (7) |
C64 | 0.0168 (9) | 0.0189 (9) | 0.0223 (10) | −0.0015 (7) | 0.0090 (8) | −0.0010 (7) |
C5 | 0.0139 (9) | 0.0215 (9) | 0.0217 (10) | −0.0007 (7) | 0.0084 (8) | −0.0001 (7) |
C22 | 0.0156 (10) | 0.0245 (10) | 0.0221 (10) | −0.0005 (8) | 0.0078 (8) | −0.0002 (8) |
C4 | 0.0151 (9) | 0.0179 (9) | 0.0211 (9) | −0.0003 (7) | 0.0066 (8) | −0.0006 (7) |
C26 | 0.0152 (9) | 0.0204 (9) | 0.0227 (10) | −0.0003 (7) | 0.0053 (8) | −0.0022 (8) |
C3 | 0.0161 (9) | 0.0222 (9) | 0.0214 (10) | 0.0000 (7) | 0.0056 (8) | 0.0008 (8) |
C42 | 0.0134 (10) | 0.0236 (10) | 0.0307 (11) | 0.0011 (7) | 0.0076 (8) | −0.0013 (8) |
C62 | 0.0176 (10) | 0.0329 (11) | 0.0252 (10) | 0.0001 (8) | 0.0118 (8) | 0.0008 (8) |
C6 | 0.0187 (9) | 0.0199 (9) | 0.0190 (9) | −0.0013 (7) | 0.0078 (8) | −0.0009 (7) |
C29 | 0.0128 (9) | 0.0200 (9) | 0.0206 (9) | −0.0006 (7) | 0.0050 (7) | 0.0001 (7) |
C24 | 0.0146 (9) | 0.0180 (9) | 0.0218 (10) | 0.0000 (7) | 0.0063 (8) | 0.0003 (7) |
C8 | 0.0158 (9) | 0.0196 (9) | 0.0222 (10) | −0.0003 (7) | 0.0097 (8) | −0.0005 (7) |
C69 | 0.0151 (9) | 0.0193 (9) | 0.0225 (10) | 0.0004 (7) | 0.0086 (8) | 0.0003 (7) |
C7 | 0.0145 (9) | 0.0196 (9) | 0.0193 (9) | 0.0016 (7) | 0.0042 (7) | −0.0001 (7) |
C49 | 0.0132 (9) | 0.0206 (9) | 0.0238 (10) | 0.0003 (7) | 0.0072 (8) | −0.0015 (7) |
C48 | 0.0178 (10) | 0.0189 (9) | 0.0282 (11) | 0.0002 (8) | 0.0078 (9) | −0.0021 (8) |
C46 | 0.0167 (10) | 0.0204 (9) | 0.0291 (11) | −0.0007 (7) | 0.0089 (8) | −0.0022 (8) |
C30 | 0.0144 (9) | 0.0281 (10) | 0.0175 (9) | 0.0007 (7) | 0.0028 (8) | 0.0003 (8) |
C44 | 0.0159 (9) | 0.0184 (9) | 0.0253 (10) | −0.0011 (7) | 0.0078 (8) | −0.0025 (8) |
C66 | 0.0187 (9) | 0.0181 (9) | 0.0271 (10) | 0.0000 (7) | 0.0107 (8) | −0.0003 (8) |
C71 | 0.0199 (10) | 0.0316 (11) | 0.0235 (10) | 0.0017 (9) | 0.0048 (8) | 0.0005 (9) |
C31 | 0.0205 (10) | 0.0381 (12) | 0.0182 (10) | 0.0022 (9) | 0.0044 (8) | 0.0024 (9) |
C51 | 0.0279 (12) | 0.0360 (12) | 0.0226 (10) | −0.0008 (9) | 0.0119 (9) | −0.0024 (9) |
C50 | 0.0280 (12) | 0.0328 (12) | 0.0312 (12) | 0.0035 (10) | 0.0190 (10) | −0.0003 (10) |
C33 | 0.0148 (10) | 0.0335 (11) | 0.0327 (12) | 0.0018 (8) | 0.0125 (9) | −0.0035 (9) |
C53 | 0.0146 (10) | 0.0324 (11) | 0.0376 (13) | 0.0031 (8) | 0.0023 (9) | −0.0039 (10) |
C73 | 0.0266 (12) | 0.0373 (12) | 0.0315 (12) | 0.0016 (9) | 0.0198 (10) | 0.0014 (10) |
C70 | 0.0175 (10) | 0.0350 (11) | 0.0255 (10) | 0.0019 (9) | 0.0056 (8) | 0.0018 (9) |
O12—C8 | 1.366 (2) | N43—C44 | 1.360 (3) |
O12—H12 | 0.86 (3) | N25—C26 | 1.370 (3) |
O74—C68 | 1.234 (3) | N25—C24 | 1.376 (3) |
O10—C6 | 1.359 (2) | N25—C31 | 1.465 (3) |
O10—H10 | 0.86 (4) | N65—C64 | 1.365 (3) |
O72—C66 | 1.221 (3) | N65—C66 | 1.372 (3) |
O102—H10A | 0.89 (4) | N65—C71 | 1.465 (3) |
O102—H10B | 0.85 (4) | C9—C4 | 1.396 (3) |
O11—C7 | 1.356 (2) | C9—C8 | 1.383 (3) |
O11—H11 | 0.83 (4) | C9—H9 | 1.00 (3) |
O32—C26 | 1.229 (3) | C28—C29 | 1.426 (3) |
O34—C28 | 1.224 (3) | C68—C69 | 1.415 (3) |
O54—C48 | 1.221 (3) | C64—C69 | 1.378 (3) |
O1—C3 | 1.333 (3) | C5—C4 | 1.388 (3) |
O1—H1 | 0.85 (3) | C5—C6 | 1.386 (3) |
O100—H10C | 0.83 (4) | C5—H5 | 0.97 (3) |
O100—H10D | 0.82 (4) | C22—H22 | 0.97 (3) |
O105—H10E | 0.86 (5) | C4—C3 | 1.481 (3) |
O105—H10F | 0.88 (4) | C42—H42 | 0.92 (3) |
O52—C46 | 1.219 (3) | C62—H62 | 0.96 (3) |
O2—C3 | 1.213 (3) | C6—C7 | 1.403 (3) |
O104—H10G | 0.91 (3) | C29—C24 | 1.364 (3) |
O104—H10H | 0.93 (5) | C8—C7 | 1.395 (3) |
O101—H10I | 0.94 (4) | C49—C48 | 1.425 (3) |
O101—H10J | 0.88 (4) | C49—C44 | 1.370 (3) |
N27—C28 | 1.406 (3) | C30—H30A | 0.9800 |
N27—C26 | 1.396 (3) | C30—H30B | 0.9800 |
N27—C33 | 1.481 (3) | C30—H30C | 0.9800 |
N41—C42 | 1.339 (3) | C71—H71A | 0.9800 |
N41—C49 | 1.387 (3) | C71—H71B | 0.9800 |
N41—C50 | 1.458 (3) | C71—H71C | 0.9800 |
N23—C22 | 1.339 (3) | C31—H31A | 0.9800 |
N23—C24 | 1.358 (3) | C31—H31B | 0.9800 |
N67—C68 | 1.403 (3) | C31—H31C | 0.9800 |
N67—C66 | 1.399 (3) | C51—H51A | 0.9800 |
N67—C73 | 1.467 (3) | C51—H51B | 0.9800 |
N21—C22 | 1.342 (3) | C51—H51C | 0.9800 |
N21—C29 | 1.385 (3) | C50—H50A | 0.94 (3) |
N21—C30 | 1.456 (3) | C50—H50B | 0.96 (4) |
N61—C62 | 1.336 (3) | C50—H50C | 1.00 (4) |
N61—C69 | 1.385 (3) | C33—H33A | 0.9800 |
N61—C70 | 1.461 (3) | C33—H33B | 0.9800 |
N63—C64 | 1.353 (3) | C33—H33C | 0.9800 |
N63—C62 | 1.338 (3) | C53—H53A | 0.9800 |
O103—H10K | 0.78 (5) | C53—H53B | 0.9800 |
O103—H10L | 0.84 (5) | C53—H53C | 0.9800 |
N45—C46 | 1.374 (3) | C73—H73A | 0.9800 |
N45—C44 | 1.375 (3) | C73—H73B | 0.9800 |
N45—C51 | 1.466 (3) | C73—H73C | 0.9800 |
N47—C48 | 1.412 (3) | C70—H70A | 0.9800 |
N47—C46 | 1.396 (3) | C70—H70B | 0.9800 |
N47—C53 | 1.471 (3) | C70—H70C | 0.9800 |
N43—C42 | 1.336 (3) | ||
C8—O12—H12 | 107 (2) | N23—C24—C29 | 112.27 (18) |
C6—O10—H10 | 108 (3) | C29—C24—N25 | 122.19 (18) |
H10A—O102—H10B | 109 (3) | O12—C8—C9 | 123.47 (18) |
C7—O11—H11 | 111 (2) | O12—C8—C7 | 116.40 (18) |
C3—O1—H1 | 111 (2) | C9—C8—C7 | 120.14 (18) |
H10C—O100—H10D | 97 (3) | N61—C69—C68 | 132.3 (2) |
H10E—O105—H10F | 109 (4) | C64—C69—N61 | 104.82 (17) |
H10G—O104—H10H | 105 (3) | C64—C69—C68 | 122.86 (19) |
H10I—O101—H10J | 99 (3) | O11—C7—C6 | 121.96 (18) |
C28—N27—C33 | 116.29 (17) | O11—C7—C8 | 118.61 (18) |
C26—N27—C28 | 126.45 (17) | C8—C7—C6 | 119.43 (18) |
C26—N27—C33 | 117.24 (17) | N41—C49—C48 | 131.5 (2) |
C42—N41—C49 | 106.10 (18) | C44—C49—N41 | 105.08 (18) |
C42—N41—C50 | 126.3 (2) | C44—C49—C48 | 123.34 (19) |
C49—N41—C50 | 127.5 (2) | O54—C48—N47 | 121.84 (19) |
C22—N23—C24 | 103.11 (17) | O54—C48—C49 | 127.2 (2) |
C68—N67—C73 | 117.64 (18) | N47—C48—C49 | 110.97 (19) |
C66—N67—C68 | 126.75 (17) | O52—C46—N45 | 121.3 (2) |
C66—N67—C73 | 115.61 (18) | O52—C46—N47 | 121.2 (2) |
C22—N21—C29 | 106.10 (17) | N45—C46—N47 | 117.47 (18) |
C22—N21—C30 | 126.55 (18) | N21—C30—H30A | 109.5 |
C29—N21—C30 | 127.34 (17) | N21—C30—H30B | 109.5 |
C62—N61—C69 | 106.06 (18) | N21—C30—H30C | 109.5 |
C62—N61—C70 | 126.25 (19) | H30A—C30—H30B | 109.5 |
C69—N61—C70 | 127.66 (18) | H30A—C30—H30C | 109.5 |
C62—N63—C64 | 103.07 (18) | H30B—C30—H30C | 109.5 |
H10K—O103—H10L | 110 (5) | N43—C44—N45 | 126.21 (19) |
C46—N45—C44 | 119.25 (18) | N43—C44—C49 | 111.87 (18) |
C46—N45—C51 | 119.00 (18) | C49—C44—N45 | 121.92 (18) |
C44—N45—C51 | 121.74 (18) | O72—C66—N67 | 121.06 (19) |
C48—N47—C53 | 117.03 (19) | O72—C66—N65 | 121.9 (2) |
C46—N47—C48 | 127.02 (18) | N65—C66—N67 | 117.06 (18) |
C46—N47—C53 | 115.92 (18) | N65—C71—H71A | 109.5 |
C42—N43—C44 | 103.33 (18) | N65—C71—H71B | 109.5 |
C26—N25—C24 | 119.03 (17) | N65—C71—H71C | 109.5 |
C26—N25—C31 | 120.56 (18) | H71A—C71—H71B | 109.5 |
C24—N25—C31 | 120.40 (17) | H71A—C71—H71C | 109.5 |
C64—N65—C66 | 119.72 (17) | H71B—C71—H71C | 109.5 |
C64—N65—C71 | 120.76 (17) | N25—C31—H31A | 109.5 |
C66—N65—C71 | 119.51 (18) | N25—C31—H31B | 109.5 |
C4—C9—H9 | 122.5 (15) | N25—C31—H31C | 109.5 |
C8—C9—C4 | 119.88 (18) | H31A—C31—H31B | 109.5 |
C8—C9—H9 | 117.6 (15) | H31A—C31—H31C | 109.5 |
O34—C28—N27 | 120.75 (18) | H31B—C31—H31C | 109.5 |
O34—C28—C29 | 127.67 (19) | N45—C51—H51A | 109.5 |
N27—C28—C29 | 111.58 (17) | N45—C51—H51B | 109.5 |
O74—C68—N67 | 121.51 (19) | N45—C51—H51C | 109.5 |
O74—C68—C69 | 126.7 (2) | H51A—C51—H51B | 109.5 |
N67—C68—C69 | 111.75 (18) | H51A—C51—H51C | 109.5 |
N63—C64—N65 | 126.15 (19) | H51B—C51—H51C | 109.5 |
N63—C64—C69 | 112.08 (18) | N41—C50—H50A | 108 (2) |
N65—C64—C69 | 121.77 (18) | N41—C50—H50B | 107 (3) |
C4—C5—H5 | 122.4 (16) | N41—C50—H50C | 108 (2) |
C6—C5—C4 | 119.37 (19) | H50A—C50—H50B | 107 (3) |
C6—C5—H5 | 118.2 (16) | H50A—C50—H50C | 115 (3) |
N23—C22—N21 | 113.42 (19) | H50B—C50—H50C | 111 (3) |
N23—C22—H22 | 126.9 (17) | N27—C33—H33A | 109.5 |
N21—C22—H22 | 119.4 (17) | N27—C33—H33B | 109.5 |
C9—C4—C3 | 121.08 (18) | N27—C33—H33C | 109.5 |
C5—C4—C9 | 120.66 (18) | H33A—C33—H33B | 109.5 |
C5—C4—C3 | 118.26 (18) | H33A—C33—H33C | 109.5 |
O32—C26—N27 | 120.64 (19) | H33B—C33—H33C | 109.5 |
O32—C26—N25 | 121.57 (19) | N47—C53—H53A | 109.5 |
N25—C26—N27 | 117.80 (18) | N47—C53—H53B | 109.5 |
O1—C3—C4 | 112.93 (18) | N47—C53—H53C | 109.5 |
O2—C3—O1 | 122.85 (19) | H53A—C53—H53B | 109.5 |
O2—C3—C4 | 124.22 (19) | H53A—C53—H53C | 109.5 |
N41—C42—H42 | 123 (2) | H53B—C53—H53C | 109.5 |
N43—C42—N41 | 113.62 (19) | N67—C73—H73A | 109.5 |
N43—C42—H42 | 123 (2) | N67—C73—H73B | 109.5 |
N61—C62—N63 | 113.97 (19) | N67—C73—H73C | 109.5 |
N61—C62—H62 | 122.8 (19) | H73A—C73—H73B | 109.5 |
N63—C62—H62 | 123.2 (19) | H73A—C73—H73C | 109.5 |
O10—C6—C5 | 123.93 (18) | H73B—C73—H73C | 109.5 |
O10—C6—C7 | 115.58 (18) | N61—C70—H70A | 109.5 |
C5—C6—C7 | 120.49 (19) | N61—C70—H70B | 109.5 |
N21—C29—C28 | 131.99 (19) | N61—C70—H70C | 109.5 |
C24—C29—N21 | 105.09 (17) | H70A—C70—H70B | 109.5 |
C24—C29—C28 | 122.92 (18) | H70A—C70—H70C | 109.5 |
N23—C24—N25 | 125.54 (18) | H70B—C70—H70C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O32i | 0.85 (3) | 1.86 (3) | 2.672 (2) | 161 (3) |
O10—H10···O104 | 0.86 (4) | 1.79 (4) | 2.643 (2) | 174 (4) |
O11—H11···O10 | 0.83 (3) | 2.32 (4) | 2.709 (2) | 109 (3) |
O11—H11···O102 | 0.83 (4) | 1.88 (4) | 2.680 (2) | 161 (3) |
O12—H12···O100i | 0.86 (3) | 1.86 (3) | 2.702 (2) | 166 (3) |
O100—H10C···O105 | 0.83 (4) | 2.07 (4) | 2.851 (3) | 157 (4) |
O100—H10D···O10 | 0.82 (4) | 2.74 (3) | 3.286 (2) | 126 (3) |
O100—H10D···O102 | 0.82 (4) | 2.02 (4) | 2.798 (3) | 158 (3) |
O101—H10I···N43ii | 0.94 (4) | 1.97 (4) | 2.898 (3) | 170 (3) |
O101—H10J···O100 | 0.88 (4) | 2.09 (4) | 2.960 (3) | 170 (4) |
O102—H10A···O101iii | 0.89 (4) | 1.87 (4) | 2.754 (3) | 169 (4) |
O102—H10B···O103 | 0.85 (4) | 1.85 (4) | 2.691 (3) | 173 (3) |
O103—H10K···O34iv | 0.78 (5) | 2.06 (5) | 2.832 (3) | 168 (5) |
O103—H10L···N23v | 0.84 (5) | 1.99 (5) | 2.823 (3) | 168 (4) |
O104—H10G···O1vi | 0.91 (3) | 2.50 (3) | 3.011 (2) | 116 (2) |
O104—H10G···O105 | 0.91 (3) | 2.03 (3) | 2.857 (3) | 151 (3) |
O104—H10H···O74vi | 0.93 (5) | 2.00 (5) | 2.924 (2) | 171 (4) |
O105—H10E···O74ii | 0.86 (5) | 2.11 (5) | 2.952 (2) | 169 (4) |
O105—H10F···N63 | 0.88 (4) | 1.92 (4) | 2.798 (2) | 173 (4) |
C22—H22···O72vii | 0.97 (3) | 2.38 (3) | 3.227 (3) | 146 (2) |
C30—H30C···O12vii | 0.98 | 2.71 | 3.247 (3) | 115 |
C31—H31C···O2vi | 0.98 | 2.40 | 3.326 (3) | 158 |
C42—H42···O12viii | 0.92 (3) | 2.45 (3) | 3.254 (3) | 146 (3) |
C42—H42···O72 | 0.92 (3) | 2.66 (3) | 3.136 (3) | 113 (2) |
C62—H62···O52vii | 0.96 (3) | 2.24 (3) | 3.119 (3) | 151 (3) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+2, z+1/2; (iii) x, y−1, z; (iv) x+1, −y+1, z+1/2; (v) x+1, y, z; (vi) x, −y+1, z+1/2; (vii) x−1, y, z; (viii) x, y+1, z. |
Funding information
Funding for this research was provided by: Seventh Framework Programme, FP7 People: Marie-Curie Actions (grant No. 256547 to U. Baisch).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clarke, H. D., Arora, K. K., Bass, H., Kavuru, P., Ong, T. T., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 2152–2167. Web of Science CSD CrossRef CAS Google Scholar
Clarke, H. D., Arora, K. K., Wojtas, Ł. & Zaworotko, M. J. (2011). Cryst. Growth Des. 11, 964–966. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayeem, N., Asdaq, S. M. B., Salem, H. & AHEl-Alfqy, S. (2016). J. App. Pharm. 8, 213. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Zhao, X., Zhang, W., Kong, S. J., Zheng, X., Zheng, J. & Shi, R. (2007). J. Liq. Chromatogr. Related Technol. 30, 235–244. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.