research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-[(1E,1′E)-Oxybis(4,1-phenyl­ene)bis­­(aza­nylyl­­idene)bis­­(methanylyl­­idene)]bis­­(2-methyl­phenol): supra­molecular assemblies in two dimensions mediated by weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, and bDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
*Correspondence e-mail: farook@usm.my

Edited by J. Jasinsk, Keene State College, USA (Received 12 March 2018; accepted 17 April 2018; online 24 April 2018)

The title compound, C28H24N2O3, is a flexible Schiff base, having a dihedral angle of 59.53 (5)° between the mean planes of two phenyl rings bounded in the centre by a single O atom. The dihedral angles between the mean planes of the phenyl rings bonded to the central O atom and the mean planes of the terminal methyl­phenol rings are 31.47 (6) and 36.03 (5)°, respectively. The sp2-hybridized character of the azanylylidene groups is confirmed by their bond lengths and bond angles. In the crystal, mol­ecules are linked into centrosymmetric dimers by weak C—H⋯N inter­actions and connected into dimeric chains through weak C—H⋯O inter­actions. These chains are inter­connected into a two-dimensional network parallel to (1[\overline{2}]1) via weak C—H⋯π inter­actions.

1. Chemical context

The oxybis Schiff base compound is an important group in chemistry. Bis-carbazones are formed by connecting via a ring or C—C bond to carbazone moieties having four coordinated sites. These tetra­dentate ligands can be used to entrap metal ions to form square-planer complexes (Alsop et al., 2005[Alsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770-2780.]; Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]; Jasinski et al., 2003[Jasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202-206.]). The length of the C—C bond in the backbone of the compounds affects the stability of the complexes. The higher the number of C—C bonds (obtained via alkyl­ation or aryl­ation) allows the cavity within the ligand to fit the metal ion with a proper orientation (Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]). These tetra­dentate compounds and transition metal complexes have potential anti­cancer and anti­bacterial activity (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). The bis compounds chelate to transition metal ions via coordination sites to form complexes that may also exhibit fluorescent properties that could be used as biosensors and chemosensors (Liu et al., 2011[Liu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475-8490.]; Jiang & Guo, 2004[Jiang, P. & Guo, Z. (2004). Coord. Chem. Rev. 248, 205-229.]).

[Scheme 1]

In view of the above mentioned properties and of our research inter­est in the synthesis of oxybis Schiff base compounds, we present in this study the crystal structure and supra­molecular features of the flexible Schiff base ligand 6,6′-{(1E,1′E)-[oxybis(4,1-phenyl­ene)bis­(aza­nyl­yl­idene)bis­(methan­ylyl­idene)]bis­(2-methyl­phenol}.

2. Structural commentary

In the title oxybisbenzenyl compound (Fig. 1[link]), the mean planes of the phenyl rings bonded to the central oxygen atom form a dihedral angle of 59.53 (5)°, and the mean planes of the C1–C6 and C21–C26 methyl­phenol rings are twisted similarly by 31.47 (6) and 36.03 (5)°, respectively, from the adjacent phenyl rings. The terminal methyl­phenol rings are almost parallel to each other, forming a dihedral angle of 2.46 (6)° between their mean planes. The C7=N1 and C20=N2 bond lengths of 1.2880 (14) Å and 1.2834 (13) Å, confirm the presence of the double bonds while the C8—N1 and C17—N2 bond lengths, 1.4156 (12) and 1.4154 (12) Å, respectively, confirm their single-bond character. The C7—N1—C8, C17—N2—C20, N1—C7—C6 and N2—C20—C21 angles are 121.11 (9), 119.51 (9), 121.63 (9) and 122.42 (9)°, respectively. These values are consistent with a sp2-hybridized character for atoms C7, C20, N1 and N2 (Khalaji et al., 2012[Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263-266.]). Two intra­molecular N—H⋯O hydrogen bonds occur (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2 0.99 (2) 1.73 (2) 2.6441 (13) 151.0 (17)
O2—H1O2⋯N1 0.91 (2) 1.76 (2) 2.6011 (13) 151.4 (18)
C15—H15A⋯N1i 0.95 2.53 3.4211 (15) 156
C4—H4A⋯O1ii 0.95 2.72 3.6626 (14) 171
C27—H27ACg1iii 0.98 2.98 3.9242 (14) 162
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked into centrosymmetric dimers by weak C15—H15A⋯N1 inter­actions forming an R22(18) ring motif (Fig. 2[link]a, Table 1[link]). These dimers are linked into chains propagating along [111] by weak C4—H4A⋯O1 inter­actions (Fig. 2[link]b). At the same time, these dimeric chains are further connected into a two-dimensional network parallel to (121) via C—H⋯π inter­actions (Fig. 3[link], Table 1[link]).

[Figure 2]
Figure 2
(a) A view of a centrosymmetric dimer of C28H24N2O3 with weak inter­molecular C15—H15A⋯N1 inter­actions shown as cyan dotted lines. (b) A view of a dimeric chain with weak inter­molecular C4—H4A⋯O1 shown as megenta lines. Hydrogen atoms not involved in with these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
A view along (111) showing weak C—H⋯π (green dotted lines) supra­molecular inter­actions in the title compound.

4. Synthesis and crystallization

To a sample of 2-hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) dissolved in 20.0 ml methanol was added 0.20 ml glacial acetic acid and the mixture was refluxed for 30 min. A solution of 4,4′-oxydianiline (0.50 g, 2.50 mmol) in 20.0 ml methanol was then added dropwise with stirring to the aldehyde solution. The resulting yellow solution was refluxed for 4 h (Fig. 4[link]). A yellow-coloured precipitate formed. The precipitate was filtered and washed with 5.0 ml ethanol and 5.0 ml n-hexane. The recovered product was dissolved in acetone for recrystallization. Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of acetone.

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound.

6,6′-{(1E,1′E)-[Oxybis(4,1-phenyl­ene)bis­(aza­nylyl­idene)bis­(methanylyl­idene)]bis­(2-methyl­phenol}: m.p. 398–399 K; yield 96%. IR (KBr pellets υmax/cm−1): 3430 υ(OH), 2884 υ(CH3), 1612 υ(C=N), 1496 υ(C=C, aromatic), 1272 υ(C–H, aromatic), 1239 υ(C—O, ether), 1195 υ(C—O, phenol), 1081 υ(C—N). 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 13.581 [s (1.97 H), OH], δ 8.952 [s (2.00 H), HC=N], δ 7.504–6.888 [multiplet (13.86 H), aromatic], δ 2.221 [s (6.11 H), Ph—CH3H ppm. The 13C NMR (DMSO-d6, Me4Si ppm): δ 163.21 (C=N), δ 158.60–118.32 (C-aromatic), δ 15.13 (CH3) ppm. Analysis calculated for C28H24N2O3 (FW: 436.51 g mol−1) C, 77.00; H, 5.50; N, 6.42; found: C, 77.05; H, 5.48; N, 6.40%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The phenolic hydrogen atoms were located in difference-Fourier maps and refined freely. All other H atoms attached calculated geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C28H24N2O3
Mr 436.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.2293 (4), 10.9623 (4), 11.3087 (4)
α, β, γ (°) 108.5568 (10), 96.7616 (10), 110.4087 (10)
V3) 1088.76 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.31 × 0.13
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.903, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 42726, 6513, 5433
Rint 0.029
(sin θ/λ)max−1) 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.03
No. of reflections 6513
No. of parameters 308
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

6,6'-[(1E,1'E)-Oxybis(4,1-phenylene)bis(azanylylidene)bis(methanylylidene)]bis(2-methylphenol) top
Crystal data top
C28H24N2O3Z = 2
Mr = 436.49F(000) = 460
Triclinic, P1Dx = 1.331 Mg m3
a = 10.2293 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9623 (4) ÅCell parameters from 9984 reflections
c = 11.3087 (4) Åθ = 2.2–30.2°
α = 108.5568 (10)°µ = 0.09 mm1
β = 96.7616 (10)°T = 100 K
γ = 110.4087 (10)°Block, yellow
V = 1088.76 (7) Å30.35 × 0.31 × 0.13 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6513 independent reflections
Radiation source: fine-focus sealed tube5433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.903, Tmax = 0.960k = 1515
42726 measured reflectionsl = 1615
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.3053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6513 reflectionsΔρmax = 0.38 e Å3
308 parametersΔρmin = 0.32 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71062 10.322 11.055 11.397 108.521 96.732 110.436

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76527 (8)0.48598 (7)0.45322 (7)0.01951 (16)
O21.54997 (8)1.09474 (8)0.70552 (7)0.02197 (16)
O30.06378 (8)0.07922 (8)0.64561 (7)0.02142 (16)
N11.29823 (9)0.93739 (9)0.71785 (9)0.01841 (17)
N20.32630 (9)0.26192 (9)0.67203 (8)0.01845 (17)
C11.57792 (11)1.16561 (10)0.83396 (10)0.01812 (19)
C21.70943 (11)1.28524 (11)0.89546 (11)0.0208 (2)
C31.73960 (11)1.35727 (11)1.02776 (11)0.0237 (2)
H3A1.82801.43821.07030.028*
C41.64482 (12)1.31511 (11)1.10050 (11)0.0237 (2)
H4A1.66931.36541.19120.028*
C51.51434 (11)1.19879 (11)1.03847 (10)0.0218 (2)
H5A1.44851.17011.08700.026*
C61.47866 (11)1.12316 (10)0.90474 (10)0.01809 (19)
C71.33802 (11)1.00598 (11)0.84107 (10)0.01925 (19)
H7A1.27390.97940.89160.023*
C81.16198 (10)0.82216 (10)0.65723 (10)0.01726 (19)
C91.09958 (11)0.79317 (10)0.52934 (10)0.01908 (19)
H9A1.14910.84970.48670.023*
C100.96575 (11)0.68236 (10)0.46405 (10)0.01876 (19)
H10A0.92250.66450.37780.023*
C110.89561 (10)0.59785 (10)0.52567 (9)0.01665 (18)
C120.95985 (10)0.62060 (10)0.65062 (10)0.01793 (19)
H12A0.91360.55920.69050.022*
C131.09192 (10)0.73371 (10)0.71658 (10)0.01777 (19)
H13A1.13500.75110.80280.021*
C140.66246 (10)0.43684 (10)0.51590 (9)0.01645 (18)
C150.57873 (10)0.29247 (10)0.46457 (10)0.01831 (19)
H15A0.59730.23210.39370.022*
C160.46798 (11)0.23692 (10)0.51734 (10)0.01851 (19)
H16A0.40990.13830.48170.022*
C170.44103 (10)0.32475 (10)0.62243 (9)0.01667 (18)
C180.52465 (10)0.47018 (10)0.67105 (9)0.01735 (19)
H18A0.50590.53100.74140.021*
C190.63458 (10)0.52671 (10)0.61781 (9)0.01706 (19)
H19A0.69020.62570.65060.020*
C200.33650 (11)0.31399 (11)0.79342 (10)0.01902 (19)
H20A0.42250.39260.84810.023*
C210.22143 (10)0.25721 (10)0.85028 (9)0.01744 (19)
C220.24188 (11)0.31750 (11)0.98398 (10)0.0217 (2)
H22A0.32890.39691.03530.026*
C230.13736 (12)0.26316 (12)1.04218 (11)0.0247 (2)
H23A0.15180.30471.13290.030*
C240.01010 (12)0.14628 (12)0.96590 (11)0.0237 (2)
H24A0.06130.10851.00640.028*
C250.01556 (11)0.08364 (11)0.83349 (10)0.0201 (2)
C260.09098 (11)0.14035 (10)0.77475 (9)0.01703 (18)
C271.81029 (12)1.33195 (13)0.81651 (12)0.0279 (2)
H27A1.75591.33350.74010.042*
H27B1.85581.26600.78940.042*
H27C1.88491.42670.86860.042*
C280.15322 (12)0.04094 (12)0.75086 (12)0.0289 (2)
H28A0.13060.11200.68970.043*
H28B0.21320.01030.70320.043*
H28C0.20560.08170.80580.043*
H1O30.153 (2)0.131 (2)0.6250 (18)0.052 (5)*
H1O21.458 (2)1.027 (2)0.6813 (19)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0152 (3)0.0190 (3)0.0165 (3)0.0016 (3)0.0049 (3)0.0028 (3)
O20.0198 (4)0.0216 (4)0.0199 (4)0.0045 (3)0.0050 (3)0.0068 (3)
O30.0221 (4)0.0196 (3)0.0162 (3)0.0042 (3)0.0033 (3)0.0043 (3)
N10.0148 (4)0.0158 (4)0.0220 (4)0.0048 (3)0.0036 (3)0.0060 (3)
N20.0165 (4)0.0193 (4)0.0205 (4)0.0071 (3)0.0064 (3)0.0086 (3)
C10.0165 (4)0.0169 (4)0.0213 (5)0.0074 (4)0.0037 (4)0.0075 (4)
C20.0165 (4)0.0184 (4)0.0269 (5)0.0066 (4)0.0030 (4)0.0097 (4)
C30.0169 (4)0.0191 (5)0.0290 (5)0.0056 (4)0.0009 (4)0.0060 (4)
C40.0219 (5)0.0230 (5)0.0216 (5)0.0105 (4)0.0006 (4)0.0032 (4)
C50.0197 (5)0.0234 (5)0.0217 (5)0.0104 (4)0.0045 (4)0.0066 (4)
C60.0162 (4)0.0169 (4)0.0203 (5)0.0069 (3)0.0039 (4)0.0062 (4)
C70.0153 (4)0.0178 (4)0.0239 (5)0.0061 (4)0.0059 (4)0.0075 (4)
C80.0139 (4)0.0155 (4)0.0208 (5)0.0056 (3)0.0048 (3)0.0053 (4)
C90.0192 (4)0.0176 (4)0.0200 (5)0.0062 (4)0.0068 (4)0.0076 (4)
C100.0192 (4)0.0191 (4)0.0169 (4)0.0075 (4)0.0047 (4)0.0060 (4)
C110.0137 (4)0.0152 (4)0.0180 (4)0.0052 (3)0.0043 (3)0.0032 (3)
C120.0165 (4)0.0178 (4)0.0199 (5)0.0067 (4)0.0057 (4)0.0077 (4)
C130.0163 (4)0.0190 (4)0.0183 (4)0.0076 (4)0.0042 (3)0.0071 (4)
C140.0135 (4)0.0183 (4)0.0158 (4)0.0053 (3)0.0038 (3)0.0057 (3)
C150.0175 (4)0.0171 (4)0.0171 (4)0.0067 (4)0.0042 (3)0.0032 (4)
C160.0171 (4)0.0156 (4)0.0192 (4)0.0046 (3)0.0035 (3)0.0048 (4)
C170.0136 (4)0.0185 (4)0.0165 (4)0.0056 (3)0.0031 (3)0.0064 (3)
C180.0165 (4)0.0175 (4)0.0166 (4)0.0069 (3)0.0037 (3)0.0049 (3)
C190.0151 (4)0.0150 (4)0.0172 (4)0.0045 (3)0.0027 (3)0.0039 (3)
C200.0154 (4)0.0183 (4)0.0207 (5)0.0052 (3)0.0035 (3)0.0066 (4)
C210.0166 (4)0.0173 (4)0.0173 (4)0.0064 (3)0.0039 (3)0.0060 (4)
C220.0203 (5)0.0204 (5)0.0190 (5)0.0053 (4)0.0030 (4)0.0048 (4)
C230.0264 (5)0.0266 (5)0.0183 (5)0.0094 (4)0.0069 (4)0.0064 (4)
C240.0226 (5)0.0252 (5)0.0245 (5)0.0083 (4)0.0104 (4)0.0113 (4)
C250.0177 (4)0.0179 (4)0.0228 (5)0.0054 (4)0.0046 (4)0.0078 (4)
C260.0174 (4)0.0156 (4)0.0176 (4)0.0071 (3)0.0035 (3)0.0058 (3)
C270.0200 (5)0.0257 (5)0.0348 (6)0.0039 (4)0.0055 (4)0.0142 (5)
C280.0216 (5)0.0248 (5)0.0303 (6)0.0009 (4)0.0042 (4)0.0089 (5)
Geometric parameters (Å, º) top
O1—C111.3841 (11)C12—H12A0.9500
O1—C141.3864 (11)C13—H13A0.9500
O2—C11.3506 (13)C14—C151.3885 (13)
O2—H1O20.91 (2)C14—C191.3895 (13)
O3—C261.3456 (12)C15—C161.3855 (14)
O3—H1O30.988 (19)C15—H15A0.9500
N1—C71.2880 (14)C16—C171.3962 (14)
N1—C81.4156 (12)C16—H16A0.9500
N2—C201.2834 (13)C17—C181.3985 (13)
N2—C171.4154 (12)C18—C191.3864 (13)
C1—C21.4078 (14)C18—H18A0.9500
C1—C61.4097 (14)C19—H19A0.9500
C2—C31.3880 (16)C20—C211.4521 (14)
C2—C271.5045 (15)C20—H20A0.9500
C3—C41.3956 (16)C21—C221.3998 (14)
C3—H3A0.9500C21—C261.4122 (13)
C4—C51.3866 (15)C22—C231.3792 (15)
C4—H4A0.9500C22—H22A0.9500
C5—C61.4030 (14)C23—C241.3962 (15)
C5—H5A0.9500C23—H23A0.9500
C6—C71.4549 (14)C24—C251.3819 (15)
C7—H7A0.9500C24—H24A0.9500
C8—C131.3954 (14)C25—C261.4058 (14)
C8—C91.3960 (14)C25—C281.5027 (15)
C9—C101.3879 (14)C27—H27A0.9800
C9—H9A0.9500C27—H27B0.9800
C10—C111.3870 (14)C27—H27C0.9800
C10—H10A0.9500C28—H28A0.9800
C11—C121.3905 (14)C28—H28B0.9800
C12—C131.3874 (13)C28—H28C0.9800
C11—O1—C14118.92 (7)C16—C15—H15A120.2
C1—O2—H1O2105.6 (12)C14—C15—H15A120.2
C26—O3—H1O3104.7 (11)C15—C16—C17120.52 (9)
C7—N1—C8121.11 (9)C15—C16—H16A119.7
C20—N2—C17119.51 (9)C17—C16—H16A119.7
O2—C1—C2117.80 (9)C16—C17—C18118.95 (9)
O2—C1—C6121.55 (9)C16—C17—N2117.94 (9)
C2—C1—C6120.64 (9)C18—C17—N2123.08 (9)
C3—C2—C1118.03 (10)C19—C18—C17120.84 (9)
C3—C2—C27122.46 (10)C19—C18—H18A119.6
C1—C2—C27119.49 (10)C17—C18—H18A119.6
C2—C3—C4122.38 (10)C18—C19—C14119.21 (9)
C2—C3—H3A118.8C18—C19—H19A120.4
C4—C3—H3A118.8C14—C19—H19A120.4
C5—C4—C3119.06 (10)N2—C20—C21122.42 (9)
C5—C4—H4A120.5N2—C20—H20A118.8
C3—C4—H4A120.5C21—C20—H20A118.8
C4—C5—C6120.60 (10)C22—C21—C26119.10 (9)
C4—C5—H5A119.7C22—C21—C20119.12 (9)
C6—C5—H5A119.7C26—C21—C20121.75 (9)
C5—C6—C1119.24 (9)C23—C22—C21120.85 (10)
C5—C6—C7119.47 (9)C23—C22—H22A119.6
C1—C6—C7121.25 (9)C21—C22—H22A119.6
N1—C7—C6121.63 (9)C22—C23—C24119.09 (10)
N1—C7—H7A119.2C22—C23—H23A120.5
C6—C7—H7A119.2C24—C23—H23A120.5
C13—C8—C9119.20 (9)C25—C24—C23122.23 (10)
C13—C8—N1123.39 (9)C25—C24—H24A118.9
C9—C8—N1117.33 (9)C23—C24—H24A118.9
C10—C9—C8120.50 (9)C24—C25—C26118.34 (9)
C10—C9—H9A119.7C24—C25—C28122.39 (10)
C8—C9—H9A119.7C26—C25—C28119.27 (9)
C11—C10—C9119.52 (9)O3—C26—C25117.66 (9)
C11—C10—H10A120.2O3—C26—C21121.97 (9)
C9—C10—H10A120.2C25—C26—C21120.37 (9)
O1—C11—C10116.44 (9)C2—C27—H27A109.5
O1—C11—C12122.74 (9)C2—C27—H27B109.5
C10—C11—C12120.67 (9)H27A—C27—H27B109.5
C13—C12—C11119.50 (9)C2—C27—H27C109.5
C13—C12—H12A120.2H27A—C27—H27C109.5
C11—C12—H12A120.2H27B—C27—H27C109.5
C12—C13—C8120.47 (9)C25—C28—H28A109.5
C12—C13—H13A119.8C25—C28—H28B109.5
C8—C13—H13A119.8H28A—C28—H28B109.5
O1—C14—C15116.46 (8)C25—C28—H28C109.5
O1—C14—C19122.52 (9)H28A—C28—H28C109.5
C15—C14—C19120.80 (9)H28B—C28—H28C109.5
C16—C15—C14119.63 (9)
O2—C1—C2—C3179.09 (9)C11—O1—C14—C15144.71 (9)
C6—C1—C2—C31.68 (14)C11—O1—C14—C1940.71 (13)
O2—C1—C2—C272.00 (14)O1—C14—C15—C16176.07 (8)
C6—C1—C2—C27177.23 (9)C19—C14—C15—C161.39 (15)
C1—C2—C3—C40.05 (16)C14—C15—C16—C170.68 (15)
C27—C2—C3—C4178.92 (10)C15—C16—C17—C181.97 (15)
C2—C3—C4—C51.33 (16)C15—C16—C17—N2179.91 (9)
C3—C4—C5—C60.88 (16)C20—N2—C17—C16146.74 (10)
C4—C5—C6—C10.80 (15)C20—N2—C17—C1835.40 (14)
C4—C5—C6—C7176.86 (9)C16—C17—C18—C191.23 (14)
O2—C1—C6—C5178.69 (9)N2—C17—C18—C19179.06 (9)
C2—C1—C6—C52.11 (14)C17—C18—C19—C140.79 (14)
O2—C1—C6—C73.69 (15)O1—C14—C19—C18176.47 (9)
C2—C1—C6—C7175.51 (9)C15—C14—C19—C182.12 (15)
C8—N1—C7—C6179.01 (9)C17—N2—C20—C21178.32 (9)
C5—C6—C7—N1177.01 (9)N2—C20—C21—C22178.44 (10)
C1—C6—C7—N10.61 (15)N2—C20—C21—C260.19 (15)
C7—N1—C8—C1330.61 (15)C26—C21—C22—C230.78 (16)
C7—N1—C8—C9152.59 (10)C20—C21—C22—C23177.52 (10)
C13—C8—C9—C103.47 (15)C21—C22—C23—C240.16 (17)
N1—C8—C9—C10179.59 (9)C22—C23—C24—C250.62 (17)
C8—C9—C10—C111.67 (15)C23—C24—C25—C260.10 (16)
C14—O1—C11—C10152.24 (9)C23—C24—C25—C28179.15 (11)
C14—O1—C11—C1232.17 (13)C24—C25—C26—O3179.28 (9)
C9—C10—C11—O1177.53 (8)C28—C25—C26—O30.00 (14)
C9—C10—C11—C121.84 (15)C24—C25—C26—C210.87 (15)
O1—C11—C12—C13178.90 (9)C28—C25—C26—C21179.86 (9)
C10—C11—C12—C133.49 (15)C22—C21—C26—O3178.85 (9)
C11—C12—C13—C81.64 (15)C20—C21—C26—O32.90 (15)
C9—C8—C13—C121.80 (15)C22—C21—C26—C251.30 (15)
N1—C8—C13—C12178.55 (9)C20—C21—C26—C25176.95 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N20.99 (2)1.73 (2)2.6441 (13)151.0 (17)
O2—H1O2···N10.91 (2)1.76 (2)2.6011 (13)151.4 (18)
C15—H15A···N1i0.952.533.4211 (15)156
C4—H4A···O1ii0.952.723.6626 (14)171
C27—H27A···Cg1iii0.982.983.9242 (14)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Funding information

The research was supported financially by the RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia. Universiti Sains Malaysia and The World Academy of Science are thanked for a USM–TWAS fellowship to MdAA. HCK thanks the Malaysian Government for a MyBrain15 scholarship.

References

First citationAlsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770–2780.  CSD CrossRef CAS Google Scholar
First citationBlower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202–206.  CSD CrossRef CAS Google Scholar
First citationJiang, P. & Guo, Z. (2004). Coord. Chem. Rev. 248, 205–229.  Web of Science CrossRef CAS Google Scholar
First citationKhalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.  CSD CrossRef CAS Google Scholar
First citationLiu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475–8490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds