research communications
The effect of the fused-ring substituent on anthracene
crystal structural and DFT studies of 1-(anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one and 1-(anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-oneaX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my
The title chalcone compounds, C27H18O (I) and C33H20O (II), were synthesized using a Claisen–Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature intermolecular C—H⋯O and C—H⋯π interactions. Quantum chemical analysis of density functional theory (DFT) with a B3LYP/6–311++G(d,p) basis set has been employed to study the structural properties of the compound. The effect of the intermolecular interactions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO–LUMO energy gap in (I) (exp : 3.18 eV and DFT: 3.15 eV) and (II) (exp : 2.76 eV and DFT: 2.95 eV) indicates the suitability of these compounds for optoelectronic applications. The intermolecular contacts and weak contributions to the supramolecular stabilization are analysed using Hirshfeld surface analysis.
Keywords: chalcone; crystal structure; DFT; UV-Vis; Hirshfeld surface.
1. Chemical context
Naphthalene, anthracene and pyrene are three types of polycyclic aromatic hydrocarbons that consist of two, three and four fused benzene rings sharing a common side. Polyaromatic hydrocarbons or π-conjugated materials are an important class of organic compounds because of their significant conductivity properties that have led to tremendous advancements in the field of organic electronics (Li et al., 2016). Most conjugated materials used in such applications rely on linear electron-rich fragments (Lin et al., 2017). Furthermore, π-conjugated systems have been studied extensively for their optoelectronic properties because they give the possibility of low-cost, large-area, and flexible electronic devices. Over the past decade, significant research into new π-conjugated systems has been ongoing due to the rapidly growing number of applications in electronic devices such as semiconducting materials, organic light-emitting diodes (OLEDs; Kulkarni et al., 2004) and organic field-effect transistors (OFETs; Torrent & Rovira, 2008; Wu et al., 2010). Recently, we found that the presence of fused-ring systems at both terminal rings of chalcone derivatives to be useful in obtaining good quality single crystals with an easy-to-synthesize method. In this work, we report the synthesis and combined experimental and theoretical studies of anthracene containing a naphthalene (I) or pyrene (II) fused-ring system. Additionally, the UV–Vis absorption and Hirshfeld surface analyses are discussed.
2. Structural commentary
The molecular and optimized structure of compounds (I) and (II) is shown in Fig. 1. The optimization of the molecular geometries leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation functional (B3LYP)] with the 6-311++G (d,p) basis set as implemented in Gaussian09 program package (Frisch et al., 2009). From the results it can be concluded that this basis set is well suited in its approach to the experimental data. The slight deviations from the experimental values are due to the fact that the optimization is performed in an isolated condition, whereas the crystal environment affects the X-ray structural results (Zainuri et al., 2017).
Compound (I) comprises a chalcone with an anthracene ring system (ring A) and a naphthalene ring system (ring B), compound (II) comprises a chalcone with an anthracene ring system (ring C) and a pyrene ring system (ring D). The enone moiety in (I) [O1/C15–C17, maximum deviation of 0.0143 (10) Å for O1] makes dihedral angles of 79.06 (11) and 8.62 (11)° with the mean planes through ring A [C1–C14, maximum deviation of 0.0555 (11) Å for C14] and ring B [C18–C27, maximum deviation of 0.037 (11) Å at C19] respectively. In compound (II), the enone moiety [O1/C15–C17, maximum deviation of 0.0364 (18) Å for O1] forms dihedral angles of 88.8 (2) and 18.3 (2)° with ring C [C1–C14, maximum deviation of 0.037 (3) Å for C10] and ring D [C18–C31, maximum deviation of 0.0236 (18) Å for C18], respectively. The large differences in the values of the dihedral angles indicate that the possibility for electronic interactions between the anthracene unit and the enone moiety is hindered (Jung et al., 2008).
In both compounds, the C2—C3, C4—C5, C9—C10 and C11—C12 bond distances [mean value 1.3614 (18) Å for (I) and 1.351 (3) Å for (II)] are significantly shorter than the C—C bond distances in the central rings of the anthracene units [1.412 (8) and 1.403 (7) Å for (I) and (II) respectively]. This observation is consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984).
Both theoretical and experimental structures exist in an s-trans configuration of the enone moiety, with C15=O1 bond lengths of 1.2275 (14) Å (DFT: 1.22 Å) and 1.219 (2) Å (DFT: 1.22 Å) in (I) and (II), and C16=C17 bond lengths of 1.3416 (17) Å (DFT: 1.35 Å) and 1.328 (3) Å (DFT: 1.35 Å) in (I) and (II), respectively. Both compounds are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of 102.72 (12) and −87.9 (2)°, respectively. The corresponding torsion angles calculated by DFT are 95.94 and 95.29°, respectively. The bulkiness of the anthracene ring system gives rise to a highly twisted structure at both terminal rings. Furthermore, compounds (I) and (II) are slightly twisted at the C17—C18 bond with C16—C17—C18—C19 torsion angles of 7.35 (18)° (DFT: 0.69°) in (I) and 17.2 (13)° (DFT: 19.84°) in (II). The slight differences in the torsion angles in the two compounds is due to the formation of C—H⋯ O and C—H⋯ π intermolecular interactions involving all the fused ring systems (A, B, C and D), which are not taken into consideration during the optimization process.
3. Supramolecular features
In compound (I), the molecules are connected by weak intermolecular C—H⋯O hydrogen bonds (Table 1) into chains propagating along the b-axis direction. Weak C—H⋯π interactions (Table 1) connect the chains into columns along the b axis (Fig. 2). In compound (II), molecules interact through three kinds of C—H⋯ π interactions (C25—H25A⋯Cg3, C26—H26A⋯Cg5 and C27—H27A⋯Cg4; Table 2) involving the anthracene and pyrene ring systems of adjacent molecules, forming a three-dimensional network (Fig. 3).
|
4. and Frontier Molecular Orbital
The theoretical maximum absorption wavelengths (λcalc) was obtained by time-dependent DFT (TD–DFT) calculations using B3LYP and the calculated values were compared with the experimental values. The calculations of the molecular orbital geometry show that the absorption maxima of the molecules correspond to the electron transition between such as the transition from HOMO to LUMO. As can be seen from the UV–Vis spectra (Fig. 4), the absorption maxima values for compound (I) and (II) are found to be 383 nm, 413 nm (experimental) and 395 nm, 409 nm (theoretical), respectively. The calculated energy transitions are shifted with respect to the experiment because the calculations are confined to the gaseous equivalent whereas the observations are from the solution state. The spectroscopic data recorded show a strong cut off for compound (I) and (II) at 390 nm and 450 nm, respectively. Through an extrapolation of the linear trend observed in the optical spectra (Fig. 4), the experimental energy band gaps are 3.18 and 2.76 eV for (I) and (II) respectively. The predicted energy gaps of 3.15 and 2.95 eV are comparable to the experimental energy gaps. The energy gap for (II) is smaller because the fused ring system of the pyrene substituent has a larger π-conjugated system compared to the naphthalene fused ring system in (I). In addition, a previous study from Nietfeld et al. (2011) comparing the structural, electrochemical and optical properties between fused and non-fused ring compounds shows that the former have a lower band gap than other structures. The value of the optical band gaps observed for compound (I) and (II) indicate the suitability of these compounds for optoelectronic applications.
5. Hirshfeld Surface Analysis
The dnorm and shape-index (Wolff et al., 2012) surfaces for compounds (I) and (II) are presented in Fig. 5a and 5b, respectively. C—H⋯O and C—H⋯π contacts are shown on the dnorm mapped surfaces as deep-red depression areas in Fig. 5a. The C—H⋯O contacts are only present in compound (I). The C—H⋯π interactions are indicated through a combination of pale orange and bright-red spots, which are present on the Hirshfeld Surface mapped over the shape index surface and identified by black arrows (Fig. 5b).
In the fingerprint plot (Fig. 5c), the H⋯H, H⋯O, C⋯H and C⋯C interactions are indicated together with their relative percentage contribution. The H⋯H contacts have the largest overall contribution to the Hirshfeld surface and dominate in the The contribution of H⋯O/ O⋯H contacts to the Hirshfeld surface, showing two narrow spikes, provides evidence for the presence of intermolecular C—H⋯O interactions in compound (I). Furthermore, the significant C—H⋯π interactions in both (I) and (II) are indicated by the wings at de + di 2.7 Å.
6. Database survey
A survey of Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom et al., 2016) revealed four compounds having an anthracene-ketone substituent on the chalcone, i.e. anthracen-9-yl styryl ketone and 9,10-anthryl bis(styryl ketone) (Harlow et al., 1975), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one (Girisha et al., 2016) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one (Abdullah et al., 2016). Zainuri et al. (2018) reported the structure of the bis-substituted anthracene chalcone, (E)-1,3-bis(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-methylprop-2-en-1-one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).
7. Synthesis and crystallization
A mixture of 9-acetylanthracene (0.5 mmol) and 2-napthaldehyde or 1-pyrenecarboxaldehyde (0.5 mmol) for compounds (I) and (II), respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone to get the corresponding Single crystals of (I) and (II) suitable for X-ray were obtained by slow evaporation of an acetone solution.
8. Refinement
Crystal data collection and structure . All H atoms were positioned geometrically [C—H = 0.95 Å in (I) and 0.93 Å in (II)] and refined using riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989018005467/rz5230sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005467/rz5230Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018005467/rz5230IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005467/rz5230Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005467/rz5230IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C27H18O | Dx = 1.288 Mg m−3 |
Mr = 358.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9963 reflections |
a = 13.2129 (10) Å | θ = 2.2–28.1° |
b = 11.1224 (8) Å | µ = 0.08 mm−1 |
c = 25.1604 (19) Å | T = 100 K |
V = 3697.6 (5) Å3 | Plate, yellow |
Z = 8 | 0.87 × 0.43 × 0.20 mm |
F(000) = 1504 |
Bruker SMART APEXII Duo CCD area-detector diffractometer | 3919 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.067 |
φ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.502, Tmax = 0.746 | k = −14→14 |
96576 measured reflections | l = −33→33 |
4581 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0514P)2 + 1.843P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4581 reflections | Δρmax = 0.26 e Å−3 |
253 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.15754 (7) | 0.24179 (8) | 0.41888 (4) | 0.0269 (2) | |
C1 | 0.08186 (8) | 0.50963 (10) | 0.42203 (4) | 0.0177 (2) | |
C2 | 0.03476 (9) | 0.47889 (11) | 0.37257 (4) | 0.0211 (2) | |
H2A | 0.0611 | 0.4144 | 0.3521 | 0.025* | |
C3 | −0.04727 (9) | 0.54078 (11) | 0.35452 (5) | 0.0248 (3) | |
H3A | −0.0768 | 0.5196 | 0.3214 | 0.030* | |
C4 | −0.08930 (9) | 0.63697 (11) | 0.38471 (5) | 0.0253 (3) | |
H4A | −0.1471 | 0.6787 | 0.3719 | 0.030* | |
C5 | −0.04678 (9) | 0.66920 (10) | 0.43191 (5) | 0.0227 (2) | |
H5A | −0.0755 | 0.7333 | 0.4518 | 0.027* | |
C6 | 0.04037 (8) | 0.60806 (10) | 0.45192 (4) | 0.0185 (2) | |
C7 | 0.08565 (9) | 0.64129 (10) | 0.49988 (4) | 0.0196 (2) | |
H7A | 0.0565 | 0.7043 | 0.5203 | 0.024* | |
C8 | 0.17270 (9) | 0.58413 (10) | 0.51852 (4) | 0.0186 (2) | |
C9 | 0.22208 (9) | 0.62058 (11) | 0.56649 (4) | 0.0226 (2) | |
H9A | 0.1955 | 0.6861 | 0.5863 | 0.027* | |
C10 | 0.30638 (10) | 0.56309 (11) | 0.58417 (5) | 0.0251 (3) | |
H10A | 0.3381 | 0.5886 | 0.6161 | 0.030* | |
C11 | 0.34727 (10) | 0.46500 (11) | 0.55501 (5) | 0.0258 (3) | |
H11A | 0.4064 | 0.4256 | 0.5676 | 0.031* | |
C12 | 0.30260 (9) | 0.42693 (11) | 0.50918 (5) | 0.0223 (2) | |
H12A | 0.3307 | 0.3608 | 0.4903 | 0.027* | |
C13 | 0.21408 (8) | 0.48513 (10) | 0.48908 (4) | 0.0179 (2) | |
C14 | 0.16655 (8) | 0.44797 (10) | 0.44189 (4) | 0.0172 (2) | |
C15 | 0.20387 (9) | 0.33672 (10) | 0.41364 (4) | 0.0189 (2) | |
C16 | 0.29376 (9) | 0.34358 (11) | 0.37952 (4) | 0.0211 (2) | |
H16A | 0.3175 | 0.2724 | 0.3628 | 0.025* | |
C17 | 0.34341 (8) | 0.44712 (11) | 0.37123 (4) | 0.0195 (2) | |
H17A | 0.3184 | 0.5158 | 0.3894 | 0.023* | |
C18 | 0.43188 (8) | 0.46569 (10) | 0.33722 (4) | 0.0195 (2) | |
C19 | 0.47087 (9) | 0.37481 (11) | 0.30286 (4) | 0.0217 (2) | |
H19A | 0.4391 | 0.2982 | 0.3015 | 0.026* | |
C20 | 0.55373 (9) | 0.39751 (11) | 0.27192 (4) | 0.0223 (2) | |
H20A | 0.5775 | 0.3369 | 0.2485 | 0.027* | |
C21 | 0.60512 (9) | 0.50964 (11) | 0.27401 (4) | 0.0202 (2) | |
C22 | 0.69383 (9) | 0.53418 (11) | 0.24427 (5) | 0.0240 (3) | |
H22A | 0.7192 | 0.4754 | 0.2204 | 0.029* | |
C23 | 0.74340 (10) | 0.64171 (12) | 0.24957 (5) | 0.0268 (3) | |
H23A | 0.8035 | 0.6561 | 0.2298 | 0.032* | |
C24 | 0.70585 (9) | 0.73139 (12) | 0.28419 (5) | 0.0255 (3) | |
H24A | 0.7410 | 0.8055 | 0.2878 | 0.031* | |
C25 | 0.61895 (9) | 0.71144 (11) | 0.31242 (4) | 0.0222 (2) | |
H25A | 0.5932 | 0.7728 | 0.3349 | 0.027* | |
C26 | 0.56693 (8) | 0.60044 (10) | 0.30848 (4) | 0.0194 (2) | |
C27 | 0.47889 (8) | 0.57612 (10) | 0.33878 (4) | 0.0193 (2) | |
H27A | 0.4516 | 0.6376 | 0.3607 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0302 (5) | 0.0210 (4) | 0.0294 (5) | −0.0044 (3) | −0.0006 (4) | −0.0043 (3) |
C1 | 0.0196 (5) | 0.0191 (5) | 0.0143 (5) | −0.0023 (4) | 0.0018 (4) | 0.0014 (4) |
C2 | 0.0232 (5) | 0.0243 (6) | 0.0157 (5) | −0.0014 (4) | −0.0002 (4) | −0.0006 (4) |
C3 | 0.0256 (6) | 0.0299 (6) | 0.0191 (5) | −0.0017 (5) | −0.0036 (4) | 0.0015 (5) |
C4 | 0.0225 (6) | 0.0266 (6) | 0.0269 (6) | 0.0021 (5) | −0.0018 (5) | 0.0052 (5) |
C5 | 0.0233 (6) | 0.0197 (5) | 0.0251 (6) | 0.0008 (4) | 0.0031 (4) | 0.0025 (4) |
C6 | 0.0196 (5) | 0.0182 (5) | 0.0176 (5) | −0.0022 (4) | 0.0030 (4) | 0.0022 (4) |
C7 | 0.0240 (5) | 0.0171 (5) | 0.0177 (5) | −0.0021 (4) | 0.0045 (4) | −0.0009 (4) |
C8 | 0.0239 (5) | 0.0178 (5) | 0.0141 (5) | −0.0035 (4) | 0.0021 (4) | 0.0004 (4) |
C9 | 0.0319 (6) | 0.0204 (5) | 0.0154 (5) | −0.0033 (5) | 0.0017 (4) | −0.0022 (4) |
C10 | 0.0357 (7) | 0.0247 (6) | 0.0150 (5) | −0.0058 (5) | −0.0050 (5) | −0.0009 (4) |
C11 | 0.0312 (6) | 0.0253 (6) | 0.0209 (6) | 0.0015 (5) | −0.0078 (5) | 0.0007 (5) |
C12 | 0.0278 (6) | 0.0203 (5) | 0.0188 (5) | 0.0020 (4) | −0.0032 (4) | −0.0009 (4) |
C13 | 0.0220 (5) | 0.0174 (5) | 0.0142 (5) | −0.0024 (4) | 0.0002 (4) | 0.0003 (4) |
C14 | 0.0205 (5) | 0.0170 (5) | 0.0141 (5) | −0.0019 (4) | 0.0013 (4) | 0.0004 (4) |
C15 | 0.0221 (5) | 0.0201 (5) | 0.0146 (5) | 0.0006 (4) | −0.0045 (4) | −0.0020 (4) |
C16 | 0.0243 (6) | 0.0226 (5) | 0.0163 (5) | 0.0037 (4) | −0.0024 (4) | −0.0039 (4) |
C17 | 0.0211 (5) | 0.0240 (5) | 0.0134 (5) | 0.0042 (4) | −0.0028 (4) | −0.0019 (4) |
C18 | 0.0198 (5) | 0.0249 (6) | 0.0137 (5) | 0.0036 (4) | −0.0028 (4) | −0.0011 (4) |
C19 | 0.0243 (5) | 0.0244 (6) | 0.0165 (5) | 0.0016 (4) | −0.0028 (4) | −0.0037 (4) |
C20 | 0.0258 (6) | 0.0266 (6) | 0.0144 (5) | 0.0051 (5) | −0.0012 (4) | −0.0046 (4) |
C21 | 0.0223 (5) | 0.0266 (6) | 0.0118 (5) | 0.0037 (4) | −0.0025 (4) | −0.0002 (4) |
C22 | 0.0260 (6) | 0.0307 (6) | 0.0154 (5) | 0.0046 (5) | 0.0022 (4) | −0.0013 (4) |
C23 | 0.0250 (6) | 0.0349 (6) | 0.0205 (5) | 0.0015 (5) | 0.0030 (5) | 0.0037 (5) |
C24 | 0.0267 (6) | 0.0274 (6) | 0.0223 (6) | −0.0008 (5) | −0.0015 (5) | 0.0036 (5) |
C25 | 0.0258 (6) | 0.0235 (6) | 0.0174 (5) | 0.0034 (4) | −0.0022 (4) | −0.0003 (4) |
C26 | 0.0215 (5) | 0.0248 (6) | 0.0120 (5) | 0.0044 (4) | −0.0030 (4) | 0.0006 (4) |
C27 | 0.0209 (5) | 0.0239 (5) | 0.0132 (5) | 0.0050 (4) | −0.0020 (4) | −0.0015 (4) |
O1—C15 | 1.2275 (14) | C13—C14 | 1.4052 (15) |
C1—C14 | 1.4044 (15) | C14—C15 | 1.5097 (15) |
C1—C2 | 1.4328 (15) | C15—C16 | 1.4675 (16) |
C1—C6 | 1.4370 (15) | C16—C17 | 1.3416 (17) |
C2—C3 | 1.3619 (17) | C16—H16A | 0.9500 |
C2—H2A | 0.9500 | C17—C18 | 1.4634 (16) |
C3—C4 | 1.4247 (18) | C17—H17A | 0.9500 |
C3—H3A | 0.9500 | C18—C27 | 1.3769 (16) |
C4—C5 | 1.3618 (17) | C18—C19 | 1.4265 (15) |
C4—H4A | 0.9500 | C19—C20 | 1.3668 (17) |
C5—C6 | 1.4290 (16) | C19—H19A | 0.9500 |
C5—H5A | 0.9500 | C20—C21 | 1.4210 (17) |
C6—C7 | 1.3965 (16) | C20—H20A | 0.9500 |
C7—C8 | 1.3954 (16) | C21—C22 | 1.4171 (16) |
C7—H7A | 0.9500 | C21—C26 | 1.4237 (15) |
C8—C9 | 1.4306 (15) | C22—C23 | 1.3701 (18) |
C8—C13 | 1.4353 (15) | C22—H22A | 0.9500 |
C9—C10 | 1.3593 (18) | C23—C24 | 1.4142 (18) |
C9—H9A | 0.9500 | C23—H23A | 0.9500 |
C10—C11 | 1.4214 (17) | C24—C25 | 1.3682 (17) |
C10—H10A | 0.9500 | C24—H24A | 0.9500 |
C11—C12 | 1.3629 (16) | C25—C26 | 1.4165 (17) |
C11—H11A | 0.9500 | C25—H25A | 0.9500 |
C12—C13 | 1.4292 (16) | C26—C27 | 1.4168 (16) |
C12—H12A | 0.9500 | C27—H27A | 0.9500 |
C14—C1—C2 | 122.59 (10) | C13—C14—C15 | 119.53 (10) |
C14—C1—C6 | 119.32 (10) | O1—C15—C16 | 120.73 (10) |
C2—C1—C6 | 118.08 (10) | O1—C15—C14 | 119.45 (10) |
C3—C2—C1 | 120.97 (11) | C16—C15—C14 | 119.81 (10) |
C3—C2—H2A | 119.5 | C17—C16—C15 | 122.09 (10) |
C1—C2—H2A | 119.5 | C17—C16—H16A | 119.0 |
C2—C3—C4 | 120.80 (11) | C15—C16—H16A | 119.0 |
C2—C3—H3A | 119.6 | C16—C17—C18 | 127.06 (11) |
C4—C3—H3A | 119.6 | C16—C17—H17A | 116.5 |
C5—C4—C3 | 120.12 (11) | C18—C17—H17A | 116.5 |
C5—C4—H4A | 119.9 | C27—C18—C19 | 119.10 (10) |
C3—C4—H4A | 119.9 | C27—C18—C17 | 118.01 (10) |
C4—C5—C6 | 120.96 (11) | C19—C18—C17 | 122.88 (11) |
C4—C5—H5A | 119.5 | C20—C19—C18 | 120.24 (11) |
C6—C5—H5A | 119.5 | C20—C19—H19A | 119.9 |
C7—C6—C5 | 121.58 (10) | C18—C19—H19A | 119.9 |
C7—C6—C1 | 119.37 (10) | C19—C20—C21 | 121.59 (11) |
C5—C6—C1 | 119.05 (10) | C19—C20—H20A | 119.2 |
C8—C7—C6 | 121.54 (10) | C21—C20—H20A | 119.2 |
C8—C7—H7A | 119.2 | C22—C21—C20 | 123.01 (11) |
C6—C7—H7A | 119.2 | C22—C21—C26 | 118.57 (11) |
C7—C8—C9 | 122.03 (10) | C20—C21—C26 | 118.41 (10) |
C7—C8—C13 | 119.34 (10) | C23—C22—C21 | 120.81 (11) |
C9—C8—C13 | 118.63 (10) | C23—C22—H22A | 119.6 |
C10—C9—C8 | 121.10 (11) | C21—C22—H22A | 119.6 |
C10—C9—H9A | 119.5 | C22—C23—C24 | 120.53 (12) |
C8—C9—H9A | 119.5 | C22—C23—H23A | 119.7 |
C9—C10—C11 | 120.24 (11) | C24—C23—H23A | 119.7 |
C9—C10—H10A | 119.9 | C25—C24—C23 | 119.98 (12) |
C11—C10—H10A | 119.9 | C25—C24—H24A | 120.0 |
C12—C11—C10 | 120.70 (11) | C23—C24—H24A | 120.0 |
C12—C11—H11A | 119.6 | C24—C25—C26 | 120.82 (11) |
C10—C11—H11A | 119.6 | C24—C25—H25A | 119.6 |
C11—C12—C13 | 120.87 (11) | C26—C25—H25A | 119.6 |
C11—C12—H12A | 119.6 | C25—C26—C27 | 121.82 (10) |
C13—C12—H12A | 119.6 | C25—C26—C21 | 119.27 (10) |
C14—C13—C12 | 122.10 (10) | C27—C26—C21 | 118.90 (11) |
C14—C13—C8 | 119.44 (10) | C18—C27—C26 | 121.70 (10) |
C12—C13—C8 | 118.46 (10) | C18—C27—H27A | 119.2 |
C1—C14—C13 | 120.87 (10) | C26—C27—H27A | 119.2 |
C1—C14—C15 | 119.53 (9) | ||
C14—C1—C2—C3 | −179.94 (11) | C12—C13—C14—C15 | 5.41 (16) |
C6—C1—C2—C3 | −0.31 (16) | C8—C13—C14—C15 | −174.20 (10) |
C1—C2—C3—C4 | −0.79 (18) | C1—C14—C15—O1 | −76.15 (14) |
C2—C3—C4—C5 | 0.86 (18) | C13—C14—C15—O1 | 100.87 (13) |
C3—C4—C5—C6 | 0.21 (18) | C1—C14—C15—C16 | 102.72 (12) |
C4—C5—C6—C7 | 179.05 (11) | C13—C14—C15—C16 | −80.26 (13) |
C4—C5—C6—C1 | −1.30 (17) | O1—C15—C16—C17 | 177.11 (11) |
C14—C1—C6—C7 | 0.64 (16) | C14—C15—C16—C17 | −1.74 (16) |
C2—C1—C6—C7 | −179.01 (10) | C15—C16—C17—C18 | −178.36 (10) |
C14—C1—C6—C5 | −179.02 (10) | C16—C17—C18—C27 | −172.68 (11) |
C2—C1—C6—C5 | 1.33 (15) | C16—C17—C18—C19 | 7.35 (18) |
C5—C6—C7—C8 | −177.86 (10) | C27—C18—C19—C20 | −0.07 (16) |
C1—C6—C7—C8 | 2.49 (16) | C17—C18—C19—C20 | 179.89 (10) |
C6—C7—C8—C9 | 177.43 (10) | C18—C19—C20—C21 | 1.88 (17) |
C6—C7—C8—C13 | −2.98 (16) | C19—C20—C21—C22 | 177.08 (11) |
C7—C8—C9—C10 | 179.50 (11) | C19—C20—C21—C26 | −1.46 (16) |
C13—C8—C9—C10 | −0.10 (17) | C20—C21—C22—C23 | −176.84 (11) |
C8—C9—C10—C11 | 0.05 (18) | C26—C21—C22—C23 | 1.70 (17) |
C9—C10—C11—C12 | −0.25 (19) | C21—C22—C23—C24 | −1.17 (18) |
C10—C11—C12—C13 | 0.48 (19) | C22—C23—C24—C25 | −0.48 (18) |
C11—C12—C13—C14 | 179.87 (11) | C23—C24—C25—C26 | 1.55 (17) |
C11—C12—C13—C8 | −0.51 (17) | C24—C25—C26—C27 | 177.67 (11) |
C7—C8—C13—C14 | 0.33 (16) | C24—C25—C26—C21 | −0.98 (16) |
C9—C8—C13—C14 | 179.94 (10) | C22—C21—C26—C25 | −0.63 (16) |
C7—C8—C13—C12 | −179.29 (10) | C20—C21—C26—C25 | 177.98 (10) |
C9—C8—C13—C12 | 0.32 (16) | C22—C21—C26—C27 | −179.32 (10) |
C2—C1—C14—C13 | 176.37 (10) | C20—C21—C26—C27 | −0.72 (15) |
C6—C1—C14—C13 | −3.26 (16) | C19—C18—C27—C26 | −2.15 (16) |
C2—C1—C14—C15 | −6.65 (16) | C17—C18—C27—C26 | 177.88 (10) |
C6—C1—C14—C15 | 173.72 (10) | C25—C26—C27—C18 | −176.12 (10) |
C12—C13—C14—C1 | −177.61 (10) | C21—C26—C27—C18 | 2.54 (16) |
C8—C13—C14—C1 | 2.78 (16) |
Cg4 is the centroid of the C18–C20/C25–C27 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27A···O1i | 0.95 | 2.36 | 3.2721 (14) | 161 |
C10—H10A···Cg4ii | 0.95 | 2.85 | 3.6610 (14) | 142 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1, −y+1, −z+1. |
C33H20O | F(000) = 904 |
Mr = 432.49 | Dx = 1.285 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.118 (5) Å | Cell parameters from 5604 reflections |
b = 12.310 (4) Å | θ = 2.5–23.7° |
c = 11.152 (3) Å | µ = 0.08 mm−1 |
β = 107.929 (5)° | T = 296 K |
V = 2235.8 (12) Å3 | Plate, yellow |
Z = 4 | 0.66 × 0.66 × 0.26 mm |
Bruker SMART APEXII Duo CCD area-detector diffractometer | 2739 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
φ and ω scans | θmax = 26.0°, θmin = 1.3° |
Absorption correction: multi-scan SADABS 2014/5 | h = −21→21 |
Tmin = 0.700, Tmax = 0.927 | k = −15→15 |
39809 measured reflections | l = −13→13 |
4394 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.5972P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
4394 reflections | Δρmax = 0.15 e Å−3 |
307 parameters | Δρmin = −0.14 e Å−3 |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71104 11.238 12.388 17.234 90.027 107.859 90.073 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17677 (10) | 0.46286 (15) | 0.87794 (14) | 0.0885 (5) | |
C1 | 0.14507 (12) | 0.62079 (18) | 0.6345 (2) | 0.0624 (5) | |
C2 | 0.17465 (15) | 0.70424 (19) | 0.7246 (2) | 0.0779 (7) | |
H2A | 0.2030 | 0.6861 | 0.8076 | 0.093* | |
C3 | 0.16206 (18) | 0.8103 (2) | 0.6912 (3) | 0.0982 (9) | |
H3A | 0.1814 | 0.8642 | 0.7515 | 0.118* | |
C4 | 0.12019 (19) | 0.8391 (3) | 0.5668 (4) | 0.1063 (10) | |
H4A | 0.1126 | 0.9122 | 0.5449 | 0.128* | |
C5 | 0.09075 (17) | 0.7625 (3) | 0.4782 (3) | 0.0944 (8) | |
H5A | 0.0626 | 0.7833 | 0.3961 | 0.113* | |
C6 | 0.10194 (13) | 0.6505 (2) | 0.5082 (2) | 0.0713 (6) | |
C7 | 0.07398 (13) | 0.5692 (2) | 0.4191 (2) | 0.0783 (7) | |
H7A | 0.0454 | 0.5887 | 0.3367 | 0.094* | |
C8 | 0.08713 (12) | 0.4605 (2) | 0.4484 (2) | 0.0690 (6) | |
C9 | 0.06052 (14) | 0.3764 (3) | 0.3561 (2) | 0.0871 (8) | |
H9A | 0.0325 | 0.3946 | 0.2730 | 0.105* | |
C10 | 0.07563 (16) | 0.2710 (3) | 0.3882 (3) | 0.0925 (8) | |
H10A | 0.0582 | 0.2174 | 0.3270 | 0.111* | |
C11 | 0.11715 (15) | 0.2417 (2) | 0.5122 (3) | 0.0832 (7) | |
H11A | 0.1266 | 0.1687 | 0.5329 | 0.100* | |
C12 | 0.14376 (13) | 0.31760 (19) | 0.6026 (2) | 0.0698 (6) | |
H12A | 0.1715 | 0.2962 | 0.6847 | 0.084* | |
C13 | 0.13005 (11) | 0.42991 (18) | 0.57442 (19) | 0.0593 (5) | |
C14 | 0.15845 (12) | 0.51091 (17) | 0.66534 (18) | 0.0574 (5) | |
C15 | 0.20900 (13) | 0.47913 (16) | 0.79620 (19) | 0.0625 (5) | |
C16 | 0.29722 (13) | 0.47072 (17) | 0.82128 (18) | 0.0650 (6) | |
H16A | 0.3292 | 0.4442 | 0.8990 | 0.078* | |
C17 | 0.33365 (12) | 0.49963 (16) | 0.73682 (18) | 0.0573 (5) | |
H17A | 0.2989 | 0.5221 | 0.6590 | 0.069* | |
C18 | 0.42074 (12) | 0.50067 (15) | 0.75046 (16) | 0.0531 (5) | |
C19 | 0.47586 (13) | 0.44278 (16) | 0.84749 (18) | 0.0631 (5) | |
H19A | 0.4561 | 0.4033 | 0.9031 | 0.076* | |
C20 | 0.55833 (13) | 0.44252 (17) | 0.86316 (18) | 0.0649 (5) | |
H20A | 0.5933 | 0.4026 | 0.9287 | 0.078* | |
C21 | 0.59063 (12) | 0.50066 (16) | 0.78327 (17) | 0.0551 (5) | |
C22 | 0.67696 (13) | 0.50448 (18) | 0.7997 (2) | 0.0680 (6) | |
H22A | 0.7130 | 0.4666 | 0.8661 | 0.082* | |
C23 | 0.70663 (13) | 0.56110 (19) | 0.7218 (2) | 0.0705 (6) | |
H23A | 0.7630 | 0.5620 | 0.7354 | 0.085* | |
C24 | 0.65461 (13) | 0.62047 (16) | 0.61809 (19) | 0.0594 (5) | |
C25 | 0.68439 (15) | 0.67865 (19) | 0.5348 (2) | 0.0749 (6) | |
H25A | 0.7406 | 0.6805 | 0.5469 | 0.090* | |
C26 | 0.63215 (17) | 0.73339 (18) | 0.4350 (2) | 0.0788 (7) | |
H26A | 0.6533 | 0.7712 | 0.3798 | 0.095* | |
C27 | 0.54903 (15) | 0.73297 (16) | 0.4157 (2) | 0.0691 (6) | |
H27A | 0.5145 | 0.7708 | 0.3478 | 0.083* | |
C28 | 0.51601 (13) | 0.67643 (15) | 0.49669 (17) | 0.0549 (5) | |
C29 | 0.43069 (13) | 0.67432 (15) | 0.48102 (18) | 0.0591 (5) | |
H29A | 0.3951 | 0.7117 | 0.4137 | 0.071* | |
C30 | 0.39964 (12) | 0.61986 (15) | 0.56071 (17) | 0.0557 (5) | |
H30A | 0.3433 | 0.6217 | 0.5478 | 0.067* | |
C31 | 0.45105 (11) | 0.55896 (14) | 0.66509 (15) | 0.0475 (4) | |
C32 | 0.53673 (11) | 0.55946 (14) | 0.68243 (16) | 0.0486 (4) | |
C33 | 0.56895 (11) | 0.61898 (14) | 0.59947 (16) | 0.0505 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0916 (12) | 0.1139 (14) | 0.0734 (10) | −0.0170 (10) | 0.0451 (9) | 0.0037 (9) |
C1 | 0.0527 (12) | 0.0709 (14) | 0.0726 (13) | −0.0068 (11) | 0.0327 (10) | −0.0003 (11) |
C2 | 0.0823 (17) | 0.0696 (15) | 0.0930 (17) | −0.0158 (13) | 0.0435 (13) | −0.0055 (13) |
C3 | 0.110 (2) | 0.0706 (18) | 0.135 (3) | −0.0190 (15) | 0.069 (2) | −0.0066 (17) |
C4 | 0.106 (2) | 0.0743 (19) | 0.160 (3) | 0.0064 (17) | 0.072 (2) | 0.030 (2) |
C5 | 0.0829 (19) | 0.096 (2) | 0.114 (2) | 0.0105 (16) | 0.0439 (16) | 0.0293 (18) |
C6 | 0.0562 (13) | 0.0819 (17) | 0.0833 (15) | 0.0032 (12) | 0.0324 (12) | 0.0153 (13) |
C7 | 0.0541 (14) | 0.111 (2) | 0.0690 (14) | 0.0022 (13) | 0.0172 (11) | 0.0113 (14) |
C8 | 0.0466 (12) | 0.0953 (18) | 0.0670 (13) | −0.0059 (12) | 0.0202 (10) | −0.0061 (12) |
C9 | 0.0581 (15) | 0.131 (2) | 0.0695 (15) | −0.0141 (16) | 0.0161 (11) | −0.0231 (16) |
C10 | 0.0708 (17) | 0.112 (2) | 0.100 (2) | −0.0216 (16) | 0.0331 (15) | −0.0421 (18) |
C11 | 0.0720 (16) | 0.0844 (17) | 0.1006 (19) | −0.0136 (13) | 0.0374 (15) | −0.0248 (15) |
C12 | 0.0616 (14) | 0.0754 (15) | 0.0781 (14) | −0.0078 (11) | 0.0300 (11) | −0.0104 (12) |
C13 | 0.0446 (11) | 0.0735 (14) | 0.0654 (12) | −0.0071 (10) | 0.0255 (9) | −0.0064 (10) |
C14 | 0.0495 (11) | 0.0668 (13) | 0.0629 (12) | −0.0077 (10) | 0.0276 (9) | −0.0016 (10) |
C15 | 0.0711 (14) | 0.0635 (13) | 0.0598 (12) | −0.0152 (11) | 0.0303 (11) | −0.0039 (10) |
C16 | 0.0643 (14) | 0.0771 (14) | 0.0522 (11) | −0.0100 (11) | 0.0159 (10) | 0.0015 (10) |
C17 | 0.0571 (12) | 0.0611 (12) | 0.0532 (11) | −0.0047 (10) | 0.0160 (9) | 0.0007 (9) |
C18 | 0.0548 (12) | 0.0535 (11) | 0.0490 (10) | −0.0017 (9) | 0.0129 (9) | −0.0009 (8) |
C19 | 0.0672 (14) | 0.0651 (13) | 0.0554 (11) | −0.0044 (11) | 0.0167 (10) | 0.0087 (10) |
C20 | 0.0639 (14) | 0.0671 (13) | 0.0565 (11) | 0.0091 (11) | 0.0081 (10) | 0.0110 (10) |
C21 | 0.0534 (12) | 0.0560 (11) | 0.0520 (10) | 0.0032 (9) | 0.0104 (9) | −0.0042 (9) |
C22 | 0.0557 (13) | 0.0738 (14) | 0.0685 (13) | 0.0099 (11) | 0.0104 (10) | −0.0021 (11) |
C23 | 0.0509 (12) | 0.0775 (15) | 0.0825 (15) | 0.0010 (11) | 0.0197 (11) | −0.0111 (12) |
C24 | 0.0591 (13) | 0.0544 (12) | 0.0693 (12) | −0.0039 (10) | 0.0264 (10) | −0.0130 (10) |
C25 | 0.0730 (15) | 0.0687 (14) | 0.0951 (17) | −0.0120 (12) | 0.0434 (14) | −0.0130 (13) |
C26 | 0.099 (2) | 0.0656 (15) | 0.0888 (17) | −0.0090 (13) | 0.0529 (15) | 0.0009 (12) |
C27 | 0.0876 (17) | 0.0551 (12) | 0.0725 (14) | −0.0002 (12) | 0.0365 (12) | 0.0043 (10) |
C28 | 0.0675 (14) | 0.0437 (10) | 0.0567 (11) | −0.0014 (9) | 0.0241 (10) | −0.0035 (8) |
C29 | 0.0682 (14) | 0.0512 (11) | 0.0558 (11) | 0.0073 (10) | 0.0159 (10) | 0.0065 (9) |
C30 | 0.0521 (11) | 0.0541 (11) | 0.0592 (11) | 0.0040 (9) | 0.0145 (9) | 0.0010 (9) |
C31 | 0.0522 (11) | 0.0435 (10) | 0.0455 (9) | 0.0000 (8) | 0.0131 (8) | −0.0034 (8) |
C32 | 0.0519 (11) | 0.0445 (10) | 0.0483 (10) | 0.0008 (8) | 0.0136 (8) | −0.0062 (8) |
C33 | 0.0585 (12) | 0.0422 (10) | 0.0541 (10) | −0.0023 (9) | 0.0222 (9) | −0.0090 (8) |
O1—C15 | 1.219 (2) | C17—C18 | 1.451 (3) |
C1—C14 | 1.397 (3) | C17—H17A | 0.9300 |
C1—C2 | 1.417 (3) | C18—C19 | 1.393 (3) |
C1—C6 | 1.423 (3) | C18—C31 | 1.412 (2) |
C2—C3 | 1.356 (3) | C19—C20 | 1.368 (3) |
C2—H2A | 0.9300 | C19—H19A | 0.9300 |
C3—C4 | 1.397 (4) | C20—C21 | 1.384 (3) |
C3—H3A | 0.9300 | C20—H20A | 0.9300 |
C4—C5 | 1.346 (4) | C21—C32 | 1.415 (2) |
C4—H4A | 0.9300 | C21—C22 | 1.433 (3) |
C5—C6 | 1.417 (3) | C22—C23 | 1.330 (3) |
C5—H5A | 0.9300 | C22—H22A | 0.9300 |
C6—C7 | 1.388 (3) | C23—C24 | 1.425 (3) |
C7—C8 | 1.379 (3) | C23—H23A | 0.9300 |
C7—H7A | 0.9300 | C24—C25 | 1.388 (3) |
C8—C13 | 1.422 (3) | C24—C33 | 1.416 (3) |
C8—C9 | 1.432 (3) | C25—C26 | 1.371 (3) |
C9—C10 | 1.349 (4) | C25—H25A | 0.9300 |
C9—H9A | 0.9300 | C26—C27 | 1.372 (3) |
C10—C11 | 1.394 (4) | C26—H26A | 0.9300 |
C10—H10A | 0.9300 | C27—C28 | 1.391 (3) |
C11—C12 | 1.347 (3) | C27—H27A | 0.9300 |
C11—H11A | 0.9300 | C28—C33 | 1.413 (3) |
C12—C13 | 1.421 (3) | C28—C29 | 1.417 (3) |
C12—H12A | 0.9300 | C29—C30 | 1.346 (3) |
C13—C14 | 1.398 (3) | C29—H29A | 0.9300 |
C14—C15 | 1.501 (3) | C30—C31 | 1.436 (2) |
C15—C16 | 1.452 (3) | C30—H30A | 0.9300 |
C16—C17 | 1.328 (3) | C31—C32 | 1.419 (2) |
C16—H16A | 0.9300 | C32—C33 | 1.418 (2) |
C14—C1—C2 | 122.1 (2) | C18—C17—H17A | 115.9 |
C14—C1—C6 | 119.2 (2) | C19—C18—C31 | 118.81 (18) |
C2—C1—C6 | 118.6 (2) | C19—C18—C17 | 120.35 (17) |
C3—C2—C1 | 120.7 (3) | C31—C18—C17 | 120.83 (17) |
C3—C2—H2A | 119.7 | C20—C19—C18 | 121.75 (19) |
C1—C2—H2A | 119.7 | C20—C19—H19A | 119.1 |
C2—C3—C4 | 120.5 (3) | C18—C19—H19A | 119.1 |
C2—C3—H3A | 119.7 | C19—C20—C21 | 121.17 (18) |
C4—C3—H3A | 119.7 | C19—C20—H20A | 119.4 |
C5—C4—C3 | 120.8 (3) | C21—C20—H20A | 119.4 |
C5—C4—H4A | 119.6 | C20—C21—C32 | 118.97 (18) |
C3—C4—H4A | 119.6 | C20—C21—C22 | 122.38 (19) |
C4—C5—C6 | 121.1 (3) | C32—C21—C22 | 118.65 (18) |
C4—C5—H5A | 119.5 | C23—C22—C21 | 121.3 (2) |
C6—C5—H5A | 119.5 | C23—C22—H22A | 119.3 |
C7—C6—C5 | 122.7 (2) | C21—C22—H22A | 119.3 |
C7—C6—C1 | 118.9 (2) | C22—C23—C24 | 122.0 (2) |
C5—C6—C1 | 118.3 (2) | C22—C23—H23A | 119.0 |
C8—C7—C6 | 122.3 (2) | C24—C23—H23A | 119.0 |
C8—C7—H7A | 118.8 | C25—C24—C33 | 119.0 (2) |
C6—C7—H7A | 118.8 | C25—C24—C23 | 122.8 (2) |
C7—C8—C13 | 119.2 (2) | C33—C24—C23 | 118.20 (18) |
C7—C8—C9 | 122.6 (2) | C26—C25—C24 | 121.0 (2) |
C13—C8—C9 | 118.2 (2) | C26—C25—H25A | 119.5 |
C10—C9—C8 | 120.8 (2) | C24—C25—H25A | 119.5 |
C10—C9—H9A | 119.6 | C25—C26—C27 | 120.8 (2) |
C8—C9—H9A | 119.6 | C25—C26—H26A | 119.6 |
C9—C10—C11 | 120.6 (2) | C27—C26—H26A | 119.6 |
C9—C10—H10A | 119.7 | C26—C27—C28 | 120.6 (2) |
C11—C10—H10A | 119.7 | C26—C27—H27A | 119.7 |
C12—C11—C10 | 121.0 (3) | C28—C27—H27A | 119.7 |
C12—C11—H11A | 119.5 | C27—C28—C33 | 119.35 (19) |
C10—C11—H11A | 119.5 | C27—C28—C29 | 122.59 (19) |
C11—C12—C13 | 120.9 (2) | C33—C28—C29 | 118.05 (17) |
C11—C12—H12A | 119.5 | C30—C29—C28 | 121.96 (18) |
C13—C12—H12A | 119.5 | C30—C29—H29A | 119.0 |
C14—C13—C12 | 122.4 (2) | C28—C29—H29A | 119.0 |
C14—C13—C8 | 119.1 (2) | C29—C30—C31 | 121.82 (19) |
C12—C13—C8 | 118.5 (2) | C29—C30—H30A | 119.1 |
C1—C14—C13 | 121.20 (19) | C31—C30—H30A | 119.1 |
C1—C14—C15 | 119.54 (18) | C18—C31—C32 | 119.28 (16) |
C13—C14—C15 | 119.13 (19) | C18—C31—C30 | 123.45 (17) |
O1—C15—C16 | 121.8 (2) | C32—C31—C30 | 117.26 (16) |
O1—C15—C14 | 120.8 (2) | C21—C32—C33 | 119.57 (17) |
C16—C15—C14 | 117.37 (16) | C21—C32—C31 | 120.00 (17) |
C17—C16—C15 | 122.12 (19) | C33—C32—C31 | 120.43 (16) |
C17—C16—H16A | 118.9 | C28—C33—C24 | 119.28 (17) |
C15—C16—H16A | 118.9 | C28—C33—C32 | 120.46 (17) |
C16—C17—C18 | 128.28 (19) | C24—C33—C32 | 120.26 (17) |
C16—C17—H17A | 115.9 | ||
C14—C1—C2—C3 | 178.7 (2) | C17—C18—C19—C20 | −179.72 (19) |
C6—C1—C2—C3 | 0.1 (3) | C18—C19—C20—C21 | 0.4 (3) |
C1—C2—C3—C4 | −0.5 (4) | C19—C20—C21—C32 | −1.2 (3) |
C2—C3—C4—C5 | 0.8 (4) | C19—C20—C21—C22 | 178.09 (19) |
C3—C4—C5—C6 | −0.6 (4) | C20—C21—C22—C23 | −179.9 (2) |
C4—C5—C6—C7 | −178.7 (2) | C32—C21—C22—C23 | −0.6 (3) |
C4—C5—C6—C1 | 0.1 (4) | C21—C22—C23—C24 | −0.2 (3) |
C14—C1—C6—C7 | 0.3 (3) | C22—C23—C24—C25 | −179.0 (2) |
C2—C1—C6—C7 | 178.97 (19) | C22—C23—C24—C33 | 0.6 (3) |
C14—C1—C6—C5 | −178.49 (19) | C33—C24—C25—C26 | −0.6 (3) |
C2—C1—C6—C5 | 0.1 (3) | C23—C24—C25—C26 | 179.0 (2) |
C5—C6—C7—C8 | 178.2 (2) | C24—C25—C26—C27 | 0.7 (3) |
C1—C6—C7—C8 | −0.6 (3) | C25—C26—C27—C28 | −0.3 (3) |
C6—C7—C8—C13 | 0.7 (3) | C26—C27—C28—C33 | −0.1 (3) |
C6—C7—C8—C9 | −178.1 (2) | C26—C27—C28—C29 | 179.52 (19) |
C7—C8—C9—C10 | 179.0 (2) | C27—C28—C29—C30 | −179.52 (19) |
C13—C8—C9—C10 | 0.2 (3) | C33—C28—C29—C30 | 0.1 (3) |
C8—C9—C10—C11 | 0.3 (4) | C28—C29—C30—C31 | −1.2 (3) |
C9—C10—C11—C12 | −0.6 (4) | C19—C18—C31—C32 | −1.7 (3) |
C10—C11—C12—C13 | 0.2 (3) | C17—C18—C31—C32 | 179.07 (16) |
C11—C12—C13—C14 | −178.52 (19) | C19—C18—C31—C30 | 179.00 (17) |
C11—C12—C13—C8 | 0.3 (3) | C17—C18—C31—C30 | −0.2 (3) |
C7—C8—C13—C14 | −0.5 (3) | C29—C30—C31—C18 | −179.86 (18) |
C9—C8—C13—C14 | 178.36 (18) | C29—C30—C31—C32 | 0.9 (3) |
C7—C8—C13—C12 | −179.37 (19) | C20—C21—C32—C33 | −179.70 (17) |
C9—C8—C13—C12 | −0.5 (3) | C22—C21—C32—C33 | 1.0 (3) |
C2—C1—C14—C13 | −178.78 (18) | C20—C21—C32—C31 | 0.5 (3) |
C6—C1—C14—C13 | −0.2 (3) | C22—C21—C32—C31 | −178.81 (17) |
C2—C1—C14—C15 | −2.9 (3) | C18—C31—C32—C21 | 0.9 (2) |
C6—C1—C14—C15 | 175.70 (17) | C30—C31—C32—C21 | −179.74 (16) |
C12—C13—C14—C1 | 179.10 (18) | C18—C31—C32—C33 | −178.83 (16) |
C8—C13—C14—C1 | 0.3 (3) | C30—C31—C32—C33 | 0.5 (2) |
C12—C13—C14—C15 | 3.2 (3) | C27—C28—C33—C24 | 0.2 (3) |
C8—C13—C14—C15 | −175.62 (17) | C29—C28—C33—C24 | −179.45 (16) |
C1—C14—C15—O1 | 91.0 (2) | C27—C28—C33—C32 | −179.13 (17) |
C13—C14—C15—O1 | −93.0 (2) | C29—C28—C33—C32 | 1.2 (2) |
C1—C14—C15—C16 | −87.9 (2) | C25—C24—C33—C28 | 0.1 (3) |
C13—C14—C15—C16 | 88.1 (2) | C23—C24—C33—C28 | −179.46 (17) |
O1—C15—C16—C17 | −172.6 (2) | C25—C24—C33—C32 | 179.47 (17) |
C14—C15—C16—C17 | 6.3 (3) | C23—C24—C33—C32 | −0.1 (3) |
C15—C16—C17—C18 | 176.81 (19) | C21—C32—C33—C28 | 178.70 (16) |
C16—C17—C18—C19 | 17.2 (3) | C31—C32—C33—C28 | −1.5 (2) |
C16—C17—C18—C31 | −163.6 (2) | C21—C32—C33—C24 | −0.6 (2) |
C31—C18—C19—C20 | 1.1 (3) | C31—C32—C33—C24 | 179.16 (16) |
Cg3, Cg4 and Cg5 are the centroids of the C18–C13, C21–C24/C32/C33 and C18–C21/C31/C32 rings |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25A···Cg3i | 0.93 | 2.82 | 3.7220 (3) | 164 |
C26—H26A···Cg5ii | 0.93 | 2.81 | 3.6050 (3) | 144 |
C27—H27A···Cg4ii | 0.93 | 2.95 | 3.6520 (3) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−3/2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the research facilities.
Funding information
The authors thank the Malaysian Government for funding from the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711572 and the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for the My Brain15 scholarship.
References
Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867. Web of Science CSD CrossRef CAS Google Scholar
Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573. Web of Science CrossRef CAS Google Scholar
Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C. 4, 10574–10587. Web of Science CrossRef CAS Google Scholar
Lin, J. B., Shah, T. K., Goetz, A. E., Garg, N. K. & Houk, K. N. (2017). J. Am. Chem. Soc. 139, 10447–10455. Web of Science CrossRef CAS Google Scholar
Mas-Torrent, M. & Rovira, C. (2008). Chem. Soc. Rev. 37, 827–838. Web of Science PubMed CAS Google Scholar
Nietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. 76, 6383–6388. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502. Web of Science CrossRef CAS Google Scholar
Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533. Web of Science CSD CrossRef CAS Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 492–496. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.