research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The effect of the fused-ring substituent on anthracene chalcones: crystal structural and DFT studies of 1-(anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one and 1-(anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 March 2018; accepted 9 April 2018; online 12 April 2018)

The title chalcone compounds, C27H18O (I) and C33H20O (II), were synthesized using a Claisen–Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature inter­molecular C—H⋯O and C—H⋯π inter­actions. Quantum chemical analysis of density functional theory (DFT) with a B3LYP/6–311++G(d,p) basis set has been employed to study the structural properties of the compound. The effect of the inter­molecular inter­actions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO–LUMO energy gap in (I) (exp : 3.18 eV and DFT: 3.15 eV) and (II) (exp : 2.76 eV and DFT: 2.95 eV) indicates the suitability of these compounds for optoelectronic applications. The inter­molecular contacts and weak contributions to the supra­molecular stabilization are analysed using Hirshfeld surface analysis.

1. Chemical context

Naphthalene, anthracene and pyrene are three types of polycyclic aromatic hydro­carbons that consist of two, three and four fused benzene rings sharing a common side. Polyaromatic hydro­carbons or π-conjugated materials are an important class of organic compounds because of their significant conductivity properties that have led to tremendous advancements in the field of organic electronics (Li et al., 2016[Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C. 4, 10574-10587.]). Most conjugated materials used in such applications rely on linear electron-rich fragments (Lin et al., 2017[Lin, J. B., Shah, T. K., Goetz, A. E., Garg, N. K. & Houk, K. N. (2017). J. Am. Chem. Soc. 139, 10447-10455.]). Furthermore, π-conjugated systems have been studied extensively for their optoelectronic properties because they give the possibility of low-cost, large-area, and flexible electronic devices. Over the past decade, significant research into new π-conjugated systems has been ongoing due to the rapidly growing number of applications in electronic devices such as semiconducting materials, organic light-emitting diodes (OLEDs; Kulkarni et al., 2004[Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556-4573.]) and organic field-effect trans­istors (OFETs; Torrent & Rovira, 2008[Mas-Torrent, M. & Rovira, C. (2008). Chem. Soc. Rev. 37, 827-838.]; Wu et al., 2010[Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489-1502.]). Recently, we found that the presence of fused-ring systems at both terminal rings of chalcone derivatives to be useful in obtaining good quality single crystals with an easy-to-synthesize method. In this work, we report the synthesis and combined experimental and theoretical studies of anthracene chalcones containing a naphthalene (I)[link] or pyrene (II)[link] fused-ring system. Additionally, the UV–Vis absorption and Hirshfeld surface analyses are discussed.

[Scheme 1]

2. Structural commentary

The mol­ecular and optimized structure of compounds (I)[link] and (II)[link] is shown in Fig. 1[link]. The optimization of the mol­ecular geometries leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation functional (B3LYP)] with the 6-311++G (d,p) basis set as implemented in Gaussian09 program package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). From the results it can be concluded that this basis set is well suited in its approach to the experimental data. The slight deviations from the experimental values are due to the fact that the optimization is performed in an isolated condition, whereas the crystal environment affects the X-ray structural results (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]).

[Figure 1]
Figure 1
(a) The mol­ecular structure of compound (I)[link] and (II)[link], with displacement ellipsoids drawn at the 50% probability level; (b) the optimized structure of compound (I)[link] and (II)[link] at DFT/B3LYP 6–311++G(d,p).

Compound (I)[link] comprises a chalcone with an anthracene ring system (ring A) and a naphthalene ring system (ring B), compound (II)[link] comprises a chalcone with an anthracene ring system (ring C) and a pyrene ring system (ring D). The enone moiety in (I)[link] [O1/C15–C17, maximum deviation of 0.0143 (10) Å for O1] makes dihedral angles of 79.06 (11) and 8.62 (11)° with the mean planes through ring A [C1–C14, maximum deviation of 0.0555 (11) Å for C14] and ring B [C18–C27, maximum deviation of 0.037 (11) Å at C19] respectively. In compound (II)[link], the enone moiety [O1/C15–C17, maximum deviation of 0.0364 (18) Å for O1] forms dihedral angles of 88.8 (2) and 18.3 (2)° with ring C [C1–C14, maximum deviation of 0.037 (3) Å for C10] and ring D [C18–C31, maximum deviation of 0.0236 (18) Å for C18], respectively. The large differences in the values of the dihedral angles indicate that the possibility for electronic inter­actions between the anthracene unit and the enone moiety is hindered (Jung et al., 2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]).

In both compounds, the C2—C3, C4—C5, C9—C10 and C11—C12 bond distances [mean value 1.3614 (18) Å for (I)[link] and 1.351 (3) Å for (II)] are significantly shorter than the C—C bond distances in the central rings of the anthracene units [1.412 (8) and 1.403 (7) Å for (I)[link] and (II)[link] respectively]. This observation is consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.]).

Both theoretical and experimental structures exist in an s-trans configuration of the enone moiety, with C15=O1 bond lengths of 1.2275 (14) Å (DFT: 1.22 Å) and 1.219 (2) Å (DFT: 1.22 Å) in (I)[link] and (II)[link], and C16=C17 bond lengths of 1.3416 (17) Å (DFT: 1.35 Å) and 1.328 (3) Å (DFT: 1.35 Å) in (I)[link] and (II)[link], respectively. Both compounds are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of 102.72 (12) and −87.9 (2)°, respectively. The corresponding torsion angles calculated by DFT are 95.94 and 95.29°, respectively. The bulkiness of the anthracene ring system gives rise to a highly twisted structure at both terminal rings. Furthermore, compounds (I)[link] and (II)[link] are slightly twisted at the C17—C18 bond with C16—C17—C18—C19 torsion angles of 7.35 (18)° (DFT: 0.69°) in (I)[link] and 17.2 (13)° (DFT: 19.84°) in (II)[link]. The slight differences in the torsion angles in the two compounds is due to the formation of C—H⋯ O and C—H⋯ π inter­molecular inter­actions involving all the fused ring systems (A, B, C and D), which are not taken into consideration during the optimization process.

3. Supra­molecular features

In compound (I)[link], the mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) into chains propagating along the b-axis direction. Weak C—H⋯π inter­actions (Table 1[link]) connect the chains into columns along the b axis (Fig. 2[link]). In compound (II)[link], mol­ecules inter­act through three kinds of C—H⋯ π inter­actions (C25—H25ACg3, C26—H26ACg5 and C27—H27ACg4; Table 2[link]) involving the anthracene and pyrene ring systems of adjacent mol­ecules, forming a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg4 is the centroid of the C18–C20/C25–C27 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯O1i 0.95 2.36 3.2721 (14) 161
C10—H10ACg4ii 0.95 2.85 3.6610 (14) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3, Cg4 and Cg5 are the centroids of the C18–C13, C21–C24/C32/C33 and C18–C21/C31/C32 rings

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25ACg3i 0.93 2.82 3.7220 (3) 164
C26—H26ACg5ii 0.93 2.81 3.6050 (3) 144
C27—H27ACg4ii 0.93 2.95 3.6520 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of compound (I)[link] showing C—H⋯O and C—H⋯π inter­actions (dashed lines).
[Figure 3]
Figure 3
The crystal packing of compound (II)[link] showing C—H⋯π inter­actions (dashed lines).

4. Absorption Spectrum and Frontier Mol­ecular Orbital

The theoretical maximum absorption wavelengths (λcalc) was obtained by time-dependent DFT (TD–DFT) calculations using B3LYP and the calculated values were compared with the experimental values. The calculations of the mol­ecular orbital geometry show that the absorption maxima of the mol­ecules correspond to the electron transition between frontier orbitals such as the transition from HOMO to LUMO. As can be seen from the UV–Vis spectra (Fig. 4[link]), the absorption maxima values for compound (I)[link] and (II)[link] are found to be 383 nm, 413 nm (experimental) and 395 nm, 409 nm (theoretical), respectively. The calculated energy transitions are shifted with respect to the experiment because the calculations are confined to the gaseous equivalent whereas the observations are from the solution state. The spectroscopic data recorded show a strong cut off for compound (I)[link] and (II)[link] at 390 nm and 450 nm, respectively. Through an extrapolation of the linear trend observed in the optical spectra (Fig. 4[link]), the experimental energy band gaps are 3.18 and 2.76 eV for (I)[link] and (II)[link] respectively. The predicted energy gaps of 3.15 and 2.95 eV are comparable to the experimental energy gaps. The energy gap for (II)[link] is smaller because the fused ring system of the pyrene substituent has a larger π-conjugated system compared to the naphthalene fused ring system in (I)[link]. In addition, a previous study from Nietfeld et al. (2011[Nietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. 76, 6383-6388.]) comparing the structural, electrochemical and optical properties between fused and non-fused ring compounds shows that the former have a lower band gap than other structures. The value of the optical band gaps observed for compound (I)[link] and (II)[link] indicate the suitability of these compounds for optoelectronic applications.

[Figure 4]
Figure 4
UV–Vis absorption spectra and electron distribution of the HOMO and LUMO energy levels of (a) compound (I)[link] and (b) compound (II)[link].

5. Hirshfeld Surface Analysis

The dnorm and shape-index (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) surfaces for compounds (I)[link] and (II)[link] are presented in Fig. 5[link]a and 5b, respectively. C—H⋯O and C—H⋯π contacts are shown on the dnorm mapped surfaces as deep-red depression areas in Fig. 5[link]a. The C—H⋯O contacts are only present in compound (I)[link]. The C—H⋯π inter­actions are indicated through a combination of pale orange and bright-red spots, which are present on the Hirshfeld Surface mapped over the shape index surface and identified by black arrows (Fig. 5[link]b).

[Figure 5]
Figure 5
Hirshfeld surfaces for compounds (I)[link] and (II)[link], showing (a) dnorm with the red spot indicating the involvement of the C—H⋯O inter­actions; (b) shape index with the pale-orange spots within the black arrow indicating the C—H⋯π inter­actions; (c) fingerprint plots of inter­actions listing the relative percentage contribution of H⋯H, H⋯O, C⋯H and C⋯C inter­actions to the total Hirshfeld surface.

In the fingerprint plot (Fig. 5[link]c), the H⋯H, H⋯O, C⋯H and C⋯C inter­actions are indicated together with their relative percentage contribution. The H⋯H contacts have the largest overall contribution to the Hirshfeld surface and dominate in the crystal structure. The contribution of H⋯O/ O⋯H contacts to the Hirshfeld surface, showing two narrow spikes, provides evidence for the presence of inter­molecular C—H⋯O inter­actions in compound (I)[link]. Furthermore, the significant C—H⋯π inter­actions in both (I)[link] and (II)[link] are indicated by the wings at de + di 2.7 Å.

6. Database survey

A survey of Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed four compounds having an anthracene-ketone substit­uent on the chalcone, i.e. anthracen-9-yl styryl ketone and 9,10-anthryl bis­(styryl ketone) (Harlow et al., 1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (Girisha et al., 2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one (Abdullah et al., 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 492-496.]) reported the structure of the bis-substituted anthracene chalcone, (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-meth­ylprop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]).

7. Synthesis and crystallization

A mixture of 9-acetyl­anthracene (0.5 mmol) and 2-napthaldehyde or 1-pyrenecarboxaldehyde (0.5 mmol) for compounds (I)[link] and (II)[link], respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone to get the corresponding chalcones. Single crystals of (I)[link] and (II)[link] suitable for X-ray diffraction analysis were obtained by slow evaporation of an acetone solution.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically [C—H = 0.95 Å in (I)[link] and 0.93 Å in (II)] and refined using riding model with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C27H18O C33H20O
Mr 358.41 432.49
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 100 296
a, b, c (Å) 13.2129 (10), 11.1224 (8), 25.1604 (19) 17.118 (5), 12.310 (4), 11.152 (3)
α, β, γ (°) 90, 90, 90 90, 107.929 (5), 90
V3) 3697.6 (5) 2235.8 (12)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.87 × 0.43 × 0.20 0.66 × 0.66 × 0.26
 
Data collection
Diffractometer Bruker SMART APEXII Duo CCD area-detector Bruker SMART APEXII Duo CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan SADABS 2014/5
Tmin, Tmax 0.502, 0.746 0.700, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 96576, 4581, 3919 39809, 4394, 2739
Rint 0.067 0.048
(sin θ/λ)max−1) 0.667 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.04 0.046, 0.137, 1.09
No. of reflections 4581 4394
No. of parameters 253 307
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.24 0.15, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2013 and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

1-(Anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one (I) top
Crystal data top
C27H18ODx = 1.288 Mg m3
Mr = 358.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9963 reflections
a = 13.2129 (10) Åθ = 2.2–28.1°
b = 11.1224 (8) ŵ = 0.08 mm1
c = 25.1604 (19) ÅT = 100 K
V = 3697.6 (5) Å3Plate, yellow
Z = 80.87 × 0.43 × 0.20 mm
F(000) = 1504
Data collection top
Bruker SMART APEXII Duo CCD area-detector
diffractometer
3919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.502, Tmax = 0.746k = 1414
96576 measured reflectionsl = 3333
4581 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.843P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4581 reflectionsΔρmax = 0.26 e Å3
253 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15754 (7)0.24179 (8)0.41888 (4)0.0269 (2)
C10.08186 (8)0.50963 (10)0.42203 (4)0.0177 (2)
C20.03476 (9)0.47889 (11)0.37257 (4)0.0211 (2)
H2A0.06110.41440.35210.025*
C30.04727 (9)0.54078 (11)0.35452 (5)0.0248 (3)
H3A0.07680.51960.32140.030*
C40.08930 (9)0.63697 (11)0.38471 (5)0.0253 (3)
H4A0.14710.67870.37190.030*
C50.04678 (9)0.66920 (10)0.43191 (5)0.0227 (2)
H5A0.07550.73330.45180.027*
C60.04037 (8)0.60806 (10)0.45192 (4)0.0185 (2)
C70.08565 (9)0.64129 (10)0.49988 (4)0.0196 (2)
H7A0.05650.70430.52030.024*
C80.17270 (9)0.58413 (10)0.51852 (4)0.0186 (2)
C90.22208 (9)0.62058 (11)0.56649 (4)0.0226 (2)
H9A0.19550.68610.58630.027*
C100.30638 (10)0.56309 (11)0.58417 (5)0.0251 (3)
H10A0.33810.58860.61610.030*
C110.34727 (10)0.46500 (11)0.55501 (5)0.0258 (3)
H11A0.40640.42560.56760.031*
C120.30260 (9)0.42693 (11)0.50918 (5)0.0223 (2)
H12A0.33070.36080.49030.027*
C130.21408 (8)0.48513 (10)0.48908 (4)0.0179 (2)
C140.16655 (8)0.44797 (10)0.44189 (4)0.0172 (2)
C150.20387 (9)0.33672 (10)0.41364 (4)0.0189 (2)
C160.29376 (9)0.34358 (11)0.37952 (4)0.0211 (2)
H16A0.31750.27240.36280.025*
C170.34341 (8)0.44712 (11)0.37123 (4)0.0195 (2)
H17A0.31840.51580.38940.023*
C180.43188 (8)0.46569 (10)0.33722 (4)0.0195 (2)
C190.47087 (9)0.37481 (11)0.30286 (4)0.0217 (2)
H19A0.43910.29820.30150.026*
C200.55373 (9)0.39751 (11)0.27192 (4)0.0223 (2)
H20A0.57750.33690.24850.027*
C210.60512 (9)0.50964 (11)0.27401 (4)0.0202 (2)
C220.69383 (9)0.53418 (11)0.24427 (5)0.0240 (3)
H22A0.71920.47540.22040.029*
C230.74340 (10)0.64171 (12)0.24957 (5)0.0268 (3)
H23A0.80350.65610.22980.032*
C240.70585 (9)0.73139 (12)0.28419 (5)0.0255 (3)
H24A0.74100.80550.28780.031*
C250.61895 (9)0.71144 (11)0.31242 (4)0.0222 (2)
H25A0.59320.77280.33490.027*
C260.56693 (8)0.60044 (10)0.30848 (4)0.0194 (2)
C270.47889 (8)0.57612 (10)0.33878 (4)0.0193 (2)
H27A0.45160.63760.36070.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (5)0.0210 (4)0.0294 (5)0.0044 (3)0.0006 (4)0.0043 (3)
C10.0196 (5)0.0191 (5)0.0143 (5)0.0023 (4)0.0018 (4)0.0014 (4)
C20.0232 (5)0.0243 (6)0.0157 (5)0.0014 (4)0.0002 (4)0.0006 (4)
C30.0256 (6)0.0299 (6)0.0191 (5)0.0017 (5)0.0036 (4)0.0015 (5)
C40.0225 (6)0.0266 (6)0.0269 (6)0.0021 (5)0.0018 (5)0.0052 (5)
C50.0233 (6)0.0197 (5)0.0251 (6)0.0008 (4)0.0031 (4)0.0025 (4)
C60.0196 (5)0.0182 (5)0.0176 (5)0.0022 (4)0.0030 (4)0.0022 (4)
C70.0240 (5)0.0171 (5)0.0177 (5)0.0021 (4)0.0045 (4)0.0009 (4)
C80.0239 (5)0.0178 (5)0.0141 (5)0.0035 (4)0.0021 (4)0.0004 (4)
C90.0319 (6)0.0204 (5)0.0154 (5)0.0033 (5)0.0017 (4)0.0022 (4)
C100.0357 (7)0.0247 (6)0.0150 (5)0.0058 (5)0.0050 (5)0.0009 (4)
C110.0312 (6)0.0253 (6)0.0209 (6)0.0015 (5)0.0078 (5)0.0007 (5)
C120.0278 (6)0.0203 (5)0.0188 (5)0.0020 (4)0.0032 (4)0.0009 (4)
C130.0220 (5)0.0174 (5)0.0142 (5)0.0024 (4)0.0002 (4)0.0003 (4)
C140.0205 (5)0.0170 (5)0.0141 (5)0.0019 (4)0.0013 (4)0.0004 (4)
C150.0221 (5)0.0201 (5)0.0146 (5)0.0006 (4)0.0045 (4)0.0020 (4)
C160.0243 (6)0.0226 (5)0.0163 (5)0.0037 (4)0.0024 (4)0.0039 (4)
C170.0211 (5)0.0240 (5)0.0134 (5)0.0042 (4)0.0028 (4)0.0019 (4)
C180.0198 (5)0.0249 (6)0.0137 (5)0.0036 (4)0.0028 (4)0.0011 (4)
C190.0243 (5)0.0244 (6)0.0165 (5)0.0016 (4)0.0028 (4)0.0037 (4)
C200.0258 (6)0.0266 (6)0.0144 (5)0.0051 (5)0.0012 (4)0.0046 (4)
C210.0223 (5)0.0266 (6)0.0118 (5)0.0037 (4)0.0025 (4)0.0002 (4)
C220.0260 (6)0.0307 (6)0.0154 (5)0.0046 (5)0.0022 (4)0.0013 (4)
C230.0250 (6)0.0349 (6)0.0205 (5)0.0015 (5)0.0030 (5)0.0037 (5)
C240.0267 (6)0.0274 (6)0.0223 (6)0.0008 (5)0.0015 (5)0.0036 (5)
C250.0258 (6)0.0235 (6)0.0174 (5)0.0034 (4)0.0022 (4)0.0003 (4)
C260.0215 (5)0.0248 (6)0.0120 (5)0.0044 (4)0.0030 (4)0.0006 (4)
C270.0209 (5)0.0239 (5)0.0132 (5)0.0050 (4)0.0020 (4)0.0015 (4)
Geometric parameters (Å, º) top
O1—C151.2275 (14)C13—C141.4052 (15)
C1—C141.4044 (15)C14—C151.5097 (15)
C1—C21.4328 (15)C15—C161.4675 (16)
C1—C61.4370 (15)C16—C171.3416 (17)
C2—C31.3619 (17)C16—H16A0.9500
C2—H2A0.9500C17—C181.4634 (16)
C3—C41.4247 (18)C17—H17A0.9500
C3—H3A0.9500C18—C271.3769 (16)
C4—C51.3618 (17)C18—C191.4265 (15)
C4—H4A0.9500C19—C201.3668 (17)
C5—C61.4290 (16)C19—H19A0.9500
C5—H5A0.9500C20—C211.4210 (17)
C6—C71.3965 (16)C20—H20A0.9500
C7—C81.3954 (16)C21—C221.4171 (16)
C7—H7A0.9500C21—C261.4237 (15)
C8—C91.4306 (15)C22—C231.3701 (18)
C8—C131.4353 (15)C22—H22A0.9500
C9—C101.3593 (18)C23—C241.4142 (18)
C9—H9A0.9500C23—H23A0.9500
C10—C111.4214 (17)C24—C251.3682 (17)
C10—H10A0.9500C24—H24A0.9500
C11—C121.3629 (16)C25—C261.4165 (17)
C11—H11A0.9500C25—H25A0.9500
C12—C131.4292 (16)C26—C271.4168 (16)
C12—H12A0.9500C27—H27A0.9500
C14—C1—C2122.59 (10)C13—C14—C15119.53 (10)
C14—C1—C6119.32 (10)O1—C15—C16120.73 (10)
C2—C1—C6118.08 (10)O1—C15—C14119.45 (10)
C3—C2—C1120.97 (11)C16—C15—C14119.81 (10)
C3—C2—H2A119.5C17—C16—C15122.09 (10)
C1—C2—H2A119.5C17—C16—H16A119.0
C2—C3—C4120.80 (11)C15—C16—H16A119.0
C2—C3—H3A119.6C16—C17—C18127.06 (11)
C4—C3—H3A119.6C16—C17—H17A116.5
C5—C4—C3120.12 (11)C18—C17—H17A116.5
C5—C4—H4A119.9C27—C18—C19119.10 (10)
C3—C4—H4A119.9C27—C18—C17118.01 (10)
C4—C5—C6120.96 (11)C19—C18—C17122.88 (11)
C4—C5—H5A119.5C20—C19—C18120.24 (11)
C6—C5—H5A119.5C20—C19—H19A119.9
C7—C6—C5121.58 (10)C18—C19—H19A119.9
C7—C6—C1119.37 (10)C19—C20—C21121.59 (11)
C5—C6—C1119.05 (10)C19—C20—H20A119.2
C8—C7—C6121.54 (10)C21—C20—H20A119.2
C8—C7—H7A119.2C22—C21—C20123.01 (11)
C6—C7—H7A119.2C22—C21—C26118.57 (11)
C7—C8—C9122.03 (10)C20—C21—C26118.41 (10)
C7—C8—C13119.34 (10)C23—C22—C21120.81 (11)
C9—C8—C13118.63 (10)C23—C22—H22A119.6
C10—C9—C8121.10 (11)C21—C22—H22A119.6
C10—C9—H9A119.5C22—C23—C24120.53 (12)
C8—C9—H9A119.5C22—C23—H23A119.7
C9—C10—C11120.24 (11)C24—C23—H23A119.7
C9—C10—H10A119.9C25—C24—C23119.98 (12)
C11—C10—H10A119.9C25—C24—H24A120.0
C12—C11—C10120.70 (11)C23—C24—H24A120.0
C12—C11—H11A119.6C24—C25—C26120.82 (11)
C10—C11—H11A119.6C24—C25—H25A119.6
C11—C12—C13120.87 (11)C26—C25—H25A119.6
C11—C12—H12A119.6C25—C26—C27121.82 (10)
C13—C12—H12A119.6C25—C26—C21119.27 (10)
C14—C13—C12122.10 (10)C27—C26—C21118.90 (11)
C14—C13—C8119.44 (10)C18—C27—C26121.70 (10)
C12—C13—C8118.46 (10)C18—C27—H27A119.2
C1—C14—C13120.87 (10)C26—C27—H27A119.2
C1—C14—C15119.53 (9)
C14—C1—C2—C3179.94 (11)C12—C13—C14—C155.41 (16)
C6—C1—C2—C30.31 (16)C8—C13—C14—C15174.20 (10)
C1—C2—C3—C40.79 (18)C1—C14—C15—O176.15 (14)
C2—C3—C4—C50.86 (18)C13—C14—C15—O1100.87 (13)
C3—C4—C5—C60.21 (18)C1—C14—C15—C16102.72 (12)
C4—C5—C6—C7179.05 (11)C13—C14—C15—C1680.26 (13)
C4—C5—C6—C11.30 (17)O1—C15—C16—C17177.11 (11)
C14—C1—C6—C70.64 (16)C14—C15—C16—C171.74 (16)
C2—C1—C6—C7179.01 (10)C15—C16—C17—C18178.36 (10)
C14—C1—C6—C5179.02 (10)C16—C17—C18—C27172.68 (11)
C2—C1—C6—C51.33 (15)C16—C17—C18—C197.35 (18)
C5—C6—C7—C8177.86 (10)C27—C18—C19—C200.07 (16)
C1—C6—C7—C82.49 (16)C17—C18—C19—C20179.89 (10)
C6—C7—C8—C9177.43 (10)C18—C19—C20—C211.88 (17)
C6—C7—C8—C132.98 (16)C19—C20—C21—C22177.08 (11)
C7—C8—C9—C10179.50 (11)C19—C20—C21—C261.46 (16)
C13—C8—C9—C100.10 (17)C20—C21—C22—C23176.84 (11)
C8—C9—C10—C110.05 (18)C26—C21—C22—C231.70 (17)
C9—C10—C11—C120.25 (19)C21—C22—C23—C241.17 (18)
C10—C11—C12—C130.48 (19)C22—C23—C24—C250.48 (18)
C11—C12—C13—C14179.87 (11)C23—C24—C25—C261.55 (17)
C11—C12—C13—C80.51 (17)C24—C25—C26—C27177.67 (11)
C7—C8—C13—C140.33 (16)C24—C25—C26—C210.98 (16)
C9—C8—C13—C14179.94 (10)C22—C21—C26—C250.63 (16)
C7—C8—C13—C12179.29 (10)C20—C21—C26—C25177.98 (10)
C9—C8—C13—C120.32 (16)C22—C21—C26—C27179.32 (10)
C2—C1—C14—C13176.37 (10)C20—C21—C26—C270.72 (15)
C6—C1—C14—C133.26 (16)C19—C18—C27—C262.15 (16)
C2—C1—C14—C156.65 (16)C17—C18—C27—C26177.88 (10)
C6—C1—C14—C15173.72 (10)C25—C26—C27—C18176.12 (10)
C12—C13—C14—C1177.61 (10)C21—C26—C27—C182.54 (16)
C8—C13—C14—C12.78 (16)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C20/C25–C27 ring
D—H···AD—HH···AD···AD—H···A
C27—H27A···O1i0.952.363.2721 (14)161
C10—H10A···Cg4ii0.952.853.6610 (14)142
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z+1.
1-(Anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-one (II) top
Crystal data top
C33H20OF(000) = 904
Mr = 432.49Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.118 (5) ÅCell parameters from 5604 reflections
b = 12.310 (4) Åθ = 2.5–23.7°
c = 11.152 (3) ŵ = 0.08 mm1
β = 107.929 (5)°T = 296 K
V = 2235.8 (12) Å3Plate, yellow
Z = 40.66 × 0.66 × 0.26 mm
Data collection top
Bruker SMART APEXII Duo CCD area-detector
diffractometer
2739 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
φ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
SADABS 2014/5
h = 2121
Tmin = 0.700, Tmax = 0.927k = 1515
39809 measured reflectionsl = 1313
4394 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.5972P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4394 reflectionsΔρmax = 0.15 e Å3
307 parametersΔρmin = 0.14 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71104 11.238 12.388 17.234 90.027 107.859 90.073

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17677 (10)0.46286 (15)0.87794 (14)0.0885 (5)
C10.14507 (12)0.62079 (18)0.6345 (2)0.0624 (5)
C20.17465 (15)0.70424 (19)0.7246 (2)0.0779 (7)
H2A0.20300.68610.80760.093*
C30.16206 (18)0.8103 (2)0.6912 (3)0.0982 (9)
H3A0.18140.86420.75150.118*
C40.12019 (19)0.8391 (3)0.5668 (4)0.1063 (10)
H4A0.11260.91220.54490.128*
C50.09075 (17)0.7625 (3)0.4782 (3)0.0944 (8)
H5A0.06260.78330.39610.113*
C60.10194 (13)0.6505 (2)0.5082 (2)0.0713 (6)
C70.07398 (13)0.5692 (2)0.4191 (2)0.0783 (7)
H7A0.04540.58870.33670.094*
C80.08713 (12)0.4605 (2)0.4484 (2)0.0690 (6)
C90.06052 (14)0.3764 (3)0.3561 (2)0.0871 (8)
H9A0.03250.39460.27300.105*
C100.07563 (16)0.2710 (3)0.3882 (3)0.0925 (8)
H10A0.05820.21740.32700.111*
C110.11715 (15)0.2417 (2)0.5122 (3)0.0832 (7)
H11A0.12660.16870.53290.100*
C120.14376 (13)0.31760 (19)0.6026 (2)0.0698 (6)
H12A0.17150.29620.68470.084*
C130.13005 (11)0.42991 (18)0.57442 (19)0.0593 (5)
C140.15845 (12)0.51091 (17)0.66534 (18)0.0574 (5)
C150.20900 (13)0.47913 (16)0.79620 (19)0.0625 (5)
C160.29722 (13)0.47072 (17)0.82128 (18)0.0650 (6)
H16A0.32920.44420.89900.078*
C170.33365 (12)0.49963 (16)0.73682 (18)0.0573 (5)
H17A0.29890.52210.65900.069*
C180.42074 (12)0.50067 (15)0.75046 (16)0.0531 (5)
C190.47586 (13)0.44278 (16)0.84749 (18)0.0631 (5)
H19A0.45610.40330.90310.076*
C200.55833 (13)0.44252 (17)0.86316 (18)0.0649 (5)
H20A0.59330.40260.92870.078*
C210.59063 (12)0.50066 (16)0.78327 (17)0.0551 (5)
C220.67696 (13)0.50448 (18)0.7997 (2)0.0680 (6)
H22A0.71300.46660.86610.082*
C230.70663 (13)0.56110 (19)0.7218 (2)0.0705 (6)
H23A0.76300.56200.73540.085*
C240.65461 (13)0.62047 (16)0.61809 (19)0.0594 (5)
C250.68439 (15)0.67865 (19)0.5348 (2)0.0749 (6)
H25A0.74060.68050.54690.090*
C260.63215 (17)0.73339 (18)0.4350 (2)0.0788 (7)
H26A0.65330.77120.37980.095*
C270.54903 (15)0.73297 (16)0.4157 (2)0.0691 (6)
H27A0.51450.77080.34780.083*
C280.51601 (13)0.67643 (15)0.49669 (17)0.0549 (5)
C290.43069 (13)0.67432 (15)0.48102 (18)0.0591 (5)
H29A0.39510.71170.41370.071*
C300.39964 (12)0.61986 (15)0.56071 (17)0.0557 (5)
H30A0.34330.62170.54780.067*
C310.45105 (11)0.55896 (14)0.66509 (15)0.0475 (4)
C320.53673 (11)0.55946 (14)0.68243 (16)0.0486 (4)
C330.56895 (11)0.61898 (14)0.59947 (16)0.0505 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0916 (12)0.1139 (14)0.0734 (10)0.0170 (10)0.0451 (9)0.0037 (9)
C10.0527 (12)0.0709 (14)0.0726 (13)0.0068 (11)0.0327 (10)0.0003 (11)
C20.0823 (17)0.0696 (15)0.0930 (17)0.0158 (13)0.0435 (13)0.0055 (13)
C30.110 (2)0.0706 (18)0.135 (3)0.0190 (15)0.069 (2)0.0066 (17)
C40.106 (2)0.0743 (19)0.160 (3)0.0064 (17)0.072 (2)0.030 (2)
C50.0829 (19)0.096 (2)0.114 (2)0.0105 (16)0.0439 (16)0.0293 (18)
C60.0562 (13)0.0819 (17)0.0833 (15)0.0032 (12)0.0324 (12)0.0153 (13)
C70.0541 (14)0.111 (2)0.0690 (14)0.0022 (13)0.0172 (11)0.0113 (14)
C80.0466 (12)0.0953 (18)0.0670 (13)0.0059 (12)0.0202 (10)0.0061 (12)
C90.0581 (15)0.131 (2)0.0695 (15)0.0141 (16)0.0161 (11)0.0231 (16)
C100.0708 (17)0.112 (2)0.100 (2)0.0216 (16)0.0331 (15)0.0421 (18)
C110.0720 (16)0.0844 (17)0.1006 (19)0.0136 (13)0.0374 (15)0.0248 (15)
C120.0616 (14)0.0754 (15)0.0781 (14)0.0078 (11)0.0300 (11)0.0104 (12)
C130.0446 (11)0.0735 (14)0.0654 (12)0.0071 (10)0.0255 (9)0.0064 (10)
C140.0495 (11)0.0668 (13)0.0629 (12)0.0077 (10)0.0276 (9)0.0016 (10)
C150.0711 (14)0.0635 (13)0.0598 (12)0.0152 (11)0.0303 (11)0.0039 (10)
C160.0643 (14)0.0771 (14)0.0522 (11)0.0100 (11)0.0159 (10)0.0015 (10)
C170.0571 (12)0.0611 (12)0.0532 (11)0.0047 (10)0.0160 (9)0.0007 (9)
C180.0548 (12)0.0535 (11)0.0490 (10)0.0017 (9)0.0129 (9)0.0009 (8)
C190.0672 (14)0.0651 (13)0.0554 (11)0.0044 (11)0.0167 (10)0.0087 (10)
C200.0639 (14)0.0671 (13)0.0565 (11)0.0091 (11)0.0081 (10)0.0110 (10)
C210.0534 (12)0.0560 (11)0.0520 (10)0.0032 (9)0.0104 (9)0.0042 (9)
C220.0557 (13)0.0738 (14)0.0685 (13)0.0099 (11)0.0104 (10)0.0021 (11)
C230.0509 (12)0.0775 (15)0.0825 (15)0.0010 (11)0.0197 (11)0.0111 (12)
C240.0591 (13)0.0544 (12)0.0693 (12)0.0039 (10)0.0264 (10)0.0130 (10)
C250.0730 (15)0.0687 (14)0.0951 (17)0.0120 (12)0.0434 (14)0.0130 (13)
C260.099 (2)0.0656 (15)0.0888 (17)0.0090 (13)0.0529 (15)0.0009 (12)
C270.0876 (17)0.0551 (12)0.0725 (14)0.0002 (12)0.0365 (12)0.0043 (10)
C280.0675 (14)0.0437 (10)0.0567 (11)0.0014 (9)0.0241 (10)0.0035 (8)
C290.0682 (14)0.0512 (11)0.0558 (11)0.0073 (10)0.0159 (10)0.0065 (9)
C300.0521 (11)0.0541 (11)0.0592 (11)0.0040 (9)0.0145 (9)0.0010 (9)
C310.0522 (11)0.0435 (10)0.0455 (9)0.0000 (8)0.0131 (8)0.0034 (8)
C320.0519 (11)0.0445 (10)0.0483 (10)0.0008 (8)0.0136 (8)0.0062 (8)
C330.0585 (12)0.0422 (10)0.0541 (10)0.0023 (9)0.0222 (9)0.0090 (8)
Geometric parameters (Å, º) top
O1—C151.219 (2)C17—C181.451 (3)
C1—C141.397 (3)C17—H17A0.9300
C1—C21.417 (3)C18—C191.393 (3)
C1—C61.423 (3)C18—C311.412 (2)
C2—C31.356 (3)C19—C201.368 (3)
C2—H2A0.9300C19—H19A0.9300
C3—C41.397 (4)C20—C211.384 (3)
C3—H3A0.9300C20—H20A0.9300
C4—C51.346 (4)C21—C321.415 (2)
C4—H4A0.9300C21—C221.433 (3)
C5—C61.417 (3)C22—C231.330 (3)
C5—H5A0.9300C22—H22A0.9300
C6—C71.388 (3)C23—C241.425 (3)
C7—C81.379 (3)C23—H23A0.9300
C7—H7A0.9300C24—C251.388 (3)
C8—C131.422 (3)C24—C331.416 (3)
C8—C91.432 (3)C25—C261.371 (3)
C9—C101.349 (4)C25—H25A0.9300
C9—H9A0.9300C26—C271.372 (3)
C10—C111.394 (4)C26—H26A0.9300
C10—H10A0.9300C27—C281.391 (3)
C11—C121.347 (3)C27—H27A0.9300
C11—H11A0.9300C28—C331.413 (3)
C12—C131.421 (3)C28—C291.417 (3)
C12—H12A0.9300C29—C301.346 (3)
C13—C141.398 (3)C29—H29A0.9300
C14—C151.501 (3)C30—C311.436 (2)
C15—C161.452 (3)C30—H30A0.9300
C16—C171.328 (3)C31—C321.419 (2)
C16—H16A0.9300C32—C331.418 (2)
C14—C1—C2122.1 (2)C18—C17—H17A115.9
C14—C1—C6119.2 (2)C19—C18—C31118.81 (18)
C2—C1—C6118.6 (2)C19—C18—C17120.35 (17)
C3—C2—C1120.7 (3)C31—C18—C17120.83 (17)
C3—C2—H2A119.7C20—C19—C18121.75 (19)
C1—C2—H2A119.7C20—C19—H19A119.1
C2—C3—C4120.5 (3)C18—C19—H19A119.1
C2—C3—H3A119.7C19—C20—C21121.17 (18)
C4—C3—H3A119.7C19—C20—H20A119.4
C5—C4—C3120.8 (3)C21—C20—H20A119.4
C5—C4—H4A119.6C20—C21—C32118.97 (18)
C3—C4—H4A119.6C20—C21—C22122.38 (19)
C4—C5—C6121.1 (3)C32—C21—C22118.65 (18)
C4—C5—H5A119.5C23—C22—C21121.3 (2)
C6—C5—H5A119.5C23—C22—H22A119.3
C7—C6—C5122.7 (2)C21—C22—H22A119.3
C7—C6—C1118.9 (2)C22—C23—C24122.0 (2)
C5—C6—C1118.3 (2)C22—C23—H23A119.0
C8—C7—C6122.3 (2)C24—C23—H23A119.0
C8—C7—H7A118.8C25—C24—C33119.0 (2)
C6—C7—H7A118.8C25—C24—C23122.8 (2)
C7—C8—C13119.2 (2)C33—C24—C23118.20 (18)
C7—C8—C9122.6 (2)C26—C25—C24121.0 (2)
C13—C8—C9118.2 (2)C26—C25—H25A119.5
C10—C9—C8120.8 (2)C24—C25—H25A119.5
C10—C9—H9A119.6C25—C26—C27120.8 (2)
C8—C9—H9A119.6C25—C26—H26A119.6
C9—C10—C11120.6 (2)C27—C26—H26A119.6
C9—C10—H10A119.7C26—C27—C28120.6 (2)
C11—C10—H10A119.7C26—C27—H27A119.7
C12—C11—C10121.0 (3)C28—C27—H27A119.7
C12—C11—H11A119.5C27—C28—C33119.35 (19)
C10—C11—H11A119.5C27—C28—C29122.59 (19)
C11—C12—C13120.9 (2)C33—C28—C29118.05 (17)
C11—C12—H12A119.5C30—C29—C28121.96 (18)
C13—C12—H12A119.5C30—C29—H29A119.0
C14—C13—C12122.4 (2)C28—C29—H29A119.0
C14—C13—C8119.1 (2)C29—C30—C31121.82 (19)
C12—C13—C8118.5 (2)C29—C30—H30A119.1
C1—C14—C13121.20 (19)C31—C30—H30A119.1
C1—C14—C15119.54 (18)C18—C31—C32119.28 (16)
C13—C14—C15119.13 (19)C18—C31—C30123.45 (17)
O1—C15—C16121.8 (2)C32—C31—C30117.26 (16)
O1—C15—C14120.8 (2)C21—C32—C33119.57 (17)
C16—C15—C14117.37 (16)C21—C32—C31120.00 (17)
C17—C16—C15122.12 (19)C33—C32—C31120.43 (16)
C17—C16—H16A118.9C28—C33—C24119.28 (17)
C15—C16—H16A118.9C28—C33—C32120.46 (17)
C16—C17—C18128.28 (19)C24—C33—C32120.26 (17)
C16—C17—H17A115.9
C14—C1—C2—C3178.7 (2)C17—C18—C19—C20179.72 (19)
C6—C1—C2—C30.1 (3)C18—C19—C20—C210.4 (3)
C1—C2—C3—C40.5 (4)C19—C20—C21—C321.2 (3)
C2—C3—C4—C50.8 (4)C19—C20—C21—C22178.09 (19)
C3—C4—C5—C60.6 (4)C20—C21—C22—C23179.9 (2)
C4—C5—C6—C7178.7 (2)C32—C21—C22—C230.6 (3)
C4—C5—C6—C10.1 (4)C21—C22—C23—C240.2 (3)
C14—C1—C6—C70.3 (3)C22—C23—C24—C25179.0 (2)
C2—C1—C6—C7178.97 (19)C22—C23—C24—C330.6 (3)
C14—C1—C6—C5178.49 (19)C33—C24—C25—C260.6 (3)
C2—C1—C6—C50.1 (3)C23—C24—C25—C26179.0 (2)
C5—C6—C7—C8178.2 (2)C24—C25—C26—C270.7 (3)
C1—C6—C7—C80.6 (3)C25—C26—C27—C280.3 (3)
C6—C7—C8—C130.7 (3)C26—C27—C28—C330.1 (3)
C6—C7—C8—C9178.1 (2)C26—C27—C28—C29179.52 (19)
C7—C8—C9—C10179.0 (2)C27—C28—C29—C30179.52 (19)
C13—C8—C9—C100.2 (3)C33—C28—C29—C300.1 (3)
C8—C9—C10—C110.3 (4)C28—C29—C30—C311.2 (3)
C9—C10—C11—C120.6 (4)C19—C18—C31—C321.7 (3)
C10—C11—C12—C130.2 (3)C17—C18—C31—C32179.07 (16)
C11—C12—C13—C14178.52 (19)C19—C18—C31—C30179.00 (17)
C11—C12—C13—C80.3 (3)C17—C18—C31—C300.2 (3)
C7—C8—C13—C140.5 (3)C29—C30—C31—C18179.86 (18)
C9—C8—C13—C14178.36 (18)C29—C30—C31—C320.9 (3)
C7—C8—C13—C12179.37 (19)C20—C21—C32—C33179.70 (17)
C9—C8—C13—C120.5 (3)C22—C21—C32—C331.0 (3)
C2—C1—C14—C13178.78 (18)C20—C21—C32—C310.5 (3)
C6—C1—C14—C130.2 (3)C22—C21—C32—C31178.81 (17)
C2—C1—C14—C152.9 (3)C18—C31—C32—C210.9 (2)
C6—C1—C14—C15175.70 (17)C30—C31—C32—C21179.74 (16)
C12—C13—C14—C1179.10 (18)C18—C31—C32—C33178.83 (16)
C8—C13—C14—C10.3 (3)C30—C31—C32—C330.5 (2)
C12—C13—C14—C153.2 (3)C27—C28—C33—C240.2 (3)
C8—C13—C14—C15175.62 (17)C29—C28—C33—C24179.45 (16)
C1—C14—C15—O191.0 (2)C27—C28—C33—C32179.13 (17)
C13—C14—C15—O193.0 (2)C29—C28—C33—C321.2 (2)
C1—C14—C15—C1687.9 (2)C25—C24—C33—C280.1 (3)
C13—C14—C15—C1688.1 (2)C23—C24—C33—C28179.46 (17)
O1—C15—C16—C17172.6 (2)C25—C24—C33—C32179.47 (17)
C14—C15—C16—C176.3 (3)C23—C24—C33—C320.1 (3)
C15—C16—C17—C18176.81 (19)C21—C32—C33—C28178.70 (16)
C16—C17—C18—C1917.2 (3)C31—C32—C33—C281.5 (2)
C16—C17—C18—C31163.6 (2)C21—C32—C33—C240.6 (2)
C31—C18—C19—C201.1 (3)C31—C32—C33—C24179.16 (16)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids of the C18–C13, C21–C24/C32/C33 and C18–C21/C31/C32 rings
D—H···AD—HH···AD···AD—H···A
C25—H25A···Cg3i0.932.823.7220 (3)164
C26—H26A···Cg5ii0.932.813.6050 (3)144
C27—H27A···Cg4ii0.932.953.6520 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z3/2.
 

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the research facilities.

Funding information

The authors thank the Malaysian Government for funding from the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711572 and the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C. 4, 10574–10587.  Web of Science CrossRef CAS Google Scholar
First citationLin, J. B., Shah, T. K., Goetz, A. E., Garg, N. K. & Houk, K. N. (2017). J. Am. Chem. Soc. 139, 10447–10455.  Web of Science CrossRef CAS Google Scholar
First citationMas-Torrent, M. & Rovira, C. (2008). Chem. Soc. Rev. 37, 827–838.  Web of Science PubMed CAS Google Scholar
First citationNietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. 76, 6383–6388.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationWu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502.  Web of Science CrossRef CAS Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 492–496.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds