research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Expected and unexpected products of reactions of 2-hydrazinylbenzo­thia­zole with 3-nitro­benzene­sulfonyl chloride in different solvents

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bInstituto de Tecnologia em Fármacos – Farmanguinhos, Fiocruz. R. Sizenando, Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by J. Simpson, University of Otago, New Zealand (Received 6 April 2018; accepted 10 April 2018; online 17 April 2018)

The syntheses and crystal structures of 2-[2-(propan-2-yl­idene)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (C10H12N2S+·C6H4NO5S), (I), 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (C13H10N4O4S2), (II) and 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (C13H11N4O4S2+·C6H4NO5S), (III) are reported. Salt (I) arose from an unexpected reaction of 2-hydrazinylbenzo­thia­zole with the acetone solvent in the presence of 3-nitro­benzene­sulfonyl chloride, whereas (II) and (III) were recovered from the equivalent reaction carried out in methanol. The crystal of (I) features ion pairs linked by pairs of N—H⋯Os (s = sulfonate) hydrogen bonds; adjacent cations inter­act by way of short ππ stacking inter­actions between the thia­zole rings [centroid–centroid separation = 3.4274 (18) Å]. In (II), which crystallizes with two neutral mol­ecules in the asymmetric unit, the mol­ecules are linked by N—H⋯N and N—H⋯On (n = nitro) hydrogen bonds to generate [[\overline{1}]1[\overline{1}]] chains, which are cross-linked by C—H⋯O and ππ stacking inter­actions. The crystal of (III) features centrosymmetric tetra­mers (two cations and two anions) linked by cooperative N—H⋯O hydrogen bonds; C—H⋯O and ππ inter­actions occur between tetra­mers.

1. Chemical context

Heteroaromatic benzo­thia­zole derivatives are well-studied compounds, due in the main to their various and useful biological activities (for a review, see Gulati et al., 2017[Gulati, S., Wakode, S., Kaur, A. & Anand, K. (2017). World J. Pharm. Pharm Sci. 6, 1842-1869.]), but also to their fluorescent and optical properties (e.g. Liu et al., 2018[Liu, C. T., Wang, F., Xiao, T., Chi, B., Wu, Y. H., Zhu, D.-R. & Chen, X. Q. (2018). Sens. Actuators B Chem. 256, 55-62.]). Hydrazonyl derivatives, 2-Ar—CH=N—NH-benzo­thia­zoles, formed from 2-hydrazinylbenzo­thia­zole and ArCHO have attracted attention: for example, Katava et al. (2017[Katava, R., Pavelić, S. K., Harej, A., Hrenar, T. & Pavlović, G. (2017). Struct. Chem. 28, 709-721.]) have reported anti­tumor activities and Behera & Manivannan (2017[Behera, N. & Manivannan, V. (2017). ChemistrySelect, 2, 11048-11054.]) studied their use as sensors. Less attention has been paid generally to 2-(ArSO2NHNH)-benzo­thia­zoles, although anti­microbial activities have been briefly reported (Rao et al., 2005[Rao, D. S., Jayachandran, E., Sreenivasa, G. M. & Shivakumar, B. (2005). Orient. J. Chem. 21, 113-116.]; Hipparagi et al., 2007[Hipparagi, S. M., Majumder, U. K., Parikshit, B., Geethavani, M. & Kumar, V. S. (2007). Orient. J. Chem. 23, 65-66.]).

We have initiated a study of the syntheses, structures and biological activities of 2-(ArSO2NHNH)-benzo­thia­zoles and we now describe the structures of three products of the reactions of 2-hydrazinylbenzo­thia­zole with 3-nitro­benzene­sulfonyl chloride in different solvents, viz. 2-[2-(propan-2-yl­idene)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benz­enesulfonate (I)[link], 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (II)[link] and 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (III)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in space group P[\overline{1}] with one C10H12N3S+ cation (protonated at N1) and one C6H4NO5S sulfonate anion in the asymmetric unit (Fig. 1[link]). Evidently, the starting hydrazone has reacted with the acetone solvent (Day & Whiting, 1970[Day, A. C. & Whiting, M. C. (1970). Org. Synth. 50, 3-5.]) to generate an N-propyl­idine group; at the same time, the sulfonyl chloride has been hydrolysed to sulfonic acid and a mol­ecular salt has crystallized after proton transfer from the sulfonic acid to the N atom of the thia­zole ring. The cation is close to planar; the dihedral angle between the benzo­thia­zole ring system (r.m.s. deviation = 0.005 Å) and the N2/N3/C8/C9/C10 grouping (r.m.s. deviation = 0.004 Å) is 7.89 (10)°; the C7—N2—N3—C8 torsion angle is −172.8 (2)°. The C8—N3 bond length of 1.278 (4) Å is fully consistent with double-bond character. In the anion, the nitro group is twisted by 26.7 (4)° with respect to the benzene ring. As expected, the S—O bond lengths of the sulfonate group are almost the same, indicating the usual delocalization of the negative charge and the same situation is found in compound (III)[link] described below.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

Compound (II)[link] represents the expected condensation product of the starting hydrazone and sulfonyl chloride and crystallizes with two neutral C13H10N4O4S mol­ecules in the asymmetric unit (Fig. 2[link]) in space group P[\overline{1}]. In the first (S1) mol­ecule, the dihedral angle between the benzo­thia­zole ring system (r.m.s. deviation = 0.013 Å) and the C8 benzene ring is 32.59 (4)°; the nitro group is twisted by 0.68 (7)° from the C8 benzene ring. The C7—N2—N3—S2 torsion angle is −99.88 (12) and the H2—N2—N3—H3 torsion angle is −54 (2)°. The bond-angle sum at N2 is 359.9°, indicative of sp2 hybridization, whereas the corresponding value for N3 of 341.1° points towards substantial sp3 hybrid character. The C7—N2 bond length of 1.3529 (16) Å is short for a nominal single bond, presumably indicative of conjugation of the N2 nominal lone pair of electrons with the adjacent ring system. In the second (S3) mol­ecule, the corresponding geometrical data are 0.008 Å (r.m.s. deviation for S3 ring system), 30.01 (3)° (S3/C21 rings), 3.46 (13)° (nitro group and C21 ring), −103.53 (12)° (C20—N6—N7—S4), −50.3 (18)° (H6—N6—N7—H7), 359.9° (bond-angle sum at N6), 341.7° (bond-angle sum at N7) and 1.3549 (16) Å (C20—N6 bond length). All-in-all, the S1 and S3 mol­ecules have similar conformations as indicated by the r.m.s. overlay fit of 0.221 Å for their non-hydrogen atoms.

[Figure 2]
Figure 2
The asymmetric unit of (II)[link] showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

Compound (III)[link], which was recovered from the same reaction as (II)[link], represents the same condensation product, which has gone on to further react with a hydrolysed sulfonyl chloride species to form a mol­ecular salt (proton transfer to N1). Once again, the space group is P[\overline{1}] and one cation and one anion (Fig. 3[link]) make up the asymmetric unit. The benzo­thia­zole ring system (r.m.s. deviation = 0.005 Å) subtends a dihedral angle of 57.54 (3)° with the C8 benzene ring and the nitro group is twisted from its attached ring by 4.8 (3)°. The C7—N2—N3—S2 and H2—N2—N3—H3 torsion angles are −110.54 (12) and −48.5 (19)°, respectively. The bond-angle sums at N2 and N3 are 359.0 and 339.1°, respectively, and the same conclusions re hybridization states for these atoms as in (II)[link] may be drawn. This is backed up by the shortened C7—N2 bond length of 1.3317 (17) Å in (III)[link] compared to (II)[link]. presumably because resonance is enhanced by the positive charge on N1. In the anion, the nitro group is twisted from its attached ring by 17.7 (2)°.

[Figure 3]
Figure 3
The asymmetric unit of (III)[link] showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

3. Supra­molecular features

In the crystal of (I)[link], the cation and the anion are linked by a pair of N—H⋯O hydrogen bonds (Table 1[link]), which generate an R22(8) loop. The ion pairs are connected by various weak C—H⋯O inter­actions, with the acceptor O atoms being parts of the sulfonate and nitro groups. No C—H⋯π inter­actions could be identified in the crystal of (I)[link] but aromatic ππ stacking inter­actions are seen, with the shortest centroid–centroid separation of 3.4274 (18) Å (slippage = 0.729 Å) occurring between inversion-related pairs of thia­zole rings (Fig. 4[link]); atom N2 of the hydrazone group lies above the benzene ring (Cg⋯N2 = 3.385 Å) and possibly provides some additional stabilization. Taken together, the directional inter­molecular inter­actions in (I)[link] generate a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (4) 1.87 (4) 2.721 (3) 167 (3)
N2—H2⋯O2 0.82 (4) 1.96 (4) 2.773 (3) 169 (3)
C3—H3⋯O2i 0.95 2.51 3.415 (4) 160
C4—H4⋯O4ii 0.95 2.55 3.292 (4) 135
C10—H10B⋯O4iii 0.98 2.54 3.297 (5) 134
C15—H15⋯O3iv 0.95 2.50 3.315 (4) 144
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z.
[Figure 4]
Figure 4
Detail of the extended structure of (I)[link] showing ππ stacking between inversion-related thia­zole rings and possible secondary N⋯π inter­actions. Symmetry code: (i) −x, 1 − y, 1 − z.

The dominant inter­molecular inter­actions in (II)[link] are N—H⋯N and N—H⋯O hydrogen bonds (Table 2[link]); the first of these (N2—H2⋯N5 and N6—H6⋯N1) occur in the arbitrarily chosen asymmetric unit to link the mol­ecules into dimers that `slot together': the dihedral angle between the benzo­thia­zole planes in the two mol­ecules is 36.06 (4)° and the pendant benzene sulfonyl groups project to the same side of the ensemble. The N—H⋯On (n = nitro) links connect the dimers into infinite [[\overline{1}]1[\overline{1}]] chains (Fig. 5[link]). A number of weak C—H⋯O inter­actions are also observed, which serve to cross-link the chains. Several ππ stacking contacts occur in the crystal of (II)[link], with the shortest [centroid–centroid separation = 3.5186 (7)Å] occurring between the C8–C13 and C14–C19 rings. Finally, a short N8—O7⋯π (π = centroid of the C21–C26 benzene ring) contact is observed with N⋯π = 3.2497 (12) Å and N—O⋯π = 86.24 (8)°.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N5 0.816 (18) 2.033 (18) 2.8447 (15) 172.7 (16)
N3—H3⋯O3i 0.848 (17) 2.129 (18) 2.9427 (15) 160.8 (15)
N6—H6⋯N1 0.820 (18) 2.050 (18) 2.8601 (15) 169.2 (17)
N7—H7⋯O7ii 0.871 (17) 2.123 (18) 2.9472 (15) 157.6 (15)
C15—H15⋯O3i 0.95 2.65 3.4888 (17) 147
C26—H26⋯O2 0.95 2.44 3.1774 (16) 134
C5—H5⋯O1iii 0.95 2.66 3.3218 (16) 127
C13—H13⋯O6 0.95 2.56 3.2731 (16) 133
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1.
[Figure 5]
Figure 5
Fragment of a [[\overline{1}]1[\overline{1}]] hydrogen-bonded chain in (II)[link] with the N—H⋯N and N—H⋯O bonds shown as blue and red double-dashed lines, respectively. All C-bonded hydrogen atoms have been omitted for clarity. Symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, −y, 1 − z.

The packing in (III)[link] features a pair of cation-to-anion N—H⋯O links from N1 and N2 (Table 3[link]), which is essentially the same motif as seen in (I)[link]. The N3—H3 grouping links to a symmetry-generated sulfonate O atom and a centrosymmetric tetra­mer (two cations and two anions) results (Fig. 6[link]). A pair of weak C—H⋯O inter­actions helps to provide cohesion between tetra­mers in the crystal and ππ stacking is also observed, with the shortest centroid–centroid separation being 3.6743 (8) Å between the thia­zole and C1–C6 rings.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.841 (19) 1.888 (19) 2.7267 (15) 175.2 (17)
N2—H2⋯O5 0.826 (19) 1.92 (2) 2.7489 (16) 175.4 (18)
N3—H3⋯O7i 0.869 (18) 1.968 (19) 2.8058 (16) 161.6 (16)
C2—H2A⋯O7ii 0.95 2.55 3.2510 (18) 130
C9—H9⋯O8iii 0.95 2.58 3.487 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1.
[Figure 6]
Figure 6
An inversion-generated tetra­mer in the crystal of (III)[link]. Symmetry code: (i) 1 − x, 1 − y, −z.

4. Database survey

A survey of of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]: updated to March 2018) for benzo­thia­zole hydrazones revealed the prototype compound, benzo­thia­zol-2-yl-hydrazine (refcode: NAPKAR; Rajnikant et al., 2005[Rajnikant, Dinesh, Kamni, Deshmukh, M. B., Jagpat, S. S. & Desai, S. R. (2005). J. Chem. Cryst. 35, 293-296.]) as well as three derivatives with various substituents attached to the benzene ring, viz. EVARID (Liu et al., 2011[Liu, X.-F., Yu, X.-Y. & Jiang, S.-L. (2011). Acta Cryst. E67, o1641.]), LAPCAI (Fun et al., 2012a[Fun, H.-K., Ooi, C. W., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012a). Acta Cryst. E68, o691-o692.]) and LEFTEX (Fun et al., 2012b[Fun, H.-K., Quah, C. K., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012b). Acta Cryst. E68, o2459.]). No hits for benzene­sulfonyl­hydrazino-benzo­thia­zoles were recorded.

5. Synthesis and crystallization

To prepare (I)[link], a mixture of 2-hydrazinylbenzo­thia­zole (1.00 mmol) and 3-nitro­benzene­sulfonyl chloride (1.00 mmol) in acetone (15 ml) was gently heated at 313–323 K for 30 minutes, then rotary evaporated and the residue was recrystallized by slow evaporation from methanol solution at room temperature; m.p. 444–445 K. ESI–HRMS (M + H). Calculated: 206.0752 for C10H12N3S, found: 206.0755. IR: 2930(br), 1621, 1530, 1350, 1241, 1151, 1028 cm−1

Compounds (II)[link] and (III)[link] arose from the same reaction: a solution of 2-hydrazinylbenzo­thia­zole (1.00 mmol) and 3-nitro­benzene­sulfonyl chloride (1.00 mmol) in methanol (15 ml) was gently heated at 313–323 K for 30 minutes, then rotary evaporated and the residue was recrystallized by slow evaporation from methanol solution at room temperature. A mixture of two distinct crystalline products, one yellow [compound (II)] and the other colourless [compound (III)], was isolated. These were separated by eye, and each product was futher recrystallized from methanol solution. (II)[link]; m.p. 442–444 K. ESI–HRMS (M − H). Calculated: 349.0222 for C13H9N4O2S2: found: 351.0220 ESI–HRMS (M + H). Calculated: 351.0065 for C13H11N4O2S2: found: 349.0062 IR; 2989 (br), 1531, 1457, 1341, 1306, 1167 cm−1. (III)[link]: m.p. 463–466 K. ESI–HRMS (M + H). Calculated: 351.0065 for C13H11N4O2S2: found: 349.0065 IR: 2870 (br), 1553, 1436, 1363, 1241, 1127, 1065 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The N-bound hydrogen atoms were located in difference maps and their positions freely refined. The C-bound hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl groups in (I)[link] were allowed to rotate, but not to tip, to best fit the electron density.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C10H12N3S+·C6H4NO5S C13H10N4O4S2 C13H11N4O4S2+·C6H4NO5S
Mr 408.45 350.37 553.54
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 7.5308 (4), 10.9167 (7), 12.4438 (8) 6.83537 (15), 13.5788 (3), 15.6907 (4) 10.0399 (5), 10.7585 (4), 11.3372 (6)
α, β, γ (°) 66.058 (6), 79.034 (5), 72.156 (5) 99.382 (2), 98.2324 (19), 91.9841 (19) 85.607 (4), 71.369 (5), 77.115 (4)
V3) 887.47 (10) 1419.55 (6) 1131.16 (10)
Z 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.34 0.40 0.39
Crystal size (mm) 0.06 × 0.05 × 0.01 0.15 × 0.10 × 0.03 0.23 × 0.18 × 0.04
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (FS_ABSCOR; Rigaku, 2013[Rigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (FS_ABSCOR; Rigaku, 2013[Rigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (FS_ABSCOR; Rigaku, 2013[Rigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.614, 1.000 0.861, 1.000 0.879, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11341, 3490, 3249 24032, 6465, 6033 19781, 5159, 4880
Rint 0.036 0.018 0.017
(sin θ/λ)max−1) 0.617 0.649 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.184, 1.11 0.027, 0.072, 1.04 0.029, 0.076, 1.02
No. of reflections 3490 6465 5159
No. of parameters 250 427 334
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.32, −0.63 0.40, −0.38 0.39, −0.42
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I) top
Crystal data top
C10H12N3S+·C6H4NO5SZ = 2
Mr = 408.45F(000) = 424
Triclinic, P1Dx = 1.528 Mg m3
a = 7.5308 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.9167 (7) ÅCell parameters from 6372 reflections
c = 12.4438 (8) Åθ = 2.8–30.4°
α = 66.058 (6)°µ = 0.34 mm1
β = 79.034 (5)°T = 100 K
γ = 72.156 (5)°Block, colourless
V = 887.47 (10) Å30.06 × 0.05 × 0.01 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3249 reflections with I > 2σ(I)
ω scansRint = 0.036
Absorption correction: multi-scan
(FS_ABSCOR; Rigaku, 2013)
θmax = 26.0°, θmin = 2.9°
Tmin = 0.614, Tmax = 1.000h = 97
11341 measured reflectionsk = 1313
3490 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1206P)2 + 0.8477P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3490 reflectionsΔρmax = 1.32 e Å3
250 parametersΔρmin = 0.63 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2281 (4)0.3162 (3)0.5033 (3)0.0203 (6)
C20.2122 (4)0.1899 (3)0.5087 (3)0.0228 (6)
H2A0.22840.11050.57980.027*
C30.1720 (4)0.1837 (3)0.4070 (3)0.0262 (7)
H30.16110.09860.40830.031*
C40.1472 (4)0.3006 (3)0.3030 (3)0.0248 (6)
H40.12040.29370.23440.030*
C50.1609 (4)0.4267 (3)0.2978 (3)0.0231 (6)
H50.14190.50650.22700.028*
C60.2032 (4)0.4330 (3)0.3988 (3)0.0191 (6)
C70.2606 (4)0.5238 (3)0.5207 (3)0.0187 (6)
C80.3338 (4)0.6563 (3)0.7133 (3)0.0228 (6)
C90.2989 (5)0.8099 (3)0.6481 (3)0.0276 (7)
H9A0.31220.85310.70040.041*
H9B0.38970.82930.57950.041*
H9C0.17190.84760.62170.041*
C100.3777 (5)0.6021 (4)0.8395 (3)0.0298 (7)
H10A0.37800.67930.86060.045*
H10B0.28270.55560.89060.045*
H10C0.50110.53590.84990.045*
N10.2209 (3)0.5486 (3)0.4133 (2)0.0190 (5)
H10.188 (5)0.633 (4)0.364 (3)0.023*
N20.2853 (3)0.6164 (3)0.5555 (2)0.0197 (5)
H20.272 (5)0.697 (4)0.509 (3)0.024*
N30.3282 (3)0.5676 (3)0.6723 (2)0.0221 (5)
S10.27708 (10)0.35384 (7)0.61732 (6)0.0196 (2)
C110.4451 (4)0.9109 (3)0.1794 (2)0.0183 (6)
C120.5278 (4)0.8235 (3)0.1184 (2)0.0195 (6)
H120.46020.76990.10670.023*
C130.7139 (4)0.8170 (3)0.0747 (3)0.0223 (6)
C140.8145 (4)0.8949 (3)0.0890 (3)0.0262 (7)
H140.94220.88610.06020.031*
C150.7274 (4)0.9858 (3)0.1455 (3)0.0259 (7)
H150.79381.04300.15290.031*
C160.5418 (4)0.9941 (3)0.1918 (3)0.0221 (6)
H160.48201.05600.23150.027*
S20.21789 (9)0.91074 (7)0.25157 (6)0.0184 (2)
N40.8044 (4)0.7214 (3)0.0138 (2)0.0302 (6)
O10.1647 (3)0.8018 (2)0.23498 (18)0.0222 (5)
O20.2432 (3)0.8753 (2)0.37542 (18)0.0238 (5)
O30.1002 (3)1.0479 (2)0.19792 (19)0.0255 (5)
O40.7054 (4)0.6912 (3)0.0342 (2)0.0360 (6)
O50.9750 (3)0.6763 (3)0.0148 (2)0.0432 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0162 (13)0.0222 (14)0.0203 (14)0.0039 (11)0.0017 (11)0.0077 (11)
C20.0213 (14)0.0197 (14)0.0270 (15)0.0063 (11)0.0015 (12)0.0089 (12)
C30.0203 (14)0.0263 (15)0.0358 (17)0.0088 (12)0.0037 (13)0.0158 (14)
C40.0183 (14)0.0342 (16)0.0259 (15)0.0076 (12)0.0028 (12)0.0164 (13)
C50.0171 (13)0.0290 (15)0.0204 (14)0.0085 (12)0.0039 (11)0.0069 (12)
C60.0122 (12)0.0201 (13)0.0227 (14)0.0056 (10)0.0048 (11)0.0073 (11)
C70.0099 (12)0.0218 (14)0.0226 (14)0.0058 (10)0.0047 (10)0.0078 (11)
C80.0135 (13)0.0302 (16)0.0254 (15)0.0100 (12)0.0056 (11)0.0107 (13)
C90.0294 (16)0.0281 (16)0.0300 (16)0.0103 (13)0.0003 (13)0.0140 (13)
C100.0295 (16)0.0390 (18)0.0248 (16)0.0160 (14)0.0026 (13)0.0125 (14)
N10.0162 (11)0.0178 (12)0.0196 (12)0.0062 (9)0.0028 (9)0.0042 (10)
N20.0188 (12)0.0178 (12)0.0214 (12)0.0070 (10)0.0009 (10)0.0056 (10)
N30.0178 (12)0.0264 (13)0.0220 (12)0.0088 (10)0.0023 (10)0.0084 (10)
S10.0197 (4)0.0179 (4)0.0193 (4)0.0062 (3)0.0008 (3)0.0044 (3)
C110.0153 (13)0.0199 (13)0.0170 (13)0.0062 (11)0.0021 (10)0.0026 (11)
C120.0202 (14)0.0197 (13)0.0168 (13)0.0071 (11)0.0021 (11)0.0034 (11)
C130.0201 (14)0.0241 (14)0.0174 (13)0.0032 (12)0.0003 (11)0.0045 (11)
C140.0156 (13)0.0353 (17)0.0207 (14)0.0068 (12)0.0018 (11)0.0029 (12)
C150.0177 (14)0.0363 (17)0.0250 (15)0.0141 (13)0.0015 (12)0.0077 (13)
C160.0217 (14)0.0231 (14)0.0213 (14)0.0066 (12)0.0024 (11)0.0071 (12)
S20.0147 (4)0.0195 (4)0.0200 (4)0.0077 (3)0.0015 (3)0.0051 (3)
N40.0333 (15)0.0265 (14)0.0196 (13)0.0047 (12)0.0065 (11)0.0033 (11)
O10.0214 (10)0.0224 (10)0.0223 (10)0.0098 (8)0.0013 (8)0.0049 (8)
O20.0250 (11)0.0247 (11)0.0221 (11)0.0119 (9)0.0029 (8)0.0071 (8)
O30.0174 (10)0.0240 (11)0.0305 (12)0.0078 (9)0.0016 (9)0.0052 (9)
O40.0485 (15)0.0343 (13)0.0270 (12)0.0169 (11)0.0107 (11)0.0144 (10)
O50.0280 (13)0.0419 (14)0.0406 (15)0.0041 (11)0.0079 (11)0.0105 (12)
Geometric parameters (Å, º) top
C1—C21.393 (4)C10—H10B0.9800
C1—C61.397 (4)C10—H10C0.9800
C1—S11.757 (3)N1—H10.86 (4)
C2—C31.388 (4)N2—N31.395 (3)
C2—H2A0.9500N2—H20.82 (4)
C3—C41.394 (5)C11—C121.386 (4)
C3—H30.9500C11—C161.393 (4)
C4—C51.387 (4)C11—S21.775 (3)
C4—H40.9500C12—C131.395 (4)
C5—C61.386 (4)C12—H120.9500
C5—H50.9500C13—C141.377 (5)
C6—N11.393 (4)C13—N41.462 (4)
C7—N21.321 (4)C14—C151.379 (5)
C7—N11.327 (4)C14—H140.9500
C7—S11.734 (3)C15—C161.398 (4)
C8—N31.278 (4)C15—H150.9500
C8—C91.499 (4)C16—H160.9500
C8—C101.500 (4)S2—O31.440 (2)
C9—H9A0.9800S2—O11.463 (2)
C9—H9B0.9800S2—O21.464 (2)
C9—H9C0.9800N4—O41.226 (4)
C10—H10A0.9800N4—O51.227 (4)
C2—C1—C6120.9 (3)C7—N1—C6114.0 (2)
C2—C1—S1127.7 (2)C7—N1—H1120 (2)
C6—C1—S1111.4 (2)C6—N1—H1125 (2)
C3—C2—C1117.9 (3)C7—N2—N3115.8 (2)
C3—C2—H2A121.0C7—N2—H2119 (2)
C1—C2—H2A121.0N3—N2—H2125 (2)
C2—C3—C4120.9 (3)C8—N3—N2117.8 (3)
C2—C3—H3119.6C7—S1—C189.17 (14)
C4—C3—H3119.6C12—C11—C16121.1 (3)
C5—C4—C3121.3 (3)C12—C11—S2120.3 (2)
C5—C4—H4119.4C16—C11—S2118.5 (2)
C3—C4—H4119.4C11—C12—C13117.6 (3)
C6—C5—C4118.0 (3)C11—C12—H12121.2
C6—C5—H5121.0C13—C12—H12121.2
C4—C5—H5121.0C14—C13—C12122.4 (3)
C5—C6—N1127.4 (3)C14—C13—N4119.5 (3)
C5—C6—C1120.9 (3)C12—C13—N4118.0 (3)
N1—C6—C1111.6 (3)C13—C14—C15119.1 (3)
N2—C7—N1125.2 (3)C13—C14—H14120.4
N2—C7—S1121.0 (2)C15—C14—H14120.4
N1—C7—S1113.8 (2)C14—C15—C16120.1 (3)
N3—C8—C9126.5 (3)C14—C15—H15119.9
N3—C8—C10117.1 (3)C16—C15—H15119.9
C9—C8—C10116.5 (3)C11—C16—C15119.5 (3)
C8—C9—H9A109.5C11—C16—H16120.3
C8—C9—H9B109.5C15—C16—H16120.3
H9A—C9—H9B109.5O3—S2—O1114.29 (12)
C8—C9—H9C109.5O3—S2—O2113.10 (13)
H9A—C9—H9C109.5O1—S2—O2111.73 (12)
H9B—C9—H9C109.5O3—S2—C11106.88 (13)
C8—C10—H10A109.5O1—S2—C11105.44 (13)
C8—C10—H10B109.5O2—S2—C11104.46 (12)
H10A—C10—H10B109.5O4—N4—O5124.4 (3)
C8—C10—H10C109.5O4—N4—C13118.1 (3)
H10A—C10—H10C109.5O5—N4—C13117.5 (3)
H10B—C10—H10C109.5
C6—C1—C2—C30.4 (4)C2—C1—S1—C7179.2 (3)
S1—C1—C2—C3179.9 (2)C6—C1—S1—C70.4 (2)
C1—C2—C3—C40.4 (4)C16—C11—C12—C133.0 (4)
C2—C3—C4—C50.3 (4)S2—C11—C12—C13173.0 (2)
C3—C4—C5—C61.0 (4)C11—C12—C13—C140.9 (4)
C4—C5—C6—N1179.0 (3)C11—C12—C13—N4177.9 (2)
C4—C5—C6—C11.0 (4)C12—C13—C14—C151.9 (4)
C2—C1—C6—C50.4 (4)N4—C13—C14—C15179.3 (3)
S1—C1—C6—C5179.2 (2)C13—C14—C15—C162.6 (4)
C2—C1—C6—N1178.6 (2)C12—C11—C16—C152.2 (4)
S1—C1—C6—N10.9 (3)S2—C11—C16—C15173.8 (2)
N2—C7—N1—C6179.5 (2)C14—C15—C16—C110.6 (4)
S1—C7—N1—C60.9 (3)C12—C11—S2—O3118.7 (2)
C5—C6—N1—C7179.3 (3)C16—C11—S2—O365.2 (2)
C1—C6—N1—C71.2 (3)C12—C11—S2—O13.3 (3)
N1—C7—N2—N3179.3 (2)C16—C11—S2—O1172.8 (2)
S1—C7—N2—N31.2 (3)C12—C11—S2—O2121.2 (2)
C9—C8—N3—N20.1 (4)C16—C11—S2—O254.9 (2)
C10—C8—N3—N2179.2 (2)C14—C13—N4—O4154.8 (3)
C7—N2—N3—C8172.8 (2)C12—C13—N4—O426.4 (4)
N2—C7—S1—C1179.9 (2)C14—C13—N4—O525.7 (4)
N1—C7—S1—C10.3 (2)C12—C13—N4—O5153.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (4)1.87 (4)2.721 (3)167 (3)
N2—H2···O20.82 (4)1.96 (4)2.773 (3)169 (3)
C3—H3···O2i0.952.513.415 (4)160
C4—H4···O4ii0.952.553.292 (4)135
C10—H10B···O4iii0.982.543.297 (5)134
C15—H15···O3iv0.952.503.315 (4)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II) top
Crystal data top
C13H10N4O4S2Z = 4
Mr = 350.37F(000) = 720
Triclinic, P1Dx = 1.639 Mg m3
a = 6.83537 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5788 (3) ÅCell parameters from 18994 reflections
c = 15.6907 (4) Åθ = 2.7–27.5°
α = 99.382 (2)°µ = 0.40 mm1
β = 98.2324 (19)°T = 100 K
γ = 91.9841 (19)°Plate, yellow
V = 1419.55 (6) Å30.15 × 0.10 × 0.03 mm
Data collection top
Rigaku Mercury CCD
diffractometer
6033 reflections with I > 2σ(I)
ω scansRint = 0.018
Absorption correction: multi-scan
(FS_ABSCOR; Rigaku, 2013)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.861, Tmax = 1.000h = 87
24032 measured reflectionsk = 1717
6465 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.771P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6465 reflectionsΔρmax = 0.40 e Å3
427 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43539 (18)0.33184 (9)0.47102 (8)0.0141 (2)
C20.55062 (19)0.27184 (10)0.51978 (8)0.0169 (2)
H3A0.61900.21930.49150.020*
C30.5642 (2)0.28988 (10)0.61023 (9)0.0202 (3)
H3B0.64350.24970.64390.024*
C40.4627 (2)0.36625 (11)0.65225 (9)0.0210 (3)
H40.47510.37790.71420.025*
C50.3439 (2)0.42538 (10)0.60476 (8)0.0185 (3)
H50.27330.47670.63330.022*
C60.33125 (18)0.40728 (9)0.51429 (8)0.0149 (2)
C70.28467 (18)0.38771 (9)0.35588 (8)0.0139 (2)
C80.12349 (18)0.31751 (9)0.11243 (8)0.0140 (2)
C90.13679 (18)0.36196 (9)0.03836 (8)0.0147 (2)
H90.15210.43170.04150.018*
C100.12680 (18)0.30065 (9)0.04025 (8)0.0151 (2)
C110.10555 (19)0.19861 (10)0.04774 (9)0.0177 (3)
H110.10020.15860.10290.021*
C120.09235 (19)0.15654 (10)0.02733 (9)0.0177 (3)
H120.07720.08680.02380.021*
C130.10106 (18)0.21541 (9)0.10793 (8)0.0161 (2)
H130.09180.18620.15930.019*
S10.19123 (5)0.46708 (2)0.43815 (2)0.01478 (7)
S20.14385 (4)0.39379 (2)0.21312 (2)0.01401 (7)
N10.40625 (15)0.32218 (8)0.38016 (7)0.0139 (2)
N20.23064 (17)0.39617 (9)0.27112 (7)0.0172 (2)
H20.284 (3)0.3656 (13)0.2323 (11)0.021*
N30.07391 (16)0.45532 (8)0.25127 (7)0.0156 (2)
H30.101 (2)0.4983 (13)0.2204 (11)0.019*
N40.14030 (17)0.34643 (8)0.11915 (7)0.0180 (2)
O10.27389 (14)0.47084 (7)0.19593 (6)0.01904 (19)
O20.17746 (14)0.32943 (7)0.27375 (6)0.01830 (19)
O30.15792 (16)0.43763 (7)0.11068 (6)0.0248 (2)
O40.13227 (18)0.29368 (8)0.18884 (6)0.0306 (2)
C140.38706 (17)0.27186 (9)0.04845 (8)0.0135 (2)
C150.37430 (18)0.35578 (10)0.00746 (8)0.0162 (2)
H150.37340.42080.04070.019*
C160.36290 (19)0.34242 (10)0.08280 (9)0.0188 (3)
H160.35500.39900.11140.023*
C170.3629 (2)0.24711 (10)0.13217 (9)0.0203 (3)
H170.35350.23980.19390.024*
C180.3765 (2)0.16275 (10)0.09252 (8)0.0183 (3)
H180.37660.09790.12610.022*
C190.38981 (18)0.17643 (9)0.00197 (8)0.0146 (2)
C200.40680 (18)0.18334 (9)0.15515 (8)0.0139 (2)
C210.15315 (19)0.07929 (9)0.36629 (8)0.0163 (2)
C220.22077 (19)0.04559 (10)0.44344 (8)0.0165 (2)
H220.29670.01170.44380.020*
C230.17295 (19)0.09898 (10)0.51990 (8)0.0175 (3)
C240.0642 (2)0.18347 (10)0.52236 (9)0.0205 (3)
H240.03480.21850.57610.025*
C250.0005 (2)0.21522 (10)0.44401 (10)0.0211 (3)
H250.07470.27310.44390.025*
C260.0421 (2)0.16336 (10)0.36575 (9)0.0190 (3)
H260.00420.18500.31220.023*
S30.40564 (5)0.08651 (2)0.06631 (2)0.01512 (7)
S40.21030 (5)0.01172 (2)0.26734 (2)0.01740 (8)
N50.39616 (15)0.27357 (8)0.13792 (7)0.0136 (2)
N60.41743 (18)0.16301 (8)0.23735 (7)0.0184 (2)
H60.430 (2)0.2085 (13)0.2795 (12)0.022*
N70.42029 (17)0.06345 (8)0.24827 (7)0.0170 (2)
H70.520 (3)0.0496 (12)0.2847 (11)0.020*
N80.23973 (17)0.06263 (9)0.60183 (7)0.0205 (2)
O50.26067 (17)0.08604 (7)0.28157 (6)0.0248 (2)
O60.05911 (15)0.02700 (8)0.19880 (6)0.0242 (2)
O70.32765 (15)0.01577 (8)0.59683 (7)0.0260 (2)
O80.20339 (17)0.10970 (9)0.67020 (7)0.0312 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0141 (6)0.0152 (6)0.0123 (6)0.0026 (4)0.0022 (4)0.0005 (4)
C20.0156 (6)0.0167 (6)0.0180 (6)0.0007 (5)0.0022 (5)0.0023 (5)
C30.0207 (6)0.0218 (7)0.0186 (6)0.0001 (5)0.0000 (5)0.0076 (5)
C40.0248 (7)0.0256 (7)0.0121 (6)0.0011 (5)0.0017 (5)0.0035 (5)
C50.0211 (6)0.0208 (6)0.0131 (6)0.0011 (5)0.0044 (5)0.0002 (5)
C60.0143 (6)0.0166 (6)0.0132 (6)0.0002 (4)0.0011 (4)0.0019 (5)
C70.0145 (6)0.0142 (6)0.0124 (6)0.0014 (4)0.0039 (4)0.0006 (4)
C80.0135 (5)0.0154 (6)0.0120 (6)0.0018 (4)0.0007 (4)0.0005 (4)
C90.0150 (6)0.0146 (6)0.0139 (6)0.0004 (4)0.0014 (4)0.0016 (5)
C100.0142 (6)0.0177 (6)0.0130 (6)0.0006 (4)0.0008 (4)0.0025 (5)
C110.0160 (6)0.0173 (6)0.0175 (6)0.0001 (5)0.0012 (5)0.0028 (5)
C120.0177 (6)0.0131 (6)0.0211 (6)0.0012 (5)0.0006 (5)0.0011 (5)
C130.0152 (6)0.0164 (6)0.0166 (6)0.0012 (5)0.0001 (5)0.0043 (5)
S10.01749 (15)0.01571 (15)0.01076 (14)0.00315 (11)0.00279 (11)0.00015 (11)
S20.01745 (15)0.01462 (14)0.01033 (14)0.00364 (11)0.00230 (11)0.00244 (11)
N10.0147 (5)0.0151 (5)0.0114 (5)0.0002 (4)0.0026 (4)0.0005 (4)
N20.0186 (5)0.0224 (6)0.0106 (5)0.0069 (4)0.0035 (4)0.0004 (4)
N30.0193 (5)0.0144 (5)0.0130 (5)0.0019 (4)0.0015 (4)0.0030 (4)
N40.0196 (5)0.0212 (6)0.0126 (5)0.0015 (4)0.0015 (4)0.0017 (4)
O10.0238 (5)0.0196 (5)0.0145 (4)0.0093 (4)0.0029 (4)0.0032 (4)
O20.0222 (5)0.0197 (5)0.0144 (4)0.0023 (4)0.0039 (4)0.0057 (4)
O30.0390 (6)0.0192 (5)0.0181 (5)0.0015 (4)0.0069 (4)0.0060 (4)
O40.0487 (7)0.0290 (6)0.0116 (5)0.0004 (5)0.0035 (4)0.0022 (4)
C140.0113 (5)0.0162 (6)0.0131 (6)0.0016 (4)0.0024 (4)0.0018 (5)
C150.0151 (6)0.0158 (6)0.0176 (6)0.0016 (4)0.0020 (5)0.0033 (5)
C160.0187 (6)0.0206 (6)0.0186 (6)0.0025 (5)0.0018 (5)0.0087 (5)
C170.0223 (7)0.0265 (7)0.0126 (6)0.0026 (5)0.0014 (5)0.0050 (5)
C180.0226 (6)0.0187 (6)0.0136 (6)0.0038 (5)0.0031 (5)0.0015 (5)
C190.0152 (6)0.0151 (6)0.0138 (6)0.0025 (4)0.0019 (4)0.0036 (5)
C200.0145 (6)0.0146 (6)0.0121 (6)0.0007 (4)0.0030 (4)0.0003 (4)
C210.0192 (6)0.0151 (6)0.0147 (6)0.0028 (5)0.0037 (5)0.0025 (5)
C220.0169 (6)0.0154 (6)0.0174 (6)0.0023 (5)0.0026 (5)0.0040 (5)
C230.0175 (6)0.0196 (6)0.0156 (6)0.0048 (5)0.0026 (5)0.0042 (5)
C240.0202 (6)0.0195 (6)0.0218 (7)0.0041 (5)0.0082 (5)0.0000 (5)
C250.0202 (6)0.0161 (6)0.0290 (7)0.0001 (5)0.0080 (5)0.0058 (5)
C260.0197 (6)0.0175 (6)0.0212 (7)0.0008 (5)0.0035 (5)0.0078 (5)
S30.02245 (16)0.01240 (14)0.01072 (14)0.00307 (11)0.00390 (11)0.00095 (11)
S40.02582 (17)0.01316 (15)0.01286 (15)0.00091 (12)0.00193 (12)0.00245 (11)
N50.0158 (5)0.0131 (5)0.0118 (5)0.0008 (4)0.0029 (4)0.0009 (4)
N60.0332 (6)0.0112 (5)0.0108 (5)0.0002 (4)0.0048 (4)0.0009 (4)
N70.0238 (6)0.0146 (5)0.0135 (5)0.0035 (4)0.0034 (4)0.0039 (4)
N80.0198 (5)0.0257 (6)0.0152 (5)0.0052 (5)0.0021 (4)0.0030 (4)
O50.0423 (6)0.0128 (4)0.0197 (5)0.0008 (4)0.0056 (4)0.0035 (4)
O60.0283 (5)0.0252 (5)0.0171 (5)0.0024 (4)0.0020 (4)0.0038 (4)
O70.0274 (5)0.0324 (6)0.0192 (5)0.0041 (4)0.0015 (4)0.0090 (4)
O80.0406 (6)0.0368 (6)0.0148 (5)0.0036 (5)0.0069 (4)0.0009 (4)
Geometric parameters (Å, º) top
C1—C21.3944 (18)C14—N51.3927 (16)
C1—N11.3947 (16)C14—C151.3963 (17)
C1—C61.4068 (17)C14—C191.4061 (17)
C2—C31.3894 (19)C15—C161.3887 (18)
C2—H3A0.9500C15—H150.9500
C3—C41.396 (2)C16—C171.3958 (19)
C3—H3B0.9500C16—H160.9500
C4—C51.3877 (19)C17—C181.3895 (19)
C4—H40.9500C17—H170.9500
C5—C61.3902 (17)C18—C191.3918 (18)
C5—H50.9500C18—H180.9500
C6—S11.7450 (13)C19—S31.7473 (13)
C7—N11.3033 (16)C20—N51.2992 (16)
C7—N21.3529 (16)C20—N61.3549 (16)
C7—S11.7511 (12)C20—S31.7522 (12)
C8—C91.3876 (17)C21—C221.3869 (18)
C8—C131.3917 (17)C21—C261.3934 (18)
C8—S21.7685 (12)C21—S41.7717 (13)
C9—C101.3829 (17)C22—C231.3846 (18)
C9—H90.9500C22—H220.9500
C10—C111.3858 (18)C23—C241.3868 (19)
C10—N41.4661 (16)C23—N81.4693 (17)
C11—C121.3837 (19)C24—C251.387 (2)
C11—H110.9500C24—H240.9500
C12—C131.3918 (18)C25—C261.387 (2)
C12—H120.9500C25—H250.9500
C13—H130.9500C26—H260.9500
S2—O21.4287 (9)S4—O51.4271 (10)
S2—O11.4301 (9)S4—O61.4272 (10)
S2—N31.6636 (11)S4—N71.6628 (12)
N2—N31.3912 (15)N6—N71.3906 (15)
N2—H20.816 (18)N6—H60.820 (18)
N3—H30.848 (17)N7—H70.871 (17)
N4—O41.2150 (15)N8—O81.2186 (16)
N4—O31.2358 (15)N8—O71.2374 (16)
C2—C1—N1125.63 (11)N5—C14—C15125.14 (11)
C2—C1—C6119.30 (11)N5—C14—C19115.21 (11)
N1—C1—C6115.02 (11)C15—C14—C19119.65 (11)
C3—C2—C1119.12 (12)C16—C15—C14118.75 (12)
C3—C2—H3A120.4C16—C15—H15120.6
C1—C2—H3A120.4C14—C15—H15120.6
C2—C3—C4120.83 (12)C15—C16—C17120.99 (12)
C2—C3—H3B119.6C15—C16—H16119.5
C4—C3—H3B119.6C17—C16—H16119.5
C5—C4—C3120.91 (12)C18—C17—C16121.09 (12)
C5—C4—H4119.5C18—C17—H17119.5
C3—C4—H4119.5C16—C17—H17119.5
C4—C5—C6118.08 (12)C17—C18—C19117.81 (12)
C4—C5—H5121.0C17—C18—H18121.1
C6—C5—H5121.0C19—C18—H18121.1
C5—C6—C1121.74 (12)C18—C19—C14121.70 (12)
C5—C6—S1128.32 (10)C18—C19—S3128.77 (10)
C1—C6—S1109.93 (9)C14—C19—S3109.51 (9)
N1—C7—N2122.68 (11)N5—C20—N6122.64 (11)
N1—C7—S1117.31 (9)N5—C20—S3116.93 (9)
N2—C7—S1120.01 (10)N6—C20—S3120.43 (9)
C9—C8—C13121.44 (11)C22—C21—C26121.43 (12)
C9—C8—S2118.05 (9)C22—C21—S4118.12 (10)
C13—C8—S2120.47 (10)C26—C21—S4120.45 (10)
C10—C9—C8117.29 (11)C23—C22—C21117.16 (12)
C10—C9—H9121.4C23—C22—H22121.4
C8—C9—H9121.4C21—C22—H22121.4
C9—C10—C11123.15 (12)C22—C23—C24123.27 (12)
C9—C10—N4118.01 (11)C22—C23—N8117.66 (12)
C11—C10—N4118.84 (11)C24—C23—N8119.07 (12)
C12—C11—C10118.18 (12)C25—C24—C23118.01 (13)
C12—C11—H11120.9C25—C24—H24121.0
C10—C11—H11120.9C23—C24—H24121.0
C11—C12—C13120.65 (12)C26—C25—C24120.68 (13)
C11—C12—H12119.7C26—C25—H25119.7
C13—C12—H12119.7C24—C25—H25119.7
C8—C13—C12119.28 (12)C25—C26—C21119.45 (12)
C8—C13—H13120.4C25—C26—H26120.3
C12—C13—H13120.4C21—C26—H26120.3
C6—S1—C788.04 (6)C19—S3—C2088.30 (6)
O2—S2—O1121.70 (6)O5—S4—O6121.88 (6)
O2—S2—N3106.58 (6)O5—S4—N7103.87 (6)
O1—S2—N3103.87 (6)O6—S4—N7106.93 (6)
O2—S2—C8107.73 (6)O5—S4—C21108.35 (6)
O1—S2—C8108.20 (6)O6—S4—C21107.54 (6)
N3—S2—C8108.09 (6)N7—S4—C21107.49 (6)
C7—N1—C1109.69 (10)C20—N5—C14110.05 (10)
C7—N2—N3117.74 (11)C20—N6—N7118.05 (11)
C7—N2—H2121.7 (12)C20—N6—H6120.6 (12)
N3—N2—H2120.5 (12)N7—N6—H6121.2 (12)
N2—N3—S2115.55 (9)N6—N7—S4116.35 (9)
N2—N3—H3113.4 (11)N6—N7—H7114.9 (11)
S2—N3—H3112.1 (11)S4—N7—H7110.4 (11)
O4—N4—O3123.45 (12)O8—N8—O7123.72 (12)
O4—N4—C10118.93 (11)O8—N8—C23118.84 (12)
O3—N4—C10117.61 (10)O7—N8—C23117.43 (11)
N1—C1—C2—C3179.34 (12)N5—C14—C15—C16178.92 (12)
C6—C1—C2—C31.78 (18)C19—C14—C15—C160.54 (18)
C1—C2—C3—C40.6 (2)C14—C15—C16—C170.38 (19)
C2—C3—C4—C50.7 (2)C15—C16—C17—C180.7 (2)
C3—C4—C5—C60.9 (2)C16—C17—C18—C190.1 (2)
C4—C5—C6—C10.28 (19)C17—C18—C19—C140.88 (19)
C4—C5—C6—S1178.53 (10)C17—C18—C19—S3179.20 (10)
C2—C1—C6—C51.64 (19)N5—C14—C19—C18178.32 (11)
N1—C1—C6—C5179.45 (11)C15—C14—C19—C181.20 (19)
C2—C1—C6—S1177.37 (10)N5—C14—C19—S30.30 (14)
N1—C1—C6—S10.44 (14)C15—C14—C19—S3179.81 (9)
C13—C8—C9—C100.02 (18)C26—C21—C22—C230.08 (19)
S2—C8—C9—C10178.02 (9)S4—C21—C22—C23179.45 (9)
C8—C9—C10—C110.36 (19)C21—C22—C23—C240.62 (19)
C8—C9—C10—N4179.90 (11)C21—C22—C23—N8178.59 (11)
C9—C10—C11—C120.48 (19)C22—C23—C24—C250.4 (2)
N4—C10—C11—C12179.79 (11)N8—C23—C24—C25178.77 (11)
C10—C11—C12—C130.25 (19)C23—C24—C25—C260.3 (2)
C9—C8—C13—C120.19 (19)C24—C25—C26—C210.8 (2)
S2—C8—C13—C12177.77 (10)C22—C21—C26—C250.63 (19)
C11—C12—C13—C80.07 (19)S4—C21—C26—C25179.85 (10)
C5—C6—S1—C7179.42 (13)C18—C19—S3—C20178.41 (13)
C1—C6—S1—C70.50 (9)C14—C19—S3—C200.08 (9)
N1—C7—S1—C60.52 (10)N5—C20—S3—C190.17 (10)
N2—C7—S1—C6179.24 (11)N6—C20—S3—C19179.86 (11)
C9—C8—S2—O2165.20 (10)C22—C21—S4—O519.55 (12)
C13—C8—S2—O212.82 (12)C26—C21—S4—O5159.98 (11)
C9—C8—S2—O131.90 (12)C22—C21—S4—O6153.05 (10)
C13—C8—S2—O1146.12 (10)C26—C21—S4—O626.48 (12)
C9—C8—S2—N379.99 (11)C22—C21—S4—N792.13 (11)
C13—C8—S2—N3101.99 (11)C26—C21—S4—N788.34 (11)
N2—C7—N1—C1179.39 (11)N6—C20—N5—C14179.96 (12)
S1—C7—N1—C10.35 (13)S3—C20—N5—C140.36 (14)
C2—C1—N1—C7177.58 (12)C15—C14—N5—C20179.91 (12)
C6—C1—N1—C70.07 (15)C19—C14—N5—C200.42 (15)
N1—C7—N2—N3168.50 (11)N5—C20—N6—N7177.46 (11)
S1—C7—N2—N311.75 (16)S3—C20—N6—N72.20 (17)
C7—N2—N3—S299.88 (12)C20—N6—N7—S4103.52 (12)
O2—S2—N3—N252.10 (10)O5—S4—N7—N6176.11 (9)
O1—S2—N3—N2178.24 (9)O6—S4—N7—N653.82 (10)
C8—S2—N3—N263.47 (10)C21—S4—N7—N661.41 (10)
C9—C10—N4—O4179.83 (12)C22—C23—N8—O8178.31 (12)
C11—C10—N4—O40.08 (18)C24—C23—N8—O82.44 (18)
C9—C10—N4—O30.70 (17)C22—C23—N8—O72.85 (17)
C11—C10—N4—O3179.55 (12)C24—C23—N8—O7176.39 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N50.816 (18)2.033 (18)2.8447 (15)172.7 (16)
N3—H3···O3i0.848 (17)2.129 (18)2.9427 (15)160.8 (15)
N6—H6···N10.820 (18)2.050 (18)2.8601 (15)169.2 (17)
N7—H7···O7ii0.871 (17)2.123 (18)2.9472 (15)157.6 (15)
C15—H15···O3i0.952.653.4888 (17)147
C26—H26···O20.952.443.1774 (16)134
C5—H5···O1iii0.952.663.3218 (16)127
C13—H13···O60.952.563.2731 (16)133
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III) top
Crystal data top
C13H11N4O4S2+·C6H4NO5SZ = 2
Mr = 553.54F(000) = 568
Triclinic, P1Dx = 1.625 Mg m3
a = 10.0399 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7585 (4) ÅCell parameters from 14254 reflections
c = 11.3372 (6) Åθ = 2.0–27.5°
α = 85.607 (4)°µ = 0.39 mm1
β = 71.369 (5)°T = 100 K
γ = 77.115 (4)°Plate, colourless
V = 1131.16 (10) Å30.23 × 0.18 × 0.04 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4880 reflections with I > 2σ(I)
ω scansRint = 0.017
Absorption correction: multi-scan
(FS_ABSCOR; Rigaku, 2013)
θmax = 27.6°, θmin = 2.2°
Tmin = 0.879, Tmax = 1.000h = 1311
19781 measured reflectionsk = 1413
5159 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.8265P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
5159 reflectionsΔρmax = 0.39 e Å3
334 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.07390 (14)0.16015 (12)0.12063 (12)0.0159 (3)
C21.21341 (15)0.10073 (13)0.18674 (14)0.0198 (3)
H2A1.29300.13800.19400.024*
C31.23134 (15)0.01528 (13)0.24169 (14)0.0211 (3)
H3A1.32520.05810.28780.025*
C41.11437 (15)0.07065 (13)0.23068 (13)0.0197 (3)
H41.13040.15050.26890.024*
C50.97546 (15)0.01107 (13)0.16489 (13)0.0177 (3)
H50.89580.04840.15740.021*
C60.95732 (14)0.10512 (12)0.11042 (12)0.0151 (2)
C70.84167 (14)0.28675 (12)0.00034 (12)0.0151 (2)
C80.55707 (14)0.47110 (13)0.32289 (12)0.0167 (3)
C90.53199 (16)0.36315 (14)0.39425 (13)0.0211 (3)
H90.60990.30040.40590.025*
C100.39098 (18)0.34797 (15)0.44861 (14)0.0269 (3)
H100.37250.27480.49830.032*
C110.27802 (17)0.43861 (17)0.43063 (14)0.0285 (3)
H110.18160.42890.46790.034*
C120.30799 (16)0.54390 (16)0.35725 (13)0.0255 (3)
C130.44587 (15)0.56403 (14)0.30272 (13)0.0209 (3)
H130.46370.63780.25380.025*
S11.01665 (3)0.30546 (3)0.04133 (3)0.01753 (8)
S20.73513 (3)0.49153 (3)0.25131 (3)0.01507 (8)
N10.82742 (12)0.17982 (11)0.04048 (10)0.0154 (2)
H10.746 (2)0.1638 (16)0.0270 (16)0.018*
N20.73035 (13)0.37297 (11)0.06510 (11)0.0176 (2)
H20.646 (2)0.3709 (17)0.0737 (16)0.021*
N30.76169 (12)0.48236 (11)0.09996 (11)0.0166 (2)
H30.7208 (19)0.5525 (17)0.0710 (16)0.020*
N40.18823 (15)0.63839 (18)0.33454 (13)0.0396 (4)
O10.82921 (11)0.38488 (9)0.28530 (10)0.0220 (2)
O20.74518 (11)0.61876 (9)0.26804 (9)0.0195 (2)
O30.21622 (15)0.73477 (17)0.27552 (14)0.0584 (5)
O40.06728 (14)0.61654 (19)0.37558 (15)0.0589 (5)
C140.31611 (14)0.18627 (13)0.18875 (13)0.0164 (3)
C150.36568 (15)0.07109 (13)0.23976 (13)0.0197 (3)
H150.45700.01920.19980.024*
C160.27603 (16)0.03482 (14)0.35187 (14)0.0218 (3)
C170.14253 (15)0.10749 (14)0.41347 (13)0.0219 (3)
H170.08490.07990.49070.026*
C180.09530 (15)0.22141 (14)0.35952 (14)0.0212 (3)
H180.00360.27270.39950.025*
C190.18114 (15)0.26111 (13)0.24729 (13)0.0194 (3)
H190.14800.33920.21030.023*
S30.42650 (3)0.24195 (3)0.04827 (3)0.01634 (8)
N50.32639 (15)0.08700 (13)0.40760 (13)0.0315 (3)
O50.45472 (11)0.36044 (9)0.08076 (10)0.0225 (2)
O60.55538 (10)0.14188 (9)0.00769 (9)0.0200 (2)
O70.34166 (11)0.26546 (10)0.03675 (10)0.0224 (2)
O80.23692 (14)0.13450 (12)0.48774 (11)0.0393 (3)
O90.45499 (14)0.13511 (13)0.37160 (14)0.0493 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (6)0.0135 (6)0.0176 (6)0.0045 (5)0.0045 (5)0.0013 (5)
C20.0157 (6)0.0183 (6)0.0247 (7)0.0044 (5)0.0044 (5)0.0016 (5)
C30.0179 (7)0.0176 (6)0.0247 (7)0.0003 (5)0.0041 (5)0.0034 (5)
C40.0241 (7)0.0141 (6)0.0214 (7)0.0027 (5)0.0081 (5)0.0031 (5)
C50.0202 (6)0.0163 (6)0.0195 (6)0.0065 (5)0.0082 (5)0.0002 (5)
C60.0149 (6)0.0156 (6)0.0149 (6)0.0037 (5)0.0048 (5)0.0008 (5)
C70.0146 (6)0.0172 (6)0.0142 (6)0.0054 (5)0.0040 (5)0.0006 (5)
C80.0162 (6)0.0195 (6)0.0141 (6)0.0047 (5)0.0032 (5)0.0019 (5)
C90.0269 (7)0.0191 (7)0.0171 (6)0.0079 (5)0.0041 (5)0.0012 (5)
C100.0321 (8)0.0294 (8)0.0193 (7)0.0163 (6)0.0011 (6)0.0025 (6)
C110.0225 (7)0.0459 (9)0.0186 (7)0.0158 (7)0.0005 (6)0.0091 (6)
C120.0178 (7)0.0423 (9)0.0155 (6)0.0017 (6)0.0056 (5)0.0059 (6)
C130.0193 (7)0.0270 (7)0.0143 (6)0.0020 (5)0.0042 (5)0.0004 (5)
S10.01279 (15)0.01565 (15)0.02306 (17)0.00532 (12)0.00137 (12)0.00507 (12)
S20.01461 (15)0.01342 (15)0.01680 (16)0.00269 (11)0.00443 (12)0.00064 (11)
N10.0128 (5)0.0175 (5)0.0167 (5)0.0055 (4)0.0039 (4)0.0018 (4)
N20.0124 (5)0.0190 (6)0.0214 (6)0.0053 (4)0.0025 (4)0.0063 (4)
N30.0174 (5)0.0146 (5)0.0174 (5)0.0046 (4)0.0036 (4)0.0021 (4)
N40.0208 (7)0.0723 (12)0.0192 (7)0.0057 (7)0.0070 (5)0.0037 (7)
O10.0195 (5)0.0190 (5)0.0278 (5)0.0004 (4)0.0105 (4)0.0006 (4)
O20.0224 (5)0.0160 (5)0.0196 (5)0.0059 (4)0.0044 (4)0.0021 (4)
O30.0337 (7)0.0828 (12)0.0411 (8)0.0156 (7)0.0114 (6)0.0212 (8)
O40.0166 (6)0.1043 (14)0.0500 (9)0.0015 (7)0.0084 (6)0.0081 (9)
C140.0150 (6)0.0186 (6)0.0185 (6)0.0065 (5)0.0071 (5)0.0009 (5)
C150.0154 (6)0.0201 (7)0.0225 (7)0.0030 (5)0.0053 (5)0.0020 (5)
C160.0209 (7)0.0207 (7)0.0222 (7)0.0030 (5)0.0066 (5)0.0050 (5)
C170.0199 (7)0.0261 (7)0.0187 (7)0.0061 (6)0.0037 (5)0.0005 (5)
C180.0161 (6)0.0239 (7)0.0228 (7)0.0015 (5)0.0056 (5)0.0054 (5)
C190.0197 (7)0.0174 (6)0.0233 (7)0.0034 (5)0.0099 (5)0.0010 (5)
S30.01426 (15)0.01613 (16)0.02054 (17)0.00592 (12)0.00693 (12)0.00324 (12)
N50.0284 (7)0.0281 (7)0.0269 (7)0.0010 (5)0.0006 (5)0.0102 (5)
O50.0195 (5)0.0176 (5)0.0322 (6)0.0076 (4)0.0083 (4)0.0000 (4)
O60.0152 (5)0.0189 (5)0.0253 (5)0.0058 (4)0.0043 (4)0.0014 (4)
O70.0230 (5)0.0253 (5)0.0236 (5)0.0090 (4)0.0126 (4)0.0066 (4)
O80.0388 (7)0.0325 (6)0.0298 (6)0.0029 (5)0.0058 (5)0.0143 (5)
O90.0287 (7)0.0444 (8)0.0511 (8)0.0100 (6)0.0022 (6)0.0252 (6)
Geometric parameters (Å, º) top
C1—C21.3913 (19)S2—O21.4260 (10)
C1—C61.3950 (18)S2—O11.4279 (10)
C1—S11.7513 (13)S2—N31.6574 (12)
C2—C31.3876 (19)N1—H10.841 (19)
C2—H2A0.9500N2—N31.3985 (16)
C3—C41.399 (2)N2—H20.826 (19)
C3—H3A0.9500N3—H30.869 (18)
C4—C51.386 (2)N4—O41.223 (2)
C4—H40.9500N4—O31.227 (2)
C5—C61.3863 (18)C14—C151.3844 (19)
C5—H50.9500C14—C191.3949 (19)
C6—N11.3946 (17)C14—S31.7736 (14)
C7—N11.3215 (17)C15—C161.3884 (19)
C7—N21.3317 (17)C15—H150.9500
C7—S11.7218 (13)C16—C171.383 (2)
C8—C91.3867 (19)C16—N51.4677 (18)
C8—C131.3887 (19)C17—C181.383 (2)
C8—S21.7674 (14)C17—H170.9500
C9—C101.393 (2)C18—C191.387 (2)
C9—H90.9500C18—H180.9500
C10—C111.379 (2)C19—H190.9500
C10—H100.9500S3—O71.4526 (10)
C11—C121.383 (2)S3—O61.4558 (10)
C11—H110.9500S3—O51.4630 (10)
C12—C131.383 (2)N5—O91.2244 (18)
C12—N41.469 (2)N5—O81.2270 (17)
C13—H130.9500
C2—C1—C6121.20 (12)O2—S2—C8110.40 (6)
C2—C1—S1128.05 (10)O1—S2—C8107.66 (6)
C6—C1—S1110.75 (10)N3—S2—C8104.82 (6)
C3—C2—C1117.18 (13)C7—N1—C6113.48 (11)
C3—C2—H2A121.4C7—N1—H1120.7 (12)
C1—C2—H2A121.4C6—N1—H1125.7 (12)
C2—C3—C4121.52 (13)C7—N2—N3116.58 (11)
C2—C3—H3A119.2C7—N2—H2123.0 (12)
C4—C3—H3A119.2N3—N2—H2119.4 (12)
C5—C4—C3121.15 (13)N2—N3—S2114.02 (9)
C5—C4—H4119.4N2—N3—H3113.4 (12)
C3—C4—H4119.4S2—N3—H3111.7 (12)
C6—C5—C4117.39 (12)O4—N4—O3124.11 (16)
C6—C5—H5121.3O4—N4—C12118.27 (17)
C4—C5—H5121.3O3—N4—C12117.62 (15)
C5—C6—N1126.36 (12)C15—C14—C19121.07 (13)
C5—C6—C1121.56 (12)C15—C14—S3119.86 (11)
N1—C6—C1112.08 (12)C19—C14—S3119.06 (10)
N1—C7—N2122.94 (12)C14—C15—C16117.05 (13)
N1—C7—S1114.10 (10)C14—C15—H15121.5
N2—C7—S1122.96 (10)C16—C15—H15121.5
C9—C8—C13121.98 (13)C17—C16—C15123.45 (13)
C9—C8—S2119.96 (11)C17—C16—N5118.58 (13)
C13—C8—S2118.04 (11)C15—C16—N5117.97 (13)
C8—C9—C10119.11 (14)C18—C17—C16118.15 (13)
C8—C9—H9120.4C18—C17—H17120.9
C10—C9—H9120.4C16—C17—H17120.9
C11—C10—C9120.37 (14)C17—C18—C19120.32 (13)
C11—C10—H10119.8C17—C18—H18119.8
C9—C10—H10119.8C19—C18—H18119.8
C10—C11—C12118.62 (14)C18—C19—C14119.95 (13)
C10—C11—H11120.7C18—C19—H19120.0
C12—C11—H11120.7C14—C19—H19120.0
C13—C12—C11123.14 (15)O7—S3—O6113.88 (6)
C13—C12—N4118.14 (15)O7—S3—O5111.37 (6)
C11—C12—N4118.71 (14)O6—S3—O5113.23 (6)
C12—C13—C8116.76 (14)O7—S3—C14105.96 (6)
C12—C13—H13121.6O6—S3—C14106.14 (6)
C8—C13—H13121.6O5—S3—C14105.46 (6)
C7—S1—C189.58 (6)O9—N5—O8123.89 (14)
O2—S2—O1120.92 (6)O9—N5—C16118.16 (13)
O2—S2—N3104.08 (6)O8—N5—C16117.95 (13)
O1—S2—N3107.77 (6)
C6—C1—C2—C30.1 (2)C5—C6—N1—C7179.60 (13)
S1—C1—C2—C3179.86 (11)C1—C6—N1—C70.83 (16)
C1—C2—C3—C40.3 (2)N1—C7—N2—N3179.22 (12)
C2—C3—C4—C50.4 (2)S1—C7—N2—N30.16 (17)
C3—C4—C5—C60.1 (2)C7—N2—N3—S2110.54 (12)
C4—C5—C6—N1179.80 (13)O2—S2—N3—N2168.76 (9)
C4—C5—C6—C10.3 (2)O1—S2—N3—N261.70 (11)
C2—C1—C6—C50.4 (2)C8—S2—N3—N252.78 (11)
S1—C1—C6—C5179.57 (10)C13—C12—N4—O4175.11 (15)
C2—C1—C6—N1179.98 (12)C11—C12—N4—O44.1 (2)
S1—C1—C6—N10.03 (14)C13—C12—N4—O35.0 (2)
C13—C8—C9—C100.8 (2)C11—C12—N4—O3175.70 (16)
S2—C8—C9—C10179.19 (11)C19—C14—C15—C160.8 (2)
C8—C9—C10—C110.6 (2)S3—C14—C15—C16177.97 (11)
C9—C10—C11—C120.3 (2)C14—C15—C16—C170.2 (2)
C10—C11—C12—C131.2 (2)C14—C15—C16—N5179.96 (13)
C10—C11—C12—N4177.97 (14)C15—C16—C17—C180.9 (2)
C11—C12—C13—C81.1 (2)N5—C16—C17—C18179.26 (14)
N4—C12—C13—C8178.12 (13)C16—C17—C18—C190.6 (2)
C9—C8—C13—C120.1 (2)C17—C18—C19—C140.4 (2)
S2—C8—C13—C12178.39 (11)C15—C14—C19—C181.1 (2)
N1—C7—S1—C11.13 (11)S3—C14—C19—C18177.70 (11)
N2—C7—S1—C1178.31 (12)C15—C14—S3—O7125.09 (11)
C2—C1—S1—C7179.43 (14)C19—C14—S3—O756.11 (12)
C6—C1—S1—C70.62 (10)C15—C14—S3—O63.69 (13)
C9—C8—S2—O2135.32 (11)C19—C14—S3—O6177.51 (10)
C13—C8—S2—O246.19 (13)C15—C14—S3—O5116.72 (12)
C9—C8—S2—O11.39 (13)C19—C14—S3—O562.08 (12)
C13—C8—S2—O1179.89 (11)C17—C16—N5—O9162.03 (16)
C9—C8—S2—N3113.16 (12)C15—C16—N5—O917.8 (2)
C13—C8—S2—N365.33 (12)C17—C16—N5—O817.9 (2)
N2—C7—N1—C6178.09 (12)C15—C16—N5—O8162.28 (15)
S1—C7—N1—C61.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.841 (19)1.888 (19)2.7267 (15)175.2 (17)
N2—H2···O50.826 (19)1.92 (2)2.7489 (16)175.4 (18)
N3—H3···O7i0.869 (18)1.968 (19)2.8058 (16)161.6 (16)
C2—H2A···O7ii0.952.553.2510 (18)130
C9—H9···O8iii0.952.583.487 (2)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

Funding information

MVNdS and JLW thank CNPq (Brazil) for financial support.

References

First citationBehera, N. & Manivannan, V. (2017). ChemistrySelect, 2, 11048–11054.  CrossRef CAS Google Scholar
First citationDay, A. C. & Whiting, M. C. (1970). Org. Synth. 50, 3–5.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012a). Acta Cryst. E68, o691–o692.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012b). Acta Cryst. E68, o2459.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGulati, S., Wakode, S., Kaur, A. & Anand, K. (2017). World J. Pharm. Pharm Sci. 6, 1842–1869.  Google Scholar
First citationHipparagi, S. M., Majumder, U. K., Parikshit, B., Geethavani, M. & Kumar, V. S. (2007). Orient. J. Chem. 23, 65–66.  Google Scholar
First citationKatava, R., Pavelić, S. K., Harej, A., Hrenar, T. & Pavlović, G. (2017). Struct. Chem. 28, 709–721.  CSD CrossRef CAS Google Scholar
First citationLiu, C. T., Wang, F., Xiao, T., Chi, B., Wu, Y. H., Zhu, D.-R. & Chen, X. Q. (2018). Sens. Actuators B Chem. 256, 55–62.  CSD CrossRef CAS Google Scholar
First citationLiu, X.-F., Yu, X.-Y. & Jiang, S.-L. (2011). Acta Cryst. E67, o1641.  CSD CrossRef IUCr Journals Google Scholar
First citationRajnikant, Dinesh, Kamni, Deshmukh, M. B., Jagpat, S. S. & Desai, S. R. (2005). J. Chem. Cryst. 35, 293–296.  CSD CrossRef CAS Google Scholar
First citationRao, D. S., Jayachandran, E., Sreenivasa, G. M. & Shivakumar, B. (2005). Orient. J. Chem. 21, 113–116.  CAS Google Scholar
First citationRigaku (2012). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds