research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-oxo-13-epi-manoyl oxide isolated from Sideritis perfoliata

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cErzincan University, Faculty of Pharmacy, 24100 Erzincan, Turkey, dDepartment of Chemistry, Faculty of Natural Sciences, Cankiri Karatekin University, 18100 Cankiri, Turkey, eDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, 60240 Tokat, Turkey, and fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 March 2018; accepted 13 April 2018; online 27 April 2018)

The title compound, C20H32O2 (systematic name: 3-ethenyl-3,4a,7,7,10a-penta­methyl­dodeca­hydro-9H-benzo[f]chromen-9-one), was isolated from Sideritis perfoliata. In the crystal, mol­ecules pack in helical supra­molecular chains along the 21 screw axis running parallel to the a axis, bound by C—H⋯O hydrogen bonds. These chains are efficiently inter­locked in the other two unit-cell directions via van der Waals inter­actions. Hirshfeld surface analysis shows that van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 86.0% of the surface.

1. Chemical context

The genus Sideritis belonging to the Lamiaceae family is represented by more than 150 species, distributed in tropical regions. Most of the species are found in the Mediterranean region. This genus is represented by 54 species in Turkey flora, 40 of which are endemic (Davis, 1982[Davis, P. H. (1982). Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh Univ. Press.]). Sideritis species have traditionally been used as herbal teas, flavouring agents and therapeutics (Danesi et al., 2013[Danesi, F., Saha, S., Kroon, P. A., Glibetić, M., Konić-Ristić, A., D'Antuono, L. F. & Bordoni, A. (2013). J. Sci. Food Agric. 93, 3558-3564.]). Sideritis species include flavonoids, terpenes, iridoids, coumarins, lignanes and sterols that are responsible constituents for their pharmacological properties (González-Burgos et al., 2011[González-Burgos, E., Carretero, M. & Gómez-Serranillos, M. (2011). J. Ethnopharmacol. 135, 209-225.]). Sideritis species have been reported to exhibit considerable biological activities such as anti­oxidant (Demirtas et al., 2011[Demirtas, I., Ayhan, B., Sahin, A., Aksit, H., Elmastas, M. & Telci, I. (2011). Nat. Prod. Res. 25, 1512-1523.]), anti­proliferative (Demirtas et al., 2009[Demirtas, I., Sahin, A., Ayhan, B., Tekin, S. & Telci, I. (2009). Records of Natural Products, 3, 104-109.]), and anti­microbial (Yiğit Hanoğlu et al., 2017[Yiğit Hanoğlu, D., Hanoğlu, A., Güvenir, M., Süer, K., Demirci, B., Başer, K. H. C. & Yavuz, D. Ö. (2017). J. Essent. Oil Res. 29, 228-232.]) effects. The crystal structure of 2-β-hy­droxy­manoyl oxide isolated from Sideritis perfoliata has been reported on by our group (Çelik et al., 2016[Çelik, Í., Ersanlı, C. C., Köseoğlu, R., Akşit, H., Erenler, R., Demirtaş, I. & Akkurt, M. (2016). Acta Cryst. E72, 1380-1382.]). Herein, we report on the crystal structure of 2-oxo-13-epi-manoyl oxide, also isolated from S. perfoliata.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the junction between the two cyclo­hexane rings A (C8–C13) and B (C4–C9) is trans, and the junction for the tetra­hydro­pyran ring C (O1/C1–C5) is also trans. The six-membered carbon rings A and B possess chair conformations [puckering parameters: QT = 0.528 (7) Å, θ = 172.6 (8)°, φ = 255 (6)° for ring A and QT = 0.578 (6) Å, θ = 2.1 (6)°, φ = 261 (16)° for ring B]. The tetra­hydro­pyran ring has a slightly twisted boat conformation [puckering parameters: Q(2) = 0.411 (6) Å and φ(2) = 81.4 (8)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules pack in helical supra­molecular C(11) chains along the 21 screw axis running parallel to the a axis, bound by C—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]). The chains are efficiently inter­locked in the other two unit-cell directions via van der Waals inter­actions. Between the chains there are narrow channels which also run along the [100] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.93 2.59 3.501 (9) 167
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), for 3-ethenyl-3-methyl­dodeca­hydro-1H-naphtho­[2,1-b]pyran structures, gave 28 hits, all of which present the same basic structural motif as described herein for the title compound. The closest related compound is 2-β-hy­droxy­manoyl oxide [systematic name: 3,4a,7,7,10a-penta­methyl-3-vinyl­dodeca­hydro-1H-benzo[f]chromen- 9-ol] also isolated from Sideritis perfoliata (UVEVOI; Çelik et al., 2016[Çelik, Í., Ersanlı, C. C., Köseoğlu, R., Akşit, H., Erenler, R., Demirtaş, I. & Akkurt, M. (2016). Acta Cryst. E72, 1380-1382.]). Other compounds include, Forskolin G (systematic name: 1α-hy­droxy-6β,7β-diacet­oxy-8,13-ep­oxy­labd-14-en-11-one; CSD refcode ADATUV; Shan et al., 2006[Shan, Y.-P., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. E62, o2408-o2410.]), lα,5β-di­hydroxy­manoyl oxide, a novel diterpene from Satureja gilliesii (RASXUE; Manríquez et al., 1997[Manríquez, V., Labbé, C., Castillo, M. & Wittke, O. (1997). Acta Cryst. C53, 624-626.]), 4a-hy­droxy-18-normanoyl oxide (GAPZUT; Ybarra et al., 2005[Ybarra, M. I., Popich, S., Borkosky, S. A., Asakawa, Y. & Bardón, A. (2005). J. Nat. Prod. 68, 554-558.]), jhanol (GAQBAC; Ybarra et al., 2005[Ybarra, M. I., Popich, S., Borkosky, S. A., Asakawa, Y. & Bardón, A. (2005). J. Nat. Prod. 68, 554-558.]), 1R,11S-dihy­droxy-8R,13R-ep­oxy­labd-14-ene (LUDTOU; Stavri et al., 2009[Stavri, M., Paton, A., Skelton, B. W. & Gibbons, S. (2009). J. Nat. Prod. 72, 1191-1194.]) and (−)-paniculatol (NEJHAL; Briand et al., 1997[Briand, A., Kornprobst, J.-M., Al-Easa, H. S., Rizk, A. F. M. & Toupet, L. (1997). Tetrahedron Lett. 38, 3399-3400.]).

In the title compound (P212121, Z = 4), the mol­ecules pack in helical supra­molecular chains along the 21 screw axis running parallel to the a axis, bound by one C—H⋯O hydrogen bond. These chains are efficiently inter­locked in the other two unit-cell directions via van der Waals inter­actions. In the similar compound UVEVOI (P212121, Z = 8), the asymmetric unit contains two independent mol­ecules. Inter­molecular O—H⋯O hydrogen bonds connect adjacent mol­ecules, forming C(6) helical chains located around a 21 screw axis running along the a-axis direction. The crystal packing of these chains is governed only by van der Waals inter­actions. The two asymmetric mol­ecules lead to pseudo-41 symmetry in space group P212121. The crystal structure of the other similar compound UDATUV (P21, Z = 4) is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, which link the mol­ecules into networks approximately parallel to the (110) plane. In the crystal structure of the compound RASXUE (P21, Z = 4), no inter­molecular hydrogen-bonding inter­actions were detected, but the O—H⋯O or C—H⋯O inter­actions are possible hydrogen bonds. In GAPZUT (P21, Z = 6), there are three independent mol­ecules in the asymmetric unit. In the crystal, there is no classical hydrogen bonding·The mol­ecular packing is stabilized by van der Waals inter­actions and no ππ or C—H⋯π inter­actions are observed. In GAQBAC (P21, Z = 2), mol­ecules are connected by O—H⋯O hydrogen bonds into chains propagating along the c-axis direction. Here too, no ππ or C—H⋯π inter­actions are observed. In LUDTOU (P21, Z = 4), the structure contains a water mol­ecule. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds involving the water mol­ecules, forming a three-dimensional framework. Again no ππ or C—H⋯π inter­actions are observed.

5. Hirshfeld surface analysis

A large range of properties of inter­molecular close contacts of a structure can be visualized on the Hirshfeld surface with the program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]), including de and di, which represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

Inter­molecular distance information on the surface can be condensed into a two-dimensional histogram of de and di, which is a unique identifier for mol­ecules in a crystal structure, and is known as a fingerprint plot (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]). Instead of plotting de and di on the Hirshfeld surface, contact distances are normalized in CrystalExplorer using the van der Waals radius of the appropriate inter­nal (rivdw) and external (revdw) atom of the surface:

dnorm= (di-rivdw)/rivdw+(de-revdw)/revdw.

For the title compound, the three-dimensional Hirshfeld surface mapped over dnorm is given in Fig. 3[link]. Contacts with distances equal to the sum of the van der Waals radii are shown in white, and contacts with distances shorter than or longer than the related sum values are shown in red (highlighted contacts) or blue, respectively. Two-dimensional finger print plots showing the occurrence of the various inter­molecular contacts are presented in Fig. 4[link]ad. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 86.0% (Fig. 4[link]b). The contribution from the H⋯O/O⋯H contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (12.6%) (Fig. 4[link]c). The contribution of the other inter­molecular contacts to the Hirshfeld surfaces is H⋯C/C⋯H (1.4%) (Fig. 4[link]d). The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). A view of the Hirshfeld surface of the title complex plotted over the shape-index is given in Fig. 5[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound mapped with dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O and (d) H⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 5]
Figure 5
Hirshfeld surface of the title complex plotted over the shape-index.

6. Synthesis and crystallization

The floral parts of Sideritis perfoliata (100 g) were extracted with EtOAc (3 × 1.0 L). After removal of the solvent in vacuo, the extract (4.0 g) was subjected to Sephadex LH-20 column chromatography using methanol as the mobile phase at 0.5 ml/min flow rate. According to TLC basis the 6–8th fractions were combined (1.2 g) and separated over silica gel column chromatography using a hexa­ne/EtOAc (6/4) mixture. Fractions 2–4 were combined to give 2-oxo-13-epi-manoyl oxide (60 mg). After removal of the solvent, a white amorphous powder was obtained. The solid was dissolved in acetone and left to stand at room temperature for 12 h. On slow evaporation of the solvent, colourless block-like crystals were obtained.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. As the title compound is a weak anomalous scatterer, the value of the Flack parameter of −1.1 (10) is meaningless.

Table 2
Experimental details

Crystal data
Chemical formula C20H32O2
Mr 304.46
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.803 (2), 9.242 (3), 24.952 (7)
V3) 1799.4 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.12 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.596, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 11666, 3530, 2120
Rint 0.097
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.186, 1.27
No. of reflections 3530
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-Ethenyl-3,4a,7,7,10a-pentamethyldodecahydro-9H-benzo[f]chromen-9-one top
Crystal data top
C20H32O2F(000) = 672
Mr = 304.46Dx = 1.124 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6426 reflections
a = 7.803 (2) Åθ = 3.1–26.4°
b = 9.242 (3) ŵ = 0.07 mm1
c = 24.952 (7) ÅT = 296 K
V = 1799.4 (9) Å3Block, colourless
Z = 40.12 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2120 reflections with I > 2σ(I)
φ and ω scansRint = 0.097
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.4°, θmin = 3.1°
Tmin = 0.596, Tmax = 0.745h = 89
11666 measured reflectionsk = 1111
3530 independent reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0079P)2 + 2.0609P]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2335 (5)0.8443 (5)0.71085 (15)0.0343 (16)
O20.3930 (9)0.4214 (6)0.47206 (19)0.083 (3)
C10.0977 (8)0.9360 (7)0.6904 (2)0.034 (2)
C20.0185 (8)0.8669 (7)0.6406 (2)0.037 (2)
C30.1511 (8)0.8173 (7)0.5996 (2)0.034 (2)
C40.2784 (8)0.7152 (6)0.6273 (2)0.0247 (19)
C50.3660 (8)0.7939 (6)0.6745 (2)0.0257 (19)
C60.4657 (8)0.6837 (7)0.7072 (2)0.036 (2)
C70.5901 (8)0.5959 (7)0.6731 (2)0.035 (2)
C80.4971 (9)0.5188 (7)0.6269 (2)0.0310 (19)
C90.4001 (9)0.6277 (6)0.5902 (2)0.0303 (19)
C100.2898 (10)0.5375 (8)0.5505 (2)0.044 (3)
C110.3961 (11)0.4285 (8)0.5206 (3)0.050 (3)
C120.4981 (10)0.3273 (7)0.5547 (3)0.051 (3)
C130.6085 (9)0.4010 (7)0.5985 (3)0.038 (2)
C140.6582 (10)0.2831 (8)0.6390 (3)0.056 (3)
C150.7747 (11)0.4588 (9)0.5732 (3)0.067 (3)
C160.4820 (9)0.9208 (7)0.6596 (3)0.040 (2)
C170.1589 (9)1.0879 (7)0.6821 (3)0.039 (2)
C180.1195 (10)1.1772 (8)0.6434 (3)0.050 (3)
C190.0318 (10)0.9399 (8)0.7360 (3)0.059 (3)
C200.5154 (11)0.7268 (7)0.5559 (3)0.049 (3)
H2A0.049900.784300.651400.0440*
H2B0.057600.936300.623700.0440*
H3A0.211300.900300.585100.0410*
H3B0.094700.767400.570300.0410*
H40.206100.641800.644400.0300*
H6A0.385700.618400.724500.0430*
H6B0.529200.733600.735000.0430*
H7A0.646800.524600.695400.0420*
H7B0.677200.659700.658500.0420*
H80.405800.463800.644500.0370*
H10A0.200500.487500.570300.0530*
H10B0.235000.602100.525200.0530*
H12A0.573100.271300.531600.0610*
H12B0.419900.260200.571900.0610*
H14A0.557500.250300.657500.0840*
H14B0.738200.322100.664400.0840*
H14C0.709900.203300.620400.0840*
H15A0.837500.513400.599500.1000*
H15B0.747100.520100.543400.1000*
H15C0.843400.379100.561100.1000*
H16A0.427300.978300.632400.0600*
H16B0.589100.884700.646100.0600*
H16C0.502400.979300.690700.0600*
H170.234701.123100.707700.0470*
H18A0.044301.148400.616600.0600*
H18B0.166701.269600.642800.0600*
H19A0.072400.843700.743000.0890*
H19B0.126601.000500.726100.0890*
H19C0.021800.978100.767600.0890*
H20A0.449200.806900.542800.0740*
H20B0.560400.672900.526200.0740*
H20C0.608300.762400.577400.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.032 (3)0.044 (3)0.027 (2)0.010 (2)0.0025 (19)0.000 (2)
O20.132 (6)0.082 (4)0.035 (3)0.004 (4)0.005 (3)0.019 (3)
C10.025 (4)0.040 (4)0.038 (3)0.001 (3)0.002 (3)0.001 (3)
C20.025 (4)0.039 (4)0.047 (4)0.002 (3)0.005 (3)0.000 (3)
C30.032 (4)0.040 (4)0.030 (3)0.003 (3)0.014 (3)0.000 (3)
C40.022 (3)0.031 (4)0.021 (3)0.010 (3)0.002 (3)0.000 (3)
C50.023 (3)0.027 (4)0.027 (3)0.002 (3)0.003 (3)0.006 (3)
C60.039 (4)0.041 (4)0.028 (3)0.007 (4)0.011 (3)0.003 (3)
C70.025 (4)0.038 (4)0.043 (4)0.004 (3)0.007 (3)0.003 (3)
C80.030 (4)0.030 (3)0.033 (3)0.003 (3)0.008 (3)0.000 (3)
C90.041 (4)0.028 (3)0.022 (3)0.005 (3)0.001 (3)0.002 (3)
C100.051 (5)0.046 (5)0.035 (4)0.000 (4)0.010 (3)0.002 (3)
C110.066 (5)0.042 (4)0.042 (4)0.010 (4)0.004 (4)0.017 (4)
C120.058 (5)0.040 (4)0.054 (4)0.000 (4)0.010 (4)0.016 (4)
C130.033 (4)0.033 (4)0.049 (4)0.003 (3)0.007 (3)0.004 (3)
C140.056 (5)0.037 (4)0.076 (6)0.016 (4)0.004 (4)0.002 (4)
C150.052 (5)0.063 (6)0.086 (6)0.004 (5)0.029 (5)0.011 (5)
C160.031 (4)0.035 (4)0.055 (4)0.005 (4)0.000 (3)0.007 (3)
C170.034 (4)0.035 (4)0.048 (4)0.006 (3)0.003 (3)0.005 (4)
C180.043 (5)0.039 (4)0.068 (5)0.001 (4)0.004 (4)0.000 (4)
C190.053 (5)0.068 (5)0.057 (5)0.017 (5)0.024 (4)0.005 (4)
C200.070 (6)0.040 (4)0.038 (4)0.004 (4)0.024 (4)0.004 (3)
Geometric parameters (Å, º) top
O1—C11.450 (7)C4—H40.9800
O1—C51.452 (7)C6—H6A0.9700
O2—C111.213 (9)C6—H6B0.9700
C1—C21.528 (8)C7—H7A0.9700
C1—C171.497 (9)C7—H7B0.9700
C1—C191.522 (9)C8—H80.9800
C2—C31.526 (8)C10—H10A0.9700
C3—C41.535 (8)C10—H10B0.9700
C4—C51.544 (8)C12—H12A0.9700
C4—C91.553 (8)C12—H12B0.9700
C5—C61.519 (8)C14—H14A0.9600
C5—C161.527 (9)C14—H14B0.9600
C6—C71.525 (8)C14—H14C0.9600
C7—C81.537 (8)C15—H15A0.9600
C8—C91.557 (8)C15—H15B0.9600
C8—C131.563 (9)C15—H15C0.9600
C9—C101.555 (9)C16—H16A0.9600
C9—C201.543 (10)C16—H16B0.9600
C10—C111.503 (10)C16—H16C0.9600
C11—C121.494 (11)C17—H170.9300
C12—C131.549 (10)C18—H18A0.9300
C13—C141.536 (10)C18—H18B0.9300
C13—C151.538 (11)C19—H19A0.9600
C17—C181.307 (10)C19—H19B0.9600
C2—H2A0.9700C19—H19C0.9600
C2—H2B0.9700C20—H20A0.9600
C3—H3A0.9700C20—H20B0.9600
C3—H3B0.9700C20—H20C0.9600
C1—O1—C5119.2 (4)C7—C6—H6A109.00
O1—C1—C2109.7 (5)C7—C6—H6B109.00
O1—C1—C17111.3 (5)H6A—C6—H6B108.00
O1—C1—C19103.7 (5)C6—C7—H7A109.00
C2—C1—C17114.1 (5)C6—C7—H7B109.00
C2—C1—C19110.5 (5)C8—C7—H7A109.00
C17—C1—C19107.0 (5)C8—C7—H7B109.00
C1—C2—C3113.4 (5)H7A—C7—H7B108.00
C2—C3—C4108.8 (4)C7—C8—H8104.00
C3—C4—C5109.9 (5)C9—C8—H8104.00
C3—C4—C9116.6 (4)C13—C8—H8104.00
C5—C4—C9115.4 (5)C9—C10—H10A109.00
O1—C5—C4108.2 (5)C9—C10—H10B109.00
O1—C5—C6104.1 (4)C11—C10—H10A109.00
O1—C5—C16109.1 (5)C11—C10—H10B109.00
C4—C5—C6108.7 (5)H10A—C10—H10B108.00
C4—C5—C16116.0 (5)C11—C12—H12A108.00
C6—C5—C16110.0 (5)C11—C12—H12B108.00
C5—C6—C7112.5 (4)C13—C12—H12A109.00
C6—C7—C8111.4 (5)C13—C12—H12B109.00
C7—C8—C9111.8 (5)H12A—C12—H12B108.00
C7—C8—C13113.6 (6)C13—C14—H14A109.00
C9—C8—C13117.0 (5)C13—C14—H14B109.00
C4—C9—C8106.5 (4)C13—C14—H14C109.00
C4—C9—C10108.7 (5)H14A—C14—H14B109.00
C4—C9—C20112.2 (5)H14A—C14—H14C109.00
C8—C9—C10107.3 (5)H14B—C14—H14C110.00
C8—C9—C20115.2 (6)C13—C15—H15A109.00
C10—C9—C20106.7 (5)C13—C15—H15B110.00
C9—C10—C11111.7 (6)C13—C15—H15C109.00
O2—C11—C10121.4 (7)H15A—C15—H15B109.00
O2—C11—C12123.1 (7)H15A—C15—H15C109.00
C10—C11—C12115.5 (6)H15B—C15—H15C110.00
C11—C12—C13115.0 (6)C5—C16—H16A109.00
C8—C13—C12108.5 (6)C5—C16—H16B110.00
C8—C13—C14109.7 (6)C5—C16—H16C110.00
C8—C13—C15114.4 (6)H16A—C16—H16B109.00
C12—C13—C14107.0 (5)H16A—C16—H16C109.00
C12—C13—C15109.4 (6)H16B—C16—H16C110.00
C14—C13—C15107.7 (6)C1—C17—H17116.00
C1—C17—C18128.3 (7)C18—C17—H17116.00
C1—C2—H2A109.00C17—C18—H18A120.00
C1—C2—H2B109.00C17—C18—H18B120.00
C3—C2—H2A109.00H18A—C18—H18B120.00
C3—C2—H2B109.00C1—C19—H19A109.00
H2A—C2—H2B108.00C1—C19—H19B109.00
C2—C3—H3A110.00C1—C19—H19C109.00
C2—C3—H3B110.00H19A—C19—H19B109.00
C4—C3—H3A110.00H19A—C19—H19C110.00
C4—C3—H3B110.00H19B—C19—H19C109.00
H3A—C3—H3B108.00C9—C20—H20A109.00
C3—C4—H4104.00C9—C20—H20B109.00
C5—C4—H4104.00C9—C20—H20C109.00
C9—C4—H4105.00H20A—C20—H20B110.00
C5—C6—H6A109.00H20A—C20—H20C109.00
C5—C6—H6B109.00H20B—C20—H20C109.00
C5—O1—C1—C250.8 (7)C4—C5—C6—C753.8 (7)
C5—O1—C1—C1776.5 (6)C16—C5—C6—C774.3 (6)
C5—O1—C1—C19168.8 (5)C5—C6—C7—C856.6 (7)
C1—O1—C5—C6171.1 (5)C6—C7—C8—C957.8 (7)
C1—O1—C5—C1671.5 (6)C6—C7—C8—C13167.1 (5)
C1—O1—C5—C455.5 (6)C7—C8—C9—C455.5 (6)
C19—C1—C2—C3162.4 (5)C7—C8—C9—C10171.7 (5)
C2—C1—C17—C1817.1 (10)C7—C8—C9—C2069.6 (6)
C19—C1—C17—C18105.4 (8)C13—C8—C9—C4171.1 (5)
O1—C1—C17—C18142.0 (7)C13—C8—C9—C1054.9 (7)
O1—C1—C2—C348.8 (6)C13—C8—C9—C2063.8 (7)
C17—C1—C2—C376.9 (7)C7—C8—C13—C12177.6 (5)
C1—C2—C3—C455.0 (7)C7—C8—C13—C1461.0 (7)
C2—C3—C4—C9167.5 (5)C7—C8—C13—C1560.1 (7)
C2—C3—C4—C558.7 (6)C9—C8—C13—C1249.9 (7)
C3—C4—C5—C6169.8 (5)C9—C8—C13—C14166.4 (6)
C9—C4—C5—C655.9 (6)C9—C8—C13—C1572.5 (8)
C3—C4—C5—C1665.7 (7)C4—C9—C10—C11168.9 (5)
C9—C4—C5—O1168.4 (4)C8—C9—C10—C1154.1 (7)
C3—C4—C5—O157.3 (6)C20—C9—C10—C1169.9 (7)
C3—C4—C9—C2060.6 (7)C9—C10—C11—O2127.6 (8)
C5—C4—C9—C856.3 (6)C9—C10—C11—C1254.9 (8)
C5—C4—C9—C10171.6 (5)O2—C11—C12—C13132.0 (8)
C5—C4—C9—C2070.7 (6)C10—C11—C12—C1350.5 (9)
C9—C4—C5—C1668.6 (6)C11—C12—C13—C845.0 (8)
C3—C4—C9—C8172.5 (5)C11—C12—C13—C14163.2 (6)
C3—C4—C9—C1057.2 (6)C11—C12—C13—C1580.4 (8)
O1—C5—C6—C7168.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.932.593.501 (9)167
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Funding information

This work was supported by the Research Fund of the Scientific Research Project Fund of Cumhuriyet University [Project No. F-567 (CUBAP, Sivas, Turkey)]. The authors gratefully acknowledge the financial support received from the Scientific Research Project Fund of Cumhuriyet University.

References

First citationBriand, A., Kornprobst, J.-M., Al-Easa, H. S., Rizk, A. F. M. & Toupet, L. (1997). Tetrahedron Lett. 38, 3399–3400.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Ersanlı, C. C., Köseoğlu, R., Akşit, H., Erenler, R., Demirtaş, I. & Akkurt, M. (2016). Acta Cryst. E72, 1380–1382.  CrossRef IUCr Journals Google Scholar
First citationDanesi, F., Saha, S., Kroon, P. A., Glibetić, M., Konić-Ristić, A., D'Antuono, L. F. & Bordoni, A. (2013). J. Sci. Food Agric. 93, 3558–3564.  CrossRef CAS Google Scholar
First citationDavis, P. H. (1982). Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh Univ. Press.  Google Scholar
First citationDemirtas, I., Ayhan, B., Sahin, A., Aksit, H., Elmastas, M. & Telci, I. (2011). Nat. Prod. Res. 25, 1512–1523.  CrossRef CAS Google Scholar
First citationDemirtas, I., Sahin, A., Ayhan, B., Tekin, S. & Telci, I. (2009). Records of Natural Products, 3, 104–109.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález-Burgos, E., Carretero, M. & Gómez-Serranillos, M. (2011). J. Ethnopharmacol. 135, 209–225.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationManríquez, V., Labbé, C., Castillo, M. & Wittke, O. (1997). Acta Cryst. C53, 624–626.  CrossRef IUCr Journals Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationShan, Y.-P., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. E62, o2408–o2410.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStavri, M., Paton, A., Skelton, B. W. & Gibbons, S. (2009). J. Nat. Prod. 72, 1191–1194.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationYbarra, M. I., Popich, S., Borkosky, S. A., Asakawa, Y. & Bardón, A. (2005). J. Nat. Prod. 68, 554–558.  CrossRef CAS Google Scholar
First citationYiğit Hanoğlu, D., Hanoğlu, A., Güvenir, M., Süer, K., Demirci, B., Başer, K. H. C. & Yavuz, D. Ö. (2017). J. Essent. Oil Res. 29, 228–232.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds