research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the crystal structure of bis­­(tri-2-pyridyl­amine)­iron(II) bis­­(perchlorate), and a new refinement of the isotypic nickel(II) analogue: treatment of the perchlorate anion disorder

CROSSMARK_Color_square_no_text.svg

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum–Samsun, Turkey, dLaboratoire de Chimie Appliquée et Environnement, (LCAE), Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: fat_setifi@yahoo.fr, rafika.elati@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 April 2018; accepted 10 April 2018; online 17 April 2018)

The redetermination of the structure of the title compound, [Fe(C15H12N4)2](ClO4)2, (I), confirms the structure previously reported [Kucharski et al. (1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.]). Aust. J. Chem. 31, 53–56], but models the perchlorate over four sets of atomic sites, rather than using just one set of sites as in the original report. The supra­molecular assembly, not reported previously, takes the form of a complex three-dimensional framework built from C—H⋯O hydrogen bonds. The isotypic nickel(II) analogue, [Ni(C15H12N4)2](ClO4)2, (III), has been refined using the original data set [Wang et al. (2011[Wang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.]). Acta Cryst. E67, m78], again using a four-component disorder model for the anion, rather than a two-component model as in the original report, leading to more satisfactory Cl—O distances and O—Cl—O angles.

1. Chemical context

The crystal structure of bis­(tri-2-pyridyl­amine)­iron(II) bis(perchlorate) was reported a number of years ago (Kucharski et al., 1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.]), as was that of the isotypic CoII analogue (Kucharski et al., 1978b[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978b). Aust. J. Chem. 31, 2647-2650.]). In each of these structures, the metal centre lies at a centre of inversion, with a single perchlorate anion occupying a general position: the metal–N distances are consistent with a low-spin configuration in the FeII complex, but a high-spin configuration in the CoII complex (Kucharski et al., 1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.],b[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978b). Aust. J. Chem. 31, 2647-2650.]). In each structure the unique perchlorate anion was modelled using a single set of atomic sites, but the anisotropic displacement parameters give a clear indication of unmodelled disorder in this species.

As a part of our continuing study of the structural and magnetic properties of iron complexes containing poly-pyridyl ligands (Setifi et al., 2013a[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013a). Acta Cryst. C69, 1351-1356.],b[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013b). Acta Cryst. E69, m12-m13.], 2014[Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465-469.], 2016[Setifi, Z., Addala, A., Tao, J., Wannarit, N., Glidewell, C., Setifi, F. & Youngme, S. (2016). Inorg. Chem. Commun. 68, 80-84.], 2017[Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149-154.]), we have now re-investigated the structure of compound (I)[link], using a new data set. However, we have used the P21/n setting of space group No. 14 rather than P21/a, as used in the original report, as this setting has a smaller value of β, 98.716 (7)°, than the P21/a setting where β is 121.38 (3)° (Kucharski et al., 1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.]). The sample used here was prepared under solvothermal conditions in a 4:1 water/ethanol mixture, in the presence of potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide.

[Scheme 1]

The NiII analogue (III)[link] is isotypic with compounds (I)[link] and (II), although in this case the refinement was conducted (Wang et al., 2011[Wang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.]) in space group P21/n rather than in the alternative P21/a setting used for (I)[link] and (II) (Kucharski et al., 1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.],b[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978b). Aust. J. Chem. 31, 2647-2650.]). In their refinement of the Ni complex, the perchlorate anion was modelled using two sets of atomic sites, having occupancies 0.528 (19) and 0.472 (19). However, the reported Cl—O distances range from 1.2136 (4) to 1.5356 (6) Å while the reported O—Cl—O angles lie in the range 96.48 (3)–118.284 (12)°; both of these ranges seem to be too wide to be correct, and accordingly we have undertaken a new refinement of this structure using the original data set (Wang et al., 2011[Wang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.]).

2. Structural commentary, and treatment of the perchlorate anion disorder

As noted above, the metal atom in compound (I)[link] lies on a centre of inversion, selected here as that at (0.5, 0.5, 0.5), and the organic ligand is tridentate with the ligating atoms N11, N21 and N31 (Fig. 1[link]) adopting a facial configuration: the Fe—N distances are 1.983 (2), 1.970 (3) and 1.982 (3) Å, respectively, fully consistent with low-spin FeII (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). However, when the refinement used only a single set of atomic sites for the perchlorate anion, this resulted in very large, prolate displacement ellipsoids for the O atoms, indicative of positional disorder. Accordingly, this anion was modelled using, in succession, two, three or four sets of atomic sites and only for the last could the anisotropic displacement parameters be regarded as satisfactory: the final refined values of the occupancies are 0.415 (3), 0.267 (3), 0.256 (3) and 0.061 (3) (Fig. 1[link]).

[Figure 1]
Figure 1
The ionic components of compound (I)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, the H atoms and the symmetry-equivalent anion have been omitted, and unmarked atoms and atoms marked `a' are at the symmetry position (−x + 1, −y + 1, −z + 1).

For the isotypic NiII complex (III)[link] (Fig. 2[link]), the same set of multi-component disorder models as employed for (I)[link] were investigated, but only the four-component model gave satisfactory displacement parameters: the refined occupancies of the perchlorate components are 0.424 (3), 0.280 (3), 0.244 (3) and 0.052 (3), very similar to those for (I)[link]. The resulting range of Cl—O distances in (III)[link] is 1.401 (5)–1.438 (5) Å and that of the O—Cl—O angles is 107.1 (4)–112.5 (5)°, both more satisfactory that those obtained in the original two-component model (Wang et al., 2011[Wang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.]).

[Figure 2]
Figure 2
The ionic components of compound (III)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, the H atoms and the symmetry-equivalent anion have been omitted, and unmarked atoms and atoms marked `a' are at the symmetry position (−x + 1, −y + 1, −z + 1).

3. Supra­molecular features

There are neither C—H⋯N nor C—H⋯π(pyrid­yl) hydrogen bonds in the crystal structure of compound (I)[link]; nor are there any ππ stacking inter­actions. The supra­molecular assembly is dependent on C—H⋯O hydrogen bonds (Table 1[link]): although the anion disorder introduces complexity, the close similarity between the patterns of the inter­actions involving the different disorder components means that, only those of the dominant component, based on atom Cl1, need be considered, as entirely similar aggregation arises from the other components also. There are just three C—H⋯O hydrogen bonds involving the major component, one of which lies within the selected asymmetric unit: in combination, these three hydrogen bonds link the ions into a three-dimensional supra­molecular framework whose formation is readily analysed in terms of two sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simpler sub-structure, the two hydrogen bonds involving atoms C23 and C26 as the donors and atoms O12 and O13 as the acceptors link the ions into a ribbon running parallel to the [001] direction and in which R44(22) rings centred at (0.5, 0.5, n) link the metal complexes centred at (0.5, 0.5, 0.5 + n), where n represents an integer in each case (Fig. 3[link]). In the second substructure, the two hydrogen bonds having atom O13 as the acceptor, link the ions into a sheet lying parallel to (101); see Fig. 4[link]. The combination of the [001] chain and the (101) sheet is sufficient to generate a three-dimensional supra­molecular framework. For compound (III)[link], the pattern of the hydrogen bonds (Table 2[link]) is very similar to that in (I)[link], as is the supra­molecular assembly. It is inter­esting to note that no C—H⋯O hydrogen bonds were mentioned in the original report on (I)[link] (Kucharski et al., 1978a[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53-56.]), possibly because only a decade or so earlier, the very idea of such inter­actions had been authoritatively dismissed (Donohue, 1968[Donohue, J. (1968). Structural Chemistry and Molecular Biology, edited by A Rich & N. Davidson, pp. 443-465. San Francisco & London: W. H. Freeman & Co.]): perhaps more surprising is the absence of any mention of these inter­actions in the original report on compound (III)[link] (Wang et al., 2011[Wang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O21i 0.93 2.38 3.11 (2) 136
C14—H14⋯O34i 0.93 2.54 3.470 (17) 173
C15—H15⋯O22ii 0.93 2.44 3.24 (3) 143
C15—H15⋯O32ii 0.93 2.31 3.14 (3) 147
C23—H23⋯O12iii 0.93 2.58 3.412 (10) 150
C23—H23⋯O22iii 0.93 2.52 3.357 (14) 150
C23—H23⋯O32iii 0.93 2.53 3.347 (12) 147
C24—H24⋯O13iv 0.93 2.60 3.496 (12) 163
C24—H24⋯O33iv 0.93 2.53 3.334 (17) 145
C24—H24⋯O42iv 0.93 2.21 3.10 (4) 161
C26—H26⋯O13 0.93 2.51 3.375 (12) 155
C26—H26⋯O33 0.93 2.56 3.289 (17) 135
C33—H33⋯O42iii 0.93 2.30 3.21 (4) 164
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O21i 0.93 2.41 3.174 (17) 139
C14—H14⋯O34i 0.93 2.55 3.477 (14) 174
C14—H14⋯O43i 0.93 2.38 3.23 (4) 151
C15—H15⋯O12ii 0.93 2.52 3.289 (18) 140
C15—H15⋯O22ii 0.93 2.37 3.14 (3) 140
C15—H15⋯O32ii 0.93 2.57 3.37 (3) 144
C23—H23⋯O12iii 0.93 2.58 3.428 (8) 152
C23—H23⋯O22iii 0.93 2.53 3.376 (13) 152
C24—H24⋯O33iv 0.93 2.49 3.301 (13) 146
C24—H24⋯O42iv 0.93 2.12 2.97 (3) 152
C26—H26⋯O13 0.93 2.48 3.380 (11) 162
C26—H26⋯O33 0.93 2.57 3.331 (13) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded ribbon running parallel to the [001] direction. For the sake of clarity, only the major disorder component of the anion is shown and the H atoms not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded sheet lying parallel to (101). For the sake of clarity, only the major disorder component of the anion is shown and the H atoms not involved in the motif shown have been omitted.

4. Database survey

As noted above, the cobalt analogue (II) of compounds (I)[link] and (III)[link] is isotypic with them (Kucharski et al., 1978b[Kucharski, E. S., McWhinnie, W. R. & White, A. H. (1978b). Aust. J. Chem. 31, 2647-2650.]).

[Scheme 2]

The corresponding copper complex (IV)[link] has the same composition as compounds (I)–(III) and, like them, crystallizes in space group P21/n with Z′ = 0.5 (Boys et al., 1992[Boys, D., Escobar, C. & Zamudio, W. (1992). Acta Cryst. C48, 1118-1120.]) but its constitution is different: the organic ligand is only bidentate, giving a square planar CuN4 array with Cu—N distances of 1.992 (3) and 2.006 (3) Å; the usual (4 + 2) coordination of CuII is completed by two weakly-coordinated perchlorato ligands with a Cu—O distance of 2.593 (8) Å. By contrast, in the corresponding bis­(tri­fluoro­methane­sulfonate) salt the anion plays no role in the metal coordination, where the bidentate amine ligands form a distorted tetra­hedral geometry (Pérez et al., 2009[Pérez, J., Morales, D., García-Escudero, L. A., Martínez-García, H., Miguel, D. & Bernad, P. (2009). Dalton Trans. pp. 375-382.]).

5. Synthesis and crystallization

For the synthesis of compound (I)[link], a mixture of iron(II) sulfate hepta­hydrate (56 mg, 0.2 mmol), tri-2-pyridyl­amine (62 mg, 0.2 mmol) and potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (45 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 ml) was placed in a Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was then allowed to cool to ambient temperature. Red prismatic crystals of the title compound were collected by filtration, washed with water and dried in air (yield 25%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference-Fourier maps. They were then treated as riding atoms in geometrically idealized positions with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). For the minor disorder components of the perchlorate anion in each compound the bonded distances and the 1,2 non-bonded distances were restrained to be the same as the corresponding distances in the dominant component, subject to s.u.s of 0.005 Å and 0.01°, respectively: in addition, the anisotropic displacement parameters for corresponding atom sites were constrained to be the same. Subject to these conditions, the refined values of the anion occupancies were 0.415 (3), 0.267 (3), 0.256 (3) and 0.061 (3) in (I)[link] and 0.424 (3), 0.280 (3), 0.244 (3) and 0.052 (3) in (III)[link]. In the final analysis of variance for (I)[link] there were two large values of K = [mean(Fo2)/mean(Fc2)], 11.399 for the group of 368 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.007, and 3.057 for the group of 312 very weak reflections having Fc/Fc(max) in the range 0.008 < Fc/Fc(max) < 0.0014; the corresponding value for (III)[link] was 23.606 for 417 reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.007.

Table 3
Experimental details

  (I) (III)
Crystal data
Chemical formula [Fe(C15H12N4)2](ClO4)2 [Ni(C15H12N4)2](ClO4)2
Mr 751.32 754.18
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 8.3251 (7), 17.4731 (11), 11.0495 (9) 8.360 (4), 17.570 (8), 11.165 (5)
β (°) 98.716 (7) 99.542 (5)
V3) 1588.8 (2) 1617.3 (13)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.71 0.83
Crystal size (mm) 0.42 × 0.21 × 0.12 0.22 × 0.15 × 0.10
 
Data collection
Diffractometer STOE IPDS 2 Bruker SMART CCD
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.899, 0.919 0.861, 0.920
No. of measured, independent and observed [I > 2σ(I)] reflections 13886, 3287, 2098 14055, 3895, 2611
Rint 0.074 0.040
(sin θ/λ)max−1) 0.628 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 0.95 0.043, 0.109, 1.04
No. of reflections 3287 3895
No. of parameters 272 272
No. of restraints 61 61
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.22 0.34, −0.36
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SMART and SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002) for (I); SMART (Bruker, 2007) for (III). Cell refinement: X-AREA (Stoe & Cie, 2002) for (I); SAINT (Bruker, 2007) for (III). Data reduction: X-RED32 (Stoe & Cie, 2002) for (I); SAINT (Bruker, 2007) for (III). Program(s) used to solve structure: SHELXS86 (Sheldrick, 2008) for (I); SHELXS (Sheldrick, 2008) for (III). For both structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Bis(tri-2-pyridylamine)iron(II) bis(perchlorate) (I) top
Crystal data top
[Fe(C15H12N4)2](ClO4)2F(000) = 768
Mr = 751.32Dx = 1.571 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3251 (7) ÅCell parameters from 3322 reflections
b = 17.4731 (11) Åθ = 2.2–26.6°
c = 11.0495 (9) ŵ = 0.71 mm1
β = 98.716 (7)°T = 296 K
V = 1588.8 (2) Å3Prism, red
Z = 20.42 × 0.21 × 0.12 mm
Data collection top
STOE IPDS 2
diffractometer
3287 independent reflections
Radiation source: fine focus sealed tube2098 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.074
rotation method scansθmax = 26.5°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 910
Tmin = 0.899, Tmax = 0.919k = 2121
13886 measured reflectionsl = 1313
Refinement top
Refinement on F261 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0569P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3287 reflectionsΔρmax = 0.37 e Å3
272 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.50000.50000.03891 (18)
N10.3758 (3)0.44032 (16)0.7164 (2)0.0448 (6)
N110.3667 (3)0.55621 (16)0.6050 (2)0.0423 (6)
C120.3230 (4)0.51828 (18)0.7007 (3)0.0418 (8)
C130.2334 (4)0.5506 (2)0.7821 (3)0.0549 (9)
H130.20800.52280.84850.066*
C140.1822 (5)0.6252 (2)0.7631 (4)0.0624 (10)
H140.11970.64850.81570.075*
C150.2251 (4)0.6648 (2)0.6648 (3)0.0582 (9)
H150.19170.71520.65030.070*
C160.3174 (4)0.6291 (2)0.5889 (3)0.0493 (8)
H160.34700.65650.52360.059*
N210.3542 (3)0.41161 (15)0.5048 (2)0.0420 (6)
C220.3112 (4)0.39352 (19)0.6139 (3)0.0415 (7)
C230.2113 (4)0.3321 (2)0.6298 (3)0.0504 (8)
H230.18310.32140.70630.061*
C240.1550 (4)0.2877 (2)0.5306 (4)0.0580 (9)
H240.08780.24610.53870.070*
C250.1988 (4)0.3052 (2)0.4180 (3)0.0553 (9)
H250.16250.27520.34980.066*
C260.2966 (4)0.3674 (2)0.4084 (3)0.0473 (8)
H260.32410.37940.33220.057*
N310.6312 (3)0.45990 (15)0.6513 (2)0.0428 (6)
C320.5506 (4)0.43509 (19)0.7411 (3)0.0439 (7)
C330.6251 (5)0.4056 (2)0.8493 (3)0.0568 (9)
H330.56430.38990.90880.068*
C340.7919 (5)0.3995 (2)0.8690 (3)0.0645 (10)
H340.84580.37880.94160.077*
C350.8774 (5)0.4245 (2)0.7794 (3)0.0594 (9)
H350.99020.42140.79110.071*
C360.7957 (4)0.4539 (2)0.6731 (3)0.0504 (8)
H360.85510.47050.61330.061*
Cl10.2289 (10)0.3486 (6)0.0675 (8)0.0622 (9)0.415 (3)
O110.1418 (13)0.4123 (5)0.1027 (19)0.097 (3)0.415 (3)
O120.223 (3)0.3449 (12)0.0609 (8)0.111 (2)0.415 (3)
O130.3942 (10)0.3496 (8)0.1242 (11)0.101 (4)0.415 (3)
O140.1517 (15)0.2816 (6)0.1090 (9)0.090 (3)0.415 (3)
Cl20.2526 (16)0.3447 (7)0.0642 (13)0.0622 (9)0.267 (3)
O210.120 (2)0.3833 (9)0.103 (3)0.097 (3)0.267 (3)
O220.232 (4)0.3364 (16)0.0645 (12)0.111 (2)0.267 (3)
O230.4019 (18)0.3833 (13)0.104 (2)0.101 (4)0.267 (3)
O240.261 (2)0.2702 (7)0.1209 (13)0.090 (3)0.267 (3)
Cl30.2227 (13)0.3347 (8)0.0565 (11)0.0622 (9)0.256 (3)
O310.184 (2)0.4097 (8)0.090 (3)0.097 (3)0.256 (3)
O320.261 (3)0.3320 (18)0.0639 (11)0.111 (2)0.256 (3)
O330.3546 (16)0.3034 (13)0.1385 (14)0.101 (4)0.256 (3)
O340.0812 (17)0.2883 (10)0.0635 (16)0.090 (3)0.256 (3)
Cl40.215 (3)0.3423 (16)0.032 (2)0.0622 (9)0.061 (3)
O410.168 (6)0.4201 (17)0.025 (5)0.097 (3)0.061 (3)
O420.377 (3)0.332 (3)0.012 (4)0.111 (2)0.061 (3)
O430.195 (5)0.309 (3)0.147 (3)0.101 (4)0.061 (3)
O440.107 (5)0.303 (2)0.062 (3)0.090 (3)0.061 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0467 (3)0.0396 (4)0.0320 (3)0.0034 (3)0.0112 (2)0.0034 (3)
N10.0521 (16)0.0463 (17)0.0374 (14)0.0063 (13)0.0116 (12)0.0021 (12)
N110.0504 (15)0.0400 (16)0.0376 (14)0.0032 (12)0.0100 (12)0.0000 (12)
C120.0468 (16)0.044 (2)0.0352 (15)0.0050 (14)0.0095 (13)0.0013 (13)
C130.059 (2)0.064 (3)0.046 (2)0.0069 (19)0.0209 (16)0.0067 (17)
C140.061 (2)0.068 (3)0.063 (2)0.004 (2)0.0243 (19)0.014 (2)
C150.061 (2)0.049 (2)0.065 (2)0.0080 (18)0.0099 (18)0.0076 (19)
C160.055 (2)0.043 (2)0.050 (2)0.0002 (16)0.0068 (16)0.0017 (16)
N210.0481 (15)0.0419 (16)0.0370 (14)0.0034 (12)0.0100 (11)0.0035 (12)
C220.0472 (17)0.0394 (19)0.0386 (16)0.0005 (15)0.0089 (13)0.0043 (14)
C230.058 (2)0.045 (2)0.0506 (19)0.0057 (17)0.0176 (16)0.0082 (16)
C240.060 (2)0.048 (2)0.067 (2)0.0125 (18)0.0106 (18)0.0049 (19)
C250.060 (2)0.050 (2)0.055 (2)0.0109 (17)0.0029 (16)0.0058 (17)
C260.056 (2)0.046 (2)0.0396 (17)0.0057 (16)0.0065 (14)0.0023 (15)
N310.0507 (15)0.0410 (16)0.0371 (14)0.0028 (13)0.0081 (12)0.0024 (12)
C320.0555 (19)0.0420 (19)0.0341 (16)0.0018 (15)0.0061 (14)0.0024 (14)
C330.071 (2)0.060 (2)0.0397 (18)0.0058 (19)0.0086 (16)0.0078 (17)
C340.074 (3)0.068 (3)0.047 (2)0.003 (2)0.0062 (18)0.0132 (19)
C350.058 (2)0.059 (2)0.058 (2)0.0013 (18)0.0022 (17)0.0021 (18)
C360.0514 (19)0.053 (2)0.0473 (19)0.0037 (17)0.0094 (15)0.0013 (17)
Cl10.0683 (17)0.081 (2)0.0385 (11)0.0170 (11)0.0109 (12)0.0146 (12)
O110.088 (6)0.072 (5)0.143 (5)0.010 (4)0.058 (5)0.036 (6)
O120.163 (6)0.130 (5)0.0448 (19)0.013 (5)0.034 (2)0.011 (2)
O130.052 (3)0.163 (15)0.085 (6)0.006 (5)0.006 (3)0.020 (9)
O140.099 (9)0.095 (5)0.075 (5)0.001 (6)0.014 (6)0.003 (4)
Cl20.0683 (17)0.081 (2)0.0385 (11)0.0170 (11)0.0109 (12)0.0146 (12)
O210.088 (6)0.072 (5)0.143 (5)0.010 (4)0.058 (5)0.036 (6)
O220.163 (6)0.130 (5)0.0448 (19)0.013 (5)0.034 (2)0.011 (2)
O230.052 (3)0.163 (15)0.085 (6)0.006 (5)0.006 (3)0.020 (9)
O240.099 (9)0.095 (5)0.075 (5)0.001 (6)0.014 (6)0.003 (4)
Cl30.0683 (17)0.081 (2)0.0385 (11)0.0170 (11)0.0109 (12)0.0146 (12)
O310.088 (6)0.072 (5)0.143 (5)0.010 (4)0.058 (5)0.036 (6)
O320.163 (6)0.130 (5)0.0448 (19)0.013 (5)0.034 (2)0.011 (2)
O330.052 (3)0.163 (15)0.085 (6)0.006 (5)0.006 (3)0.020 (9)
O340.099 (9)0.095 (5)0.075 (5)0.001 (6)0.014 (6)0.003 (4)
Cl40.0683 (17)0.081 (2)0.0385 (11)0.0170 (11)0.0109 (12)0.0146 (12)
O410.088 (6)0.072 (5)0.143 (5)0.010 (4)0.058 (5)0.036 (6)
O420.163 (6)0.130 (5)0.0448 (19)0.013 (5)0.034 (2)0.011 (2)
O430.052 (3)0.163 (15)0.085 (6)0.006 (5)0.006 (3)0.020 (9)
O440.099 (9)0.095 (5)0.075 (5)0.001 (6)0.014 (6)0.003 (4)
Geometric parameters (Å, º) top
Fe1—N21i1.970 (3)C26—H260.9300
Fe1—N211.970 (3)N31—C321.350 (4)
Fe1—N31i1.982 (3)N31—C361.359 (4)
Fe1—N311.982 (3)C32—C331.361 (5)
Fe1—N111.983 (2)C33—C341.377 (5)
Fe1—N11i1.983 (2)C33—H330.9300
N1—C221.433 (4)C34—C351.376 (5)
N1—C121.434 (4)C34—H340.9300
N1—C321.442 (4)C35—C361.365 (5)
N11—C161.342 (4)C35—H350.9300
N11—C121.344 (4)C36—H360.9300
C12—C131.374 (4)Cl1—O121.413 (4)
C13—C141.378 (5)Cl1—O111.416 (5)
C13—H130.9300Cl1—O131.423 (6)
C14—C151.380 (5)Cl1—O141.443 (6)
C14—H140.9300Cl2—O221.413 (5)
C15—C161.371 (5)Cl2—O211.414 (5)
C15—H150.9300Cl2—O231.424 (7)
C16—H160.9300Cl2—O241.441 (7)
N21—C261.344 (4)Cl3—O321.414 (5)
N21—C221.346 (4)Cl3—O311.414 (5)
C22—C231.385 (4)Cl3—O331.423 (7)
C23—C241.367 (5)Cl3—O341.442 (7)
C23—H230.9300Cl4—O421.413 (6)
C24—C251.383 (5)Cl4—O411.415 (6)
C24—H240.9300Cl4—O431.423 (7)
C25—C261.371 (5)Cl4—O441.442 (7)
C25—H250.9300
N21i—Fe1—N21180.0C26—C25—C24119.0 (3)
N21i—Fe1—N31i87.88 (11)C26—C25—H25120.5
N21—Fe1—N31i92.12 (11)C24—C25—H25120.5
N21i—Fe1—N3192.11 (11)N21—C26—C25122.6 (3)
N21—Fe1—N3187.89 (11)N21—C26—H26118.7
N31i—Fe1—N31180.0C25—C26—H26118.7
N21i—Fe1—N1191.67 (10)C32—N31—C36116.4 (3)
N21—Fe1—N1188.33 (10)C32—N31—Fe1117.5 (2)
N31i—Fe1—N1191.89 (11)C36—N31—Fe1126.1 (2)
N31—Fe1—N1188.11 (11)N31—C32—C33123.7 (3)
N21i—Fe1—N11i88.33 (10)N31—C32—N1116.1 (3)
N21—Fe1—N11i91.66 (10)C33—C32—N1120.2 (3)
N31i—Fe1—N11i88.11 (10)C32—C33—C34118.9 (3)
N31—Fe1—N11i91.89 (11)C32—C33—H33120.6
N11—Fe1—N11i180.0C34—C33—H33120.6
C22—N1—C12112.0 (3)C35—C34—C33118.7 (4)
C22—N1—C32111.1 (2)C35—C34—H34120.7
C12—N1—C32111.4 (3)C33—C34—H34120.7
C16—N11—C12117.3 (3)C36—C35—C34119.7 (4)
C16—N11—Fe1125.4 (2)C36—C35—H35120.2
C12—N11—Fe1117.3 (2)C34—C35—H35120.2
N11—C12—C13123.4 (3)N31—C36—C35122.6 (3)
N11—C12—N1116.7 (2)N31—C36—H36118.7
C13—C12—N1119.9 (3)C35—C36—H36118.7
C12—C13—C14118.4 (3)O12—Cl1—O11111.7 (5)
C12—C13—H13120.8O12—Cl1—O13109.2 (5)
C14—C13—H13120.8O11—Cl1—O13111.7 (5)
C13—C14—C15118.9 (3)O12—Cl1—O14109.4 (5)
C13—C14—H14120.5O11—Cl1—O14106.2 (5)
C15—C14—H14120.5O13—Cl1—O14108.5 (6)
C16—C15—C14119.3 (4)O22—Cl2—O21111.9 (6)
C16—C15—H15120.4O22—Cl2—O23109.1 (6)
C14—C15—H15120.4O21—Cl2—O23111.3 (6)
N11—C16—C15122.7 (3)O22—Cl2—O24109.6 (6)
N11—C16—H16118.7O21—Cl2—O24106.6 (6)
C15—C16—H16118.7O23—Cl2—O24108.2 (7)
C26—N21—C22117.6 (3)O32—Cl3—O31111.8 (6)
C26—N21—Fe1125.2 (2)O32—Cl3—O33108.9 (6)
C22—N21—Fe1117.2 (2)O31—Cl3—O33111.8 (7)
N21—C22—C23122.8 (3)O32—Cl3—O34109.5 (6)
N21—C22—N1117.0 (3)O31—Cl3—O34106.7 (6)
C23—C22—N1120.2 (3)O33—Cl3—O34107.9 (7)
C24—C23—C22118.5 (3)O42—Cl4—O41111.8 (7)
C24—C23—H23120.7O42—Cl4—O43109.2 (7)
C22—C23—H23120.7O41—Cl4—O43111.8 (8)
C23—C24—C25119.4 (3)O42—Cl4—O44109.4 (7)
C23—C24—H24120.3O41—Cl4—O44106.4 (7)
C25—C24—H24120.3O43—Cl4—O44108.1 (8)
C16—N11—C12—C130.9 (5)N21—C22—C23—C240.5 (5)
Fe1—N11—C12—C13178.8 (3)N1—C22—C23—C24178.5 (3)
C16—N11—C12—N1179.7 (3)C22—C23—C24—C250.1 (5)
Fe1—N11—C12—N10.7 (4)C23—C24—C25—C260.7 (6)
C22—N1—C12—N1161.6 (3)C22—N21—C26—C250.7 (5)
C32—N1—C12—N1163.6 (3)Fe1—N21—C26—C25178.2 (3)
C22—N1—C12—C13118.9 (3)C24—C25—C26—N211.1 (5)
C32—N1—C12—C13115.9 (3)C36—N31—C32—C330.3 (5)
N11—C12—C13—C141.7 (6)Fe1—N31—C32—C33179.5 (3)
N1—C12—C13—C14178.9 (3)C36—N31—C32—N1178.9 (3)
C12—C13—C14—C151.2 (6)Fe1—N31—C32—N10.2 (4)
C13—C14—C15—C160.1 (6)C22—N1—C32—N3162.5 (4)
C12—N11—C16—C150.5 (5)C12—N1—C32—N3163.2 (3)
Fe1—N11—C16—C15180.0 (3)C22—N1—C32—C33116.7 (3)
C14—C15—C16—N110.9 (6)C12—N1—C32—C33117.5 (3)
C26—N21—C22—C230.1 (5)N31—C32—C33—C340.9 (6)
Fe1—N21—C22—C23179.1 (3)N1—C32—C33—C34178.3 (3)
C26—N21—C22—N1178.9 (3)C32—C33—C34—C351.0 (6)
Fe1—N21—C22—N10.1 (4)C33—C34—C35—C360.6 (6)
C12—N1—C22—N2162.3 (3)C32—N31—C36—C350.1 (5)
C32—N1—C22—N2163.0 (4)Fe1—N31—C36—C35179.0 (3)
C12—N1—C22—C23118.6 (3)C34—C35—C36—N310.1 (6)
C32—N1—C22—C23116.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O21ii0.932.383.11 (2)136
C14—H14···O34ii0.932.543.470 (17)173
C15—H15···O22iii0.932.443.24 (3)143
C15—H15···O32iii0.932.313.14 (3)147
C23—H23···O12iv0.932.583.412 (10)150
C23—H23···O22iv0.932.523.357 (14)150
C23—H23···O32iv0.932.533.347 (12)147
C24—H24···O13v0.932.603.496 (12)163
C24—H24···O33v0.932.533.334 (17)145
C24—H24···O42v0.932.213.10 (4)161
C26—H26···O130.932.513.375 (12)155
C26—H26···O330.932.563.289 (17)135
C33—H33···O42iv0.932.303.21 (4)164
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1/2.
Bis(tri-2-pyridylamine)nickel(II) bis(perchlorate) (III) top
Crystal data top
[Ni(C15H12N4)2](ClO4)2F(000) = 772
Mr = 754.18Dx = 1.549 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.360 (4) ÅCell parameters from 2895 reflections
b = 17.570 (8) Åθ = 2.3–28.4°
c = 11.165 (5) ŵ = 0.83 mm1
β = 99.542 (5)°T = 296 K
V = 1617.3 (13) Å3Block, purple
Z = 20.22 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
3895 independent reflections
Radiation source: fine focus sealed tube2611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.861, Tmax = 0.920k = 2222
14055 measured reflectionsl = 1414
Refinement top
Refinement on F261 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3274P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3895 reflectionsΔρmax = 0.34 e Å3
272 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.03796 (15)
N10.3741 (3)0.44195 (11)0.71780 (17)0.0413 (5)
N110.3603 (3)0.55818 (11)0.60850 (17)0.0425 (5)
C120.3193 (3)0.51938 (14)0.7020 (2)0.0402 (6)
C130.2283 (3)0.55033 (16)0.7809 (2)0.0523 (7)
H130.20270.52200.84550.063*
C140.1757 (4)0.62410 (17)0.7626 (3)0.0618 (8)
H140.11200.64630.81390.074*
C150.2179 (3)0.66449 (16)0.6685 (3)0.0571 (7)
H150.18430.71470.65550.068*
C160.3101 (3)0.63049 (15)0.5931 (2)0.0491 (6)
H160.33880.65850.52920.059*
N210.3472 (3)0.40791 (11)0.50938 (17)0.0421 (5)
C220.3077 (3)0.39311 (13)0.6185 (2)0.0398 (6)
C230.2089 (3)0.33333 (14)0.6379 (2)0.0487 (6)
H230.18170.32480.71430.058*
C240.1512 (4)0.28645 (16)0.5418 (3)0.0586 (7)
H240.08520.24530.55260.070*
C250.1917 (3)0.30088 (15)0.4301 (3)0.0544 (7)
H250.15390.26970.36420.065*
C260.2887 (3)0.36191 (15)0.4173 (2)0.0494 (6)
H260.31510.37180.34110.059*
N310.6341 (3)0.45832 (11)0.66281 (17)0.0421 (5)
C320.5477 (3)0.43591 (13)0.7471 (2)0.0410 (6)
C330.6174 (4)0.40688 (16)0.8578 (2)0.0547 (7)
H330.55400.39250.91500.066*
C340.7836 (4)0.39971 (17)0.8818 (3)0.0642 (8)
H340.83420.37990.95570.077*
C350.8739 (4)0.42181 (16)0.7965 (3)0.0573 (7)
H350.98630.41700.81110.069*
C360.7953 (3)0.45125 (16)0.6888 (2)0.0531 (7)
H360.85700.46700.63130.064*
Cl10.2327 (9)0.3463 (5)0.0711 (7)0.0603 (7)0.424 (3)
O110.1382 (11)0.4106 (4)0.0898 (16)0.104 (2)0.424 (3)
O120.238 (2)0.3337 (11)0.0522 (7)0.1217 (17)0.424 (3)
O130.3919 (9)0.3541 (7)0.1374 (10)0.104 (3)0.424 (3)
O140.1568 (12)0.2813 (4)0.1163 (8)0.095 (2)0.424 (3)
Cl20.2562 (14)0.3409 (6)0.0680 (11)0.0603 (7)0.280 (3)
O210.1225 (17)0.3830 (7)0.095 (2)0.104 (2)0.280 (3)
O220.246 (4)0.3265 (14)0.0566 (11)0.1217 (17)0.280 (3)
O230.4031 (15)0.3795 (11)0.113 (2)0.104 (3)0.280 (3)
O240.2573 (17)0.2693 (6)0.1296 (11)0.095 (2)0.280 (3)
Cl30.2238 (12)0.3356 (7)0.0680 (11)0.0603 (7)0.244 (3)
O310.190 (2)0.4077 (7)0.114 (3)0.104 (2)0.244 (3)
O320.260 (3)0.340 (2)0.0501 (11)0.1217 (17)0.244 (3)
O330.3537 (13)0.3010 (10)0.1470 (11)0.104 (3)0.244 (3)
O340.0822 (14)0.2890 (8)0.0645 (13)0.095 (2)0.244 (3)
Cl40.196 (2)0.3332 (12)0.0342 (16)0.0603 (7)0.052 (2)
O410.177 (5)0.4126 (12)0.016 (4)0.104 (2)0.052 (2)
O420.356 (3)0.309 (2)0.034 (3)0.1217 (17)0.052 (2)
O430.143 (5)0.312 (3)0.143 (2)0.104 (3)0.052 (2)
O440.094 (4)0.296 (2)0.065 (3)0.095 (2)0.052 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0482 (3)0.0388 (2)0.0288 (2)0.0034 (2)0.01177 (18)0.00442 (18)
N10.0527 (13)0.0397 (11)0.0330 (11)0.0033 (10)0.0114 (9)0.0027 (9)
N110.0527 (13)0.0418 (11)0.0348 (11)0.0006 (9)0.0122 (9)0.0028 (9)
C120.0432 (14)0.0467 (14)0.0318 (12)0.0051 (11)0.0095 (11)0.0012 (10)
C130.0587 (18)0.0594 (17)0.0427 (15)0.0064 (14)0.0201 (13)0.0062 (13)
C140.0608 (19)0.0673 (19)0.0622 (19)0.0041 (15)0.0244 (15)0.0156 (16)
C150.0600 (18)0.0490 (16)0.0617 (18)0.0085 (14)0.0088 (15)0.0076 (14)
C160.0579 (17)0.0438 (14)0.0459 (15)0.0018 (12)0.0096 (13)0.0041 (12)
N210.0543 (13)0.0413 (11)0.0309 (10)0.0060 (10)0.0080 (9)0.0037 (9)
C220.0456 (14)0.0384 (13)0.0359 (13)0.0011 (11)0.0085 (11)0.0067 (10)
C230.0529 (16)0.0467 (14)0.0485 (15)0.0042 (12)0.0143 (13)0.0101 (12)
C240.0600 (18)0.0470 (15)0.0686 (19)0.0157 (13)0.0097 (15)0.0025 (14)
C250.0588 (18)0.0474 (15)0.0547 (17)0.0076 (13)0.0026 (14)0.0058 (13)
C260.0599 (18)0.0515 (15)0.0371 (14)0.0048 (13)0.0085 (12)0.0006 (12)
N310.0477 (13)0.0450 (12)0.0336 (11)0.0035 (10)0.0070 (9)0.0046 (9)
C320.0534 (16)0.0385 (13)0.0315 (12)0.0019 (11)0.0085 (11)0.0034 (10)
C330.069 (2)0.0583 (17)0.0361 (14)0.0048 (15)0.0079 (13)0.0108 (12)
C340.072 (2)0.070 (2)0.0447 (16)0.0036 (17)0.0072 (15)0.0123 (14)
C350.0529 (18)0.0607 (18)0.0548 (18)0.0014 (14)0.0015 (14)0.0024 (14)
C360.0531 (18)0.0570 (17)0.0493 (16)0.0028 (14)0.0087 (13)0.0060 (13)
Cl10.0585 (17)0.0840 (14)0.0389 (6)0.0191 (10)0.0099 (9)0.0132 (8)
O110.081 (5)0.076 (4)0.156 (6)0.012 (3)0.025 (5)0.052 (5)
O120.184 (4)0.142 (4)0.0458 (16)0.004 (3)0.039 (2)0.019 (2)
O130.053 (3)0.177 (10)0.080 (5)0.015 (4)0.003 (3)0.010 (6)
O140.104 (8)0.099 (4)0.086 (5)0.015 (5)0.024 (6)0.015 (3)
Cl20.0585 (17)0.0840 (14)0.0389 (6)0.0191 (10)0.0099 (9)0.0132 (8)
O210.081 (5)0.076 (4)0.156 (6)0.012 (3)0.025 (5)0.052 (5)
O220.184 (4)0.142 (4)0.0458 (16)0.004 (3)0.039 (2)0.019 (2)
O230.053 (3)0.177 (10)0.080 (5)0.015 (4)0.003 (3)0.010 (6)
O240.104 (8)0.099 (4)0.086 (5)0.015 (5)0.024 (6)0.015 (3)
Cl30.0585 (17)0.0840 (14)0.0389 (6)0.0191 (10)0.0099 (9)0.0132 (8)
O310.081 (5)0.076 (4)0.156 (6)0.012 (3)0.025 (5)0.052 (5)
O320.184 (4)0.142 (4)0.0458 (16)0.004 (3)0.039 (2)0.019 (2)
O330.053 (3)0.177 (10)0.080 (5)0.015 (4)0.003 (3)0.010 (6)
O340.104 (8)0.099 (4)0.086 (5)0.015 (5)0.024 (6)0.015 (3)
Cl40.0585 (17)0.0840 (14)0.0389 (6)0.0191 (10)0.0099 (9)0.0132 (8)
O410.081 (5)0.076 (4)0.156 (6)0.012 (3)0.025 (5)0.052 (5)
O420.184 (4)0.142 (4)0.0458 (16)0.004 (3)0.039 (2)0.019 (2)
O430.053 (3)0.177 (10)0.080 (5)0.015 (4)0.003 (3)0.010 (6)
O440.104 (8)0.099 (4)0.086 (5)0.015 (5)0.024 (6)0.015 (3)
Geometric parameters (Å, º) top
Ni1—N212.075 (2)C26—H260.9300
Ni1—N21i2.075 (2)N31—C361.336 (3)
Ni1—N112.084 (2)N31—C321.337 (3)
Ni1—N11i2.085 (2)C32—C331.374 (3)
Ni1—N312.103 (2)C33—C341.377 (4)
Ni1—N31i2.103 (2)C33—H330.9300
N1—C121.437 (3)C34—C351.365 (4)
N1—C321.438 (3)C34—H340.9300
N1—C221.439 (3)C35—C361.373 (4)
N11—C121.338 (3)C35—H350.9300
N11—C161.340 (3)C36—H360.9300
C12—C131.369 (3)Cl1—O121.402 (4)
C13—C141.373 (4)Cl1—O111.415 (4)
C13—H130.9300Cl1—O131.419 (5)
C14—C151.362 (4)Cl1—O141.438 (5)
C14—H140.9300Cl2—O221.402 (4)
C15—C161.369 (4)Cl2—O211.412 (5)
C15—H150.9300Cl2—O231.419 (5)
C16—H160.9300Cl2—O241.434 (6)
N21—C261.335 (3)Cl3—O321.402 (4)
N21—C221.339 (3)Cl3—O311.413 (5)
C22—C231.376 (3)Cl3—O331.418 (6)
C23—C241.375 (4)Cl3—O341.434 (6)
C23—H230.9300Cl4—O421.401 (5)
C24—C251.368 (4)Cl4—O411.415 (5)
C24—H240.9300Cl4—O431.417 (6)
C25—C261.366 (4)Cl4—O441.435 (6)
C25—H250.9300
N21—Ni1—N21i180.0C26—C25—C24118.8 (3)
N21—Ni1—N1186.80 (8)C26—C25—H25120.6
N21i—Ni1—N1193.20 (8)C24—C25—H25120.6
N21—Ni1—N11i93.20 (8)N21—C26—C25122.8 (2)
N21i—Ni1—N11i86.80 (8)N21—C26—H26118.6
N11—Ni1—N11i180.0C25—C26—H26118.6
N21—Ni1—N3185.94 (8)C36—N31—C32117.5 (2)
N21i—Ni1—N3194.06 (8)C36—N31—Ni1126.46 (17)
N11—Ni1—N3186.46 (8)C32—N31—Ni1116.00 (17)
N11i—Ni1—N3193.54 (8)N31—C32—C33123.0 (3)
N21—Ni1—N31i94.06 (8)N31—C32—N1117.4 (2)
N21i—Ni1—N31i85.94 (8)C33—C32—N1119.5 (2)
N11—Ni1—N31i93.54 (8)C32—C33—C34118.2 (3)
N11i—Ni1—N31i86.46 (8)C32—C33—H33120.9
N31—Ni1—N31i180.0C34—C33—H33120.9
C12—N1—C32112.76 (18)C35—C34—C33119.7 (3)
C12—N1—C22113.31 (19)C35—C34—H34120.1
C32—N1—C22112.13 (19)C33—C34—H34120.1
C12—N11—C16117.9 (2)C34—C35—C36118.5 (3)
C12—N11—Ni1116.37 (16)C34—C35—H35120.7
C16—N11—Ni1125.75 (17)C36—C35—H35120.7
N11—C12—C13122.8 (2)N31—C36—C35123.0 (3)
N11—C12—N1117.4 (2)N31—C36—H36118.5
C13—C12—N1119.8 (2)C35—C36—H36118.5
C12—C13—C14118.5 (2)O12—Cl1—O11112.3 (4)
C12—C13—H13120.7O12—Cl1—O13110.3 (5)
C14—C13—H13120.7O11—Cl1—O13110.1 (5)
C15—C14—C13119.3 (3)O12—Cl1—O14107.9 (5)
C15—C14—H14120.4O11—Cl1—O14107.1 (4)
C13—C14—H14120.4O13—Cl1—O14108.9 (5)
C14—C15—C16119.4 (3)O22—Cl2—O21112.5 (5)
C14—C15—H15120.3O22—Cl2—O23110.1 (6)
C16—C15—H15120.3O21—Cl2—O23110.1 (6)
N11—C16—C15122.1 (2)O22—Cl2—O24108.2 (6)
N11—C16—H16118.9O21—Cl2—O24107.5 (6)
C15—C16—H16118.9O23—Cl2—O24108.3 (6)
C26—N21—C22118.0 (2)O32—Cl3—O31112.3 (6)
C26—N21—Ni1125.66 (17)O32—Cl3—O33110.3 (6)
C22—N21—Ni1116.35 (16)O31—Cl3—O33109.7 (6)
N21—C22—C23122.5 (2)O32—Cl3—O34108.1 (6)
N21—C22—N1117.6 (2)O31—Cl3—O34107.9 (6)
C23—C22—N1119.9 (2)O33—Cl3—O34108.5 (6)
C24—C23—C22118.4 (2)O42—Cl4—O41112.3 (7)
C24—C23—H23120.8O42—Cl4—O43110.8 (7)
C22—C23—H23120.8O41—Cl4—O43110.0 (7)
C25—C24—C23119.5 (2)O42—Cl4—O44108.2 (7)
C25—C24—H24120.3O41—Cl4—O44107.2 (7)
C23—C24—H24120.3O43—Cl4—O44108.2 (7)
C16—N11—C12—C130.4 (4)N21—C22—C23—C241.2 (4)
Ni1—N11—C12—C13179.8 (2)N1—C22—C23—C24178.2 (2)
C16—N11—C12—N1179.9 (2)C22—C23—C24—C250.7 (4)
Ni1—N11—C12—N10.4 (3)C23—C24—C25—C260.1 (4)
C32—N1—C12—N1165.2 (3)C22—N21—C26—C250.2 (4)
C22—N1—C12—N1163.5 (3)Ni1—N21—C26—C25178.2 (2)
C32—N1—C12—C13115.0 (3)C24—C25—C26—N210.6 (4)
C22—N1—C12—C13116.2 (3)C36—N31—C32—C330.4 (4)
N11—C12—C13—C140.6 (4)Ni1—N31—C32—C33179.5 (2)
N1—C12—C13—C14179.1 (2)C36—N31—C32—N1178.6 (2)
C12—C13—C14—C151.2 (4)Ni1—N31—C32—N10.5 (3)
C13—C14—C15—C160.8 (5)C12—N1—C32—N3165.0 (3)
C12—N11—C16—C150.9 (4)C22—N1—C32—N3164.3 (3)
Ni1—N11—C16—C15179.8 (2)C12—N1—C32—C33115.9 (2)
C14—C15—C16—N110.3 (4)C22—N1—C32—C33114.8 (2)
C26—N21—C22—C230.7 (4)N31—C32—C33—C340.9 (4)
Ni1—N21—C22—C23179.29 (19)N1—C32—C33—C34178.1 (2)
C26—N21—C22—N1178.7 (2)C32—C33—C34—C350.5 (4)
Ni1—N21—C22—N10.1 (3)C33—C34—C35—C360.4 (5)
C12—N1—C22—N2163.9 (3)C32—N31—C36—C350.5 (4)
C32—N1—C22—N2165.1 (3)Ni1—N31—C36—C35178.5 (2)
C12—N1—C22—C23116.7 (2)C34—C35—C36—N311.0 (4)
C32—N1—C22—C23114.3 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O21ii0.932.413.174 (17)139
C14—H14···O34ii0.932.553.477 (14)174
C14—H14···O43ii0.932.383.23 (4)151
C15—H15···O12iii0.932.523.289 (18)140
C15—H15···O22iii0.932.373.14 (3)140
C15—H15···O32iii0.932.573.37 (3)144
C23—H23···O12iv0.932.583.428 (8)152
C23—H23···O22iv0.932.533.376 (13)152
C24—H24···O33v0.932.493.301 (13)146
C24—H24···O42v0.932.122.97 (3)152
C26—H26···O130.932.483.380 (11)162
C26—H26···O330.932.573.331 (13)140
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Shi Wang (School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China) for providing his original data set for compound (III)[link].

Funding information

The authors are indebted to the Algerian DG–RSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationBoys, D., Escobar, C. & Zamudio, W. (1992). Acta Cryst. C48, 1118–1120.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonohue, J. (1968). Structural Chemistry and Molecular Biology, edited by A Rich & N. Davidson, pp. 443–465. San Francisco & London: W. H. Freeman & Co.  Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKucharski, E. S., McWhinnie, W. R. & White, A. H. (1978a). Aust. J. Chem. 31, 53–56.  CSD CrossRef CAS Google Scholar
First citationKucharski, E. S., McWhinnie, W. R. & White, A. H. (1978b). Aust. J. Chem. 31, 2647–2650.  CSD CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CSD CrossRef Web of Science Google Scholar
First citationPérez, J., Morales, D., García-Escudero, L. A., Martínez-García, H., Miguel, D. & Bernad, P. (2009). Dalton Trans. pp. 375–382.  Google Scholar
First citationSetifi, Z., Addala, A., Tao, J., Wannarit, N., Glidewell, C., Setifi, F. & Youngme, S. (2016). Inorg. Chem. Commun. 68, 80–84.  CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013a). Acta Cryst. C69, 1351–1356.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.  CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013b). Acta Cryst. E69, m12–m13.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWang, S., He, W. & Huang, W. (2011). Acta Cryst. E67, m78.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds