research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1-[1-(2-Hy­dr­oxy­phen­yl)ethyl­­idene]-2-(pyridin-2-yl-κN)hydrazine-κ2N′,O}{1-[1-(2-oxidophen­yl)ethyl­­idene]-2-(pyridin-2-yl-κN)hydrazine-κ2N′,O}nickelate(II) nitrate hemihydrate

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritanie, and cInstituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP, Brazil
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 26 February 2018; accepted 3 April 2018; online 6 April 2018)

The 2-hydrazino­pyridine precursor has been widely used to prepare ligands of various kinds by condensation with carbonyl compounds. These types of ligands are suitable for synthesizing novel transition metal (II) complexes with inter­esting magnetic properties. In this context we have synthesized the ligand 1-(2-hy­droxy­phenyl-2-ethyl­idene)-2-(pyridin-2-yl)hydrazine (HL) which was used in the preparation of the mononuclear title complex, [Ni(C13H12N3O)(C13H13N3O)]NO3·0.5H2O. As a result of the presence of HL and L in the [{Ni(HL)(L)}]+ unit, the complex appears to be a supramolecular dimer composed of the Δ(−) and Λ(−) optical isomers, which are linked by strong hydrogen-bonds. As well as the dimer generated by two mononuclear [{Ni(HL)(L)}]+ cations, the asymmetric unit also contains two nitrate anions and one water mol­ecule. Each Ni atom is coordinated to two ligand mol­ecules by a nitro­gen atom of the pyridine ring, an imine nitro­gen atom and a phenolic oxygen atom of one of the ligand mol­ecules and a phenolate oxygen atom of the other organic mol­ecules. The environment around the cation is a distorted octa­hedron. The basal planes are defined by the two nitro­gen atoms of the pyridine rings and the two phenolic oxygen atoms of the ligand, the apical positions being occupied by the azomethine atoms. The O atoms of one of the nitrate ions are disordered over two sets of sites in a 0.745 (9):0.255 (9) ratio. In the crystal, the dimers are linked by numerous hydrogen bonds, forming a three-dimensional framework.

1. Chemical context

Organic ligands derived from salicyl­aldehyde containing N and O donor atoms are widely used in coordination chemistry (Wang et al., 2006[Wang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059-2063.]; Güveli & Ülküseven, 2011[Güveli, Ş. & Ülküseven, B. (2011). Polyhedron, 30, 1385-1388.]; Liu et al., 2018[Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.-R. (2018). Coord. Chem. Rev. 357, 144-172.]). Indeed, these derivatives can give very different structures depending on the type of metal used and the reaction medium (Mahapatra et al., 2016[Mahapatra, P., Ghosh, S., Giri, S. & Ghosh, A. (2016). Polyhedron, 117, 427-436.]). The coordination chemistry of trans­ition metals continues to be widely explored by researchers because of the wide variety of structures (Bhatta­charya & Mohanta, 2015[Bhattacharya, S. & Mohanta, S. (2015). Inorg. Chim. Acta, 432, 169-175.]) and applications of these derivatives in different fields (El-Sayed et al., 2016[El-Sayed, B. A., Abo-Aly, M. M., Attia, M. S. & Gamal, S. (2016). J. Lumin. 169, 99-105.]; Donga et al., 2016[Donga, W.-K., Li, X.-L., Wang, L., Zhang, Y. & Ding, Y.-J. (2016). Sens. Actuators B, 229, 370-378.]). The growing inter­est in the use in coordination chemistry of ligands containing a hydrazino unit (Drożdżewski & Kubiak, 2009[Drożdżewski, P. & Kubiak, M. (2009). Polyhedron, 28, 1518-1524.]; Mukherjee et al., 2013[Mukherjee, S., Mal, P. & Stoeckli-Evans, H. (2013). Polyhedron, 50, 495-501.]; Guhathakurta et al., 2017[Guhathakurta, B., Basu, P., Purohit, C. S., Bandyopadhyay, N., Kumar, G. S., Chowdhury, S. & Naskar, J. P. (2017). Polyhedron, 126, 195-204.]) is due to the presence of N donor atoms, allowing them to act as multidentate ligands to generate supra­molecular structures (Konar, 2015[Konar, S. (2015). J. Mol. Struct. 1092, 34-43.]; Chavan et al., 2014[Chavan, S. S., Sawant, V. A. & Jadhav, A. N. (2014). Spectrochim. Acta Part A, 117, 360-365.]) that have inter­esting catalytic properties (Nassar et al., 2017[Nassar, M. Y., Aly, H. M., Abdelrahman, E. A. & Moustafa, M. E. (2017). J. Mol. Struct. 1143, 462-471.]) or biological activities (Singh et al., 2013[Singh, A. K., Pandey, O. P. & Sengupta, S. K. (2013). Spectrochim. Acta Part A, 113, 393-399.]). In this context we have synthesized the ligand 1-(2-hy­droxy­phenyl-2-ethyl­idene)-2-(pyridin-2-yl)hydrazine (HL), which was used in the preparation of the title compound. We combined 2-hy­droxy­aceto­phenone and 2-hydrazino pyridine to prepare a ligand with four potential donor sites (N, O) that acts as a tridentate ligand. In trying to coordinate the 1-(2-hy­droxy­phenyl-2-ethyl­idene)-2-(pyridin-2-yl)hydrazine ligand to the first series of transition metals in ethanol, we obtained a nickel(II) complex.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the structure of the complex. The asymmetric unit contains a dimer generated by two mononuclear [{Ni(HL)(L)}]+ cations, which are strongly hydrogen bonded, two nitrate anions and one water mol­ecule. The O atoms of one of the nitrate ions are disordered over two sets of sites in a 0.745 (9):0.255 (9) ratio. As a result of the presence of HL and L in the [{Ni(HL)(L)}]+ unit, the complex is chiral. The dimer is formed by the Δ(−) and Λ(−) optical isomers because of the clockwise and anti-clockwise arrangement of the ligands around the Ni2+ ion. The two optical isomers of the dimer are linked by strong O—H⋯O hydrogen bonds between the phenoxo oxygen atoms and the phenolic hydrogen atoms (O1—H1O⋯O4 and O3—H3O⋯O2) with a mean H⋯A distances of 1.64 Å.

[Figure 1]
Figure 1
An ORTEP view of the title compound, showing the atom-numbering scheme and intra­molecular contacts (Table 2[link]) as dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

In both complex mol­ecules, the Ni2+ ion is hexa­coordinated in an octa­hedral environment. Each Ni2+ ion is bonded to a ligand mol­ecule, whose phenolic function is deprotonated and to a second neutral ligand mol­ecule. The basal plane of the octa­hedron around each Ni2+ ion is occupied by two nitro­gen atoms from the pyridine moieties, a phenolic oxygen atom and a phenolate oxygen atom. The apical positions are occupied by the nitro­gen atoms of the imine functions. The angles (Table 1[link]) in the basal plane of the octa­hedron are in the range 84.34 (6)–102.46 (7)° for Ni1 and 84.32 (6)–103.78 (7)° for Ni2. The sum of the angles around Ni1 and Ni2 are respectively 363.44° and 363.90° indicating deformation of the octa­hedron. The angles formed by the axial atoms around Ni1 and Ni2 (N2—Ni1—N4 and N7—Ni2—N10) deviate from the ideal value of 180°. The Ni—O/N bond lengths are similar to the observed distances in hexa­dentate nickel(II) complex [Ni(L)2] where HL is 2-[(piperidin-2-yl­methyl­imino)­meth­yl]phenol (Jana et al., 2017[Jana, K., Maity, T., Debnath, S. C., Samanta, B. C. & Seth, S. K. (2017). J. Mol. Struct. 1130, 844-854.]). The diagonal basal angles (N1—Ni1—O1, N5—Ni1—O2, N8—Ni2—O3 and N11—Ni2—O4) and the apical angles (N2—Ni1—N4 and N7—Ni2—N10) deviate significantly from the ideal values of 180°. The angles N2—Ni1—O1 and N2—Ni1—N1 are very different. This can be explained by the rings formed by the ligand by binding in a tridentate fashion to the Ni2+ ion. The first angle is derived from a six-membered ring whereas the second one is derived from a five-membered ring. The flexibility of the six-membered ring compared to the five-membered ring implies that the angles should be larger in the six-membered ring than in the five-membered ring. The same behavior is observed for the angles around Ni1 with the second ligand mol­ecule. These observations are also noticed for the second mol­ecule in the asymmetric unit.

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 2.0371 (14) Ni2—O4 2.0336 (14)
Ni1—N4 2.0388 (16) Ni2—N10 2.0337 (17)
Ni1—O1 2.0483 (13) Ni2—N7 2.0455 (17)
Ni1—N1 2.0500 (16) Ni2—N8 2.0594 (18)
Ni1—N2 2.0501 (16) Ni2—N11 2.0606 (17)
Ni1—N5 2.0564 (17) Ni2—O3 2.0667 (14)
       
O1—Ni1—N1 165.40 (6) O2—Ni1—N5 160.88 (6)
N4—Ni1—N2 173.93 (6) N10—Ni2—N7 176.60 (7)
O1—Ni1—N2 86.53 (6) O4—Ni2—N11 163.23 (6)
N1—Ni1—N2 79.29 (6) N8—Ni2—O3 160.88 (7)

3. Supra­molecular features

In the crystal, the complex appears as a dimer composed by the Δ(−) and Λ(−) optical isomers, which are linked by strong hydrogen bonds (Table 2[link]). The dimers are linked by different inter­molecular hydrogen bonds, OW—H⋯ONO2, N—H⋯ONO2, N—H⋯OW and C—H⋯ONO2, involving the complex mol­ecule, the non-coordinating water mol­ecule and the uncoordinated nitrate groups (Fig. 2[link]). These inter­molecular and intra­molecular hydrogen bonds stabilize and link the components into a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.82 1.62 2.4093 (18) 161
O3—H3O⋯O2 0.82 1.66 2.4647 (19) 167
O5W—H5WA⋯O11i 0.84 2.16 2.979 (5) 165
O5W—H5WA⋯O11Ai 0.84 1.94 2.767 (14) 170
O5W—H5WB⋯O6i 0.74 2.47 3.142 (4) 153
O5W—H5WB⋯O7i 0.74 2.42 3.094 (5) 153
N3—H3N⋯O5W 0.86 2.23 2.933 (2) 139
N6—H6N⋯O11 0.86 2.19 2.991 (4) 156
N6—H6N⋯O11A 0.86 2.62 3.47 (3) 172
N9—H9N⋯O10ii 0.86 2.30 3.041 (4) 145
N9—H9N⋯O9Aii 0.86 2.26 3.107 (12) 167
N12—H12N⋯O6iii 0.86 2.13 2.961 (3) 162
C2—H2⋯O10iv 0.93 2.63 3.437 (5) 146
C4—H4⋯O6i 0.93 2.56 3.409 (4) 152
C13—H13C⋯O9i 0.96 2.33 3.231 (5) 156
C15—H15⋯O8v 0.93 2.62 3.544 (4) 170
C26—H26C⋯O10A 0.96 2.59 3.332 (18) 134
C28—H28⋯O10Avi 0.93 2.64 3.104 (12) 111
C30—H30⋯O10ii 0.93 2.33 3.117 (5) 142
C39—H39A⋯O9Aii 0.96 2.39 2.938 (11) 116
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular representation of the title compound, showing the inter­molecular hydrogen-bond contacts (Table 2[link]) as dotted lines.

4. Synthesis and crystallization

A mixture of 2-hydrazino­pyridine (1 mmol) and 2-hydroxy­aceto­phenone (1 mmol) in ethanol (10 mL) was stirred under reflux for 60 min. On cooling, a yellow precipitate was obtained. After filtration, the resulting solid was dried in a desiccator. C13H13N3O (HL), yield 60%, m.p. 388 K. Calculated: C, 68.70; H, 5.77; N, 18.49. Found: C, 68.72; H, 5.76; N, 18.46%. IR (cm−1): 3289 (ν O—H), 3051 (ν N—H), 1514 (ν C=N), 1576, 1507, 1493, 1247 (ν C—O), 1145, 1043 (ν N—N), 756. 1H NMR: δ (ppm): 2.3 (3H, s, —CH3), 6.79–6.85 (8H, H—Ph and H—Py), 8.7 (1H, s, H—N), 12.9 (1H, br, H—O). 13C NMR: δ(ppm): 12, 107, 116, 117, 118, 119, 120, 127, 130, 138, 149, 156, 158. A mixture of NiCl2·6H2O (1 mmol) in ethanol (10 mL) was added to a solution of HL (2 mol) in 10 mL of ethanol. The mixture was stirred for 60 min and the resulting greenish solution was filtered. The filtrate was kept at 298 K and after six days, green crystals suitable for X-ray analysis appeared and were collected by filtration. [C26H26N7NiO5.5], yield 40%. Calculated: C, 53.54; H, 4.49; N, 16.81. Found: C, 53.50; H, 4.52; N, 16.76%. μeff (mB): 1.8. ΛM (S cm2 mol−1): 5. IR (cm−1): 3289, 3051, 3289, 1614, 1576, 1375, 1229, 1015.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of OH and OH2 groups were located in difference-Fourier maps and refined using a riding model with Uiso(H) = 1.5Ueq(O). Other H atoms (CH, NH and CH3 groups) were geometrically optimized (C—H = 0.93–0.96 Å, Å N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for all other H atoms. High thermal motion for the O atoms of one of the nitrate group was noted, indicating some disorder in their positions. Each of these O atoms was distributed over two sites with a refined occupancy ratio of 0.745 (9):0.255 (9).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C13H12N3O)(C13H13N3O)]NO3·0.5H2O
Mr 583.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 16.1988 (3), 18.5375 (3), 17.9175 (3)
β (°) 97.5822 (18)
V3) 5333.30 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.08 × 0.07 × 0.06
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 150855, 13035, 10488
Rint 0.048
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections 13035
No. of parameters 745
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

{1-[1-(2-Hydroxyphenyl)ethylidene]-2-(pyridin-2-yl-κN)hydrazine-κ2N',O}{1-[1-(2-oxidophenyl)ethylidene]-2-(pyridin-2-yl-κN)hydrazine-κ2N',O}nickelate(II) nitrate hemihydrate top
Crystal data top
[Ni(C13H12N3O)(C13H13N3O)]NO3·0.5H2OF(000) = 2424
Mr = 583.25Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.1988 (3) ÅCell parameters from 4920 reflections
b = 18.5375 (3) Åθ = 2.4–28.6°
c = 17.9175 (3) ŵ = 0.78 mm1
β = 97.5822 (18)°T = 293 K
V = 5333.30 (17) Å3Prismatic, green
Z = 80.08 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
10488 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 29.0°, θmin = 3.4°
CCD scansh = 2121
150855 measured reflectionsk = 2522
13035 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.046P)2 + 3.4265P]
where P = (Fo2 + 2Fc2)/3
13035 reflections(Δ/σ)max = 0.002
745 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.69969 (2)0.20122 (2)0.45200 (2)0.02911 (7)
Ni20.48759 (2)0.23628 (2)0.21983 (2)0.03373 (7)
O10.65123 (9)0.28020 (7)0.37910 (7)0.0355 (3)
H1O0.6392830.2775920.3332650.053*
O20.60421 (8)0.13968 (7)0.40125 (8)0.0387 (3)
O30.48693 (9)0.20577 (8)0.33069 (8)0.0398 (3)
H3O0.5217750.1840180.3596040.060*
O40.61270 (9)0.24528 (8)0.24967 (8)0.0380 (3)
O5W0.53344 (14)0.20867 (11)0.71451 (12)0.0733 (6)
H5WA0.5197830.2482030.7316180.110*
H5WB0.5538430.1847500.7442020.110*
O61.0763 (2)0.43370 (16)0.30666 (18)0.1090 (9)
O71.10911 (18)0.34282 (14)0.3732 (3)0.1389 (14)
O81.1199 (3)0.44896 (18)0.41916 (18)0.1352 (13)
O91.0251 (3)0.1008 (3)0.2123 (2)0.1010 (16)0.745 (9)
O101.0324 (3)0.05074 (18)0.3176 (2)0.0912 (16)0.745 (9)
O110.9948 (3)0.1624 (2)0.3030 (3)0.0828 (16)0.745 (9)
N10.72332 (10)0.12931 (9)0.53913 (9)0.0371 (4)
N20.62439 (10)0.24142 (8)0.52552 (9)0.0317 (3)
N30.60892 (11)0.18806 (9)0.57598 (10)0.0387 (4)
H3N0.5655920.1889570.5990130.046*
N40.77212 (10)0.15067 (9)0.38318 (9)0.0350 (3)
N50.80350 (10)0.26613 (9)0.46670 (9)0.0349 (3)
N60.84061 (11)0.19129 (10)0.37336 (11)0.0440 (4)
H6N0.8738210.1782850.3421550.053*
N70.45535 (11)0.33573 (9)0.25612 (10)0.0402 (4)
N80.50166 (12)0.29814 (10)0.12688 (10)0.0430 (4)
N90.47946 (13)0.38903 (10)0.21018 (12)0.0517 (5)
H9N0.4808760.4335020.2239460.062*
N100.51236 (11)0.13578 (9)0.18304 (9)0.0365 (4)
N110.36844 (11)0.19595 (9)0.19645 (10)0.0389 (4)
N120.44383 (11)0.09206 (10)0.18355 (11)0.0452 (4)
H12N0.4481150.0458960.1812770.054*
N131.01909 (13)0.10474 (11)0.28065 (13)0.0515 (5)
N141.10515 (16)0.40819 (13)0.3660 (2)0.0734 (7)
C10.78089 (15)0.07688 (14)0.54885 (14)0.0531 (6)
H10.8209720.0748660.5162250.064*
C20.7832 (2)0.02635 (17)0.60461 (17)0.0732 (9)
H20.8235500.0096170.6098910.088*
C30.7236 (2)0.03046 (17)0.65275 (17)0.0781 (9)
H30.7232640.0036830.6907290.094*
C40.66526 (19)0.08390 (14)0.64546 (15)0.0604 (7)
H40.6255650.0871530.6783800.072*
C50.66688 (13)0.13354 (11)0.58715 (11)0.0387 (4)
C60.57756 (12)0.29756 (11)0.51850 (11)0.0349 (4)
C70.59975 (12)0.35707 (10)0.46981 (11)0.0350 (4)
C80.58773 (15)0.42805 (12)0.49327 (13)0.0476 (5)
H80.5659820.4357320.5381180.057*
C90.60724 (19)0.48666 (13)0.45176 (16)0.0599 (7)
H90.6001290.5332240.4691600.072*
C100.63726 (19)0.47584 (13)0.38453 (15)0.0582 (6)
H100.6489140.5152460.3555450.070*
C110.65030 (15)0.40670 (11)0.35960 (13)0.0456 (5)
H110.6702480.4001000.3137350.055*
C120.63392 (12)0.34669 (10)0.40234 (11)0.0331 (4)
C130.50247 (15)0.30578 (13)0.55871 (14)0.0508 (6)
H13A0.4744440.2602210.5595820.076*
H13B0.4653200.3407020.5328960.076*
H13C0.5196200.3216900.6093750.076*
C140.81372 (14)0.32814 (12)0.50585 (12)0.0415 (5)
H140.7781490.3376850.5413600.050*
C150.87401 (15)0.37803 (13)0.49606 (14)0.0498 (5)
H150.8788550.4206410.5236820.060*
C160.92728 (16)0.36294 (13)0.44385 (15)0.0554 (6)
H160.9695110.3952540.4368670.066*
C170.91832 (15)0.30082 (13)0.40239 (14)0.0508 (6)
H170.9536680.2904840.3669050.061*
C180.85450 (12)0.25329 (11)0.41485 (12)0.0369 (4)
C190.75990 (14)0.08936 (11)0.34878 (12)0.0422 (5)
C200.69007 (15)0.04357 (11)0.36439 (13)0.0467 (5)
C210.61659 (14)0.06938 (11)0.38945 (14)0.0464 (5)
C220.55573 (19)0.02025 (15)0.4040 (2)0.0843 (11)
H220.5069630.0371780.4200600.101*
C230.5661 (2)0.05275 (17)0.3953 (3)0.1195 (18)
H230.5245710.0845330.4054140.143*
C240.6370 (3)0.07860 (16)0.3718 (3)0.1123 (16)
H240.6441300.1280240.3664660.135*
C250.6982 (2)0.03155 (14)0.3560 (2)0.0779 (9)
H250.7460260.0498260.3393570.093*
C260.8182 (2)0.06368 (15)0.29570 (17)0.0663 (8)
H26A0.8298790.1026400.2633690.099*
H26B0.7928520.0246670.2657580.099*
H26C0.8692190.0473310.3240780.099*
C270.52472 (17)0.27665 (14)0.06079 (13)0.0534 (6)
H270.5257000.2274990.0505590.064*
C280.5468 (2)0.32390 (17)0.00792 (16)0.0685 (8)
H280.5626760.3073400.0370710.082*
C290.5447 (2)0.39698 (18)0.02355 (18)0.0765 (9)
H290.5588190.4302640.0114990.092*
C300.5221 (2)0.42044 (15)0.09038 (17)0.0667 (7)
H300.5206100.4694120.1013920.080*
C310.50121 (15)0.36893 (12)0.14158 (13)0.0470 (5)
C320.41969 (14)0.35265 (12)0.31432 (13)0.0466 (5)
C330.38847 (14)0.29495 (13)0.35971 (12)0.0461 (5)
C340.42222 (13)0.22454 (13)0.36726 (12)0.0421 (5)
C350.38711 (17)0.17403 (17)0.41051 (16)0.0631 (7)
H350.4104900.1282230.4163990.076*
C360.3180 (2)0.1903 (2)0.44514 (19)0.0794 (9)
H360.2954030.1556690.4740950.095*
C370.28280 (19)0.2574 (2)0.43673 (19)0.0772 (9)
H370.2354960.2681620.4588910.093*
C380.31768 (17)0.30871 (17)0.39546 (16)0.0627 (7)
H380.2936730.3543390.3909050.075*
C390.4058 (2)0.43043 (15)0.33345 (18)0.0737 (8)
H39A0.4570300.4566360.3343090.111*
H39B0.3870950.4332670.3820260.111*
H39C0.3644090.4509800.2962170.111*
C400.29525 (14)0.22856 (13)0.20163 (13)0.0459 (5)
H400.2944830.2784300.2071360.055*
C410.22184 (15)0.19154 (15)0.19913 (14)0.0543 (6)
H410.1724690.2155330.2042180.065*
C420.22279 (16)0.11739 (15)0.18885 (15)0.0572 (6)
H420.1736320.0910900.1865580.069*
C430.29586 (15)0.08315 (13)0.18210 (14)0.0490 (5)
H430.2971880.0336450.1739220.059*
C440.36880 (13)0.12425 (11)0.18777 (11)0.0396 (4)
C450.58119 (14)0.10846 (12)0.16676 (13)0.0449 (5)
C460.65453 (14)0.15492 (12)0.16520 (12)0.0413 (5)
C470.66935 (13)0.21875 (11)0.20858 (11)0.0362 (4)
C480.74569 (15)0.25429 (13)0.20936 (14)0.0486 (5)
H480.7566830.2949470.2394370.058*
C490.80495 (17)0.23040 (14)0.16657 (17)0.0607 (7)
H490.8558290.2541200.1690400.073*
C500.78884 (18)0.17125 (15)0.12000 (17)0.0648 (7)
H500.8275620.1563590.0892270.078*
C510.71492 (17)0.13459 (14)0.11962 (15)0.0567 (6)
H510.7045250.0948910.0880370.068*
C520.58736 (19)0.02966 (15)0.1491 (2)0.0841 (11)
H52A0.5691160.0017070.1890080.126*
H52B0.6441300.0177480.1444720.126*
H52C0.5527960.0191000.1026960.126*
O9A1.0433 (9)0.0516 (6)0.2558 (10)0.123 (7)0.255 (9)
O10A1.0180 (12)0.1012 (10)0.3517 (6)0.150 (8)0.255 (9)
O11A0.9874 (13)0.1541 (8)0.2537 (12)0.153 (9)0.255 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02986 (12)0.02894 (12)0.02853 (12)0.00262 (9)0.00381 (9)0.00052 (9)
Ni20.03638 (14)0.03074 (13)0.03250 (13)0.00373 (10)0.00127 (10)0.00269 (9)
O10.0496 (8)0.0289 (6)0.0266 (6)0.0042 (6)0.0001 (6)0.0027 (5)
O20.0348 (7)0.0267 (7)0.0518 (8)0.0030 (5)0.0046 (6)0.0034 (6)
O30.0345 (7)0.0490 (8)0.0353 (7)0.0127 (6)0.0028 (6)0.0046 (6)
O40.0363 (7)0.0461 (8)0.0315 (7)0.0012 (6)0.0040 (6)0.0088 (6)
O5W0.0981 (16)0.0613 (12)0.0682 (12)0.0073 (11)0.0399 (12)0.0035 (10)
O60.140 (3)0.0916 (19)0.097 (2)0.0133 (18)0.0251 (18)0.0098 (16)
O70.0893 (19)0.0549 (15)0.268 (4)0.0096 (13)0.005 (2)0.013 (2)
O80.195 (4)0.099 (2)0.105 (2)0.058 (2)0.003 (2)0.0120 (18)
O90.142 (3)0.093 (4)0.075 (2)0.015 (2)0.043 (2)0.013 (2)
O100.133 (3)0.056 (2)0.084 (3)0.0132 (19)0.011 (2)0.026 (2)
O110.091 (3)0.0467 (18)0.121 (4)0.0005 (17)0.053 (3)0.014 (2)
N10.0361 (9)0.0389 (9)0.0359 (9)0.0049 (7)0.0034 (7)0.0056 (7)
N20.0337 (8)0.0307 (8)0.0312 (8)0.0021 (6)0.0060 (6)0.0002 (6)
N30.0411 (9)0.0369 (9)0.0412 (9)0.0012 (7)0.0166 (7)0.0050 (7)
N40.0374 (9)0.0336 (8)0.0346 (8)0.0054 (7)0.0073 (7)0.0003 (7)
N50.0341 (8)0.0387 (9)0.0318 (8)0.0005 (7)0.0035 (6)0.0002 (7)
N60.0420 (10)0.0464 (10)0.0475 (10)0.0018 (8)0.0204 (8)0.0047 (8)
N70.0415 (9)0.0339 (9)0.0427 (10)0.0052 (7)0.0035 (7)0.0043 (7)
N80.0510 (11)0.0378 (9)0.0375 (9)0.0021 (8)0.0042 (8)0.0013 (7)
N90.0672 (13)0.0289 (9)0.0575 (12)0.0024 (8)0.0024 (10)0.0026 (8)
N100.0397 (9)0.0326 (8)0.0363 (9)0.0009 (7)0.0014 (7)0.0029 (7)
N110.0371 (9)0.0414 (9)0.0360 (9)0.0014 (7)0.0039 (7)0.0005 (7)
N120.0422 (10)0.0307 (9)0.0617 (12)0.0012 (7)0.0032 (8)0.0024 (8)
N130.0512 (11)0.0402 (11)0.0665 (14)0.0023 (9)0.0201 (10)0.0066 (10)
N140.0539 (13)0.0441 (13)0.122 (2)0.0000 (10)0.0122 (15)0.0042 (15)
C10.0491 (13)0.0597 (15)0.0508 (13)0.0217 (11)0.0078 (10)0.0146 (11)
C20.082 (2)0.0703 (19)0.0685 (18)0.0384 (16)0.0137 (15)0.0289 (15)
C30.100 (2)0.0726 (19)0.0644 (18)0.0271 (18)0.0197 (17)0.0364 (15)
C40.0750 (18)0.0571 (15)0.0530 (14)0.0103 (13)0.0231 (13)0.0195 (12)
C50.0429 (11)0.0368 (10)0.0367 (10)0.0005 (8)0.0062 (8)0.0043 (8)
C60.0345 (10)0.0363 (10)0.0339 (10)0.0020 (8)0.0050 (8)0.0046 (8)
C70.0372 (10)0.0307 (9)0.0364 (10)0.0043 (8)0.0024 (8)0.0019 (8)
C80.0592 (14)0.0378 (11)0.0474 (12)0.0085 (10)0.0132 (10)0.0058 (9)
C90.0853 (19)0.0295 (11)0.0672 (16)0.0075 (11)0.0187 (14)0.0049 (11)
C100.0839 (19)0.0314 (11)0.0619 (16)0.0009 (11)0.0190 (13)0.0067 (10)
C110.0622 (14)0.0354 (11)0.0408 (11)0.0020 (10)0.0131 (10)0.0027 (9)
C120.0369 (10)0.0288 (9)0.0323 (9)0.0028 (7)0.0001 (7)0.0015 (7)
C130.0478 (13)0.0531 (14)0.0550 (14)0.0140 (11)0.0203 (11)0.0045 (11)
C140.0436 (11)0.0448 (12)0.0347 (10)0.0025 (9)0.0004 (8)0.0025 (9)
C150.0560 (14)0.0410 (12)0.0505 (13)0.0078 (10)0.0004 (11)0.0004 (10)
C160.0533 (14)0.0441 (13)0.0693 (16)0.0102 (11)0.0099 (12)0.0120 (12)
C170.0487 (13)0.0508 (13)0.0564 (14)0.0010 (10)0.0200 (11)0.0093 (11)
C180.0338 (10)0.0393 (10)0.0381 (10)0.0037 (8)0.0063 (8)0.0052 (8)
C190.0489 (12)0.0361 (11)0.0416 (11)0.0119 (9)0.0059 (9)0.0026 (9)
C200.0543 (13)0.0292 (10)0.0552 (13)0.0079 (9)0.0018 (10)0.0064 (9)
C210.0454 (12)0.0288 (10)0.0621 (14)0.0009 (9)0.0039 (10)0.0024 (9)
C220.0514 (15)0.0380 (14)0.165 (4)0.0042 (12)0.0191 (19)0.0068 (17)
C230.080 (2)0.0387 (16)0.243 (6)0.0197 (16)0.034 (3)0.014 (2)
C240.098 (3)0.0309 (14)0.211 (5)0.0014 (16)0.033 (3)0.021 (2)
C250.077 (2)0.0357 (13)0.123 (3)0.0083 (13)0.0208 (19)0.0169 (15)
C260.0819 (19)0.0514 (15)0.0716 (18)0.0102 (14)0.0326 (15)0.0158 (13)
C270.0690 (16)0.0511 (14)0.0384 (12)0.0059 (12)0.0007 (11)0.0003 (10)
C280.089 (2)0.0719 (19)0.0450 (14)0.0121 (16)0.0092 (13)0.0067 (13)
C290.096 (2)0.070 (2)0.0637 (18)0.0143 (17)0.0111 (16)0.0224 (15)
C300.082 (2)0.0439 (14)0.0726 (19)0.0097 (13)0.0017 (15)0.0126 (13)
C310.0491 (12)0.0392 (11)0.0492 (13)0.0016 (9)0.0065 (10)0.0040 (9)
C320.0435 (12)0.0444 (12)0.0493 (12)0.0125 (9)0.0037 (10)0.0103 (10)
C330.0394 (11)0.0567 (14)0.0409 (11)0.0115 (10)0.0003 (9)0.0100 (10)
C340.0340 (10)0.0555 (13)0.0360 (10)0.0070 (9)0.0019 (8)0.0025 (9)
C350.0566 (15)0.0702 (17)0.0660 (17)0.0131 (13)0.0206 (13)0.0128 (14)
C360.0652 (19)0.100 (3)0.080 (2)0.0059 (17)0.0345 (16)0.0147 (18)
C370.0507 (16)0.111 (3)0.074 (2)0.0152 (17)0.0236 (14)0.0060 (18)
C380.0495 (14)0.0767 (19)0.0624 (16)0.0204 (13)0.0094 (12)0.0118 (14)
C390.094 (2)0.0494 (15)0.078 (2)0.0200 (15)0.0102 (17)0.0190 (14)
C400.0425 (12)0.0482 (12)0.0436 (12)0.0088 (10)0.0067 (9)0.0004 (10)
C410.0378 (12)0.0688 (17)0.0548 (14)0.0089 (11)0.0007 (10)0.0079 (12)
C420.0444 (13)0.0656 (16)0.0607 (15)0.0097 (12)0.0030 (11)0.0147 (13)
C430.0476 (13)0.0449 (12)0.0535 (13)0.0066 (10)0.0030 (10)0.0093 (10)
C440.0439 (11)0.0400 (11)0.0329 (10)0.0003 (9)0.0020 (8)0.0040 (8)
C450.0479 (12)0.0369 (11)0.0498 (12)0.0046 (9)0.0062 (10)0.0108 (9)
C460.0439 (11)0.0411 (11)0.0398 (11)0.0052 (9)0.0089 (9)0.0037 (9)
C470.0393 (10)0.0376 (10)0.0320 (10)0.0037 (8)0.0056 (8)0.0027 (8)
C480.0485 (13)0.0405 (12)0.0583 (14)0.0014 (10)0.0130 (11)0.0020 (10)
C490.0530 (14)0.0489 (14)0.086 (2)0.0002 (11)0.0315 (14)0.0124 (13)
C500.0682 (17)0.0594 (16)0.0756 (18)0.0093 (13)0.0419 (15)0.0048 (14)
C510.0643 (16)0.0535 (14)0.0561 (14)0.0076 (12)0.0223 (12)0.0108 (11)
C520.0608 (17)0.0461 (15)0.149 (3)0.0009 (13)0.0253 (19)0.0377 (18)
O9A0.171 (12)0.067 (7)0.154 (16)0.005 (7)0.102 (11)0.022 (9)
O10A0.267 (19)0.142 (16)0.045 (6)0.051 (13)0.032 (8)0.018 (7)
O11A0.205 (17)0.050 (8)0.179 (19)0.004 (9)0.062 (15)0.052 (11)
Geometric parameters (Å, º) top
Ni1—O22.0371 (14)C13—H13A0.9600
Ni1—N42.0388 (16)C13—H13B0.9600
Ni1—O12.0483 (13)C13—H13C0.9600
Ni1—N12.0500 (16)C14—C151.373 (3)
Ni1—N22.0501 (16)C14—H140.9300
Ni1—N52.0564 (17)C15—C161.382 (4)
Ni2—O42.0336 (14)C15—H150.9300
Ni2—N102.0337 (17)C16—C171.368 (4)
Ni2—N72.0455 (17)C16—H160.9300
Ni2—N82.0594 (18)C17—C181.399 (3)
Ni2—N112.0606 (17)C17—H170.9300
Ni2—O32.0667 (14)C19—C201.470 (3)
O1—C121.342 (2)C19—C261.504 (3)
O1—H1O0.8200C20—C251.409 (3)
O2—C211.340 (2)C20—C211.410 (3)
O3—C341.353 (2)C21—C221.392 (4)
O3—H3O0.8200C22—C231.375 (4)
O4—C471.343 (2)C22—H220.9300
O5W—H5WA0.8355C23—C241.361 (5)
O5W—H5WB0.7365C23—H230.9300
O6—N141.201 (4)C24—C251.378 (5)
O7—N141.219 (3)C24—H240.9300
O8—N141.215 (4)C25—H250.9300
O9—N131.244 (4)C26—H26A0.9600
O10—N131.203 (3)C26—H26B0.9600
O11—N131.225 (4)C26—H26C0.9600
N1—C51.338 (3)C27—C281.372 (4)
N1—C11.342 (3)C27—H270.9300
N2—C61.284 (2)C28—C291.385 (4)
N2—N31.385 (2)C28—H280.9300
N3—C51.376 (3)C29—C301.369 (4)
N3—H3N0.8600C29—H290.9300
N4—C191.296 (3)C30—C311.396 (3)
N4—N61.371 (2)C30—H300.9300
N5—C181.343 (3)C32—C331.473 (4)
N5—C141.345 (3)C32—C391.506 (3)
N6—C181.371 (3)C33—C381.409 (3)
N6—H6N0.8600C33—C341.415 (3)
N7—C321.296 (3)C34—C351.385 (4)
N7—N91.375 (3)C35—C361.384 (4)
N8—C311.339 (3)C35—H350.9300
N8—C271.348 (3)C36—C371.368 (5)
N9—C311.374 (3)C36—H360.9300
N9—H9N0.8600C37—C381.372 (5)
N10—C451.293 (3)C37—H370.9300
N10—N121.376 (2)C38—H380.9300
N11—C441.338 (3)C39—H39A0.9600
N11—C401.345 (3)C39—H39B0.9600
N12—C441.365 (3)C39—H39C0.9600
N12—H12N0.8600C40—C411.369 (3)
N13—O11A1.127 (12)C40—H400.9300
N13—O9A1.169 (11)C41—C421.387 (4)
N13—O10A1.278 (10)C41—H410.9300
C1—C21.366 (3)C42—C431.362 (4)
C1—H10.9300C42—H420.9300
C2—C31.378 (4)C43—C441.398 (3)
C2—H20.9300C43—H430.9300
C3—C41.364 (4)C45—C461.470 (3)
C3—H30.9300C45—C521.501 (3)
C4—C51.395 (3)C46—C511.406 (3)
C4—H40.9300C46—C471.419 (3)
C6—C71.480 (3)C47—C481.400 (3)
C6—C131.501 (3)C48—C491.378 (3)
C7—C81.403 (3)C48—H480.9300
C7—C121.408 (3)C49—C501.382 (4)
C8—C91.377 (3)C49—H490.9300
C8—H80.9300C50—C511.376 (4)
C9—C101.372 (4)C50—H500.9300
C9—H90.9300C51—H510.9300
C10—C111.382 (3)C52—H52A0.9600
C10—H100.9300C52—H52B0.9600
C11—C121.396 (3)C52—H52C0.9600
C11—H110.9300
O2—Ni1—N486.35 (6)N5—C14—C15123.3 (2)
O2—Ni1—O184.90 (5)N5—C14—H14118.3
N4—Ni1—O198.37 (6)C15—C14—H14118.3
O2—Ni1—N191.74 (6)C14—C15—C16117.9 (2)
N4—Ni1—N195.58 (7)C14—C15—H15121.0
O1—Ni1—N1165.40 (6)C16—C15—H15121.0
O2—Ni1—N290.53 (6)C17—C16—C15120.5 (2)
N4—Ni1—N2173.93 (6)C17—C16—H16119.8
O1—Ni1—N286.53 (6)C15—C16—H16119.8
N1—Ni1—N279.29 (6)C16—C17—C18118.1 (2)
O2—Ni1—N5160.88 (6)C16—C17—H17120.9
N4—Ni1—N579.64 (7)C18—C17—H17120.9
O1—Ni1—N584.34 (6)N5—C18—N6116.85 (18)
N1—Ni1—N5102.46 (7)N5—C18—C17122.3 (2)
N2—Ni1—N5104.53 (6)N6—C18—C17120.89 (19)
O4—Ni2—N1085.87 (6)N4—C19—C20119.27 (19)
O4—Ni2—N797.46 (6)N4—C19—C26120.6 (2)
N10—Ni2—N7176.60 (7)C20—C19—C26120.1 (2)
O4—Ni2—N887.37 (7)C25—C20—C21117.7 (2)
N10—Ni2—N8101.56 (7)C25—C20—C19117.7 (2)
N7—Ni2—N879.35 (7)C21—C20—C19124.59 (19)
O4—Ni2—N11163.23 (6)O2—C21—C22118.8 (2)
N10—Ni2—N1179.71 (7)O2—C21—C20122.0 (2)
N7—Ni2—N1196.89 (7)C22—C21—C20119.1 (2)
N8—Ni2—N11103.78 (7)C23—C22—C21121.5 (3)
O4—Ni2—O384.32 (6)C23—C22—H22119.3
N10—Ni2—O395.00 (6)C21—C22—H22119.3
N7—Ni2—O384.68 (7)C24—C23—C22120.2 (3)
N8—Ni2—O3160.88 (7)C24—C23—H23119.9
N11—Ni2—O388.43 (6)C22—C23—H23119.9
C12—O1—Ni1122.46 (11)C23—C24—C25120.0 (3)
C12—O1—H1O109.5C23—C24—H24120.0
Ni1—O1—H1O128.1C25—C24—H24120.0
C21—O2—Ni1119.64 (13)C24—C25—C20121.6 (3)
C34—O3—Ni2119.85 (12)C24—C25—H25119.2
C34—O3—H3O109.5C20—C25—H25119.2
Ni2—O3—H3O130.6C19—C26—H26A109.5
C47—O4—Ni2123.72 (12)C19—C26—H26B109.5
H5WA—O5W—H5WB112.2H26A—C26—H26B109.5
C5—N1—C1118.75 (18)C19—C26—H26C109.5
C5—N1—Ni1112.14 (13)H26A—C26—H26C109.5
C1—N1—Ni1128.78 (15)H26B—C26—H26C109.5
C6—N2—N3119.17 (16)N8—C27—C28123.1 (3)
C6—N2—Ni1128.72 (14)N8—C27—H27118.5
N3—N2—Ni1109.51 (11)C28—C27—H27118.5
C5—N3—N2116.15 (16)C27—C28—C29118.0 (3)
C5—N3—H3N121.9C27—C28—H28121.0
N2—N3—H3N121.9C29—C28—H28121.0
C19—N4—N6119.74 (17)C30—C29—C28120.3 (3)
C19—N4—Ni1128.82 (15)C30—C29—H29119.9
N6—N4—Ni1111.42 (12)C28—C29—H29119.9
C18—N5—C14117.87 (18)C29—C30—C31118.3 (3)
C18—N5—Ni1112.01 (13)C29—C30—H30120.9
C14—N5—Ni1127.52 (14)C31—C30—H30120.9
C18—N6—N4117.93 (16)N8—C31—N9116.8 (2)
C18—N6—H6N121.0N8—C31—C30122.2 (2)
N4—N6—H6N121.0N9—C31—C30121.0 (2)
C32—N7—N9119.99 (19)N7—C32—C33119.4 (2)
C32—N7—Ni2129.32 (16)N7—C32—C39120.7 (2)
N9—N7—Ni2110.66 (13)C33—C32—C39119.8 (2)
C31—N8—C27118.2 (2)C38—C33—C34116.8 (2)
C31—N8—Ni2112.50 (15)C38—C33—C32118.6 (2)
C27—N8—Ni2128.24 (16)C34—C33—C32124.5 (2)
C31—N9—N7117.86 (18)O3—C34—C35119.9 (2)
C31—N9—H9N121.1O3—C34—C33120.4 (2)
N7—N9—H9N121.1C35—C34—C33119.7 (2)
C45—N10—N12119.45 (18)C36—C35—C34121.3 (3)
C45—N10—Ni2130.17 (15)C36—C35—H35119.3
N12—N10—Ni2110.10 (12)C34—C35—H35119.3
C44—N11—C40118.15 (19)C37—C36—C35119.9 (3)
C44—N11—Ni2111.44 (14)C37—C36—H36120.0
C40—N11—Ni2129.31 (15)C35—C36—H36120.0
C44—N12—N10117.91 (17)C36—C37—C38119.7 (3)
C44—N12—H12N121.0C36—C37—H37120.2
N10—N12—H12N121.0C38—C37—H37120.2
O11A—N13—O9A132.6 (15)C37—C38—C33122.5 (3)
O10—N13—O11126.1 (4)C37—C38—H38118.7
O10—N13—O9117.4 (3)C33—C38—H38118.7
O11—N13—O9116.3 (3)C32—C39—H39A109.5
O11A—N13—O10A113.8 (14)C32—C39—H39B109.5
O9A—N13—O10A112.7 (12)H39A—C39—H39B109.5
O6—N14—O8117.6 (3)C32—C39—H39C109.5
O6—N14—O7119.6 (4)H39A—C39—H39C109.5
O8—N14—O7122.3 (4)H39B—C39—H39C109.5
N1—C1—C2122.9 (2)N11—C40—C41122.9 (2)
N1—C1—H1118.6N11—C40—H40118.6
C2—C1—H1118.6C41—C40—H40118.6
C1—C2—C3117.8 (2)C40—C41—C42118.4 (2)
C1—C2—H2121.1C40—C41—H41120.8
C3—C2—H2121.1C42—C41—H41120.8
C4—C3—C2120.9 (2)C43—C42—C41119.9 (2)
C4—C3—H3119.5C43—C42—H42120.1
C2—C3—H3119.5C41—C42—H42120.1
C3—C4—C5118.0 (2)C42—C43—C44118.4 (2)
C3—C4—H4121.0C42—C43—H43120.8
C5—C4—H4121.0C44—C43—H43120.8
N1—C5—N3117.42 (17)N11—C44—N12117.27 (19)
N1—C5—C4121.7 (2)N11—C44—C43122.2 (2)
N3—C5—C4120.9 (2)N12—C44—C43120.5 (2)
N2—C6—C7118.40 (17)N10—C45—C46119.86 (19)
N2—C6—C13122.74 (19)N10—C45—C52120.8 (2)
C7—C6—C13118.85 (18)C46—C45—C52119.3 (2)
C8—C7—C12118.13 (19)C51—C46—C47117.5 (2)
C8—C7—C6117.94 (18)C51—C46—C45118.7 (2)
C12—C7—C6123.91 (17)C47—C46—C45123.84 (19)
C9—C8—C7121.8 (2)O4—C47—C48119.26 (19)
C9—C8—H8119.1O4—C47—C46121.81 (19)
C7—C8—H8119.1C48—C47—C46118.91 (19)
C10—C9—C8119.5 (2)C49—C48—C47121.5 (2)
C10—C9—H9120.3C49—C48—H48119.2
C8—C9—H9120.3C47—C48—H48119.2
C9—C10—C11120.4 (2)C48—C49—C50120.1 (2)
C9—C10—H10119.8C48—C49—H49120.0
C11—C10—H10119.8C50—C49—H49120.0
C10—C11—C12120.9 (2)C51—C50—C49119.3 (2)
C10—C11—H11119.6C51—C50—H50120.3
C12—C11—H11119.6C49—C50—H50120.3
O1—C12—C11119.95 (18)C50—C51—C46122.4 (2)
O1—C12—C7120.92 (17)C50—C51—H51118.8
C11—C12—C7119.14 (18)C46—C51—H51118.8
C6—C13—H13A109.5C45—C52—H52A109.5
C6—C13—H13B109.5C45—C52—H52B109.5
H13A—C13—H13B109.5H52A—C52—H52B109.5
C6—C13—H13C109.5C45—C52—H52C109.5
H13A—C13—H13C109.5H52A—C52—H52C109.5
H13B—C13—H13C109.5H52B—C52—H52C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.821.622.4093 (18)161
O3—H3O···O20.821.662.4647 (19)167
O5W—H5WA···O11i0.842.162.979 (5)165
O5W—H5WA···O11Ai0.841.942.767 (14)170
O5W—H5WB···O6i0.742.473.142 (4)153
O5W—H5WB···O7i0.742.423.094 (5)153
N3—H3N···O5W0.862.232.933 (2)139
N6—H6N···O110.862.192.991 (4)156
N6—H6N···O11A0.862.623.47 (3)172
N9—H9N···O10ii0.862.303.041 (4)145
N9—H9N···O9Aii0.862.263.107 (12)167
N12—H12N···O6iii0.862.132.961 (3)162
C2—H2···O10iv0.932.633.437 (5)146
C4—H4···O6i0.932.563.409 (4)152
C13—H13C···O9i0.962.333.231 (5)156
C15—H15···O8v0.932.623.544 (4)170
C26—H26C···O10A0.962.593.332 (18)134
C28—H28···O10Avi0.932.643.104 (12)111
C30—H30···O10ii0.932.333.117 (5)142
C39—H39A···O9Aii0.962.392.938 (11)116
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x1/2, y+1/2, z1/2.
 

Funding information

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationBhattacharya, S. & Mohanta, S. (2015). Inorg. Chim. Acta, 432, 169–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChavan, S. S., Sawant, V. A. & Jadhav, A. N. (2014). Spectrochim. Acta Part A, 117, 360–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationDonga, W.-K., Li, X.-L., Wang, L., Zhang, Y. & Ding, Y.-J. (2016). Sens. Actuators B, 229, 370–378.  Google Scholar
First citationDrożdżewski, P. & Kubiak, M. (2009). Polyhedron, 28, 1518–1524.  Google Scholar
First citationEl-Sayed, B. A., Abo-Aly, M. M., Attia, M. S. & Gamal, S. (2016). J. Lumin. 169, 99–105.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuhathakurta, B., Basu, P., Purohit, C. S., Bandyopadhyay, N., Kumar, G. S., Chowdhury, S. & Naskar, J. P. (2017). Polyhedron, 126, 195–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationGüveli, Ş. & Ülküseven, B. (2011). Polyhedron, 30, 1385–1388.  Google Scholar
First citationJana, K., Maity, T., Debnath, S. C., Samanta, B. C. & Seth, S. K. (2017). J. Mol. Struct. 1130, 844–854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonar, S. (2015). J. Mol. Struct. 1092, 34–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.-R. (2018). Coord. Chem. Rev. 357, 144–172.  Web of Science CrossRef CAS Google Scholar
First citationMahapatra, P., Ghosh, S., Giri, S. & Ghosh, A. (2016). Polyhedron, 117, 427–436.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, S., Mal, P. & Stoeckli-Evans, H. (2013). Polyhedron, 50, 495–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationNassar, M. Y., Aly, H. M., Abdelrahman, E. A. & Moustafa, M. E. (2017). J. Mol. Struct. 1143, 462–471.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. K., Pandey, O. P. & Sengupta, S. K. (2013). Spectrochim. Acta Part A, 113, 393–399.  Web of Science CrossRef CAS Google Scholar
First citationWang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059–2063.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds