research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two new six-coordinate iron(III) complexes with 1,2-bis­(di­phenyl­phosphane) ligands

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: michael.neidig@rochester.edu

Edited by T. J. Prior, University of Hull, England (Received 16 April 2018; accepted 4 May 2018; online 15 May 2018)

Structural characterization of the ionic complexes [FeCl2(C26H22P2)2][FeCl4]·0.59CH2Cl2 or [(dppen)2FeCl2][FeCl4]·0.59CH2Cl2 (dppen = cis-1,2-bis­(di­phenyl­phosphane)ethyl­ene, P2C26H22) and [FeCl2(C30H24P2)2][FeCl4]·CH2Cl2 or [(dpbz)2FeCl2][FeCl4]·CH2Cl2 (dpbz = 1,2-bis­(di­phenyl­phosphane)benzene, P2C30H24) demonstrates trans coordination of two bidentate phosphane ligands (bis­phosphanes) to a single iron(III) center, resulting in six-coordinate cationic complexes that are balanced in charge by tetra­chlorido­ferrate(III) monoanions. The trans bis­phosphane coordination is consistent will all previously reported mol­ecular structures of six coordinate iron(III) complex cations with a (PP)2X2 (X = halido) donor set. The complex with dppen crystallizes in the centrosymmetric space group C2/c as a partial-occupancy [0.592 (4)] di­chloro­methane solvate, while the dpbz-ligated complex crystallizes in the triclinic space group P1 as a full di­chloro­methane monosolvate. Furthermore, the crystal studied of [(dpbz)2FeCl2][FeCl4]·CH2Cl2 was an inversion twin, whose component mass ratio refined to 0.76 (3):0.24 (3). Beyond a few very weak C—H⋯Cl and C—H⋯π inter­actions, there are no significant supra­molecular features in either structure.

1. Chemical context

Bidentate phosphanes (bis­phosphanes) are versatile supporting ligands in coordination chemistry because of the accessibility of various electronic and steric properties through manipulation of their backbone structures and phospho­rus substituents. While these ligands are commonly used to stabilize low-valent metal complexes due to their function as both σ-donor and π-acceptor ligands, bis­phosphane ligands have also been observed to support metal centers in higher oxidation states. For example, there exist a few structurally characterized examples of iron(III) complexes in which two bis­phosphane ligands are coordinated to a single metal center, resulting in axial coordination of halido (X) ligands. These complex cations have been shown to be accessible through a variety of synthetic routes (Higgins et al., 1985[Higgins, S. J., Jewiss, H. C., Levason, W. & Webster, M. (1985). Acta Cryst. C41, 695-697.]; Higgins & Levason, 1985[Higgins, S. J. & Levason, W. (1985). Inorg. Chem. 24, 1105-1107.]; Field et al., 1990[Field, L. D., George, A. V. & Hambley, T. W. (1990). Polyhedron, 9, 2139-2141.], 2000[Field, L. D., Thomas, I. P., Turner, P. & Hambley, T. W. (2000). Aust. J. Chem. 53, 541-544.]; Evans et al., 1992[Evans, D. J., Henderson, R. A., Hills, A., Hughes, D. L. & Oglieve, K. E. (1992). J. Chem. Soc. Dalton Trans. pp. 1259-1265.]; Miller et al., 2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]; Hoffert et al., 2011[Hoffert, W. A., Rappé, A. K. & Shores, M. P. (2011). J. Am. Chem. Soc. 133, 20823-20836.]). A review of the literature finds that investigations into these complexes date back almost sixty years to the work of Chatt and Hayter, in which three distinct iron(III) bis­phosphane complexes, formulated as complex salts with the mol­ecular structures [(PP)2FeCl2][FeCl4] [PP = 1,2-bis­(di­ethyl­phosphano)benzene (debz), 1,2-bis­(di­ethyl­phosphano)ethane (depe), and 1,2-bis­(di­methyl­phosphano)ethane (dmpe)], were prepared through the reaction of iron(III) chloride with one shoichiometric equivalent of bis­phosphane (Chatt & Hayter, 1961[Chatt, J. & Hayter, R. G. (1961). J. Chem. Soc. pp. 5507-5511.]; for later reports of various preparative methods of similar compounds, see: Levason et al., 1975[Levason, W., McAuliffe, C. A., Khan, M. M. & Nelson, S. M. (1975). J. Chem. Soc. Dalton Trans. pp. 1778-1783.]; Gargano et al., 1975[Gargano, M., Giannoccaro, P., Rossi, M., Vasapollo, G. & Sacco, A. (1975). J. Chem. Soc. Dalton Trans. pp. 9-12.]; Warren et al., 1976[Warren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126-3140.]; Higgins & Levason, 1985[Higgins, S. J. & Levason, W. (1985). Inorg. Chem. 24, 1105-1107.]). Structural confirmation for this general mol­ecular formula was achieved through the crystallographic characterization of [(dmpe)2FeCl2][FeCl4], although this synthesis employed photolytic oxidation of the iron(II) complex (dmpe)2FeCl2 and not direct reaction of an iron(III) precursor with bis­phosphane (Field et al., 1990[Field, L. D., George, A. V. & Hambley, T. W. (1990). Polyhedron, 9, 2139-2141.]). At the time of this report, the only other known mol­ecular structure for a six-coordinate iron(III) complex cation bearing a (PP)2X2 ligand set was [(o-C6F4(PMe2)2)2FeCl2][BF4] (Higgins et al., 1985[Higgins, S. J., Jewiss, H. C., Levason, W. & Webster, M. (1985). Acta Cryst. C41, 695-697.]; Higgins & Levason, 1985[Higgins, S. J. & Levason, W. (1985). Inorg. Chem. 24, 1105-1107.]). This particular species was synthesized through metathesis of the original tetra­chlorido­ferrate(III) anion with HBF4. The initial salt, [(o-C6F4(PMe2)2)2FeCl2][FeCl4], prepared via a nearly 1:1 stoichio­metric reaction of iron(III) chloride with o-C6F4(PMe2)2, was not structurally characterized.

[Scheme 1]

Our group is inter­ested in the application of bis­phosphanes as supporting ligands within iron-catalyzed cross-coupling reactions. Numerous literature protocols for iron-catalyzed cross-coupling methods involve use of bis­phosphanes as substoichiometric additives in conjunction with iron(II) or iron(III) salts, promoting the formation of the active catalyst in situ. Methods development in our laboratory using the dppen ligand in conjunction with iron(III) chloride resulted in the formation of [(dppen)2FeCl2][FeCl4] (1) from reaction mixtures and its subsequent structural characterization. As reported herein, 1 was then independently prepared via the method of Chatt & Hayter (1961[Chatt, J. & Hayter, R. G. (1961). J. Chem. Soc. pp. 5507-5511.]). While we have not observed this compound to exhibit catalytic effectiveness in cross-coupling, a literature search indicated that this ionic complex was first synthesized in the 1970s using the same reaction stoichiometry (Levason et al., 1975[Levason, W., McAuliffe, C. A., Khan, M. M. & Nelson, S. M. (1975). J. Chem. Soc. Dalton Trans. pp. 1778-1783.]). This report lacked structural characterization of the complex, but its formulation as a complex salt was supported by magnetic susceptibility, Mössbauer, and IR absorption measurements. Upon confirming the structure of 1, we sought to examine an analogous species, [(dpbz)2FeCl2][FeCl4] (2), by taking advantage of the same steric substitution at phospho­rus, but with a slightly varied backbone character (ortho-phenyl­ene in place of the C2H2 of dppen). Such studies are important as they expand the coordination chemistry library of iron(III) complexes bearing bis­phosphane ligands. In addition, 1 and 2 join only two other structurally characterized examples of coordinatively saturated iron(III) monocations with a (PP)2X2 ligand set that have been synthesized without using oxidative methods (Miller et al., 2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.], Higgins & Levason, 1985[Higgins, S. J. & Levason, W. (1985). Inorg. Chem. 24, 1105-1107.]).

2. Structural commentary

Both 1 and 2 are characterized as six-coordinate complex cations in which the iron(III) center is ligated by two bis­phosphane ligands (dppen in 1, dpbz in 2) in a trans fashion (see Scheme). The two retained chlorido ligands are thus coordinated axially, and the displaced chlorido ligand results in generation of a single tetra­chlorido­ferrate(III) anion in both cases. Compound 1 (Fig. 1[link]) crystallizes in the centrosymmetric space group C2/c. The iron atom of the cation is located at a crystallographic inversion center, resulting in Cl—Fe—Cl and trans P—Fe—P angles of 180°. Deviation from ideal octa­hedral geometry is due to the 80.92 (2)° bite angles of the P—Fe—P chelate rings (Table 1[link]). The Fe—P distances are considerably longer than those of the other structurally characterized iron(III) cations with a (PP)2X2 donor set (range 2.29–2.34 Å; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.], see Database survey below), but with shorter Fe—Cl distances than those of the other reported X = Cl compounds (range 2.23–2.25 Å). The ethyl­ene backbones of each dppen ligand in the cation of 1 are bent out of the equatorial plane by 24.86 (8)°. The tetra­chlorido­ferrate(III) anion lies along a crystallographic twofold axis that includes the metal center. Phenyl group C3—C8 (and thus its symmetry equivalent, Fig. 1[link]) is modeled as disordered over two positions [0.561 (6):0.439 (6)].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Fe1—Cl1 2.2135 (6) Fe1—P2 2.3738 (6)
Fe1—P1 2.3662 (6)    
       
Cl1i—Fe1—Cl1 180.0 Cl1—Fe1—P2i 87.58 (2)
Cl1—Fe1—P1 92.38 (2) Cl1—Fe1—P2 92.42 (2)
Cl1—Fe1—P1i 87.62 (2) P1—Fe1—P2 80.92 (2)
P1—Fe1—P1i 180.0 P2i—Fe1—P2 180.0
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Displacement ellipsoid plot of 1 drawn at the 50% probability level with hydrogen atoms omitted. The full cation of the title formula is generated by a crystallographic inversion center (1 − x, 1 − y, 1 − z) at atom Fe1. The full anion is generated by a crystallographic twofold axis (−x, y, [{3\over 2}] − z), which includes atom Fe2. The symmetry-equivalent atoms of the di­chloro­methane solvent mol­ecule are generated by a crystallographic twofold axis (1 − x, y, [{3\over 2}] − z) that contains atom C27.

The asymmetric unit of 2 contains the cation, anion, and solvent mol­ecule in general positions. The solvent mol­ecule was modeled as disordered over three positions [0.740 (3):0.136 (3):0.124 (3)]. Despite the structural similarity of the backbone linkers and steric periphery of dppen and dpbz, the space group assignment and crystallographic symmetry of 2 contrasted from 1. Metrically, however, 1 and 2 are quite similar. The axial chlorido ligands within the cation of 2 are located at Fe—Cl distances very close to that found in the cation of 1 and the Cl—Fe—Cl and trans P—Fe—P angles are very nearly linear (Fig. 2[link], Table 2[link]). Additionally, the bite angles in the cation of 2 as well as Fe—Cl distances and Cl—Fe—Cl angles of its tetra­chlorido­ferrate(III) anion are very similar to those of 1. As observed for the ethyl­ene backbones of the dppen ligands of 1, the ortho-phenyl­ene backbones of the dpbz ligands in 2 are also canted out the equatorial plane by 21.9 (1) and 22.9 (1)°. The crystal of 2 studied was an inversion twin, whose component mass ratio refined to 0.76 (3):0.24 (3).

Table 2
Selected geometric parameters (Å, °) for 2[link]

Fe1—Cl2 2.218 (2) Fe1—P2 2.376 (2)
Fe1—Cl1 2.223 (2) Fe1—P4 2.377 (2)
Fe1—P3 2.374 (2) Fe1—P1 2.388 (2)
       
Cl2—Fe1—Cl1 179.87 (12) P3—Fe1—P4 80.75 (8)
Cl2—Fe1—P3 87.69 (8) P2—Fe1—P4 179.33 (10)
Cl1—Fe1—P3 92.26 (8) Cl2—Fe1—P1 92.05 (8)
Cl2—Fe1—P2 92.82 (8) Cl1—Fe1—P1 87.99 (7)
Cl1—Fe1—P2 87.30 (8) P3—Fe1—P1 179.74 (10)
P3—Fe1—P2 98.58 (8) P2—Fe1—P1 81.38 (8)
Cl2—Fe1—P4 87.23 (8) P4—Fe1—P1 99.29 (8)
Cl1—Fe1—P4 92.65 (8)    
[Figure 2]
Figure 2
Displacement ellipsoid plot of 2 drawn at the 50% probability level with hydrogen atoms omitted. Only the major component of disorder of the di­chloro­methane solvent mol­ecule is shown.

Both 1 and 2 are di­chloro­methane solvates under the common crystallization procedure used (see below). In 1, the solvent mol­ecule is located along a crystallographic twofold axis that includes the carbon atom. Crystal desolvation is suspected, since its occupancy only refined to 0.592 (4). In contrast, 2 was found to possess full occupation of co-crystallized di­chloro­methane, modeled as disordered over three general positions [0.740 (3):0.136 (3):0.124 (3)].

3. Supra­molecular features

There are no significant supra­molecular features beyond a few very weak C—H⋯Cl and C—H⋯π inter­actions.

4. Database survey

Outside of 1 and 2 reported herein, there are eight examples of ionic iron(III) compounds bearing trans-coordinating bis­phosphane ligands in an overall (PP)2A2 (A = formally monoanionic ligand) environment reported in the Cambridge Structural Database (CSD, Version 5.39, update No. 2, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The axial A ligands of the cations include two chlorido (CSD refcode DABCEO, Higgins et al., 1985[Higgins, S. J., Jewiss, H. C., Levason, W. & Webster, M. (1985). Acta Cryst. C41, 695-697.]; recode VOBHUP, Field et al., 1990[Field, L. D., George, A. V. & Hambley, T. W. (1990). Polyhedron, 9, 2139-2141.]; recode XAZZIH, Field et al., 2000[Field, L. D., Thomas, I. P., Turner, P. & Hambley, T. W. (2000). Aust. J. Chem. 53, 541-544.]; refcode BAJLAA, Miller et al., 2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]), bromido and hydrido (refcode PABSUG; Evans et al., 1992[Evans, D. J., Henderson, R. A., Hills, A., Hughes, D. L. & Oglieve, K. E. (1992). J. Chem. Soc. Dalton Trans. pp. 1259-1265.]), and chlorido and alkynyl (refcodes NAWMIJ, NAWMOP, NAWMUV; Hoffert et al., 2011[Hoffert, W. A., Rappé, A. K. & Shores, M. P. (2011). J. Am. Chem. Soc. 133, 20823-20836.]). These structures include a variety of counter-anions: [FeCl4], [BF4], [BPh4], [Cl], [SO3CF3], and [B(3,5-CF3Ph)4]. Only one of these examples, trans-[(o-C6F4(PMe2)2)2FeCl2][BF4], contains a bis­phosphane ligand with an unsaturated backbone linker (Higgins et al., 1985[Higgins, S. J., Jewiss, H. C., Levason, W. & Webster, M. (1985). Acta Cryst. C41, 695-697.]). Just as in 1 and 2, the fluoro-substituted ortho-phenyl­ene backbone of trans-[(o-C6F4(PMe2)2)2­FeCl2][BF4] is also bent out of from the FeP4 equatorial plane (17.6 °).

5. Synthesis and crystallization

Anhydrous FeCl3 (98%, Alfa Aesar), cis-1,2-bis­(di­phenyl­phosphanel)ethyl­ene (dppen, 98%, Strem), and 1,2-bis­(di­phenyl­phosphane)benzene (dpbz, 98%, Strem) were used in the synthesis of 1 and 2 without further purification. The syntheses of both compounds were performed under a di­nitro­gen atmosphere in a drybox. 80 mg FeCl3 (0.49 mmol) was dissolved in 5 ml THF (Aldrich, anhydrous, 99.9%, inhibitor-free), resulting in a yellow–green solution. In a separate vial, 200 mg dppen (or 225 mg dpbz for 2, 0.50 mmol in either case) was dissolved in 10 ml THF. At room temperature, the solution of bis­phosphane was added to the stirring solution of FeCl3, resulting in immediate formation of a dark green precipitate in both cases. Each reaction was stirred for 5 min following complete addition of the bis­phosphane solution, filtered, and the resulting green solid was dried under vacuum. In both cases, analytically pure microcrystalline solid was isolated in nearly qu­anti­tative yield. [FeCl2(dppen)2][FeCl4]: Yield: 94%. Elemental analysis: calculated: 55.903 C, 3.970 H; found: 56.327 C, 4.342 H. [FeCl2(dpbz)2][FeCl4]: Yield: 89%. Elemental analysis: calculated: 59.199 C, 3.974 H; found: 59.526 C, 4.452.

Once isolated and dried, solid 1 and 2 were found to be indefinitely stable outside of an inert atmosphere (greater than one year). Both complexes were crystallized by layering toluene over a concentrated di­chloro­methane solution of the complex and allowing the layers to diffuse at room temperature (anhydrous solvents were not used during crystallizations). Red–green dichroic single crystals suitable for X-ray diffraction studies were generally observed to crystallize within 24 h. Out of a large number of polar and non-polar common organic solvents examined, only di­chloro­methane, chloro­form, acetone, and nitro­methane appreciably solubilized 1 and 2. During preparation of crystallizations, di­chloro­methane solutions of 1 and 2 were observed under incandescent light to be green at low concentrations and red at high concentrations.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [FeCl2(C26H22P2)2][FeCl4]·0.59CH2Cl2 [FeCl2(C30H24P2)2][FeCl4]·CH2Cl2
Mr 1167.47 1302.19
Crystal system, space group Monoclinic, C2/c Triclinic, P1
Temperature (K) 100 100
a, b, c (Å) 9.7528 (7), 23.6871 (17), 23.6871 (17) 9.8771 (7), 12.6516 (8), 12.8258 (8)
α, β, γ (°) 90, 100.541 (2), 90 81.058 (1), 83.050 (1), 68.335 (1)
V3) 5379.7 (7) 1467.87 (17)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.05 1.01
Crystal size (mm) 0.22 × 0.22 × 0.10 0.24 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX II CCD platform Bruker SMART APEX II CCD platform
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.643, 0.746 0.644, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 71735, 8962, 6273 27211, 22268, 11890
Rint 0.091 0.050
(sin θ/λ)max−1) 0.736 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.05 0.073, 0.182, 1.00
No. of reflections 8962 22268
No. of parameters 325 488
No. of restraints 33 34
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.67 1.23, −1.39
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.24 (3)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Phenyl ring C3–C8 of 1 was modeled as disordered over two general positions [0.561 (6):0.439 (6)]. Analogous bond lengths and angles between the two positions and in both directions around the rings were restrained to be similar. Additionally the P1—C3 and P1—C3′ bond lengths were restrained to be similar. Anisotropic displacement parameters for pairs of proximal atoms were constrained to be equivalent. The occupancy of the cocrystallized di­chloro­methane solvent mol­ecule refined to 0.592 (4), which is consistent with crystal desolvation.

2 was refined as an inversion twin in P1 whose twin component mass ratio refined to 0.76 (3):0.24 (3). Because of significant parameter correlation, anisotropic displacement parameters for pseudosymmetrically related atom pairs were constrained to be equivalent. The co-crystallized di­chloro­methane solvent mol­ecule is modeled as disordered over three positions [0.740 (3):0.136 (3):0.124 (3)]. Analogous bond lengths and angles among the three positions of the disordered di­chloro­methane solvent mol­ecule were restrained to be similar. Anisotropic displacement parameters for proximal and pseudosymmetrically related atoms were constrained to be equivalent.

A solution and refinement of 2 in centrosymmetric space group P[\overline{1}] caused an increase in the R1 residual (strong data) from 0.071 to 0.118, which was not unexpected given the uneven twin component mass ratio when refined in P1. In the centrosymmetric model, the anion and solvent were modeled pairwise as disordered over a crystallographic inversion center.

H atoms were given riding models: aromatic/sp2, C—H = 0.95 Å, and methyl­ene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C).

For 1 the maximum residual peak of 0.74 e Å−3 and the deepest hole of −0.67 e Å−3 are found 0.72 and 0.82 Å, respectively, from atom CL4.

For 2 the maximum residual peak of 1.23 e Å−3 and the deepest hole of −1.39 e Å−3 are found 0.22 and 0.05 Å from atoms CL5 and C61 of the disordered solvent molcule, respectively.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT-2014/5 (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b) for (1); SHELXL2018/3 (Sheldrick, 2015b) for (2). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

trans-Bis[1,2-bis(diphenylphosphane)ethylene]dichloridoiron(III) tetrachloridoferrate(III) dichloromethane 0.59-solvate (1) top
Crystal data top
[FeCl2(C26H22P2)2][FeCl4]·0.59CH2Cl2F(000) = 2380
Mr = 1167.47Dx = 1.441 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.7528 (7) ÅCell parameters from 4040 reflections
b = 23.6871 (17) Åθ = 2.3–29.5°
c = 23.6871 (17) ŵ = 1.05 mm1
β = 100.541 (2)°T = 100 K
V = 5379.7 (7) Å3Plate, red-violet
Z = 40.22 × 0.22 × 0.10 mm
Data collection top
Bruker SMART APEX II CCD platform
diffractometer
6273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
ω scansθmax = 31.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.643, Tmax = 0.746k = 3434
71735 measured reflectionsl = 3434
8962 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0418P)2 + 11.3134P]
where P = (Fo2 + 2Fc2)/3
8962 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.74 e Å3
33 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Phenyl ring C3-C8 is modeled as disordered over two positions (56:44). Analogous bond lengths and angles between the two positions were restrained to be similar. Anisotropic displacement parameters for pairs of proximal atoms were constrained to be equivalent.

The occupancy of the cocrystallized dichloromethane solvent molecule refined to 0.592 (4).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.5000000.5000000.5000000.01605 (10)
Cl10.71798 (6)0.53023 (2)0.52215 (2)0.02045 (12)
P10.46240 (6)0.51308 (3)0.59502 (3)0.01981 (13)
P20.56127 (7)0.40841 (3)0.53686 (3)0.02134 (13)
C10.4343 (3)0.44397 (12)0.62312 (12)0.0295 (6)
H10.3901200.4400310.6554740.035*
C20.4761 (3)0.39907 (12)0.59802 (13)0.0321 (6)
H20.4616280.3623020.6118420.038*
C30.605 (2)0.5342 (6)0.6520 (8)0.0227 (16)0.439 (6)
C40.6555 (15)0.4985 (4)0.6979 (5)0.0311 (15)0.439 (6)
H40.6183580.4616730.6999690.037*0.439 (6)
C50.7618 (11)0.5184 (4)0.7406 (4)0.0393 (15)0.439 (6)
H50.7987290.4946420.7720910.047*0.439 (6)
C60.8136 (10)0.5718 (4)0.7377 (4)0.0386 (16)0.439 (6)
H60.8852340.5848950.7675560.046*0.439 (6)
C70.7637 (10)0.6067 (4)0.6925 (4)0.0322 (13)0.439 (6)
H70.8010450.6435780.6909080.039*0.439 (6)
C80.6576 (15)0.5879 (5)0.6487 (6)0.0258 (14)0.439 (6)
H80.6221930.6117210.6171370.031*0.439 (6)
C3'0.5987 (16)0.5479 (4)0.6468 (6)0.0227 (16)0.561 (6)
C4'0.6649 (11)0.5188 (3)0.6964 (4)0.0311 (15)0.561 (6)
H4'0.6401480.4808270.7026390.037*0.561 (6)
C5'0.7671 (8)0.5460 (3)0.7365 (3)0.0393 (15)0.561 (6)
H5'0.8100450.5263760.7700800.047*0.561 (6)
C6'0.8060 (7)0.6004 (3)0.7280 (3)0.0386 (16)0.561 (6)
H6'0.8752710.6182860.7556530.046*0.561 (6)
C7'0.7444 (7)0.6293 (3)0.6793 (3)0.0322 (13)0.561 (6)
H7'0.7711810.6671510.6734650.039*0.561 (6)
C8'0.6426 (11)0.6029 (3)0.6384 (4)0.0258 (14)0.561 (6)
H8'0.6027540.6226730.6045110.031*0.561 (6)
C90.3051 (2)0.54964 (11)0.60637 (10)0.0213 (5)
C100.3035 (3)0.60629 (12)0.62219 (12)0.0283 (5)
H100.3884760.6268300.6306280.034*
C110.1786 (3)0.63282 (14)0.62566 (13)0.0377 (7)
H110.1778720.6716910.6354900.045*
C120.0553 (3)0.60285 (15)0.61486 (13)0.0404 (8)
H120.0302850.6214440.6163800.048*
C130.0553 (3)0.54595 (14)0.60185 (12)0.0338 (6)
H130.0291620.5249790.5964540.041*
C140.1798 (2)0.51970 (12)0.59672 (11)0.0249 (5)
H140.1796700.4809120.5865250.030*
C150.4992 (3)0.34577 (11)0.49472 (13)0.0292 (6)
C160.3571 (3)0.33373 (12)0.48605 (16)0.0409 (8)
H160.2968160.3560380.5041900.049*
C170.3039 (4)0.28904 (13)0.4508 (2)0.0542 (10)
H170.2067820.2811260.4446280.065*
C180.3916 (4)0.25578 (13)0.4246 (2)0.0554 (10)
H180.3540570.2263150.3991490.066*
C190.5340 (3)0.26585 (13)0.43563 (17)0.0434 (8)
H190.5944110.2419850.4191990.052*
C200.5891 (3)0.31054 (11)0.47053 (13)0.0323 (6)
H200.6868320.3172310.4779970.039*
C210.7448 (3)0.39546 (10)0.56642 (11)0.0235 (5)
C220.8443 (3)0.40043 (10)0.53138 (11)0.0230 (5)
H220.8157230.4091210.4918210.028*
C230.9851 (3)0.39282 (11)0.55371 (12)0.0270 (5)
H231.0521940.3957270.5293810.032*
C241.0276 (3)0.38094 (11)0.61176 (13)0.0311 (6)
H241.1238600.3766650.6274340.037*
C250.9290 (3)0.37537 (14)0.64658 (13)0.0383 (7)
H250.9578180.3667390.6861370.046*
C260.7883 (3)0.38229 (13)0.62420 (12)0.0345 (6)
H260.7213430.3780350.6484090.041*
Fe20.0000000.80718 (2)0.7500000.02335 (12)
Cl20.18469 (8)0.86224 (3)0.76337 (3)0.03463 (16)
Cl30.00845 (8)0.75564 (3)0.67250 (3)0.03743 (17)
C270.5000000.6989 (3)0.7500000.055 (3)0.592 (4)
H27A0.4801950.6741660.7812190.066*0.2960 (19)
H27B0.5198020.6741640.7187820.066*0.2960 (19)
Cl40.35377 (18)0.73688 (9)0.72448 (9)0.0700 (8)0.592 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0147 (2)0.0175 (2)0.0161 (2)0.00051 (16)0.00312 (16)0.00011 (17)
Cl10.0159 (2)0.0237 (3)0.0217 (3)0.0022 (2)0.00337 (19)0.0017 (2)
P10.0166 (3)0.0264 (3)0.0167 (3)0.0014 (2)0.0037 (2)0.0001 (2)
P20.0204 (3)0.0198 (3)0.0252 (3)0.0025 (2)0.0079 (2)0.0039 (2)
C10.0302 (13)0.0347 (14)0.0263 (13)0.0083 (11)0.0126 (11)0.0114 (11)
C20.0319 (14)0.0316 (14)0.0368 (15)0.0083 (11)0.0173 (12)0.0163 (12)
C30.0173 (17)0.034 (5)0.016 (3)0.006 (4)0.0023 (13)0.002 (3)
C40.031 (2)0.040 (5)0.0219 (15)0.002 (4)0.0027 (14)0.000 (3)
C50.034 (2)0.058 (5)0.0226 (19)0.000 (4)0.0047 (16)0.002 (4)
C60.0271 (19)0.065 (5)0.023 (3)0.007 (4)0.0028 (18)0.012 (3)
C70.026 (2)0.046 (4)0.026 (3)0.011 (3)0.009 (2)0.011 (3)
C80.021 (2)0.036 (4)0.020 (3)0.002 (3)0.0026 (19)0.004 (3)
C3'0.0173 (17)0.034 (5)0.016 (3)0.006 (4)0.0023 (13)0.002 (3)
C4'0.031 (2)0.040 (5)0.0219 (15)0.002 (4)0.0027 (14)0.000 (3)
C5'0.034 (2)0.058 (5)0.0226 (19)0.000 (4)0.0047 (16)0.002 (4)
C6'0.0271 (19)0.065 (5)0.023 (3)0.007 (4)0.0028 (18)0.012 (3)
C7'0.026 (2)0.046 (4)0.026 (3)0.011 (3)0.009 (2)0.011 (3)
C8'0.021 (2)0.036 (4)0.020 (3)0.002 (3)0.0026 (19)0.004 (3)
C90.0175 (10)0.0288 (12)0.0181 (11)0.0019 (9)0.0044 (8)0.0001 (9)
C100.0304 (13)0.0308 (13)0.0259 (13)0.0005 (11)0.0108 (10)0.0028 (11)
C110.0471 (18)0.0383 (16)0.0328 (16)0.0147 (14)0.0204 (13)0.0000 (12)
C120.0314 (15)0.060 (2)0.0336 (16)0.0217 (14)0.0166 (12)0.0098 (15)
C130.0194 (12)0.0573 (19)0.0249 (13)0.0028 (12)0.0049 (10)0.0055 (13)
C140.0197 (11)0.0357 (14)0.0200 (12)0.0018 (10)0.0056 (9)0.0004 (10)
C150.0264 (12)0.0180 (11)0.0436 (16)0.0006 (10)0.0076 (11)0.0021 (11)
C160.0257 (13)0.0199 (13)0.079 (2)0.0008 (11)0.0139 (15)0.0006 (14)
C170.0311 (16)0.0241 (15)0.106 (3)0.0062 (12)0.0070 (18)0.0078 (18)
C180.0420 (18)0.0233 (15)0.097 (3)0.0058 (13)0.0033 (19)0.0179 (17)
C190.0376 (16)0.0255 (14)0.067 (2)0.0009 (12)0.0100 (16)0.0107 (14)
C200.0289 (13)0.0230 (13)0.0455 (17)0.0009 (10)0.0083 (12)0.0008 (12)
C210.0243 (11)0.0218 (11)0.0245 (12)0.0052 (9)0.0049 (9)0.0028 (9)
C220.0231 (11)0.0226 (11)0.0227 (12)0.0022 (9)0.0023 (9)0.0021 (9)
C230.0221 (11)0.0265 (13)0.0319 (14)0.0030 (10)0.0034 (10)0.0004 (10)
C240.0271 (13)0.0269 (13)0.0364 (15)0.0047 (10)0.0022 (11)0.0031 (11)
C250.0423 (17)0.0458 (18)0.0245 (14)0.0140 (14)0.0001 (12)0.0050 (12)
C260.0362 (15)0.0416 (16)0.0270 (14)0.0135 (13)0.0091 (12)0.0083 (12)
Fe20.0267 (3)0.0208 (2)0.0222 (3)0.0000.0037 (2)0.000
Cl20.0376 (4)0.0405 (4)0.0270 (3)0.0135 (3)0.0093 (3)0.0080 (3)
Cl30.0409 (4)0.0326 (4)0.0387 (4)0.0027 (3)0.0071 (3)0.0155 (3)
C270.026 (4)0.030 (4)0.101 (8)0.0000.010 (4)0.000
Cl40.0446 (9)0.0845 (14)0.0813 (14)0.0320 (9)0.0126 (8)0.0329 (10)
Geometric parameters (Å, º) top
Fe1—Cl1i2.2135 (6)C10—C111.387 (4)
Fe1—Cl12.2135 (6)C10—H100.9500
Fe1—P12.3662 (6)C11—C121.379 (5)
Fe1—P1i2.3662 (6)C11—H110.9500
Fe1—P2i2.3738 (6)C12—C131.383 (5)
Fe1—P22.3738 (6)C12—H120.9500
P1—C11.807 (3)C13—C141.390 (4)
P1—C31.822 (6)C13—H130.9500
P1—C91.824 (2)C14—H140.9500
P1—C3'1.832 (5)C15—C161.393 (4)
P2—C21.811 (3)C15—C201.406 (4)
P2—C211.825 (3)C16—C171.388 (5)
P2—C151.829 (3)C16—H160.9500
C1—C21.319 (4)C17—C181.391 (5)
C1—H10.9500C17—H170.9500
C2—H20.9500C18—C191.386 (5)
C3—C81.379 (10)C18—H180.9500
C3—C41.393 (10)C19—C201.389 (4)
C4—C51.391 (10)C19—H190.9500
C4—H40.9500C20—H200.9500
C5—C61.369 (10)C21—C261.392 (4)
C5—H50.9500C21—C221.393 (4)
C6—C71.370 (10)C22—C231.390 (3)
C6—H60.9500C22—H220.9500
C7—C81.397 (10)C23—C241.390 (4)
C7—H70.9500C23—H230.9500
C8—H80.9500C24—C251.383 (4)
C3'—C8'1.396 (8)C24—H240.9500
C3'—C4'1.413 (8)C25—C261.387 (4)
C4'—C5'1.401 (8)C25—H250.9500
C4'—H4'0.9500C26—H260.9500
C5'—C6'1.368 (8)Fe2—Cl3ii2.1936 (8)
C5'—H5'0.9500Fe2—Cl32.1937 (8)
C6'—C7'1.382 (8)Fe2—Cl22.1993 (8)
C6'—H6'0.9500Fe2—Cl2ii2.1993 (7)
C7'—C8'1.401 (8)C27—Cl4iii1.701 (4)
C7'—H7'0.9500C27—Cl41.701 (4)
C8'—H8'0.9500C27—H27A0.9900
C9—C101.394 (4)C27—H27B0.9900
C9—C141.395 (3)
Cl1i—Fe1—Cl1180.0C3'—C8'—C7'121.0 (6)
Cl1i—Fe1—P187.63 (2)C3'—C8'—H8'119.5
Cl1—Fe1—P192.38 (2)C7'—C8'—H8'119.5
Cl1i—Fe1—P1i92.38 (2)C10—C9—C14118.8 (2)
Cl1—Fe1—P1i87.62 (2)C10—C9—P1123.18 (19)
P1—Fe1—P1i180.0C14—C9—P1118.00 (19)
Cl1i—Fe1—P2i92.42 (2)C11—C10—C9120.3 (3)
Cl1—Fe1—P2i87.58 (2)C11—C10—H10119.8
P1—Fe1—P2i99.08 (2)C9—C10—H10119.8
P1i—Fe1—P2i80.92 (2)C12—C11—C10120.1 (3)
Cl1i—Fe1—P287.58 (2)C12—C11—H11120.0
Cl1—Fe1—P292.42 (2)C10—C11—H11120.0
P1—Fe1—P280.92 (2)C11—C12—C13120.5 (3)
P1i—Fe1—P299.08 (2)C11—C12—H12119.7
P2i—Fe1—P2180.0C13—C12—H12119.7
C1—P1—C397.0 (4)C12—C13—C14119.4 (3)
C1—P1—C9100.81 (12)C12—C13—H13120.3
C3—P1—C9108.1 (9)C14—C13—H13120.3
C1—P1—C3'107.6 (3)C13—C14—C9120.8 (3)
C9—P1—C3'102.4 (7)C13—C14—H14119.6
C1—P1—Fe1106.98 (9)C9—C14—H14119.6
C3—P1—Fe1120.7 (9)C16—C15—C20119.8 (3)
C9—P1—Fe1118.90 (8)C16—C15—P2117.9 (2)
C3'—P1—Fe1118.4 (7)C20—C15—P2122.4 (2)
C2—P2—C21103.54 (13)C17—C16—C15119.8 (3)
C2—P2—C15100.56 (14)C17—C16—H16120.1
C21—P2—C15106.04 (12)C15—C16—H16120.1
C2—P2—Fe1106.53 (9)C16—C17—C18120.5 (3)
C21—P2—Fe1117.26 (9)C16—C17—H17119.7
C15—P2—Fe1120.33 (9)C18—C17—H17119.7
C2—C1—P1119.0 (2)C19—C18—C17119.6 (3)
C2—C1—H1120.5C19—C18—H18120.2
P1—C1—H1120.5C17—C18—H18120.2
C1—C2—P2119.1 (2)C18—C19—C20120.6 (3)
C1—C2—H2120.4C18—C19—H19119.7
P2—C2—H2120.4C20—C19—H19119.7
C8—C3—C4121.4 (7)C19—C20—C15119.5 (3)
C8—C3—P1116.9 (8)C19—C20—H20120.3
C4—C3—P1121.7 (8)C15—C20—H20120.3
C5—C4—C3118.2 (8)C26—C21—C22119.0 (2)
C5—C4—H4120.9C26—C21—P2121.0 (2)
C3—C4—H4120.9C22—C21—P2119.92 (19)
C6—C5—C4120.6 (8)C23—C22—C21120.6 (2)
C6—C5—H5119.7C23—C22—H22119.7
C4—C5—H5119.7C21—C22—H22119.7
C5—C6—C7121.0 (8)C22—C23—C24119.8 (3)
C5—C6—H6119.5C22—C23—H23120.1
C7—C6—H6119.5C24—C23—H23120.1
C6—C7—C8119.8 (8)C25—C24—C23119.7 (3)
C6—C7—H7120.1C25—C24—H24120.1
C8—C7—H7120.1C23—C24—H24120.1
C3—C8—C7119.0 (8)C24—C25—C26120.5 (3)
C3—C8—H8120.5C24—C25—H25119.7
C7—C8—H8120.5C26—C25—H25119.7
C8'—C3'—C4'117.9 (5)C25—C26—C21120.3 (3)
C8'—C3'—P1121.9 (6)C25—C26—H26119.9
C4'—C3'—P1120.2 (6)C21—C26—H26119.9
C5'—C4'—C3'119.9 (6)Cl3ii—Fe2—Cl3112.36 (5)
C5'—C4'—H4'120.0Cl3ii—Fe2—Cl2107.77 (3)
C3'—C4'—H4'120.0Cl3—Fe2—Cl2110.79 (3)
C6'—C5'—C4'121.0 (6)Cl3ii—Fe2—Cl2ii110.79 (3)
C6'—C5'—H5'119.5Cl3—Fe2—Cl2ii107.76 (3)
C4'—C5'—H5'119.5Cl2—Fe2—Cl2ii107.26 (5)
C5'—C6'—C7'120.0 (6)Cl4iii—C27—Cl4116.2 (5)
C5'—C6'—H6'120.0Cl4iii—C27—H27A108.2
C7'—C6'—H6'120.0Cl4—C27—H27A108.2
C6'—C7'—C8'120.0 (6)Cl4iii—C27—H27B108.2
C6'—C7'—H7'120.0Cl4—C27—H27B108.2
C8'—C7'—H7'120.0H27A—C27—H27B107.4
C3—P1—C1—C2105.9 (10)C1—P1—C9—C1438.8 (2)
C9—P1—C1—C2144.1 (2)C3—P1—C9—C14140.0 (5)
C3'—P1—C1—C2109.1 (8)C3'—P1—C9—C14149.7 (4)
Fe1—P1—C1—C219.1 (3)Fe1—P1—C9—C1477.6 (2)
P1—C1—C2—P20.6 (4)C14—C9—C10—C112.9 (4)
C21—P2—C2—C1104.4 (3)P1—C9—C10—C11174.8 (2)
C15—P2—C2—C1146.1 (3)C9—C10—C11—C121.6 (4)
Fe1—P2—C2—C119.9 (3)C10—C11—C12—C131.5 (5)
C1—P1—C3—C8177 (2)C11—C12—C13—C143.4 (4)
C9—P1—C3—C874 (2)C12—C13—C14—C92.1 (4)
Fe1—P1—C3—C868 (2)C10—C9—C14—C131.0 (4)
C1—P1—C3—C40 (2)P1—C9—C14—C13176.8 (2)
C9—P1—C3—C4104 (2)C2—P2—C15—C1647.9 (3)
Fe1—P1—C3—C4114 (2)C21—P2—C15—C16155.4 (2)
C8—C3—C4—C50 (4)Fe1—P2—C15—C1668.5 (3)
P1—C3—C4—C5178.0 (16)C2—P2—C15—C20133.1 (3)
C3—C4—C5—C61 (2)C21—P2—C15—C2025.5 (3)
C4—C5—C6—C70.9 (19)Fe1—P2—C15—C20110.6 (2)
C5—C6—C7—C80.5 (18)C20—C15—C16—C173.8 (5)
C4—C3—C8—C70 (4)P2—C15—C16—C17175.2 (3)
P1—C3—C8—C7177.7 (14)C15—C16—C17—C180.7 (6)
C6—C7—C8—C30 (3)C16—C17—C18—C192.8 (6)
C1—P1—C3'—C8'178.4 (15)C17—C18—C19—C203.1 (6)
C9—P1—C3'—C8'72.6 (18)C18—C19—C20—C150.0 (5)
Fe1—P1—C3'—C8'60.3 (18)C16—C15—C20—C193.5 (5)
C1—P1—C3'—C4'2.9 (18)P2—C15—C20—C19175.5 (3)
C9—P1—C3'—C4'108.6 (15)C2—P2—C21—C260.4 (3)
Fe1—P1—C3'—C4'118.4 (14)C15—P2—C21—C26105.7 (2)
C8'—C3'—C4'—C5'3 (2)Fe1—P2—C21—C26116.6 (2)
P1—C3'—C4'—C5'178.7 (11)C2—P2—C21—C22178.3 (2)
C3'—C4'—C5'—C6'1.0 (18)C15—P2—C21—C2276.3 (2)
C4'—C5'—C6'—C7'0.2 (13)Fe1—P2—C21—C2261.4 (2)
C5'—C6'—C7'—C8'0.2 (13)C26—C21—C22—C230.5 (4)
C4'—C3'—C8'—C7'3 (3)P2—C21—C22—C23177.5 (2)
P1—C3'—C8'—C7'178.3 (11)C21—C22—C23—C241.0 (4)
C6'—C7'—C8'—C3'1.8 (19)C22—C23—C24—C251.6 (4)
C1—P1—C9—C10143.5 (2)C23—C24—C25—C260.9 (5)
C3—P1—C9—C1042.3 (6)C24—C25—C26—C210.6 (5)
C3'—P1—C9—C1032.6 (5)C22—C21—C26—C251.2 (4)
Fe1—P1—C9—C10100.1 (2)P2—C21—C26—C25176.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+3/2; (iii) x+1, y, z+3/2.
trans-Bis[1,2-bis(diphenylphosphane)benzene]dichloridoiron(III) tetrachloridoferrate(III) dichloromethane monosolvate (2) top
Crystal data top
[FeCl2(C30H24P2)2][FeCl4]·CH2Cl2Z = 1
Mr = 1302.19F(000) = 664
Triclinic, P1Dx = 1.473 Mg m3
a = 9.8771 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6516 (8) ÅCell parameters from 4051 reflections
c = 12.8258 (8) Åθ = 2.3–30.7°
α = 81.058 (1)°µ = 1.01 mm1
β = 83.050 (1)°T = 100 K
γ = 68.335 (1)°Plate, dichroic red-green
V = 1467.87 (17) Å30.24 × 0.20 × 0.08 mm
Data collection top
Bruker SMART APEX II CCD platform
diffractometer
11890 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.644, Tmax = 0.747k = 2020
27211 measured reflectionsl = 2018
22268 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
22268 reflectionsΔρmax = 1.23 e Å3
488 parametersΔρmin = 1.39 e Å3
34 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.24 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was modeled as an inversion twin whose component mass ratio refined to 0.76 (3):0.24 (3). A solution and refinement in centrosymmetric space group P-1 caused an increase in the R1 residual (strong data) from 0.071 to 0.118.

The cocrystallized dichloromethane solvent molecule is modeled as disordered over three positions (0.740 (3):0.136 (3):0.124 (3)). Analogous bond lengths and angles among the three positions of the disordered dichloromethane solvent molecule were restrained to be similar. Anisotropic displacement parameters for proximal and pseudosymmetrically related atoms were constrained to be equivalent.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50286 (14)0.39706 (10)0.63842 (10)0.01341 (15)
Cl10.68914 (19)0.42220 (14)0.69888 (14)0.01712 (17)
Cl20.31700 (19)0.37173 (15)0.57842 (14)0.01712 (17)
P10.3591 (2)0.59048 (15)0.66544 (16)0.01471 (18)
P20.5609 (2)0.48921 (15)0.47244 (15)0.01494 (19)
P30.6449 (2)0.20476 (15)0.61113 (16)0.01471 (18)
P40.4468 (2)0.30281 (15)0.80391 (15)0.01494 (19)
C10.4350 (8)0.6828 (6)0.5755 (6)0.0168 (7)
C20.4012 (9)0.7982 (6)0.5880 (7)0.0203 (8)
H20.3420590.8294320.6479170.024*
C30.4557 (9)0.8671 (7)0.5111 (7)0.0224 (8)
H30.4309150.9456880.5186050.027*
C40.5440 (10)0.8228 (7)0.4253 (7)0.0230 (8)
H40.5808370.8706270.3746800.028*
C50.5801 (10)0.7077 (7)0.4120 (7)0.0231 (8)
H50.6410330.6770840.3525420.028*
C60.5258 (9)0.6381 (6)0.4871 (6)0.0168 (7)
C70.3577 (9)0.6416 (6)0.7913 (6)0.0170 (7)
C80.4891 (9)0.6487 (6)0.8184 (7)0.0185 (7)
H80.5734810.6296360.7705160.022*
C90.4942 (10)0.6834 (7)0.9141 (7)0.0216 (8)
H90.5829480.6865090.9322540.026*
C100.3734 (10)0.7134 (7)0.9833 (7)0.0253 (9)
H100.3788260.7369781.0490250.030*
C110.2439 (10)0.7094 (7)0.9579 (7)0.0276 (10)
H110.1599820.7309381.0059260.033*
C120.2351 (9)0.6736 (7)0.8613 (7)0.0217 (8)
H120.1454370.6714630.8439360.026*
C130.1675 (9)0.6443 (7)0.6345 (7)0.0205 (8)
C140.0746 (9)0.5937 (7)0.6896 (7)0.0234 (8)
H140.1106820.5313310.7430550.028*
C150.0721 (10)0.6326 (8)0.6681 (8)0.0292 (10)
H150.1349760.5973220.7077550.035*
C160.1257 (10)0.7200 (8)0.5913 (8)0.0308 (10)
H160.2255230.7452210.5767440.037*
C170.0333 (11)0.7737 (8)0.5330 (8)0.0358 (11)
H170.0698720.8349100.4786090.043*
C180.1131 (10)0.7356 (7)0.5564 (7)0.0272 (9)
H180.1758680.7722420.5187760.033*
C190.4506 (8)0.5019 (6)0.3642 (6)0.0165 (7)
C200.3450 (9)0.6064 (7)0.3297 (7)0.0254 (9)
H200.3336320.6727030.3610330.030*
C210.2576 (10)0.6151 (8)0.2516 (7)0.0292 (10)
H210.1846930.6868280.2308990.035*
C220.2737 (10)0.5204 (8)0.2020 (7)0.0262 (10)
H220.2151000.5276700.1458730.031*
C230.3766 (9)0.4155 (7)0.2358 (6)0.0206 (9)
H230.3892820.3498150.2029100.025*
C240.4610 (9)0.4065 (7)0.3178 (6)0.0187 (8)
H240.5277430.3333680.3429630.022*
C250.7486 (9)0.4461 (7)0.4165 (6)0.0177 (7)
C260.7991 (9)0.3814 (7)0.3313 (7)0.0246 (9)
H260.7321000.3629960.2969820.030*
C270.9467 (10)0.3436 (9)0.2961 (8)0.0345 (11)
H270.9814020.2978500.2395870.041*
C281.0437 (10)0.3753 (9)0.3469 (8)0.0346 (12)
H281.1448130.3486750.3249800.041*
C290.9948 (10)0.4427 (8)0.4259 (8)0.0303 (11)
H291.0605840.4659350.4565270.036*
C300.8479 (9)0.4781 (7)0.4623 (7)0.0228 (8)
H300.8146610.5242770.5185860.027*
C310.5655 (8)0.1115 (6)0.7002 (6)0.0168 (7)
C320.6008 (9)0.0039 (7)0.6850 (7)0.0203 (8)
H320.6619380.0338720.6254220.024*
C330.5457 (9)0.0727 (7)0.7576 (7)0.0224 (8)
H330.5686230.1506340.7482000.027*
C340.4560 (10)0.0278 (7)0.8449 (7)0.0230 (8)
H340.4174490.0753170.8944850.028*
C350.4230 (10)0.0844 (7)0.8600 (7)0.0231 (8)
H350.3634180.1135380.9204340.028*
C360.4772 (9)0.1564 (6)0.7861 (6)0.0168 (7)
C370.6454 (9)0.1559 (6)0.4842 (6)0.0170 (7)
C380.5193 (9)0.1451 (6)0.4567 (7)0.0185 (7)
H380.4353970.1618630.5050530.022*
C390.5133 (10)0.1107 (7)0.3611 (7)0.0216 (8)
H390.4261610.1040350.3438950.026*
C400.6362 (10)0.0858 (7)0.2894 (7)0.0253 (9)
H400.6322320.0637050.2226800.030*
C410.7640 (10)0.0934 (7)0.3162 (7)0.0276 (10)
H410.8480920.0752530.2680980.033*
C420.7695 (9)0.1273 (7)0.4130 (7)0.0217 (8)
H420.8578140.1311380.4312330.026*
C430.8368 (9)0.1487 (7)0.6415 (7)0.0205 (8)
C440.9319 (9)0.2031 (7)0.5899 (7)0.0234 (8)
H440.8948560.2683580.5394930.028*
C451.0755 (10)0.1651 (8)0.6101 (8)0.0292 (10)
H451.1383830.2019140.5729570.035*
C461.1292 (10)0.0697 (8)0.6873 (8)0.0308 (10)
H461.2285760.0428080.7035170.037*
C471.0388 (11)0.0167 (8)0.7381 (8)0.0358 (11)
H471.0767490.0483030.7886380.043*
C480.8941 (10)0.0544 (7)0.7185 (7)0.0272 (9)
H480.8325070.0169870.7567820.033*
C490.5653 (8)0.2851 (6)0.9099 (6)0.0165 (7)
C500.6609 (10)0.1782 (7)0.9469 (7)0.0254 (9)
H500.6642840.1121210.9187170.030*
C510.7527 (10)0.1675 (8)1.0259 (7)0.0292 (10)
H510.8191670.0941811.0507270.035*
C520.7467 (10)0.2646 (8)1.0683 (7)0.0262 (10)
H520.8098210.2574911.1213320.031*
C530.6490 (9)0.3706 (7)1.0329 (6)0.0206 (9)
H530.6425750.4360631.0636280.025*
C540.5595 (9)0.3826 (7)0.9523 (6)0.0187 (8)
H540.4950900.4563240.9263280.022*
C550.2583 (9)0.3503 (7)0.8622 (6)0.0177 (7)
C560.2117 (9)0.4183 (7)0.9441 (7)0.0246 (9)
H560.2802790.4383870.9748750.030*
C570.0671 (10)0.4570 (9)0.9813 (8)0.0345 (11)
H570.0373370.5035421.0373230.041*
C580.0343 (10)0.4296 (8)0.9388 (8)0.0346 (12)
H580.1342300.4582870.9635860.041*
C590.0112 (10)0.3588 (8)0.8584 (8)0.0303 (11)
H590.0576730.3370130.8299940.036*
C600.1560 (9)0.3200 (7)0.8196 (7)0.0228 (8)
H600.1856300.2728580.7640840.027*
Fe20.74909 (13)0.79207 (11)0.09572 (11)0.0302 (3)
Cl30.5310 (2)0.92270 (18)0.11580 (17)0.0339 (4)
Cl40.7333 (3)0.62264 (18)0.13622 (18)0.0437 (6)
Cl50.8376 (3)0.8101 (3)0.0681 (3)0.0645 (6)
Cl60.8890 (4)0.8166 (3)0.2034 (4)0.0963 (15)
Cl70.1337 (4)0.0699 (5)0.1131 (4)0.0819 (15)0.740 (3)
C610.1765 (12)0.0475 (9)0.2177 (8)0.0302 (3)0.740 (3)
H61A0.1089030.0890820.2180360.036*0.740 (3)
H61B0.2767770.1013510.2022800.036*0.740 (3)
Cl80.1656 (4)0.0086 (4)0.3389 (4)0.0645 (6)0.740 (3)
Cl7'0.129 (3)0.012 (3)0.087 (3)0.0963 (15)0.124 (3)
C61'0.249 (5)0.007 (7)0.168 (3)0.0302 (3)0.124 (3)
H61C0.3323050.0664060.1783680.036*0.124 (3)
H61D0.2878400.0643220.1284800.036*0.124 (3)
Cl8'0.178 (2)0.050 (2)0.2923 (19)0.0645 (6)0.124 (3)
Cl7"0.127 (2)0.0679 (19)0.166 (2)0.0645 (6)0.136 (3)
C61"0.276 (4)0.026 (3)0.178 (6)0.0302 (3)0.136 (3)
H61E0.3273910.0663540.2425010.036*0.136 (3)
H61F0.3459770.0402930.1153970.036*0.136 (3)
Cl8"0.191 (2)0.119 (2)0.187 (2)0.0819 (15)0.136 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0152 (4)0.0115 (3)0.0147 (4)0.0053 (3)0.0038 (3)0.0015 (3)
Cl10.0180 (4)0.0166 (4)0.0190 (4)0.0078 (3)0.0047 (3)0.0020 (3)
Cl20.0180 (4)0.0166 (4)0.0190 (4)0.0078 (3)0.0047 (3)0.0020 (3)
P10.0166 (4)0.0123 (4)0.0160 (5)0.0052 (3)0.0034 (4)0.0018 (3)
P20.0181 (5)0.0128 (4)0.0151 (5)0.0064 (4)0.0035 (4)0.0012 (3)
P30.0166 (4)0.0123 (4)0.0160 (5)0.0052 (3)0.0034 (4)0.0018 (3)
P40.0181 (5)0.0128 (4)0.0151 (5)0.0064 (4)0.0035 (4)0.0012 (3)
C10.0207 (18)0.0144 (15)0.0161 (18)0.0071 (14)0.0032 (14)0.0003 (13)
C20.027 (2)0.0151 (16)0.021 (2)0.0076 (15)0.0045 (16)0.0037 (14)
C30.030 (2)0.0132 (16)0.024 (2)0.0072 (15)0.0075 (17)0.0012 (15)
C40.032 (2)0.0181 (17)0.022 (2)0.0130 (17)0.0054 (17)0.0039 (15)
C50.032 (2)0.0185 (18)0.020 (2)0.0115 (17)0.0020 (17)0.0025 (15)
C60.0188 (18)0.0146 (15)0.0169 (18)0.0053 (14)0.0030 (14)0.0020 (13)
C70.0207 (18)0.0116 (15)0.0191 (19)0.0052 (13)0.0045 (14)0.0017 (13)
C80.0198 (18)0.0149 (16)0.023 (2)0.0078 (14)0.0034 (15)0.0035 (14)
C90.031 (2)0.0160 (16)0.021 (2)0.0115 (16)0.0094 (16)0.0006 (14)
C100.040 (3)0.0204 (19)0.019 (2)0.0132 (18)0.0048 (18)0.0042 (15)
C110.033 (2)0.029 (2)0.023 (2)0.0135 (19)0.0038 (18)0.0086 (18)
C120.022 (2)0.0203 (19)0.023 (2)0.0073 (16)0.0021 (16)0.0038 (15)
C130.0206 (19)0.0171 (17)0.024 (2)0.0051 (15)0.0047 (15)0.0046 (14)
C140.022 (2)0.0182 (18)0.033 (2)0.0090 (15)0.0062 (17)0.0031 (16)
C150.020 (2)0.029 (2)0.042 (3)0.0091 (18)0.0049 (19)0.012 (2)
C160.019 (2)0.029 (2)0.042 (3)0.0007 (17)0.0151 (19)0.008 (2)
C170.030 (3)0.029 (2)0.040 (3)0.0013 (19)0.019 (2)0.003 (2)
C180.026 (2)0.023 (2)0.028 (2)0.0032 (17)0.0068 (18)0.0002 (17)
C190.0190 (19)0.0193 (17)0.0110 (17)0.0068 (15)0.0015 (14)0.0008 (13)
C200.029 (2)0.020 (2)0.025 (2)0.0047 (17)0.0074 (17)0.0054 (17)
C210.027 (2)0.026 (2)0.031 (3)0.0029 (19)0.0128 (19)0.0014 (19)
C220.029 (2)0.035 (2)0.017 (2)0.014 (2)0.0094 (18)0.0011 (17)
C230.024 (2)0.026 (2)0.017 (2)0.0141 (19)0.0009 (17)0.0056 (16)
C240.019 (2)0.0191 (17)0.020 (2)0.0105 (16)0.0017 (16)0.0001 (14)
C250.0182 (18)0.0185 (17)0.0173 (19)0.0081 (14)0.0023 (14)0.0002 (13)
C260.022 (2)0.027 (2)0.027 (2)0.0099 (17)0.0006 (17)0.0070 (17)
C270.026 (2)0.040 (3)0.038 (3)0.012 (2)0.006 (2)0.013 (2)
C280.023 (2)0.043 (3)0.041 (3)0.017 (2)0.005 (2)0.007 (2)
C290.024 (2)0.034 (2)0.038 (3)0.019 (2)0.007 (2)0.002 (2)
C300.028 (2)0.026 (2)0.021 (2)0.0169 (17)0.0042 (16)0.0003 (16)
C310.0207 (18)0.0144 (15)0.0161 (18)0.0071 (14)0.0032 (14)0.0003 (13)
C320.027 (2)0.0151 (16)0.021 (2)0.0076 (15)0.0045 (16)0.0037 (14)
C330.030 (2)0.0132 (16)0.024 (2)0.0072 (15)0.0075 (17)0.0012 (15)
C340.032 (2)0.0181 (17)0.022 (2)0.0130 (17)0.0054 (17)0.0039 (15)
C350.032 (2)0.0185 (18)0.020 (2)0.0115 (17)0.0020 (17)0.0025 (15)
C360.0188 (18)0.0146 (15)0.0169 (18)0.0053 (14)0.0030 (14)0.0020 (13)
C370.0207 (18)0.0116 (15)0.0191 (19)0.0052 (13)0.0045 (14)0.0017 (13)
C380.0198 (18)0.0149 (16)0.023 (2)0.0078 (14)0.0034 (15)0.0035 (14)
C390.031 (2)0.0160 (16)0.021 (2)0.0115 (16)0.0094 (16)0.0006 (14)
C400.040 (3)0.0204 (19)0.019 (2)0.0132 (18)0.0048 (18)0.0042 (15)
C410.033 (2)0.029 (2)0.023 (2)0.0135 (19)0.0038 (18)0.0086 (18)
C420.022 (2)0.0203 (19)0.023 (2)0.0073 (16)0.0021 (16)0.0038 (15)
C430.0206 (19)0.0171 (17)0.024 (2)0.0051 (15)0.0047 (15)0.0046 (14)
C440.022 (2)0.0182 (18)0.033 (2)0.0090 (15)0.0062 (17)0.0031 (16)
C450.020 (2)0.029 (2)0.042 (3)0.0091 (18)0.0049 (19)0.012 (2)
C460.019 (2)0.029 (2)0.042 (3)0.0007 (17)0.0151 (19)0.008 (2)
C470.030 (3)0.029 (2)0.040 (3)0.0013 (19)0.019 (2)0.003 (2)
C480.026 (2)0.023 (2)0.028 (2)0.0032 (17)0.0068 (18)0.0002 (17)
C490.0190 (19)0.0193 (17)0.0110 (17)0.0068 (15)0.0015 (14)0.0008 (13)
C500.029 (2)0.020 (2)0.025 (2)0.0047 (17)0.0074 (17)0.0054 (17)
C510.027 (2)0.026 (2)0.031 (3)0.0029 (19)0.0128 (19)0.0014 (19)
C520.029 (2)0.035 (2)0.017 (2)0.014 (2)0.0094 (18)0.0011 (17)
C530.024 (2)0.026 (2)0.017 (2)0.0141 (19)0.0009 (17)0.0056 (16)
C540.019 (2)0.0191 (17)0.020 (2)0.0105 (16)0.0017 (16)0.0001 (14)
C550.0182 (18)0.0185 (17)0.0173 (19)0.0081 (14)0.0023 (14)0.0002 (13)
C560.022 (2)0.027 (2)0.027 (2)0.0099 (17)0.0006 (17)0.0070 (17)
C570.026 (2)0.040 (3)0.038 (3)0.012 (2)0.006 (2)0.013 (2)
C580.023 (2)0.043 (3)0.041 (3)0.017 (2)0.005 (2)0.007 (2)
C590.024 (2)0.034 (2)0.038 (3)0.019 (2)0.007 (2)0.002 (2)
C600.028 (2)0.026 (2)0.021 (2)0.0169 (17)0.0042 (16)0.0003 (16)
Fe20.0234 (6)0.0251 (6)0.0393 (7)0.0018 (4)0.0095 (5)0.0077 (5)
Cl30.0226 (9)0.0378 (11)0.0356 (12)0.0001 (8)0.0087 (8)0.0093 (9)
Cl40.0709 (17)0.0271 (10)0.0283 (11)0.0138 (11)0.0042 (11)0.0046 (8)
Cl50.0335 (9)0.0725 (13)0.0668 (13)0.0075 (9)0.0006 (8)0.0200 (10)
Cl60.0488 (16)0.090 (2)0.146 (3)0.0219 (15)0.0621 (19)0.077 (2)
Cl70.0330 (19)0.128 (4)0.070 (3)0.006 (2)0.0002 (18)0.027 (3)
C610.0234 (6)0.0251 (6)0.0393 (7)0.0018 (4)0.0095 (5)0.0077 (5)
Cl80.0335 (9)0.0725 (13)0.0668 (13)0.0075 (9)0.0006 (8)0.0200 (10)
Cl7'0.0488 (16)0.090 (2)0.146 (3)0.0219 (15)0.0621 (19)0.077 (2)
C61'0.0234 (6)0.0251 (6)0.0393 (7)0.0018 (4)0.0095 (5)0.0077 (5)
Cl8'0.0335 (9)0.0725 (13)0.0668 (13)0.0075 (9)0.0006 (8)0.0200 (10)
Cl7"0.0335 (9)0.0725 (13)0.0668 (13)0.0075 (9)0.0006 (8)0.0200 (10)
C61"0.0234 (6)0.0251 (6)0.0393 (7)0.0018 (4)0.0095 (5)0.0077 (5)
Cl8"0.0330 (19)0.128 (4)0.070 (3)0.006 (2)0.0002 (18)0.027 (3)
Geometric parameters (Å, º) top
Fe1—Cl22.218 (2)C30—H300.9500
Fe1—Cl12.223 (2)C31—C361.376 (11)
Fe1—P32.374 (2)C31—C321.410 (10)
Fe1—P22.376 (2)C32—C331.377 (11)
Fe1—P42.377 (2)C32—H320.9500
Fe1—P12.388 (2)C33—C341.396 (12)
P1—C11.810 (8)C33—H330.9500
P1—C71.827 (8)C34—C351.374 (11)
P1—C131.830 (8)C34—H340.9500
P2—C251.817 (8)C35—C361.408 (11)
P2—C191.819 (8)C35—H350.9500
P2—C61.822 (7)C37—C381.393 (11)
P3—C371.828 (8)C37—C421.404 (11)
P3—C431.830 (8)C38—C391.379 (11)
P3—C311.833 (8)C38—H380.9500
P4—C361.811 (7)C39—C401.398 (13)
P4—C491.834 (8)C39—H390.9500
P4—C551.835 (8)C40—C411.387 (12)
C1—C21.403 (10)C40—H400.9500
C1—C61.410 (11)C41—C421.389 (11)
C2—C31.404 (11)C41—H410.9500
C2—H20.9500C42—H420.9500
C3—C41.373 (12)C43—C441.406 (11)
C3—H30.9500C43—C481.411 (12)
C4—C51.399 (11)C44—C451.362 (11)
C4—H40.9500C44—H440.9500
C5—C61.396 (11)C45—C461.415 (13)
C5—H50.9500C45—H450.9500
C7—C121.387 (11)C46—C471.355 (13)
C7—C81.421 (11)C46—H460.9500
C8—C91.379 (10)C47—C481.371 (12)
C8—H80.9500C47—H470.9500
C9—C101.367 (12)C48—H480.9500
C9—H90.9500C49—C501.382 (11)
C10—C111.379 (12)C49—C541.404 (10)
C10—H100.9500C50—C511.398 (12)
C11—C121.406 (11)C50—H500.9500
C11—H110.9500C51—C521.398 (11)
C12—H120.9500C51—H510.9500
C13—C141.374 (11)C52—C531.377 (12)
C13—C181.392 (12)C52—H520.9500
C14—C151.394 (11)C53—C541.395 (11)
C14—H140.9500C53—H530.9500
C15—C161.352 (13)C54—H540.9500
C15—H150.9500C55—C561.388 (11)
C16—C171.411 (14)C55—C601.396 (11)
C16—H160.9500C56—C571.378 (12)
C17—C181.400 (12)C56—H560.9500
C17—H170.9500C57—C581.367 (12)
C18—H180.9500C57—H570.9500
C19—C241.392 (10)C58—C591.394 (13)
C19—C201.394 (11)C58—H580.9500
C20—C211.365 (12)C59—C601.385 (12)
C20—H200.9500C59—H590.9500
C21—C221.392 (12)C60—H600.9500
C21—H210.9500Fe2—Cl42.184 (2)
C22—C231.384 (12)Fe2—Cl52.188 (3)
C22—H220.9500Fe2—Cl32.193 (2)
C23—C241.385 (11)Fe2—Cl62.197 (3)
C23—H230.9500Cl7—C611.799 (11)
C24—H240.9500C61—Cl81.682 (10)
C25—C261.399 (11)C61—H61A0.9900
C25—C301.406 (11)C61—H61B0.9900
C26—C271.397 (12)Cl7'—C61'1.77 (2)
C26—H260.9500C61'—Cl8'1.75 (2)
C27—C281.420 (13)C61'—H61C0.9900
C27—H270.9500C61'—H61D0.9900
C28—C291.354 (13)Cl7"—C61"1.76 (2)
C28—H280.9500C61"—Cl8"1.73 (2)
C29—C301.394 (12)C61"—H61E0.9900
C29—H290.9500C61"—H61F0.9900
Cl2—Fe1—Cl1179.87 (12)C27—C28—H28119.4
Cl2—Fe1—P387.69 (8)C28—C29—C30120.1 (8)
Cl1—Fe1—P392.26 (8)C28—C29—H29119.9
Cl2—Fe1—P292.82 (8)C30—C29—H29119.9
Cl1—Fe1—P287.30 (8)C29—C30—C25120.7 (8)
P3—Fe1—P298.58 (8)C29—C30—H30119.7
Cl2—Fe1—P487.23 (8)C25—C30—H30119.7
Cl1—Fe1—P492.65 (8)C36—C31—C32121.2 (7)
P3—Fe1—P480.75 (8)C36—C31—P3117.5 (6)
P2—Fe1—P4179.33 (10)C32—C31—P3121.2 (6)
Cl2—Fe1—P192.05 (8)C33—C32—C31119.3 (7)
Cl1—Fe1—P187.99 (7)C33—C32—H32120.4
P3—Fe1—P1179.74 (10)C31—C32—H32120.4
P2—Fe1—P181.38 (8)C32—C33—C34119.9 (7)
P4—Fe1—P199.29 (8)C32—C33—H33120.1
C1—P1—C7100.8 (3)C34—C33—H33120.1
C1—P1—C13103.2 (4)C35—C34—C33120.7 (8)
C7—P1—C13105.0 (4)C35—C34—H34119.7
C1—P1—Fe1107.7 (3)C33—C34—H34119.7
C7—P1—Fe1120.0 (3)C34—C35—C36120.3 (8)
C13—P1—Fe1117.6 (2)C34—C35—H35119.9
C25—P2—C19105.8 (4)C36—C35—H35119.9
C25—P2—C6100.4 (4)C31—C36—C35118.7 (7)
C19—P2—C6102.7 (4)C31—C36—P4118.2 (6)
C25—P2—Fe1120.0 (3)C35—C36—P4122.9 (6)
C19—P2—Fe1117.0 (3)C38—C37—C42118.3 (7)
C6—P2—Fe1108.3 (3)C38—C37—P3119.4 (6)
C37—P3—C43104.8 (4)C42—C37—P3122.3 (6)
C37—P3—C31100.6 (3)C39—C38—C37121.6 (8)
C43—P3—C31103.8 (4)C39—C38—H38119.2
C37—P3—Fe1119.4 (3)C37—C38—H38119.2
C43—P3—Fe1118.2 (2)C38—C39—C40119.7 (8)
C31—P3—Fe1107.7 (3)C38—C39—H39120.2
C36—P4—C49102.8 (4)C40—C39—H39120.2
C36—P4—C55101.4 (4)C41—C40—C39119.7 (8)
C49—P4—C55107.0 (4)C41—C40—H40120.1
C36—P4—Fe1108.0 (3)C39—C40—H40120.1
C49—P4—Fe1116.1 (3)C40—C41—C42120.3 (8)
C55—P4—Fe1119.2 (3)C40—C41—H41119.9
C2—C1—C6119.1 (7)C42—C41—H41119.9
C2—C1—P1122.3 (6)C41—C42—C37120.5 (8)
C6—C1—P1118.5 (6)C41—C42—H42119.8
C1—C2—C3119.3 (7)C37—C42—H42119.8
C1—C2—H2120.3C44—C43—C48117.6 (8)
C3—C2—H2120.3C44—C43—P3119.8 (6)
C4—C3—C2121.2 (7)C48—C43—P3122.6 (7)
C4—C3—H3119.4C45—C44—C43122.0 (9)
C2—C3—H3119.4C45—C44—H44119.0
C3—C4—C5120.3 (8)C43—C44—H44119.0
C3—C4—H4119.8C44—C45—C46118.7 (9)
C5—C4—H4119.8C44—C45—H45120.6
C6—C5—C4119.3 (8)C46—C45—H45120.6
C6—C5—H5120.3C47—C46—C45119.9 (8)
C4—C5—H5120.3C47—C46—H46120.0
C5—C6—C1120.7 (7)C45—C46—H46120.0
C5—C6—P2122.0 (6)C46—C47—C48121.8 (9)
C1—C6—P2117.2 (6)C46—C47—H47119.1
C12—C7—C8118.7 (7)C48—C47—H47119.1
C12—C7—P1123.3 (6)C47—C48—C43119.9 (9)
C8—C7—P1118.1 (6)C47—C48—H48120.1
C9—C8—C7119.9 (8)C43—C48—H48120.1
C9—C8—H8120.0C50—C49—C54119.9 (7)
C7—C8—H8120.0C50—C49—P4121.2 (6)
C10—C9—C8121.1 (8)C54—C49—P4118.9 (6)
C10—C9—H9119.5C49—C50—C51120.0 (7)
C8—C9—H9119.5C49—C50—H50120.0
C9—C10—C11120.0 (8)C51—C50—H50120.0
C9—C10—H10120.0C50—C51—C52120.0 (8)
C11—C10—H10120.0C50—C51—H51120.0
C10—C11—C12120.4 (8)C52—C51—H51120.0
C10—C11—H11119.8C53—C52—C51119.8 (8)
C12—C11—H11119.8C53—C52—H52120.1
C7—C12—C11119.9 (8)C51—C52—H52120.1
C7—C12—H12120.1C52—C53—C54120.6 (7)
C11—C12—H12120.1C52—C53—H53119.7
C14—C13—C18119.0 (8)C54—C53—H53119.7
C14—C13—P1119.4 (7)C53—C54—C49119.6 (8)
C18—C13—P1121.6 (7)C53—C54—H54120.2
C13—C14—C15120.8 (9)C49—C54—H54120.2
C13—C14—H14119.6C56—C55—C60118.6 (8)
C15—C14—H14119.6C56—C55—P4122.9 (6)
C16—C15—C14120.8 (9)C60—C55—P4118.4 (6)
C16—C15—H15119.6C57—C56—C55120.7 (8)
C14—C15—H15119.6C57—C56—H56119.6
C15—C16—C17119.9 (8)C55—C56—H56119.6
C15—C16—H16120.0C58—C57—C56121.1 (9)
C17—C16—H16120.0C58—C57—H57119.5
C18—C17—C16119.0 (9)C56—C57—H57119.5
C18—C17—H17120.5C57—C58—C59118.9 (9)
C16—C17—H17120.5C57—C58—H58120.5
C13—C18—C17120.5 (9)C59—C58—H58120.5
C13—C18—H18119.8C60—C59—C58120.6 (8)
C17—C18—H18119.8C60—C59—H59119.7
C24—C19—C20117.5 (7)C58—C59—H59119.7
C24—C19—P2121.4 (6)C59—C60—C55120.0 (8)
C20—C19—P2121.0 (6)C59—C60—H60120.0
C21—C20—C19121.1 (8)C55—C60—H60120.0
C21—C20—H20119.4Cl4—Fe2—Cl5109.67 (12)
C19—C20—H20119.4Cl4—Fe2—Cl3108.95 (10)
C20—C21—C22121.0 (8)Cl5—Fe2—Cl3110.14 (11)
C20—C21—H21119.5Cl4—Fe2—Cl6110.12 (15)
C22—C21—H21119.5Cl5—Fe2—Cl6110.26 (17)
C23—C22—C21118.8 (8)Cl3—Fe2—Cl6107.67 (10)
C23—C22—H22120.6Cl8—C61—Cl7114.4 (6)
C21—C22—H22120.6Cl8—C61—H61A108.7
C22—C23—C24119.8 (7)Cl7—C61—H61A108.7
C22—C23—H23120.1Cl8—C61—H61B108.7
C24—C23—H23120.1Cl7—C61—H61B108.7
C23—C24—C19121.7 (8)H61A—C61—H61B107.6
C23—C24—H24119.2Cl8'—C61'—Cl7'117 (3)
C19—C24—H24119.2Cl8'—C61'—H61C107.9
C26—C25—C30118.6 (8)Cl7'—C61'—H61C107.9
C26—C25—P2123.1 (6)Cl8'—C61'—H61D107.9
C30—C25—P2118.2 (6)Cl7'—C61'—H61D107.9
C27—C26—C25120.8 (8)H61C—C61'—H61D107.2
C27—C26—H26119.6Cl8"—C61"—Cl7"102 (2)
C25—C26—H26119.6Cl8"—C61"—H61E111.3
C26—C27—C28118.4 (8)Cl7"—C61"—H61E111.3
C26—C27—H27120.8Cl8"—C61"—H61F111.3
C28—C27—H27120.8Cl7"—C61"—H61F111.3
C29—C28—C27121.2 (9)H61E—C61"—H61F109.2
C29—C28—H28119.4
C7—P1—C1—C237.2 (7)C37—P3—C31—C36145.7 (6)
C13—P1—C1—C271.2 (7)C43—P3—C31—C36106.0 (7)
Fe1—P1—C1—C2163.7 (6)Fe1—P3—C31—C3620.1 (7)
C7—P1—C1—C6145.8 (6)C37—P3—C31—C3238.2 (7)
C13—P1—C1—C6105.7 (7)C43—P3—C31—C3270.1 (7)
Fe1—P1—C1—C619.3 (7)Fe1—P3—C31—C32163.8 (6)
C6—C1—C2—C31.5 (12)C36—C31—C32—C330.1 (12)
P1—C1—C2—C3175.5 (6)P3—C31—C32—C33176.0 (6)
C1—C2—C3—C41.5 (13)C31—C32—C33—C340.0 (13)
C2—C3—C4—C50.9 (13)C32—C33—C34—C350.6 (13)
C3—C4—C5—C60.2 (13)C33—C34—C35—C361.2 (13)
C4—C5—C6—C10.2 (12)C32—C31—C36—C350.5 (12)
C4—C5—C6—P2177.1 (7)P3—C31—C36—C35175.6 (6)
C2—C1—C6—C50.9 (12)C32—C31—C36—P4176.2 (6)
P1—C1—C6—C5176.2 (6)P3—C31—C36—P40.1 (9)
C2—C1—C6—P2177.9 (6)C34—C35—C36—C311.2 (12)
P1—C1—C6—P20.9 (9)C34—C35—C36—P4176.6 (7)
C25—P2—C6—C538.1 (8)C49—P4—C36—C31103.3 (7)
C19—P2—C6—C570.8 (7)C55—P4—C36—C31146.1 (7)
Fe1—P2—C6—C5164.8 (6)Fe1—P4—C36—C3120.0 (7)
C25—P2—C6—C1144.8 (6)C49—P4—C36—C3572.2 (7)
C19—P2—C6—C1106.2 (7)C55—P4—C36—C3538.4 (8)
Fe1—P2—C6—C118.2 (7)Fe1—P4—C36—C35164.6 (6)
C1—P1—C7—C12128.4 (7)C43—P3—C37—C38155.9 (6)
C13—P1—C7—C1221.4 (8)C31—P3—C37—C3848.5 (7)
Fe1—P1—C7—C12113.8 (6)Fe1—P3—C37—C3868.9 (7)
C1—P1—C7—C851.5 (7)C43—P3—C37—C4223.3 (8)
C13—P1—C7—C8158.6 (6)C31—P3—C37—C42130.7 (7)
Fe1—P1—C7—C866.3 (7)Fe1—P3—C37—C42111.9 (6)
C12—C7—C8—C92.1 (11)C42—C37—C38—C392.0 (11)
P1—C7—C8—C9177.9 (6)P3—C37—C38—C39178.8 (6)
C7—C8—C9—C101.2 (12)C37—C38—C39—C400.1 (12)
C8—C9—C10—C110.1 (13)C38—C39—C40—C411.4 (13)
C9—C10—C11—C120.6 (13)C39—C40—C41—C421.0 (13)
C8—C7—C12—C111.6 (12)C40—C41—C42—C371.0 (13)
P1—C7—C12—C11178.4 (6)C38—C37—C42—C412.4 (12)
C10—C11—C12—C70.3 (13)P3—C37—C42—C41178.3 (6)
C1—P1—C13—C14179.5 (6)C37—P3—C43—C4477.3 (7)
C7—P1—C13—C1474.3 (7)C31—P3—C43—C44177.6 (6)
Fe1—P1—C13—C1462.2 (7)Fe1—P3—C43—C4458.5 (7)
C1—P1—C13—C180.4 (8)C37—P3—C43—C48105.1 (7)
C7—P1—C13—C18105.7 (7)C31—P3—C43—C480.1 (8)
Fe1—P1—C13—C18117.9 (6)Fe1—P3—C43—C48119.0 (6)
C18—C13—C14—C150.0 (12)C48—C43—C44—C452.1 (12)
P1—C13—C14—C15180.0 (6)P3—C43—C44—C45179.7 (6)
C13—C14—C15—C161.0 (13)C43—C44—C45—C461.7 (13)
C14—C15—C16—C170.8 (13)C44—C45—C46—C471.3 (13)
C15—C16—C17—C180.4 (13)C45—C46—C47—C481.4 (14)
C14—C13—C18—C171.2 (13)C46—C47—C48—C431.8 (14)
P1—C13—C18—C17178.8 (7)C44—C43—C48—C472.1 (12)
C16—C17—C18—C131.4 (13)P3—C43—C48—C47179.7 (7)
C25—P2—C19—C2466.4 (7)C36—P4—C49—C507.1 (8)
C6—P2—C19—C24171.3 (6)C55—P4—C49—C50113.5 (7)
Fe1—P2—C19—C2470.3 (7)Fe1—P4—C49—C50110.5 (7)
C25—P2—C19—C20118.1 (7)C36—P4—C49—C54174.0 (6)
C6—P2—C19—C2013.3 (8)C55—P4—C49—C5467.6 (7)
Fe1—P2—C19—C20105.2 (7)Fe1—P4—C49—C5468.4 (7)
C24—C19—C20—C211.5 (13)C54—C49—C50—C510.6 (13)
P2—C19—C20—C21177.1 (7)P4—C49—C50—C51178.3 (7)
C19—C20—C21—C221.7 (14)C49—C50—C51—C520.7 (14)
C20—C21—C22—C232.4 (14)C50—C51—C52—C530.7 (14)
C21—C22—C23—C240.0 (12)C51—C52—C53—C542.3 (13)
C22—C23—C24—C193.3 (12)C52—C53—C54—C492.5 (12)
C20—C19—C24—C234.0 (12)C50—C49—C54—C531.0 (12)
P2—C19—C24—C23179.6 (6)P4—C49—C54—C53179.9 (6)
C19—P2—C25—C2629.2 (8)C36—P4—C55—C56139.5 (7)
C6—P2—C25—C26135.8 (7)C49—P4—C55—C5632.2 (8)
Fe1—P2—C25—C26105.9 (7)Fe1—P4—C55—C56102.1 (7)
C19—P2—C25—C30151.7 (7)C36—P4—C55—C6042.9 (7)
C6—P2—C25—C3045.2 (7)C49—P4—C55—C60150.2 (7)
Fe1—P2—C25—C3073.2 (7)Fe1—P4—C55—C6075.4 (7)
C30—C25—C26—C273.6 (13)C60—C55—C56—C571.2 (13)
P2—C25—C26—C27175.4 (7)P4—C55—C56—C57176.3 (7)
C25—C26—C27—C281.8 (14)C55—C56—C57—C580.0 (15)
C26—C27—C28—C291.5 (15)C56—C57—C58—C591.7 (16)
C27—C28—C29—C303.0 (16)C57—C58—C59—C602.2 (15)
C28—C29—C30—C251.1 (14)C58—C59—C60—C551.0 (14)
C26—C25—C30—C292.2 (13)C56—C55—C60—C590.7 (13)
P2—C25—C30—C29176.9 (7)P4—C55—C60—C59177.0 (7)
 

Acknowledgements

DM and DB thank the University of Rochester David T. Kearns Center for Leadership and Diversity and Professor Neidig for the opportunity to participate in this research. JLK thanks the Kearns Center as well as the University of Rochester Center for the Integration of Research, Teaching, and Learning for a research mentoring fellowship.

Funding information

This project was supported by a National Science Foundation CAREER Award to MLN (CHE-1454370).

References

First citationBruker (2013). SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatt, J. & Hayter, R. G. (1961). J. Chem. Soc. pp. 5507–5511.  CrossRef Google Scholar
First citationEvans, D. J., Henderson, R. A., Hills, A., Hughes, D. L. & Oglieve, K. E. (1992). J. Chem. Soc. Dalton Trans. pp. 1259–1265.  CrossRef Google Scholar
First citationField, L. D., George, A. V. & Hambley, T. W. (1990). Polyhedron, 9, 2139–2141.  CrossRef Google Scholar
First citationField, L. D., Thomas, I. P., Turner, P. & Hambley, T. W. (2000). Aust. J. Chem. 53, 541–544.  CrossRef Google Scholar
First citationGargano, M., Giannoccaro, P., Rossi, M., Vasapollo, G. & Sacco, A. (1975). J. Chem. Soc. Dalton Trans. pp. 9–12.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHiggins, S. J., Jewiss, H. C., Levason, W. & Webster, M. (1985). Acta Cryst. C41, 695–697.  CrossRef IUCr Journals Google Scholar
First citationHiggins, S. J. & Levason, W. (1985). Inorg. Chem. 24, 1105–1107.  CrossRef Google Scholar
First citationHoffert, W. A., Rappé, A. K. & Shores, M. P. (2011). J. Am. Chem. Soc. 133, 20823–20836.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLevason, W., McAuliffe, C. A., Khan, M. M. & Nelson, S. M. (1975). J. Chem. Soc. Dalton Trans. pp. 1778–1783.  CrossRef Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126–3140.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds