research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spontaneous enanti­omorphism in poly-phased alkaline salts of tris­­(oxalato)ferrate(III): crystal structure of cubic NaRb5[Fe(C2O4)3]2

CROSSMARK_Color_square_no_text.svg

aDepartamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP(CONICET), C.C. 67, 1900 La Plata, Argentina, and bCentro de Química Inorgánica (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, Argentina
*Correspondence e-mail: geche@fisica.unlp.edu.ar

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 February 2018; accepted 30 May 2018; online 8 June 2018)

We show here that the phenomenon of spontaneous resolution of enanti­omers occurs during the crystallization of the sodium and rubidium double salts of the transition metal complex tris­(oxalato)ferrate(III), namely sodium penta­rubidium bis­[tris­(oxalato)ferrate(III)], NaRb5[Fe(C2O4)3]2. One enanti­omer of the salt crystallizes in the cubic space group P4332 with Z = 4 and a Flack absolute structure parameter x = −0.01 (1) and its chiral counterpart in the space group P4132 with x = −0.00 (1). All metal ions are at crystallographic special positions: the iron(III) ion is on a threefold axis, coordinated by three oxalate dianions in a propeller-like conformation. One of the two independent rubidium ions is on a twofold axis in an eightfold coordination with neighbouring oxalate oxygen atoms, and the other one on a threefold axis in a sixfold RbO6 coordination. The sodium ion is at a site of D3 point group symmetry in a trigonal–anti­prismatic NaO6 coordination.

1. Chemical context

Chirality is the structural property by which a mol­ecule or ion cannot be superposed upon its mirror image through translation and proper rotation operations. This concept along with the related ones of chiral crystal structures and space groups is discussed by Flack (2003[Flack, H. D. (2003). Helv. Chim. Acta, 86, 905-921.]). Chirality is at the core (among other research areas) of the not yet understood origin of the biomolecular asymmetry of life (Meierhenrich, 2008[Meierhenrich, U. (2008). Amino Acids and the Asymmetry of Life. Berlin: Springer-Verlag.]), enanti­oselective chemical reactions (Knowles, 2001[Knowles, W. S. (2001). Nobel lecture: Asymmetric Hydrogenation. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/knowles-lecture. pdf]; Noyori, 2001[Noyori, R. (2001). Nobel lecture: Asymmetric Catalysis: Science and Opportunities. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/noyori-lecture. pdf]; Sharpless, 2001[Sharpless, K. B. (2001). Nobel lecture: Searching for New Reactivity. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/sharpless-lecture. pdf]), biological activity of pharmaceuticals (Nguyen et al., 2006[Nguyen, L. A., He, H. & Pham-Huy, C. (2006). Int. J. Biomed. Sci. 2, 85-100.]) and in the design of multifunctional solid-state materials endowed with optical activity and long-range magnetic order (Coronado et al., 2003[Coronado, E., Palacio, F. & Veciana, J. (2003). Angew. Chem. Int. Ed. 42, 2570-2572.]) and also in the understanding of the physical properties of chiral liquid crystals and their tailoring for applications in opto-electronic devices (Goodby, 1998[Goodby, J. W. (1998). Symmetry and Chirality in Liquid Crystals. In Handbook of Liquid Crystals, Vol. 1, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch V, pp. 115-132. Weinheim: Wiley-VCH.]; Coles, 1998[Coles, H. (1998). Chiral Nematics: Physical Properties and Applications. In Handbook of Liquid Crystals, Vol. 2A, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch. IV, pp. 335-409. Weinheim: Wiley-VCH.]).

While attempting to crystallize the rubidium salt of the tris­(oxalato)ferrate(III) transition metal complex, one of the preparations segregated into a poly-phased crystal system. It contained the intended Rb3[Fe(C2O4)3]·3H2O compound (monoclinic P21/c), which turned out to be isotypic to the reported potassium salt (Junk, 2005[Junk, P. C. (2005). J. Coord. Chem. 58, 355-361.]; Piro et al., 2016[Piro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715-3725.]), and the triclinic (P[\overline{1}]) Rb(C2O4H)(C2O4H2)·2H2O salt (Kherfi et al., 2010[Kherfi, H., Hamadene, M., Guehria-Laidoudi, A., Dahaoui, S. & Lecomte, C. (2010). Materials 3, 1281-1301.]), which is isotypic to the ammonium analogue (Jarzembska et al., 2014[Jarzembska, K. N., Kamiński, R., Dobrzycki, Ł. & Cyrański, M. K. (2014). Acta Cryst. B70, 847-855.]). A third phase consisted of large green crystals of a new cubic (P4332) NaRb5[Fe(C2O4)3]2 salt. Inter­estingly, the isotypic counterpart of this salt where rubidium is replaced by potassium has been reported by Wartchow (1997[Wartchow, R. (1997). Z. Kristallogr. 212, 57.]) to appear in a mixture with crystals of the monoclinic K3[Fe(C2O4)3]·3H2O salt, hence confirming the tendency of potassium and rubidium alkaline ions to form isotypic crystal analogues (Piro et al., 2016[Piro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715-3725.]). Curiously, in a previous work, Henneicke & Wartchow (1997[Henneicke, S. & Wartchow, R. (1997). Z. Kristallogr. 212, 56.]) reported the chiral counterpart of the cubic NaK5[Fe(C2O4)3]2 salt, which crystallizes in the space group P4132. This prompted us to search for the chiral rubidium analogue in the very same batch as the single-crystals that solved in the space group P4332 NaRb5[Fe(C2O4)3]2. By chance, we picked a single crystal and submitted it to X-ray diffraction scrutiny to find that it now belonged to the chiral space group P4132. This strongly suggests that the NaM5[Fe(C2O4)3]2 (M = K, Rb) crystal samples could be racemic conglomerates generated by spontaneous resolution, a rare event discovered by Louis Pasteur in 1848 (Pasteur, 1848a[Pasteur, L. (1848a). C. R. Acad. Sci. Paris, 26, 535-538.],b[Pasteur, L. (1848b). Anal. Chim. Phys. 24, 442-459.]) in a famous experiment in which he hand-sorted the chirally resolved crystals of sodium ammonium tartrate tetra­hydrate on the basis of their observed morphology and then examined their respective solutions with a polarimeter to find opposite rotations of the plane of light polarization (Flack, 2009[Flack, H. D. (2009). Acta Cryst. A65, 371-389.]). Recently, we found that the phenomenon could also have occurred in isotypic [M(Lap)2]n (M = Cd, Mn; HLap = 2-hy­droxy-3-(3-methyl-2-buten­yl)-1,4-naphto­quinone, C15H14O3) complexes whose enanti­omers crystallize in the tetra­gonal and enanti­omorphic space groups P43212 and P41212 (Farfán et al., 2015[Farfán, R. A., Espíndola, J. A., Gómez, M. I., de Jiménez, M. C. L., Piro, O. E., Castellano, E. E. & Martínez, M. A. (2015). J. Mol. Struct. 1087, 80-87.]).

2. Structural commentary

Fig. 1[link] shows an ORTEP (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) drawing of the P4332 enanti­omer of the title compound. Bond lengths and angles around iron(III) and within the oxalate dianion are listed in Table 1[link] and contact distances around the alkali ions are shown in Table 2[link]. All metal ions are at crystallographic special positions while the oxalate anion is on a general position. The iron(III) ion is on a threefold axis, C3 point group symmetry (Wyckoft c site), in an octa­hedral environment (FeO6 core). It is coordinated to three, symmetry-related, oxalate anions acting as bidentate ligands through the oxygen atoms of their opposite carb­oxy­lic groups in a propeller-like conformation and along one electron pair lobe on each oxygen ligand. The FeO6 bond geometry and metrics are consistent with the oxalate being a weak-field ligand that gives rise to the high-spin (S = 5/2) electronic ground state exhibited by the complex, as probed by magnetic susceptibility (Delgado et al., 2002[Delgado, G., Mora, A. J. & Sagredo, V. (2002). Physica B, 320, 410-412.]) and ESR spectroscopy (Collison & Powell, 1990[Collison, D. & Powell, A. K. (1990). Inorg. Chem. 29, 4735-4746.]) in synthetic minguzzite, K3[Fe(C2O4)3]·3H2O, by polarized electronic absorption spectroscopy in single crystal NaMg[(Fe, Al)(C2O4)3]·9H2O mixtures (Piper & Carlin, 1961[Piper, T. S. & Carlin, R. L. (1961). J. Chem. Phys. 35, 1809-1815.]) and also by Mössbauer spectroscopy in K3[Fe(C2O4)3]·3H2O (Bancroft et al., 1970[Bancroft, G. M., Dharmawardena, K. G. & Maddock, A. G. (1970). Inorg. Chem. 9, 223-226.]; Sato & Tominaga, 1979[Sato, H. & Tominaga, T. (1979). Bull. Chem. Soc. Jpn, 52, 1402-1407.]; Ladriere, 1992[Ladriere, J. (1992). Hyperfine Interact. 70, 1095-1098.]) and in the alkali (Na, Rb, Cs) family of tris­(oxalato)ferrate(III) salts (Piro et al., 2016[Piro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715-3725.]).

Table 1
Bond lengths and angles (Å, °) around iron(III) and within the oxalate dianion in NaRb5[Fe(C2O4)3]2 P4332 enanti­omer

(a) At a crystal site of C3 point group symmetry.

Iron(III)a   (C2O4)2−      
Fe—O11 2.021 (4) C1–O12 1.211 (7) O12—C—O11 125.2 (6)
Fe—O21 1.989 (4) C1–O11 1.286 (7) O12—C1—C2 121.2 (6)
    C1—C2 1.540 (9) O11—C1—C2 113.5 (5)
O21—Fe—O11 80.0 (2) C2—O22 1.211 (7) O22—C2—O21 125.3 (6)
O21—Fe—O21i 88.4 (2) C2—O21 1.283 (7) O22—C2—C1 121.1 (6)
O11—Fe—O11i 88.7 (2)     O21—C2—C1 113.6 (5)
O11—Fe—O21i 106.2 (2)        
O11—Fe—O21ii 160.9 (2)        
Symmetry codes: (i) −z + [{1\over 2}], −x + 1, y − [{1\over 2}]; (ii) −y + 1, z + [{1\over 2}], −x + [{1\over 2}].

Table 2
Bond lengths (Å) around the alkali metal ions in NaRb5[Fe(C2O4)3]2 P4332 enanti­omer.

(a) At a site of C2 point group symmetry; (b) at a C3 site; (c) at a D3 site.

Rb1a   Rb2b   Nac  
Rb1—O11 3.009 (4) Rb2—O22 2.808 (4) Na—O12 2.439 (4)
Rb1—O11i 3.067 (4) Rb2—O21iii 3.114 (4)    
Rb1—O22ii 2.788 (5)        
Rb1—O12ii 3.133 (5)        
Symmetry codes: (i) −y + 1, z + [{1\over 2}], −x + [{1\over 2}]; (ii) y − [{1\over 2}], −z + [{3\over 2}], −x + 1; (iii) −y + [{5\over 4}], −x + [{5\over 4}], −z + [{1\over 4}].
[Figure 1]
Figure 1
View of NaRb5[Fe(C2O4)3]2 showing the atom labels and displacement ellipsoids at the 50% probability level. For clarity, only the minimum number of oxygen ligands around each metal ion has been labelled. The rest of the environmental oxygen atoms are generated through the symmetry operations of the corresponding point groups: C3 (Fe), C2 (Rb1), C3 (Rb2) and D3 (Na). Iron–oxalate bonds are indicated by double lines and alkali metal–oxygen contacts by single lines. Symmetry codes: (i) −y + 1, z + [{1\over 2}], −x + [{1\over 2}]; (ii) y − [{1\over 2}], −z + [{3\over 2}], −x + 1; (iii) −y + [{5\over 4}], −x + [{5\over 4}], −z + [{1\over 4}].

The planes of the carb­oxy­lic –COO groups of the oxalate ligand are slightly tilted from each other, by 12 (1)° around the C—C σ-bond. As expected, the C—O bond lengths involving the coordinated-to-metal oxygen atoms are significantly longer [1.286 (7) and 1.283 (7) Å] than the ones corresponding to the uncoordinated oxalate oxygen atoms [both equal to 1.211 (7) Å].

There are two independent rubidium ions, one (Rb1) lying on a twofold axis, C2 point group symmetry (d site) in an eightfold coordination with neighbouring oxalate oxygen atoms, the other one (Rb2) on a threefold axis, C3 point group (c site) in a sixfold coordination. The sodium ion is at a site of D3 point group symmetry (a site) in a trigonal–anti­prismatic NaO6 coordination with one oxygen atom of six neighbouring, symmetry-related, oxalate ions.

When dealing with octa­hedral Fe(C2O4)3 tris-chelated metal complexes, it is customary to describe its chirality employing Λ- and Δ-descriptors (Meierhenrich, 2008[Meierhenrich, U. (2008). Amino Acids and the Asymmetry of Life. Berlin: Springer-Verlag.]). It turns out that the enanti­omeric complexes correlate with the corresponding chiral space groups, as indicated in Fig. 2[link].

[Figure 2]
Figure 2
Views of the Λ and Δ enanti­omers of [Fe(C2O4)3]3−.

The possibility of controlling the crystal chirality and therefore obtaining enhanced optical activity of functional materials has been discussed (Gruselle et al., 2006[Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491-2500.]). To this purpose, two general synthetic routes have been developed to reach optically active coordination compounds, namely either by enanti­oselective synthesis using enanti­opure chiral species, which yields enanti­opure samples (Knof & von Zelewsky, 1999[Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302-322.]) or by spontaneous resolution upon crystallization from a racemate, which yields a conglomerate (Pérez-García & Amabilino, 2002[Pérez-García, L. & Amabilino, D. B. (2002). Chem. Soc. Rev. 31, 342-356.]). As explained above, the chiral NaRb5[Fe(C2O4)3]2 crystals were obtained through the phenomena of spontaneous resolution from a racemic solution of [Fe(C2O4)3]3− complex ions into a racemic conglomerate. This is presumably followed by a structural inductive effect by these chiral mol­ecular ions on the alkali metal ions through shared oxalate ligands. In fact, not only is the FeIII ion a `stereogenic centre' in the Fe(C2O4)3 tris-chelated metal complex, but so also are the sodium and one (Rb2) of the rubidium ions. These metal ions are in a distorted octa­hedral environment coordinated to six oxalate anions, acting as monodentate ligand through one of their oxygen atoms and resembling a six-bladed propeller-like conformation. From the structural data, it turns out that the chirality of this local arrangement around the alkaline ions is coincident with the one of the [Fe(C2O4)3]3− inductor and therefore the chiral crystals reported here can be more conveniently described as Λ-NaΛ-Rb2Rb3[Λ-Fe(C2O4)3]2 (P4332) and Δ-NaΔ-Rb2Rb3[Δ-Fe(C2O4)3]2 (P4132). However, no definitive chirality can be unambiguously assigned to the other independent rubidium (Rb1) ion which is in an eightfold polyhedral coordination.

3. Database survey

The formation of racemic conglomerates of single crystals, adequate for structural X-ray diffraction, generated by spontaneous resolution is an infrequent phenomenon. In fact, a search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) invoking the term `spontaneous resolution' showed seventeen entries, and another one using as a target `chiral crystals' produced a further four hits. Among them there were reported the chiral to each other (M)- and (P)-catena-{[μ2-2-(imidazo[4,5-f](1,10)phenanthrolin-2-yl)benzoato-N,N′,O]aqua­chloro­zinc(II)} (CSD refcodes EJINOB and EJINUH; Wei et al., 2011[Wei, Y., Wu, K., He, J., Zheng, W. & Xiao, X. (2011). CrystEngComm, 13, 52-54.]) and catena-[(μ8-benzene-1,3,5-tri­carboxyl­ato)lithiumzinc] (CSD refcodes WAJHUM and WAJJAU; Xie et al., 2010[Xie, L.-H., Lin, J.-B., Liu, X.-M., Wang, Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. (2010). Inorg. Chem. 49, 1158-1165.]).

4. Synthesis and crystallization

As stated in the Chemical context, in one of the preparations generated during the synthesis of the rubidium salt of [Fe(C2O4)3]3−, by reaction of freshly precipitated Fe(OH)3 (obtained by dropwise addition of a small excess of 20% NaOH to an FeIII solution) with rubidium oxalate: Fe(OH)3 + 3Rb(HC2O4) + 3H2O → Rb3[Fe(C2O4)3]·3H2O + 3H2O) (Piro et al., 2016[Piro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715-3725.]), we found a relatively complex reaction giving rise to a poly-phased crystal mixture, from which the NaRb5[Fe(C2O4)3]2 chiral pair could be isolated.

5. Refinement details

Crystal data, data collection procedure and structure refinement results are summarized in Table 3[link]. The structure was solved by intrinsic phasing with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). The stereoisomers were determined through refinement of the Flack absolute structure parameter. This is the fractional contribution to the diffraction pattern due to the mol­ecule racemic twin and for the correct enanti­omeric crystal it should be zero to within experimental error.

Table 3
Experimental details

  Cubic, P4332 Cubic, P4132
Crystal data
Chemical formula NaRb5[Fe(C2O4)3]2 NaRb5[Fe(C2O4)3]2
Mr 1090.16 1090.16
Temperature (K) 297 293
a (Å) 13.8058 (4) 13.7995 (3)
V3) 2631.4 (2) 2627.79 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 10.42 10.43
Crystal size (mm) 0.48 × 0.42 × 0.38 0.48 × 0.35 × 0.25
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.690, 1.000 0.786, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2960, 959, 767 4284, 961, 814
Rint 0.043 0.038
(sin θ/λ)max−1) 0.638 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.064, 1.00 0.032, 0.068, 1.02
No. of reflections 959 961
No. of parameters 68 68
Δρmax, Δρmin (e Å−3) 0.84, −0.85 1.02, −0.95
Absolute structure Flack x determined using 225 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 251 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.013 (12) −0.003 (10)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]; Rigaku OD, 2015[Rigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. Cell refinement: CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. Data reduction: CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Sodium pentarubidium bis[tris(oxalato)ferrate(III)] (P4332) top
Crystal data top
NaRb5[Fe(C2O4)3]2Mo Kα radiation, λ = 0.71073 Å
Mr = 1090.16Cell parameters from 922 reflections
Cubic, P4332θ = 3.6–27.3°
a = 13.8058 (4) ŵ = 10.42 mm1
V = 2631.4 (2) Å3T = 297 K
Z = 4Fragment, green
F(000) = 20480.48 × 0.42 × 0.38 mm
Dx = 2.752 Mg m3
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
959 independent reflections
Radiation source: Enhance (Mo) X-ray Source767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0604 pixels mm-1θmax = 27.0°, θmin = 3.3°
ω scansh = 817
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1116
Tmin = 0.690, Tmax = 1.000l = 810
2960 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.064Δρmax = 0.84 e Å3
S = 1.00Δρmin = 0.85 e Å3
959 reflectionsAbsolute structure: Flack x determined using 225 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
68 parametersAbsolute structure parameter: 0.013 (12)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3861 (5)0.8068 (4)0.3863 (5)0.0207 (13)
C20.4510 (5)0.7715 (5)0.3027 (5)0.0234 (16)
O110.2953 (3)0.7918 (3)0.3718 (3)0.0241 (10)
O120.4203 (3)0.8466 (3)0.4566 (3)0.0312 (11)
O210.4037 (3)0.7481 (3)0.2262 (3)0.0287 (10)
O220.5380 (3)0.7665 (4)0.3119 (3)0.0402 (13)
Fe0.26048 (6)0.73952 (6)0.23952 (6)0.0209 (4)
Rb10.25612 (5)1.00612 (5)0.37500.0290 (3)
Rb20.67150 (6)0.82850 (6)0.17150 (6)0.0444 (4)
Na0.37500.87500.62500.0218 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (3)0.020 (3)0.017 (3)0.001 (3)0.001 (3)0.006 (3)
C20.021 (3)0.029 (4)0.020 (3)0.002 (3)0.000 (3)0.004 (3)
O110.020 (2)0.032 (3)0.020 (2)0.000 (2)0.002 (2)0.000 (2)
O120.034 (3)0.041 (3)0.019 (2)0.003 (2)0.004 (2)0.002 (2)
O210.023 (2)0.044 (3)0.019 (2)0.004 (2)0.006 (2)0.006 (2)
O220.020 (2)0.069 (4)0.032 (3)0.004 (3)0.003 (2)0.002 (3)
Fe0.0209 (4)0.0209 (4)0.0209 (4)0.0006 (4)0.0006 (4)0.0006 (4)
Rb10.0290 (3)0.0290 (3)0.0288 (5)0.0018 (5)0.0051 (3)0.0051 (3)
Rb20.0444 (4)0.0444 (4)0.0444 (4)0.0115 (4)0.0115 (4)0.0115 (4)
Na0.0218 (13)0.0218 (13)0.0218 (13)0.0014 (16)0.0014 (16)0.0014 (16)
Geometric parameters (Å, º) top
C1—O121.211 (7)Rb1—O22v2.788 (5)
C1—O111.286 (7)Rb1—O22vi2.788 (5)
C1—C21.540 (9)Rb1—O11vii3.009 (4)
C2—O221.211 (7)Rb1—O11iv3.067 (4)
C2—O211.283 (7)Rb1—O11viii3.067 (4)
O11—Fe2.021 (4)Rb1—O12v3.133 (5)
O11—Rb13.009 (4)Rb1—O12vi3.133 (5)
O11—Rb1i3.067 (4)Rb1—O12vii3.354 (5)
O12—Na2.439 (4)Rb2—O22ix2.808 (4)
O12—Rb1ii3.133 (5)Rb2—O22x2.808 (4)
O12—Rb13.354 (5)Rb2—O21iii3.114 (4)
O21—Fe1.989 (4)Rb2—O21xi3.114 (4)
O21—Rb2iii3.114 (4)Rb2—O21vi3.114 (4)
O22—Rb1ii2.788 (5)Na—O12xii2.439 (4)
O22—Rb22.808 (4)Na—O12ii2.439 (4)
Fe—O21iv1.989 (4)Na—O12xiii2.439 (4)
Fe—O21i1.989 (4)Na—O12viii2.439 (4)
Fe—O11i2.021 (4)Na—O12v2.439 (4)
Fe—O11iv2.021 (4)
O12—C1—O11125.2 (6)O11vii—Rb1—O12v110.45 (11)
O12—C1—C2121.2 (6)O11iv—Rb1—O12v151.29 (11)
O11—C1—C2113.5 (5)O11viii—Rb1—O12v65.47 (11)
O22—C2—O21125.3 (6)O22v—Rb1—O12vi91.18 (12)
O22—C2—C1121.1 (6)O22vi—Rb1—O12vi56.14 (12)
O21—C2—C1113.6 (5)O11—Rb1—O12vi110.45 (11)
C1—O11—Fe115.5 (4)O11vii—Rb1—O12vi95.92 (11)
C1—O11—Rb190.8 (3)O11iv—Rb1—O12vi65.47 (11)
Fe—O11—Rb1108.75 (16)O11viii—Rb1—O12vi151.29 (11)
C1—O11—Rb1i133.5 (4)O12v—Rb1—O12vi133.07 (16)
Fe—O11—Rb1i106.67 (16)O22v—Rb1—O12vii64.52 (12)
Rb1—O11—Rb1i93.73 (11)O22vi—Rb1—O12vii114.33 (13)
C1—O12—Na137.5 (4)O11—Rb1—O12vii141.04 (11)
C1—O12—Rb1ii107.6 (4)O11vii—Rb1—O12vii40.34 (11)
Na—O12—Rb1ii97.96 (14)O11iv—Rb1—O12vii90.55 (10)
C1—O12—Rb176.5 (4)O11viii—Rb1—O12vii90.35 (11)
Na—O12—Rb192.39 (13)O12v—Rb1—O12vii116.99 (13)
Rb1ii—O12—Rb1157.89 (15)O12vi—Rb1—O12vii62.32 (15)
C2—O21—Fe116.4 (4)O22v—Rb1—O12114.33 (14)
C2—O21—Rb2iii133.5 (4)O22vi—Rb1—O1264.52 (12)
Fe—O21—Rb2iii95.43 (15)O11—Rb1—O1240.34 (11)
C2—O22—Rb1ii121.7 (4)O11vii—Rb1—O12141.04 (11)
C2—O22—Rb2124.2 (4)O11iv—Rb1—O1290.35 (11)
Rb1ii—O22—Rb2110.80 (17)O11viii—Rb1—O1290.55 (10)
O21iv—Fe—O21i88.42 (18)O12v—Rb1—O1262.32 (15)
O21iv—Fe—O2188.43 (18)O12vi—Rb1—O12116.99 (13)
O21i—Fe—O2188.42 (18)O12vii—Rb1—O12178.45 (16)
O21iv—Fe—O11160.91 (17)O22ix—Rb2—O22x116.27 (7)
O21i—Fe—O11106.20 (17)O22ix—Rb2—O22116.27 (7)
O21—Fe—O1179.96 (16)O22x—Rb2—O22116.27 (7)
O21iv—Fe—O11i106.20 (17)O22ix—Rb2—O21iii131.79 (14)
O21i—Fe—O11i79.96 (16)O22x—Rb2—O21iii81.60 (13)
O21—Fe—O11i160.91 (17)O22—Rb2—O21iii89.01 (12)
O11—Fe—O11i88.73 (17)O22ix—Rb2—O21xi81.60 (13)
O21iv—Fe—O11iv79.96 (16)O22x—Rb2—O21xi89.01 (12)
O21i—Fe—O11iv160.91 (17)O22—Rb2—O21xi131.79 (14)
O21—Fe—O11iv106.20 (17)O21iii—Rb2—O21xi52.88 (13)
O11—Fe—O11iv88.72 (17)O22ix—Rb2—O21vi89.01 (12)
O11i—Fe—O11iv88.73 (17)O22x—Rb2—O21vi131.79 (14)
O22v—Rb1—O22vi95.3 (2)O22—Rb2—O21vi81.60 (13)
O22v—Rb1—O11152.05 (12)O21iii—Rb2—O21vi52.88 (13)
O22vi—Rb1—O1183.24 (13)O21xi—Rb2—O21vi52.88 (13)
O22v—Rb1—O11vii83.24 (13)O12—Na—O12xii76.1 (2)
O22vi—Rb1—O11vii152.05 (12)O12—Na—O12ii87.13 (15)
O11—Rb1—O11vii110.74 (16)O12xii—Na—O12ii120.9 (2)
O22v—Rb1—O11iv152.40 (12)O12—Na—O12xiii145.7 (2)
O22vi—Rb1—O11iv83.98 (12)O12xii—Na—O12xiii87.13 (15)
O11—Rb1—O11iv55.43 (15)O12ii—Na—O12xiii76.1 (2)
O11vii—Rb1—O11iv84.73 (11)O12—Na—O12viii120.9 (2)
O22v—Rb1—O11viii83.98 (12)O12xii—Na—O12viii87.13 (15)
O22vi—Rb1—O11viii152.40 (12)O12ii—Na—O12viii145.7 (2)
O11—Rb1—O11viii84.73 (11)O12xiii—Na—O12viii87.13 (15)
O11vii—Rb1—O11viii55.43 (15)O12—Na—O12v87.13 (15)
O11iv—Rb1—O11viii109.10 (16)O12xii—Na—O12v145.7 (2)
O22v—Rb1—O12v56.14 (12)O12ii—Na—O12v87.13 (15)
O22vi—Rb1—O12v91.18 (12)O12xiii—Na—O12v120.9 (2)
O11—Rb1—O12v95.93 (11)O12viii—Na—O12v76.1 (2)
O12—C1—C2—O2213.4 (10)Rb1ii—C1—O11—Rb1i44.6 (12)
O11—C1—C2—O22168.2 (6)O11—C1—O12—Na24.7 (10)
Rb1—C1—C2—O22115.8 (6)C2—C1—O12—Na157.1 (4)
Rb1ii—C1—C2—O2214.0 (6)Rb1—C1—O12—Na78.5 (5)
O12—C1—C2—O21167.4 (6)Rb1ii—C1—O12—Na124.1 (6)
O11—C1—C2—O2111.0 (8)O11—C1—O12—Rb1ii148.8 (5)
Rb1—C1—C2—O2165.0 (7)C2—C1—O12—Rb1ii32.9 (6)
Rb1ii—C1—C2—O21165.3 (5)Rb1—C1—O12—Rb1ii157.41 (18)
O12—C1—C2—Rb1ii27.3 (5)O11—C1—O12—Rb153.8 (6)
O11—C1—C2—Rb1ii154.2 (5)C2—C1—O12—Rb1124.5 (6)
Rb1—C1—C2—Rb1ii129.8 (3)Rb1ii—C1—O12—Rb1157.41 (18)
O12—C1—C2—Rb233.2 (10)O22—C2—O21—Fe168.6 (6)
O11—C1—C2—Rb2145.2 (5)C1—C2—O21—Fe10.6 (7)
Rb1—C1—C2—Rb269.2 (7)Rb1ii—C2—O21—Fe124.4 (11)
Rb1ii—C1—C2—Rb260.5 (5)Rb2—C2—O21—Fe164.6 (2)
O12—C1—O11—Fe172.3 (5)O22—C2—O21—Rb2iii40.5 (10)
C2—C1—O11—Fe6.1 (6)C1—C2—O21—Rb2iii138.7 (4)
Rb1—C1—O11—Fe111.3 (3)Rb1ii—C2—O21—Rb2iii3.7 (16)
Rb1ii—C1—O11—Fe108.2 (9)Rb2—C2—O21—Rb2iii67.3 (5)
O12—C1—O11—Rb161.0 (6)O21—C2—O22—Rb1ii158.0 (5)
C2—C1—O11—Rb1117.4 (4)C1—C2—O22—Rb1ii21.1 (9)
Rb1ii—C1—O11—Rb1140.5 (9)Rb2—C2—O22—Rb1ii157.4 (7)
O12—C1—O11—Rb1i34.9 (9)O21—C2—O22—Rb244.5 (9)
C2—C1—O11—Rb1i146.7 (4)C1—C2—O22—Rb2136.3 (5)
Rb1—C1—O11—Rb1i95.9 (4)
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) z+1, x+1/2, y+3/2; (iii) y+5/4, x+5/4, z+1/4; (iv) y+1, z+1/2, x+1/2; (v) y1/2, z+3/2, x+1; (vi) z+3/4, y+1/4, x1/4; (vii) y3/4, x+3/4, z+3/4; (viii) z1/4, y+7/4, x+1/4; (ix) z+1/2, x+3/2, y+1; (x) y+3/2, z+1, x1/2; (xi) x+1/4, z+3/4, y+3/4; (xii) x+3/4, z+1/4, y1/4; (xiii) y+5/4, x+5/4, z+5/4.
sodium and rubidium tris(oxalate)ferrate(III) (P4132) top
Crystal data top
NaRb5[Fe(C2O4)3]2Mo Kα radiation, λ = 0.71073 Å
Mr = 1090.16Cell parameters from 1328 reflections
Cubic, P4132θ = 4.4–27.3°
a = 13.7995 (3) ŵ = 10.43 mm1
V = 2627.79 (17) Å3T = 293 K
Z = 4Fragment, green
F(000) = 20480.48 × 0.35 × 0.25 mm
Dx = 2.756 Mg m3
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
961 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0604 pixels mm-1θmax = 27.0°, θmin = 3.3°
ω scansh = 1416
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1410
Tmin = 0.786, Tmax = 1.000l = 1716
4284 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.031P)2 + 3.9422P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 1.02 e Å3
S = 1.02Δρmin = 0.95 e Å3
961 reflectionsAbsolute structure: Flack x determined using 251 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
68 parametersAbsolute structure parameter: 0.003 (10)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1366 (5)0.5569 (4)0.1362 (5)0.0228 (14)
C20.0522 (5)0.5213 (5)0.2007 (5)0.0256 (15)
O110.1218 (3)0.5418 (3)0.0448 (3)0.0254 (10)
O120.0240 (3)0.4977 (3)0.1533 (3)0.0291 (10)
O210.2066 (3)0.5967 (3)0.1708 (3)0.0327 (11)
O220.0621 (4)0.5170 (4)0.2882 (4)0.0422 (14)
Fe0.01047 (6)0.48953 (6)0.01047 (6)0.0218 (4)
Rb10.24391 (5)0.50609 (5)0.37500.0291 (2)
Rb20.07858 (6)0.57858 (6)0.42142 (6)0.0451 (4)
Na0.37500.62500.12500.0234 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (3)0.024 (3)0.027 (4)0.007 (3)0.001 (3)0.001 (3)
C20.026 (4)0.034 (4)0.017 (3)0.006 (3)0.003 (3)0.001 (3)
O110.023 (2)0.032 (3)0.022 (3)0.003 (2)0.002 (2)0.0003 (18)
O120.020 (2)0.042 (3)0.025 (3)0.005 (2)0.0052 (18)0.005 (2)
O210.022 (3)0.041 (3)0.036 (3)0.003 (2)0.005 (2)0.000 (2)
O220.032 (3)0.069 (4)0.025 (3)0.001 (3)0.003 (2)0.002 (3)
Fe0.0218 (4)0.0218 (4)0.0218 (4)0.0003 (4)0.0003 (4)0.0003 (4)
Rb10.0292 (3)0.0292 (3)0.0290 (5)0.0020 (4)0.0047 (3)0.0047 (3)
Rb20.0451 (4)0.0451 (4)0.0451 (4)0.0124 (4)0.0124 (4)0.0124 (4)
Na0.0234 (12)0.0234 (12)0.0234 (12)0.0014 (15)0.0014 (15)0.0014 (15)
Geometric parameters (Å, º) top
C1—O211.210 (7)Rb1—O22vi2.785 (5)
C1—O111.295 (8)Rb1—O11vii3.006 (4)
C1—C21.546 (9)Rb1—O11viii3.006 (4)
C2—O221.216 (8)Rb1—O11ix3.059 (4)
C2—O121.280 (7)Rb1—O11x3.059 (4)
O11—Fe2.019 (4)Rb1—O21vi3.125 (5)
O11—Rb1i3.006 (4)Rb1—O21viii3.357 (5)
O11—Rb1ii3.059 (4)Rb1—O21vii3.357 (5)
O12—Fe1.983 (4)Rb2—O22xi2.805 (5)
O12—Rb2iii3.106 (4)Rb2—O22xii2.805 (5)
O21—Na2.439 (4)Rb2—O12xiii3.106 (4)
O21—Rb13.125 (5)Rb2—O12xiv3.106 (4)
O21—Rb1i3.357 (5)Rb2—O12xv3.106 (4)
O22—Rb12.785 (5)Na—O21vii2.439 (4)
O22—Rb22.805 (5)Na—O21x2.439 (4)
Fe—O12iv1.983 (4)Na—O21xvi2.439 (4)
Fe—O12v1.983 (4)Na—O21i2.439 (4)
Fe—O11v2.019 (4)Na—O21xvii2.439 (4)
Fe—O11iv2.019 (4)
O21—C1—O11125.7 (6)O11viii—Rb1—O11x55.34 (16)
O21—C1—C2121.2 (6)O11ix—Rb1—O11x108.96 (17)
O11—C1—C2113.0 (5)O22vi—Rb1—O21vi56.08 (13)
O21—C1—Rb1i82.8 (4)O22—Rb1—O21vi91.06 (13)
O11—C1—Rb1i66.1 (3)O11vii—Rb1—O21vi110.57 (12)
C2—C1—Rb1i123.0 (4)O11viii—Rb1—O21vi95.97 (11)
O21—C1—Rb153.9 (3)O11ix—Rb1—O21vi65.63 (12)
O11—C1—Rb1154.8 (4)O11x—Rb1—O21vi151.23 (11)
C2—C1—Rb174.1 (3)O22vi—Rb1—O2191.06 (13)
Rb1i—C1—Rb1131.92 (18)O22—Rb1—O2156.09 (13)
O22—C2—O12125.9 (6)O11vii—Rb1—O2195.97 (11)
O22—C2—C1120.2 (6)O11viii—Rb1—O21110.57 (12)
O12—C2—C1113.9 (5)O11ix—Rb1—O21151.23 (11)
O22—C2—Rb141.2 (3)O11x—Rb1—O2165.63 (12)
O12—C2—Rb1159.2 (4)O21vi—Rb1—O21132.93 (17)
C1—C2—Rb181.3 (3)O22vi—Rb1—O21viii114.16 (14)
O22—C2—Rb239.9 (3)O22—Rb1—O21viii64.53 (13)
O12—C2—Rb294.4 (4)O11vii—Rb1—O21viii141.04 (12)
C1—C2—Rb2142.1 (4)O11viii—Rb1—O21viii40.54 (11)
Rb1—C2—Rb279.41 (13)O11ix—Rb1—O21viii90.67 (11)
C1—O11—Fe115.3 (4)O11x—Rb1—O21viii90.36 (11)
C1—O11—Rb1i90.7 (3)O21vi—Rb1—O21viii62.26 (16)
Fe—O11—Rb1i108.83 (17)O21—Rb1—O21viii116.94 (14)
C1—O11—Rb1ii133.3 (4)C1vii—Rb1—O21viii160.09 (13)
Fe—O11—Rb1ii106.92 (16)C1viii—Rb1—O21viii20.95 (13)
Rb1i—O11—Rb1ii93.89 (12)O22vi—Rb1—O21vii64.53 (13)
C2—O12—Fe116.4 (4)O22—Rb1—O21vii114.16 (14)
C2—O12—Rb2iii133.5 (4)O11vii—Rb1—O21vii40.54 (11)
Fe—O12—Rb2iii95.68 (16)O11viii—Rb1—O21vii141.04 (12)
C1—O21—Na137.0 (4)O11ix—Rb1—O21vii90.36 (11)
C1—O21—Rb1107.8 (4)O11x—Rb1—O21vii90.67 (11)
Na—O21—Rb198.10 (14)O21vi—Rb1—O21vii116.94 (14)
C1—O21—Rb1i76.2 (4)O21—Rb1—O21vii62.26 (16)
Na—O21—Rb1i92.25 (14)C1vii—Rb1—O21vii20.95 (13)
Rb1—O21—Rb1i158.07 (17)C1viii—Rb1—O21vii160.09 (13)
C2—O22—Rb1122.0 (4)O21viii—Rb1—O21vii178.23 (16)
C2—O22—Rb2124.0 (5)O22—Rb2—O22xi116.26 (7)
Rb1—O22—Rb2110.97 (18)O22—Rb2—O22xii116.26 (7)
O12—Fe—O12iv88.19 (18)O22xi—Rb2—O22xii116.26 (7)
O12—Fe—O12v88.19 (18)O22—Rb2—O12xiii89.16 (13)
O12iv—Fe—O12v88.19 (18)O22xi—Rb2—O12xiii131.71 (15)
O12—Fe—O11v161.01 (17)O22xii—Rb2—O12xiii81.59 (14)
O12iv—Fe—O11v106.36 (18)O22—Rb2—O12xiv131.71 (15)
O12v—Fe—O11v80.31 (17)O22xi—Rb2—O12xiv81.59 (14)
O12—Fe—O11iv106.35 (18)O22xii—Rb2—O12xiv89.16 (13)
O12iv—Fe—O11iv80.31 (17)O12xiii—Rb2—O12xiv52.74 (13)
O12v—Fe—O11iv161.01 (17)O22—Rb2—O12xv81.59 (14)
O11v—Fe—O11iv88.44 (18)O22xi—Rb2—O12xv89.16 (13)
O12—Fe—O1180.31 (17)O22xii—Rb2—O12xv131.71 (15)
O12iv—Fe—O11161.01 (17)O12xiii—Rb2—O12xv52.74 (13)
O12v—Fe—O11106.36 (18)O12xiv—Rb2—O12xv52.74 (13)
O11v—Fe—O1188.43 (18)O21—Na—O21vii86.98 (16)
O11iv—Fe—O1188.43 (18)O21—Na—O21x76.2 (2)
O22vi—Rb1—O2295.0 (2)O21vii—Na—O21x121.3 (2)
O22vi—Rb1—O11vii83.52 (14)O21—Na—O21xvi145.5 (2)
O22—Rb1—O11vii152.04 (13)O21vii—Na—O21xvi76.2 (2)
O22vi—Rb1—O11viii152.04 (13)O21x—Na—O21xvi86.97 (16)
O22—Rb1—O11viii83.52 (14)O21—Na—O21i86.97 (16)
O11vii—Rb1—O11viii110.46 (16)O21vii—Na—O21i86.97 (16)
O22vi—Rb1—O11ix84.14 (13)O21x—Na—O21i145.5 (2)
O22—Rb1—O11ix152.50 (13)O21xvi—Na—O21i121.3 (2)
O11vii—Rb1—O11ix55.34 (16)O21—Na—O21xvii121.3 (2)
O11viii—Rb1—O11ix84.61 (12)O21vii—Na—O21xvii145.5 (2)
O22vi—Rb1—O11x152.49 (13)O21x—Na—O21xvii86.97 (16)
O22—Rb1—O11x84.14 (13)O21xvi—Na—O21xvii86.97 (16)
O11vii—Rb1—O11x84.61 (12)O21i—Na—O21xvii76.2 (2)
O21—C1—C2—O2213.0 (10)Rb1—C1—O11—Rb1ii44.8 (12)
O11—C1—C2—O22168.7 (6)O22—C2—O12—Fe169.1 (6)
Rb1i—C1—C2—O22115.7 (6)C1—C2—O12—Fe10.3 (7)
Rb1—C1—C2—O2214.4 (6)Rb1—C2—O12—Fe124.2 (11)
O21—C1—C2—O12167.5 (6)Rb2—C2—O12—Fe164.4 (2)
O11—C1—C2—O1210.8 (8)O22—C2—O12—Rb2iii40.6 (10)
Rb1i—C1—C2—O1264.8 (6)C1—C2—O12—Rb2iii138.9 (4)
Rb1—C1—C2—O12165.1 (5)Rb1—C2—O12—Rb2iii4.4 (16)
O21—C1—C2—Rb127.4 (5)Rb2—C2—O12—Rb2iii67.1 (5)
O11—C1—C2—Rb1154.3 (5)O11—C1—O21—Na24.5 (10)
Rb1i—C1—C2—Rb1130.1 (3)C2—C1—O21—Na157.3 (4)
O21—C1—C2—Rb232.8 (10)Rb1i—C1—O21—Na78.2 (5)
O11—C1—C2—Rb2145.6 (5)Rb1—C1—O21—Na124.2 (6)
Rb1i—C1—C2—Rb269.9 (7)O11—C1—O21—Rb1148.7 (5)
Rb1—C1—C2—Rb260.1 (5)C2—C1—O21—Rb133.2 (6)
O21—C1—O11—Fe172.2 (5)Rb1i—C1—O21—Rb1157.58 (19)
C2—C1—O11—Fe6.0 (6)O11—C1—O21—Rb1i53.7 (6)
Rb1i—C1—O11—Fe111.3 (3)C2—C1—O21—Rb1i124.4 (6)
Rb1—C1—O11—Fe107.9 (9)Rb1—C1—O21—Rb1i157.58 (19)
O21—C1—O11—Rb1i60.9 (6)O12—C2—O22—Rb1157.6 (5)
C2—C1—O11—Rb1i117.3 (4)C1—C2—O22—Rb121.9 (8)
Rb1—C1—O11—Rb1i140.8 (9)Rb2—C2—O22—Rb1158.5 (8)
O21—C1—O11—Rb1ii35.0 (9)O12—C2—O22—Rb243.9 (9)
C2—C1—O11—Rb1ii146.7 (4)C1—C2—O22—Rb2136.6 (5)
Rb1i—C1—O11—Rb1ii96.0 (4)Rb1—C2—O22—Rb2158.5 (8)
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) x+1/2, y+1, z1/2; (iii) y3/4, x+1/4, z1/4; (iv) z, x+1/2, y+1/2; (v) y1/2, z+1/2, x; (vi) y+3/4, x+3/4, z+3/4; (vii) y+1, z+1/2, x+1/2; (viii) z+1/4, y1/4, x+1/4; (ix) x+1/2, y+1, z+1/2; (x) y1/4, x+1/4, z+1/4; (xi) y+1/2, z+1, x+1/2; (xii) z1/2, x+1/2, y+1; (xiii) x1/4, z+3/4, y+3/4; (xiv) y+1/4, x+3/4, z+1/4; (xv) z1/4, y+1/4, x+1/4; (xvi) x+3/4, z+3/4, y+3/4; (xvii) z+1/4, y+5/4, x1/4.
 

Funding information

Funding for this research was provided by: CONICET (PIP 11220130100651CO) and UNLP (Project 11/X709) of Argentina. OEP and GAE are Research Fellows of CONICET.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBancroft, G. M., Dharmawardena, K. G. & Maddock, A. G. (1970). Inorg. Chem. 9, 223–226.  CrossRef Web of Science Google Scholar
First citationColes, H. (1998). Chiral Nematics: Physical Properties and Applications. In Handbook of Liquid Crystals, Vol. 2A, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch. IV, pp. 335–409. Weinheim: Wiley-VCH.  Google Scholar
First citationCollison, D. & Powell, A. K. (1990). Inorg. Chem. 29, 4735–4746.  CrossRef Web of Science Google Scholar
First citationCoronado, E., Palacio, F. & Veciana, J. (2003). Angew. Chem. Int. Ed. 42, 2570–2572.  Web of Science CrossRef CAS Google Scholar
First citationDelgado, G., Mora, A. J. & Sagredo, V. (2002). Physica B, 320, 410–412.  Web of Science CrossRef Google Scholar
First citationFarfán, R. A., Espíndola, J. A., Gómez, M. I., de Jiménez, M. C. L., Piro, O. E., Castellano, E. E. & Martínez, M. A. (2015). J. Mol. Struct. 1087, 80–87.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (2003). Helv. Chim. Acta, 86, 905–921.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (2009). Acta Cryst. A65, 371–389.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoodby, J. W. (1998). Symmetry and Chirality in Liquid Crystals. In Handbook of Liquid Crystals, Vol. 1, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch V, pp. 115–132. Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491–2500.  Web of Science CrossRef CAS Google Scholar
First citationHenneicke, S. & Wartchow, R. (1997). Z. Kristallogr. 212, 56.  Google Scholar
First citationJarzembska, K. N., Kamiński, R., Dobrzycki, Ł. & Cyrański, M. K. (2014). Acta Cryst. B70, 847–855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJunk, P. C. (2005). J. Coord. Chem. 58, 355–361.  Google Scholar
First citationKherfi, H., Hamadene, M., Guehria-Laidoudi, A., Dahaoui, S. & Lecomte, C. (2010). Materials 3, 1281–1301.  Web of Science CrossRef Google Scholar
First citationKnof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302–322.  CrossRef Google Scholar
First citationKnowles, W. S. (2001). Nobel lecture: Asymmetric Hydrogenation. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/knowles-lecture. pdf  Google Scholar
First citationLadriere, J. (1992). Hyperfine Interact. 70, 1095–1098.  CrossRef Web of Science Google Scholar
First citationMeierhenrich, U. (2008). Amino Acids and the Asymmetry of Life. Berlin: Springer-Verlag.  Google Scholar
First citationNguyen, L. A., He, H. & Pham-Huy, C. (2006). Int. J. Biomed. Sci. 2, 85–100.  CAS PubMed Google Scholar
First citationNoyori, R. (2001). Nobel lecture: Asymmetric Catalysis: Science and Opportunities. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/noyori-lecture. pdf  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPasteur, L. (1848a). C. R. Acad. Sci. Paris, 26, 535–538.  Google Scholar
First citationPasteur, L. (1848b). Anal. Chim. Phys. 24, 442–459.  Google Scholar
First citationPérez-García, L. & Amabilino, D. B. (2002). Chem. Soc. Rev. 31, 342–356.  Web of Science PubMed Google Scholar
First citationPiper, T. S. & Carlin, R. L. (1961). J. Chem. Phys. 35, 1809–1815.  CrossRef Web of Science Google Scholar
First citationPiro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715–3725.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSato, H. & Tominaga, T. (1979). Bull. Chem. Soc. Jpn, 52, 1402–1407.  CrossRef Web of Science Google Scholar
First citationSharpless, K. B. (2001). Nobel lecture: Searching for New Reactivity. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/sharpless-lecture. pdf  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWartchow, R. (1997). Z. Kristallogr. 212, 57.  Google Scholar
First citationWei, Y., Wu, K., He, J., Zheng, W. & Xiao, X. (2011). CrystEngComm, 13, 52–54.  Web of Science CrossRef Google Scholar
First citationXie, L.-H., Lin, J.-B., Liu, X.-M., Wang, Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. (2010). Inorg. Chem. 49, 1158–1165.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds