research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­­oxy]phthalo­nitrile monohydrate

CROSSMARK_Color_square_no_text.svg

aUskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, 34662, Istanbul, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64 Vladimirska Str., Kiev 01601, Ukraine, and dSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187 Sakarya, Turkey
*Correspondence e-mail: tiskenderov@ukr.net

Edited by P. McArdle, National University of Ireland, Ireland (Received 28 May 2018; accepted 14 June 2018; online 19 June 2018)

In the title compound, C21H12N4O·H2O, the five-membered ring is essentially planar with a maximum deviation of 0.004 (2) Å. An N—H⋯O hydrogen bond connects the organic and water mol­ecules. In the crystal, O—H⋯N hydrogen bonds link mol­ecules into a two-dimensional network parallel to (100). Hirshfeld surface analyses and two-dimensional fingerprint plots were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (28.7%), C⋯H/H⋯C (27.1%), N⋯H/H⋯N (26.4%), C⋯N/N⋯C (6.1%), O⋯H/H⋯O (3.7%) and C⋯C (6.0%) inter­actions.

1. Chemical context

Benzimidazole derivatives, as nitro­gen-containing aromatic heterocyclic compounds, are a very important class owing to their biological importance (Preston, 2008[Preston, P. N. (2008). Benzimidazoles. In Chemistry of Heterocyclic Compounds, Part 1, Vol. 40, pp. 1-285. New York: John Wiley & Sons, Inc.]). They are widely used as anti­ulcer, anti­fungal and anti­mycobacterial compounds (Patil et al., 2008[Patil, A., Ganguly, S. & Surana, S. (2008). Rasayan J. Chem. 1, 447-460.]) and have also attracted attention as organic fluorescent chromophores in recent years (Verdasco et al., 1995[Verdasco, G., Martín, M. A., del Castillo, B., López-Alvarado, P. & Menéndez, J. C. (1995). Anal. Chim. Acta, 303, 73-78.]). Phthalo­nitrile derivatives are widely used precursors for the preparation of phthalocyanines, an important class of mol­ecules not only as commercial pigments but also as important functional materials in many areas (Sharman et al., 2003[Sharman, W. M. & Lier, J. E. (2003). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith K. M. & R. Guilard. New York: Academic Press.]). The preparation of phthalocyanines is carried out by cyclo­tetra­merization reactions of phthalo­nitriles. The development of benzimidazole derivative-substituted phthalocyanines from the related phthalo­nitriles is crucial in terms of achieving a combination of functional groups.

[Scheme 1]

We now report for the first time that benzimidazole groups linked directly through oxygen bridges to phthalo­nitrile units are new functionalized materials. We have described the synthesis, characterization and spectroscopic behavior of the synthesized starting phthalo­nitrile compound (Sen et al., 2018[Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018). J. Lumin. 194, 123-130.]).

2. Structural commentary

The asymmetric unit of the title compound contains one independent mol­ecule and one water mol­ecule (Fig. 1[link]). The five-membered ring is essentially planar with maximum deviations of 0.004 (2) Å for atom N2 and −0.004 (2) Å for C5 and the N1=C7, N1—C6 and C5—C6 bond lengths are 1.324 (3), 1.388 (3) and 1.391 (3) Å, respectively. The dihedral angle between the fused C1–C6 and C5/N2/C7/N1/C6 rings is 1.71 (13)° while the C8–C13 ring subtends a dihedral angle of 16.03 (12)° with the C5/N2/C7/N1/C6 ring plane. The C14–C19 ring makes a dihedral angle of 83.55 (11)° with the C8–C13 ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

In the crystal, an N2—H2⋯O2 hydrogen bond connects the organic and water mol­ecules (Table 1[link]). O2—H2C⋯N1 hydrogen bonds connect the mol­ecules into a two-dimensional network parallel to (100) (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.92 (2) 1.86 (3) 2.774 (3) 171 (2)
O2—H2C⋯N1i 0.85 2.17 2.876 (2) 140
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing. Dashed lines denote the inter­molecular N—H⋯O and O—H⋯N hydrogen bonding.

4. Hirshfeld surface analysis

Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.]) was used to analyse the inter­actions in the crystal. Figs. 3[link] and 4[link] show the Hirshfeld surfaces mapped over dnorm. with a fixed colour scale of −0.4353 (red) to 1.4359 (blue) a.u. where red spots indicate the regions of donor–acceptor inter­actions (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]; Kansiz et al., 2018[Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217-220.]; Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]; Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.])·There are five red spots in the dnorm surface (Fig. 3[link]); these represent the N-acceptor atoms involved in the inter­actions listed in Table 1[link].

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm.
[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm to visualize the inter­molecular inter­actions.

The overall two-dimensional fingerprint plot and those showing different contacts are characterized in Fig. 5[link], together with their relative contributions to the Hirshfeld surface. H⋯H/H⋯H inter­actions, contributing 28.7% to the overall crystal packing, are some of the important inter­actions, and are shown in Fig. 6[link] as an end point that points to the origin with the tips at di = de = 1.1 Å. The C⋯H/H⋯C contacts in the structure, with a 27.1% contribution to the Hirshfeld surface, have a symmetrical distribution of points, with the tips at de + di = 2.7 Å. The contribution from the N⋯H/H⋯N contacts, corresponding to C—H⋯N and O—H⋯N inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (26.4%). The O⋯H/H⋯O contacts, with a 3.7% contribution, appear with the points of low densities. Lastly, the C⋯N/N⋯C, C⋯C/C⋯C and O⋯C/C⋯O inter­actions in the structure with 6.1, 5.5 and 1.4% contributions, respectively, have symmetrical distributions of points.

[Figure 5]
Figure 5
Fingerprint plot for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view for the H⋯H (28.7%), C⋯H/H⋯C (27.1%), N⋯H/H⋯N (26.4%) and O⋯H/H⋯O (3.7%) contacts in the title compound.

5. Database survey

There are no direct precedents for the structure of the title compound in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, there are several precedents for the 2-(4-hy­droxy­phen­yl)benzimidazole, including 4-[4-(1-allyl-1H-benzo[d]imidazole-2­yl)phen­oxy]phthalo­nitrile (Sen et al., 2018[Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018). J. Lumin. 194, 123-130.]), 4-(1H-benzo[d]imidazol-2-yl)phenol (Zhan et al., 2007[Zhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.]), 2-(4-meth­oxy­phen­yl)-1H-benzimidazole (Moreno-Diaz et al., 2006[Moreno-Diaz, H., Navarrete-Vázquez, G., Estrada-Soto, S. & Tlahuext, H. (2006). Acta Cryst. E62, o2601-o2602.]) and 4-(1H-benzimidazol-2-yl)phenol (Zhou et al., 2006[Zhou, Z., Liu, C., Guo, H. & Cai, Y. (2006). Chem .J. Internet, 8, 65.]).

6. Synthesis and crystallization

The synthesis of the title compound (Fig. 7[link]) was described by Sen et al. (2018[Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018). J. Lumin. 194, 123-130.]). 4-[4-(1H-Benzo[d]imidazole-2­yl)phen­oxy]phthalo­nitrile, 4-nitro­phthalo­nitrile (0.989 g, 5.71 mmol) and 2-(4-hy­droxy­phen­yl)benzimidazole (1.2 g, 5.71 mmol) were dissolved in DMF (15 mL) under argon. After stirring for 15 min, anhydrous K2CO3 (0.790 g, 5.71 mmol) was added portionwise over 2 h with efficient stirring. The suspension was maintained at 333 K for 24 h. The progress of the reaction was monitored by TLC using a CHCl3/EtOAc (10/1) solvent system. After the reaction was observed to be complete, the resulting mixture was poured into an ice–water mixture. The immediate precipitate was collected by filtration, washed with hot water, ethanol and diethyl ether and dried in vacuo. The desired pure compound was obtained in sufficient purity, yield: 96% (1.84 g). m.p. 421 K.

[Figure 7]
Figure 7
The synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 Å (aromatic) and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C21H12N4O·H2O
Mr 354.36
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 8.7657 (6), 27.285 (2), 14.6938 (13)
V3) 3514.4 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.79 × 0.39 × 0.18
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.967, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 33692, 3447, 1829
Rint 0.079
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 0.91
No. of reflections 3447
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Computer programs: X-AREA and X-RED (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2004); cell refinement: X-AREA (Stoe & Cie, 2004); data reduction: X-RED (Stoe & Cie, 2004); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-[4-(1H-Benzo[d]imidazol-2-yl)phenoxy]phthalonitrile monohydrate top
Crystal data top
C21H12N4O·H2ODx = 1.339 Mg m3
Mr = 354.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 17763 reflections
a = 8.7657 (6) Åθ = 1.4–27.6°
b = 27.285 (2) ŵ = 0.09 mm1
c = 14.6938 (13) ÅT = 296 K
V = 3514.4 (5) Å3Stick, red
Z = 80.79 × 0.39 × 0.18 mm
F(000) = 1472
Data collection top
STOE IPDS 2
diffractometer
3447 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1829 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.079
rotation method scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2004)
h = 1010
Tmin = 0.967, Tmax = 0.988k = 3333
33692 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3447 reflectionsΔρmax = 0.21 e Å3
251 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69369 (16)0.65950 (6)0.29785 (11)0.0737 (5)
N20.2691 (2)0.46625 (6)0.26099 (13)0.0612 (5)
N10.3278 (2)0.47874 (7)0.11536 (11)0.0660 (5)
C150.4616 (2)0.70114 (8)0.34035 (13)0.0556 (5)
H150.4015920.6749220.3215420.067*
C80.4411 (2)0.53611 (7)0.22666 (14)0.0570 (5)
C160.3945 (2)0.74273 (8)0.37607 (13)0.0555 (5)
N30.1021 (3)0.74647 (8)0.38612 (15)0.0877 (7)
C110.6078 (2)0.61778 (8)0.27451 (15)0.0617 (6)
C70.3485 (2)0.49377 (7)0.20015 (14)0.0575 (5)
C140.6179 (3)0.69884 (8)0.33284 (14)0.0595 (6)
C50.1905 (3)0.43125 (8)0.21300 (14)0.0598 (6)
C60.2289 (3)0.43919 (8)0.12231 (15)0.0626 (6)
C200.2314 (3)0.74515 (8)0.38237 (15)0.0629 (6)
C90.4841 (3)0.54391 (8)0.31609 (14)0.0636 (6)
H90.4556840.5214440.3605620.076*
C170.4835 (3)0.78215 (8)0.40457 (14)0.0641 (6)
C100.5683 (3)0.58453 (9)0.34017 (15)0.0669 (6)
H100.5979610.5892940.4002890.080*
O20.2249 (4)0.46945 (10)0.44787 (13)0.1486 (11)
H2B0.2056140.4419050.4722900.223*
H2C0.1750290.4900230.4795140.223*
C130.4861 (3)0.56973 (9)0.16191 (15)0.0728 (7)
H130.4601400.5646740.1012550.087*
C190.7071 (3)0.73832 (10)0.35927 (16)0.0730 (7)
H190.8126280.7369030.3531600.088*
C180.6397 (3)0.77925 (10)0.39428 (16)0.0796 (7)
H180.7000810.8056880.4115140.095*
C10.1650 (3)0.40948 (9)0.05537 (17)0.0779 (7)
H10.1899560.4139270.0055800.093*
C120.5683 (3)0.61047 (9)0.18562 (16)0.0729 (7)
H120.5971420.6330310.1414120.087*
C210.4137 (3)0.82420 (10)0.44552 (17)0.0822 (8)
C40.0891 (3)0.39499 (8)0.23910 (17)0.0754 (7)
H40.0636620.3901960.2998960.090*
N40.3579 (3)0.85731 (10)0.47866 (17)0.1136 (9)
C30.0277 (3)0.36651 (9)0.17176 (19)0.0827 (7)
H30.0405210.3417610.1871900.099*
C20.0650 (3)0.37372 (9)0.08091 (19)0.0822 (7)
H2A0.0210840.3538250.0367010.099*
H20.259 (3)0.4705 (9)0.3227 (17)0.085 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (9)0.0814 (11)0.0956 (11)0.0072 (9)0.0038 (8)0.0091 (9)
N20.0693 (13)0.0588 (11)0.0555 (11)0.0030 (9)0.0003 (10)0.0023 (10)
N10.0762 (13)0.0634 (12)0.0585 (11)0.0056 (10)0.0011 (10)0.0022 (9)
C150.0494 (14)0.0554 (13)0.0620 (12)0.0078 (10)0.0041 (10)0.0002 (10)
C80.0545 (13)0.0530 (13)0.0633 (13)0.0111 (11)0.0010 (10)0.0039 (10)
C160.0581 (14)0.0553 (13)0.0532 (12)0.0051 (11)0.0036 (10)0.0025 (10)
N30.0663 (15)0.0929 (16)0.1039 (17)0.0086 (13)0.0019 (13)0.0076 (12)
C110.0458 (13)0.0665 (14)0.0728 (15)0.0047 (11)0.0039 (11)0.0020 (12)
C70.0594 (14)0.0550 (13)0.0582 (13)0.0133 (11)0.0004 (11)0.0047 (10)
C140.0536 (15)0.0676 (15)0.0572 (12)0.0049 (12)0.0003 (11)0.0017 (11)
C50.0635 (15)0.0510 (12)0.0651 (13)0.0095 (12)0.0034 (11)0.0033 (11)
C60.0676 (15)0.0568 (13)0.0632 (13)0.0097 (12)0.0030 (12)0.0003 (11)
C200.0639 (17)0.0579 (14)0.0668 (14)0.0009 (12)0.0017 (13)0.0041 (11)
C90.0660 (15)0.0651 (14)0.0597 (13)0.0066 (12)0.0051 (11)0.0027 (11)
C170.0725 (17)0.0634 (15)0.0563 (12)0.0144 (13)0.0031 (11)0.0020 (11)
C100.0606 (15)0.0779 (16)0.0620 (13)0.0063 (13)0.0017 (11)0.0049 (12)
O20.264 (3)0.1188 (17)0.0633 (11)0.079 (2)0.0336 (15)0.0127 (11)
C130.0824 (17)0.0731 (16)0.0628 (13)0.0058 (14)0.0087 (13)0.0085 (12)
C190.0528 (15)0.098 (2)0.0683 (14)0.0241 (14)0.0033 (11)0.0065 (13)
C180.085 (2)0.0824 (18)0.0709 (15)0.0335 (16)0.0013 (14)0.0168 (13)
C10.0890 (18)0.0737 (16)0.0710 (15)0.0085 (15)0.0049 (14)0.0034 (13)
C120.0713 (17)0.0743 (16)0.0731 (15)0.0070 (13)0.0037 (13)0.0125 (12)
C210.112 (2)0.0648 (16)0.0694 (15)0.0126 (16)0.0029 (14)0.0104 (13)
C40.0823 (18)0.0674 (15)0.0764 (15)0.0009 (14)0.0025 (14)0.0061 (13)
N40.157 (2)0.0810 (16)0.1027 (18)0.0009 (17)0.0028 (17)0.0252 (14)
C30.0792 (18)0.0662 (16)0.103 (2)0.0019 (13)0.0046 (16)0.0015 (15)
C20.087 (2)0.0679 (17)0.0922 (19)0.0068 (15)0.0177 (16)0.0126 (14)
Geometric parameters (Å, º) top
O1—C141.363 (2)C9—C101.378 (3)
O1—C111.407 (2)C9—H90.9300
N2—C71.359 (3)C17—C181.379 (3)
N2—C51.373 (3)C17—C211.433 (4)
N2—H20.92 (2)C10—H100.9300
N1—C71.324 (3)O2—H2B0.8500
N1—C61.388 (3)O2—H2C0.8500
C15—C141.376 (3)C13—C121.370 (3)
C15—C161.382 (3)C13—H130.9300
C15—H150.9300C19—C181.364 (3)
C8—C131.379 (3)C19—H190.9300
C8—C91.383 (3)C18—H180.9300
C8—C71.465 (3)C1—C21.364 (3)
C16—C171.393 (3)C1—H10.9300
C16—C201.435 (3)C12—H120.9300
N3—C201.135 (3)C21—N41.137 (3)
C11—C121.366 (3)C4—C31.368 (3)
C11—C101.369 (3)C4—H40.9300
C14—C191.387 (3)C3—C21.388 (4)
C5—C41.384 (3)C3—H30.9300
C5—C61.391 (3)C2—H2A0.9300
C6—C11.392 (3)
C14—O1—C11117.92 (16)C18—C17—C16118.6 (2)
C7—N2—C5107.66 (18)C18—C17—C21121.0 (2)
C7—N2—H2129.0 (15)C16—C17—C21120.4 (2)
C5—N2—H2123.1 (15)C11—C10—C9119.2 (2)
C7—N1—C6104.91 (18)C11—C10—H10120.4
C14—C15—C16119.5 (2)C9—C10—H10120.4
C14—C15—H15120.3H2B—O2—H2C104.5
C16—C15—H15120.3C12—C13—C8121.0 (2)
C13—C8—C9118.4 (2)C12—C13—H13119.5
C13—C8—C7119.96 (19)C8—C13—H13119.5
C9—C8—C7121.66 (19)C18—C19—C14119.8 (2)
C15—C16—C17120.7 (2)C18—C19—H19120.1
C15—C16—C20119.1 (2)C14—C19—H19120.1
C17—C16—C20120.2 (2)C19—C18—C17121.2 (2)
C12—C11—C10120.9 (2)C19—C18—H18119.4
C12—C11—O1119.1 (2)C17—C18—H18119.4
C10—C11—O1120.0 (2)C2—C1—C6118.7 (2)
N1—C7—N2112.18 (19)C2—C1—H1120.6
N1—C7—C8124.8 (2)C6—C1—H1120.6
N2—C7—C8122.99 (19)C11—C12—C13119.7 (2)
O1—C14—C15123.5 (2)C11—C12—H12120.2
O1—C14—C19116.3 (2)C13—C12—H12120.2
C15—C14—C19120.2 (2)N4—C21—C17179.4 (3)
N2—C5—C4132.6 (2)C3—C4—C5117.3 (2)
N2—C5—C6105.2 (2)C3—C4—H4121.4
C4—C5—C6122.1 (2)C5—C4—H4121.4
N1—C6—C5110.03 (19)C4—C3—C2121.5 (2)
N1—C6—C1130.7 (2)C4—C3—H3119.3
C5—C6—C1119.3 (2)C2—C3—H3119.3
N3—C20—C16178.8 (3)C1—C2—C3121.1 (2)
C10—C9—C8120.9 (2)C1—C2—H2A119.4
C10—C9—H9119.5C3—C2—H2A119.4
C8—C9—H9119.5
C14—C15—C16—C170.1 (3)C7—C8—C9—C10178.5 (2)
C14—C15—C16—C20179.04 (19)C15—C16—C17—C181.6 (3)
C14—O1—C11—C1299.2 (2)C20—C16—C17—C18177.6 (2)
C14—O1—C11—C1082.4 (2)C15—C16—C17—C21177.0 (2)
C6—N1—C7—N20.1 (2)C20—C16—C17—C213.8 (3)
C6—N1—C7—C8177.8 (2)C12—C11—C10—C91.7 (3)
C5—N2—C7—N10.5 (2)O1—C11—C10—C9179.93 (19)
C5—N2—C7—C8177.44 (19)C8—C9—C10—C110.9 (3)
C13—C8—C7—N114.5 (3)C9—C8—C13—C121.4 (3)
C9—C8—C7—N1166.3 (2)C7—C8—C13—C12177.8 (2)
C13—C8—C7—N2163.2 (2)O1—C14—C19—C18179.5 (2)
C9—C8—C7—N216.0 (3)C15—C14—C19—C181.1 (3)
C11—O1—C14—C154.8 (3)C14—C19—C18—C170.4 (4)
C11—O1—C14—C19176.87 (19)C16—C17—C18—C191.7 (4)
C16—C15—C14—O1179.49 (18)C21—C17—C18—C19176.9 (2)
C16—C15—C14—C191.2 (3)N1—C6—C1—C2177.4 (2)
C7—N2—C5—C4177.5 (2)C5—C6—C1—C20.7 (3)
C7—N2—C5—C60.7 (2)C10—C11—C12—C131.0 (3)
C7—N1—C6—C50.4 (2)O1—C11—C12—C13179.3 (2)
C7—N1—C6—C1178.7 (2)C8—C13—C12—C110.6 (4)
N2—C5—C6—N10.7 (2)N2—C5—C4—C3178.5 (2)
C4—C5—C6—N1177.75 (19)C6—C5—C4—C30.5 (3)
N2—C5—C6—C1179.20 (19)C5—C4—C3—C20.2 (4)
C4—C5—C6—C10.8 (3)C6—C1—C2—C30.5 (4)
C13—C8—C9—C100.7 (3)C4—C3—C2—C10.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.92 (2)1.86 (3)2.774 (3)171 (2)
O2—H2C···N1i0.852.172.876 (2)140
C15—H15···O1ii0.932.563.306 (2)137
C19—H19···N3iii0.932.603.491 (3)162
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationKansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Diaz, H., Navarrete-Vázquez, G., Estrada-Soto, S. & Tlahuext, H. (2006). Acta Cryst. E62, o2601–o2602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, A., Ganguly, S. & Surana, S. (2008). Rasayan J. Chem. 1, 447–460.  Google Scholar
First citationPreston, P. N. (2008). Benzimidazoles. In Chemistry of Heterocyclic Compounds, Part 1, Vol. 40, pp. 1–285. New York: John Wiley & Sons, Inc.  Google Scholar
First citationSen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018). J. Lumin. 194, 123–130.  Web of Science CrossRef Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharman, W. M. & Lier, J. E. (2003). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith K. M. & R. Guilard. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.  Google Scholar
First citationVerdasco, G., Martín, M. A., del Castillo, B., López-Alvarado, P. & Menéndez, J. C. (1995). Anal. Chim. Acta, 303, 73–78.  CrossRef Web of Science Google Scholar
First citationZhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Z., Liu, C., Guo, H. & Cai, Y. (2006). Chem .J. Internet, 8, 65.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds