research communications
mer-tris[2-(1H-imidazol-2-yl-κN3)pyrimidine-κN1]ruthenium(II) bis(hexafluoridophosphate) trihydrate
electrochemical and spectroscopic investigation ofaInstitute of Chemistry, University of Campinas – UNICAMP, PO Box 6154, 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: formiga@g.unicamp.br
The 7H6N4)3](PF6)2·3H2O, a novel RuII complex with the bidentate ligand 2-(1H-imidazol-2-yl)pyrimidine, comprises a complex cation in the meridional form exclusively, with a distorted octahedral geometry about the ruthenium(II) cation. The Ru—N bonds involving imidazole N atoms are comparatively shorter than the Ru—N bonds from pyrimidine because of the stronger basicity of the imidazole moiety. The three-dimensional hydrogen-bonded network involves all species in the lattice with water molecules interacting with both counter-ions and NH hydrogen atoms from the complex. The supramolecular structure of the crystal also shows that two units of the complex bind strongly through a mutual N—H⋯N bond. The electronic of the complex displays an asymmetric band at 421 nm, which might point to the presence of two metal-to-ligand charge-transfer (MLCT) bands. Electrochemical measurements show a quasi-reversible peak referring to the RuIII/RuII reduction at 0.87 V versus Ag/AgCl.
of the title compound, [Ru(CKeywords: crystal structure; homoleptic complex; heteroaryl-imidazole; ruthenium(II); meridional isomer.
CCDC reference: 1842596
1. Chemical context
Since the first preparation of the tris(2,2-bipyridine) ruthenium(II) complex by Burstall (1936), its interesting electrochemical and photochemical properties have stimulated the preparation and characterization of numerous analogous ruthenium(II) complexes (Le-Quang et al., 2018; Dong et al., 2018; Linares et al., 2013). When asymmetric bidentate ligands are used to obtain homoleptic complexes, facial and meridional isomers can be obtained, depending on steric and electronic properties with important implications on chemical reactivity and spectroscopy (Metherell et al., 2014). An interesting class of asymmetric ligands are heteroaryl-imidazoles, since a combination of electron-rich and electron-poor rings can be used to tune the electronic properties of the final complexes (Ratier de Arruda et al., 2017; Nakahata et al., 2017).
In this context, we have devised a synthetic procedure to obtain exclusively the meridional isomer of the first reported homoleptic RuII complex with the bidentate 2-(1H-imidazol-2-yl)pyrimidine (impm) ligand containing imidazole (im) and pyrimidine (pm) rings in the same unit.
2. Structural commentary
The title complex crystallizes with two hexafluoridophosphates counter-anions and three lattice water molecules. The total +2 charge for the complex is in very good agreement with . It reveals a distorted octahedral configuration with meridional stereochemistry, with two imidazole units trans to each other as well as two pyrimidine units trans to each other. There is no correlation between the trans–cis orientation and bond lengths. For example, all Ru—Nim bond lengths are essentially the same within their standard uncertainties, and the same observation is valid for Ru—Npm bond lengths. However, Ru—Nim bond lengths are systematically shorter than Ru—Npm bonds by 0.03 Å, as expected from the stronger of the imidazole unit. Averaged bond lengths are 2.054 (10) Å for Ru—Nim and 2.083 (8) Å for Ru—Npm. As a result of the bidentate nature of the ligands, coordination angles differ from the ideal 90° value with Nim—Ru—Npm angles ranging from 78.5 (2) to 78.7 (2)°, the latter being the main cause for the distorted octahedral configuration.
and measurements. We can conclude that all three ligands in the complex are neutral, not showing the typical ionization of the imidazole hydrogen atom. The molecular structure of the cationic complex is shown in Fig. 13. Supramolecular features
Although hydrogen atoms were not modelled for the three water molecules present in the 6− anions may result in different hydrogen-bonded patterns, and the disorder in hydrogen-atom positions may explain the absence of electron densities close to oxygen atoms in difference maps. Possible donor–acceptor pairs involving the water oxygen atoms are included in Table 1. One of the water molecules (O3) is hydrogen bonded to two N—H imidazole units, N6 and N10, Fig. 2 and Table 1. A rather strong mutual intermolecular interaction between two [Ru(impm)3]2+ units through one of the ligands involving centrosymmetric N—H⋯N pairs completes the three-dimensional hydrogen-bonded network (Fig. 2).
it is clear that a three-dimensional hydrogen-bonded network is formed by all species. Water molecules cluster in triads and are close to two hexafluoridophosphate anions in the lattice. The supramolecular arrangement of water molecules and PF4. Electrochemistry and electronic spectroscopy
The RuIII/RuII potential for the [Ru(impm)3]2+ complex (0.87 V versus Ag/AgCl) was found to be intermediate between those reported for [Ru(im)6]2+ (0.295 V; Clarke et al., 1996), and [Ru(bpm)3]2+ (1.72 V; Ernst & Kaim, 1989), in which bpm stands for 2,2′-bipyrimidine. Since the reduction potential can be directly related to the t2g orbitals of the complex, i.e. the HOMO (Possato et al., 2017; Eberlin et al., 2006; Nunes et al., 2006), the changes in potential can be accounted for by the high imidazole electron σ-donor ability, which tends to increase the energy of the HOMO, leading to a decrease of the reduction potential. Conversely, pyrimidine is a better π-receptor, decreasing the HOMO energy, therefore increasing the reduction potential (Lever, 1990). The electrochemical results reveal that the impm ligand was successfully used to tune these effects by combining them, as we had intended. The electronic spectrum of [Ru(impm)3]2+ revealed an asymmetric band centered at 421 nm (log ∊ = 4.14), indicating that two superimposed metal-to-ligand charge-transfer (MLCT) bands may be present. This could be explained if two transitions from the RuII t2g to two π* orbitals are observed. Moreover, the MLCT in [Ru(bpm)3]2+ is observed at 454 nm (Ernst & Kaim, 1989); this is an indication that the π* orbitals involved in the [Ru(impm)3]2+ transitions lie higher in energy.
5. Database survey
Surveys of the Cambridge Structural Database (CSD, Version 5.38, last update February 2018; Groom et al., 2016) and SciFinder (SciFinder, 2018) revealed no hits. To the best of our knowledge, this is the first reported for a homoleptic ruthenium complex with heteroaryl-imidazoles. The survey revealed the synthesis of the cationic complex [Ru(impy)3]2+ (Stupka et al., 2005), in which impy is 2-(1H-imidazol-2-yl)pyridine, but no was reported. However, we could relate to other similar crystals containing related cations [Ru(bpm)3]2+, [Ru(bpy)3]2+, or [Ru(bpz)3]2+, in which bpy is 2,2′-bipyridine and bpz is 2,2′-bipyrazine. [Ru(bpm)3]2+ contains a pyrimidine moiety with an Ru—N length of 2.067 (4) Å, similar to our complex, whereas [Ru(bpy)3]2+ and [Ru(bpz)3]2+ show Ru—N bond lengths of 2.056 (2) and 2.05 (1) Å, respectively (Rillema et al., 1992). The only other complex in which impm appears as a ligand is with CuII and was reported by us (Nakahata et al., 2017). In the latter, similar to what we have observed in this work, the Cu—Npm bond length is 2.078 (2) Å, which is a bit longer than that of Cu—Nim [1.975 (5) Å]. The molecular structure of [Ru(im)6]2+ was found to have an average Ru—N length of 2.099 (2) Å (Baird et al., 1998).
6. Synthesis and crystallization
The ligand was synthesized following the same procedure as reported in the literature (Nakahata et al., 2017). The RuII complex was prepared by a mixture of one equivalent of RuCl3·3H2O (50 mg), 3.3 equivalents of the ligand (92 mg) and 10 ml of DMF. The mixture was stirred and heated to 423 K for 5 min, until the colour turned to green. After the addition of 45 µl of triethylamine, the reaction mixture was kept under reflux for three h, resulting in a reddish purple mixture. This reaction mixture was filtered while still hot using a sintered glass funnel (G4). The filtrate was processed further with constant addition of ethanol and evaporation using a rotary evaporator until the volume reduced to almost 1.5 ml. The resulting reduced mixture was added dropwise to an aqueous solution of NH4PF6 (200 mg in 5 ml of milliQ water) and left in the refrigerator overnight to induce precipitation. Subsequently, the precipitate was filtered, washed with ice-cold water to remove excess NH4PF6 and dried in a desiccator. Yield: 83.42%. Analysis calculated for [Ru(C7H6N4)3](PF6)2: C, 30.41; H, 2.19; N, 20.26. Found: C, 30.51; H, 2.55; N, 19.78. ΛM (S cm2 mol−1): 162.44, within the typical range for a 1:2 electrolyte in water, 150–310 S cm2 mol−1 (Geary, 1971). ESI–MS (methanol): m/z 270.03 [M2+]. FT–IR (cm−1): 559, 708, 796, 844, 1102, 1409, 1629, 1590, 1551, 1471. Crystals of the title compound were obtained by slow evaporation of a methanol:water solution of the complex.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to carbon and nitrogen atoms were added to the structure in idealized positions (N—H = 0.88, C—H = 0.95 Å) and further refined according to the riding model with Uiso(H) = 1.2Ueq(C,N). During the process, electron densities near oxygen atoms were not found in difference maps, resulting in missing hydrogen atoms for water molecules. This is probably a consequence of disordered hydrogen positions resulting from weak intermolecular interactions between lattice water molecules and anions in the structure. The crystal was a strong absorber and exposure times had to be increased in order to achieve a reasonable completeness. In the end, we tested three different absorption correction methods in order to avoid artefacts and the multi-scan method gave the best results. However, a residual positive density was still found close to ruthenium (less than 1 Å) as a consequence of this insufficient absorption correction (Spek, 2018).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1842596
https://doi.org/10.1107/S2056989018007995/wm5447sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007995/wm5447Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007995/wm5447Isup3.mol
Detailed information on instrumentation, ESI-MS results, UV-Vis and FT-IR spectra, and cyclic voltammetry. DOI: https://doi.org/10.1107/S2056989018007995/wm5447sup4.pdf
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ru(C7H6N4)3](PF6)2·3H2O | F(000) = 1736 |
Mr = 883.49 | Dx = 1.822 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 13.0162 (5) Å | Cell parameters from 9950 reflections |
b = 13.6078 (5) Å | θ = 3.9–68.3° |
c = 18.3382 (7) Å | µ = 6.02 mm−1 |
β = 99.937 (2)° | T = 150 K |
V = 3199.4 (2) Å3 | Irregular, orange |
Z = 4 | 0.10 × 0.07 × 0.07 mm |
Bruker APEX CCD detector diffractometer | 5754 independent reflections |
Radiation source: fine-focus sealed tube | 4930 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.039 |
φ and ω scans | θmax = 68.9°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | h = −14→15 |
Tmin = 0.625, Tmax = 0.753 | k = −14→16 |
25003 measured reflections | l = −20→22 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.079 | H-atom parameters constrained |
wR(F2) = 0.229 | w = 1/[σ2(Fo2) + (0.1495P)2 + 5.4202P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
5754 reflections | Δρmax = 3.62 e Å−3 |
460 parameters | Δρmin = −0.58 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.61116 (3) | 0.76501 (4) | 0.79791 (3) | 0.0579 (2) | |
N1 | 0.4844 (4) | 0.8111 (4) | 0.8410 (3) | 0.0657 (13) | |
N2 | 0.4208 (4) | 0.9042 (5) | 0.9198 (3) | 0.0718 (15) | |
H2 | 0.416775 | 0.948958 | 0.953833 | 0.086* | |
N3 | 0.6712 (4) | 0.8865 (4) | 0.8591 (3) | 0.0566 (11) | |
N4 | 0.6301 (4) | 1.0022 (4) | 0.9467 (3) | 0.0582 (12) | |
N5 | 0.7422 (4) | 0.7349 (4) | 0.7524 (3) | 0.0615 (13) | |
N6 | 0.8342 (5) | 0.7645 (4) | 0.6655 (4) | 0.0724 (15) | |
H6 | 0.854183 | 0.790086 | 0.626150 | 0.087* | |
N7 | 0.5863 (4) | 0.8536 (4) | 0.7038 (3) | 0.0602 (12) | |
N8 | 0.6760 (5) | 0.9208 (4) | 0.6123 (3) | 0.0756 (15) | |
N9 | 0.6439 (5) | 0.6722 (4) | 0.8869 (3) | 0.0681 (13) | |
N10 | 0.6215 (6) | 0.5297 (5) | 0.9368 (4) | 0.0879 (19) | |
H10 | 0.600308 | 0.469110 | 0.942001 | 0.105* | |
N11 | 0.5437 (4) | 0.6343 (4) | 0.7531 (3) | 0.0603 (12) | |
N12 | 0.5156 (5) | 0.4675 (4) | 0.7859 (4) | 0.0782 (16) | |
C1 | 0.5046 (5) | 0.8819 (5) | 0.8901 (3) | 0.0623 (15) | |
C2 | 0.3815 (6) | 0.7869 (7) | 0.8375 (5) | 0.081 (2) | |
H2A | 0.344267 | 0.738678 | 0.806039 | 0.098* | |
C3 | 0.3421 (6) | 0.8436 (7) | 0.8866 (5) | 0.086 (2) | |
H3 | 0.272783 | 0.841756 | 0.896368 | 0.103* | |
C4 | 0.6070 (4) | 0.9271 (5) | 0.9011 (3) | 0.0564 (13) | |
C5 | 0.7256 (5) | 1.0409 (5) | 0.9491 (3) | 0.0619 (14) | |
H5 | 0.744892 | 1.096557 | 0.979591 | 0.074* | |
C6 | 0.7954 (5) | 1.0035 (5) | 0.9096 (4) | 0.0644 (15) | |
H6A | 0.862998 | 1.031426 | 0.913131 | 0.077* | |
C7 | 0.7666 (5) | 0.9254 (5) | 0.8651 (4) | 0.0617 (14) | |
H7 | 0.814977 | 0.897782 | 0.837543 | 0.074* | |
C8 | 0.7483 (5) | 0.7886 (5) | 0.6927 (4) | 0.0604 (14) | |
C9 | 0.8261 (5) | 0.6748 (5) | 0.7632 (4) | 0.0686 (16) | |
H9 | 0.841453 | 0.627585 | 0.801761 | 0.082* | |
C10 | 0.8851 (5) | 0.6927 (6) | 0.7102 (4) | 0.0749 (19) | |
H10A | 0.948787 | 0.661564 | 0.705115 | 0.090* | |
C11 | 0.6671 (5) | 0.8592 (5) | 0.6664 (4) | 0.0648 (15) | |
C12 | 0.5938 (8) | 0.9800 (6) | 0.5917 (5) | 0.086 (2) | |
H12 | 0.595776 | 1.025988 | 0.553000 | 0.103* | |
C13 | 0.5090 (7) | 0.9766 (6) | 0.6239 (5) | 0.086 (2) | |
H13 | 0.451247 | 1.018106 | 0.606409 | 0.103* | |
C14 | 0.5047 (6) | 0.9149 (6) | 0.6809 (5) | 0.0757 (19) | |
H14 | 0.445435 | 0.914399 | 0.704742 | 0.091* | |
C15 | 0.6043 (6) | 0.5838 (5) | 0.8740 (4) | 0.0726 (17) | |
C16 | 0.6922 (7) | 0.6751 (6) | 0.9600 (4) | 0.080 (2) | |
H16 | 0.729082 | 0.729431 | 0.984397 | 0.097* | |
C17 | 0.6779 (8) | 0.5869 (7) | 0.9907 (5) | 0.092 (2) | |
H17 | 0.702521 | 0.568118 | 1.040599 | 0.111* | |
C18 | 0.5512 (5) | 0.5592 (5) | 0.8004 (4) | 0.0680 (16) | |
C19 | 0.4696 (6) | 0.4537 (6) | 0.7149 (5) | 0.082 (2) | |
H19 | 0.443343 | 0.390098 | 0.700580 | 0.099* | |
C20 | 0.4588 (5) | 0.5240 (5) | 0.6637 (4) | 0.0718 (18) | |
H20 | 0.425902 | 0.510496 | 0.614305 | 0.086* | |
C21 | 0.4959 (5) | 0.6162 (6) | 0.6833 (4) | 0.0662 (16) | |
H21 | 0.487895 | 0.667494 | 0.647555 | 0.079* | |
P1 | 0.52669 (15) | 0.72394 (12) | 0.47516 (11) | 0.0672 (5) | |
F1 | 0.6051 (4) | 0.6755 (5) | 0.4292 (3) | 0.1094 (18) | |
F2 | 0.4541 (6) | 0.7727 (7) | 0.5259 (5) | 0.143 (3) | |
F3 | 0.5632 (6) | 0.8307 (4) | 0.4586 (3) | 0.120 (2) | |
F4 | 0.4894 (5) | 0.6168 (4) | 0.4927 (3) | 0.117 (2) | |
F5 | 0.4400 (5) | 0.7282 (4) | 0.4045 (4) | 0.119 (2) | |
F6 | 0.6122 (4) | 0.7171 (3) | 0.5476 (3) | 0.0905 (14) | |
P2 | 0.17757 (17) | 0.6704 (2) | 0.65300 (15) | 0.0922 (7) | |
F7 | 0.2160 (5) | 0.5967 (8) | 0.5979 (4) | 0.166 (4) | |
F8 | 0.1418 (6) | 0.7402 (6) | 0.7124 (7) | 0.161 (4) | |
F9 | 0.2594 (7) | 0.7480 (6) | 0.6365 (6) | 0.150 (3) | |
F10 | 0.0961 (5) | 0.5899 (5) | 0.6745 (4) | 0.129 (2) | |
F11 | 0.0909 (7) | 0.7042 (13) | 0.5912 (8) | 0.233 (6) | |
F12 | 0.2637 (5) | 0.6267 (5) | 0.7163 (4) | 0.1182 (19) | |
O1 | 0.2542 (8) | 0.9735 (9) | 0.6848 (6) | 0.165 (4) | |
O2 | 0.2613 (8) | 0.6190 (7) | 0.9169 (7) | 0.153 (3) | |
O3 | 0.4135 (6) | 0.6699 (5) | 1.0371 (4) | 0.112 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0485 (3) | 0.0616 (4) | 0.0631 (3) | −0.00170 (17) | 0.0080 (2) | −0.01872 (19) |
N1 | 0.056 (3) | 0.069 (3) | 0.073 (3) | −0.013 (2) | 0.014 (2) | −0.027 (3) |
N2 | 0.054 (3) | 0.081 (4) | 0.083 (3) | −0.014 (3) | 0.019 (3) | −0.037 (3) |
N3 | 0.049 (2) | 0.059 (3) | 0.060 (3) | 0.001 (2) | 0.005 (2) | −0.013 (2) |
N4 | 0.053 (3) | 0.062 (3) | 0.060 (3) | −0.005 (2) | 0.010 (2) | −0.015 (2) |
N5 | 0.051 (3) | 0.069 (3) | 0.062 (3) | 0.004 (2) | 0.005 (2) | −0.018 (2) |
N6 | 0.063 (3) | 0.078 (4) | 0.081 (4) | −0.006 (3) | 0.024 (3) | −0.016 (3) |
N7 | 0.059 (3) | 0.053 (3) | 0.066 (3) | 0.003 (2) | 0.003 (2) | −0.014 (2) |
N8 | 0.085 (4) | 0.059 (3) | 0.080 (4) | −0.011 (3) | 0.008 (3) | −0.009 (3) |
N9 | 0.068 (3) | 0.072 (3) | 0.064 (3) | −0.007 (3) | 0.011 (2) | −0.009 (3) |
N10 | 0.101 (5) | 0.068 (4) | 0.096 (4) | −0.005 (3) | 0.022 (4) | −0.007 (3) |
N11 | 0.052 (3) | 0.060 (3) | 0.071 (3) | 0.002 (2) | 0.016 (2) | −0.014 (2) |
N12 | 0.082 (4) | 0.062 (3) | 0.091 (4) | −0.002 (3) | 0.016 (3) | −0.016 (3) |
C1 | 0.050 (3) | 0.072 (4) | 0.066 (3) | −0.006 (3) | 0.013 (3) | −0.020 (3) |
C2 | 0.060 (4) | 0.093 (5) | 0.093 (5) | −0.027 (4) | 0.018 (4) | −0.039 (4) |
C3 | 0.058 (4) | 0.106 (6) | 0.100 (5) | −0.020 (4) | 0.029 (4) | −0.047 (5) |
C4 | 0.045 (3) | 0.062 (3) | 0.061 (3) | −0.001 (2) | 0.006 (2) | −0.013 (3) |
C5 | 0.059 (3) | 0.064 (3) | 0.062 (3) | −0.011 (3) | 0.009 (3) | −0.012 (3) |
C6 | 0.051 (3) | 0.069 (4) | 0.073 (4) | −0.008 (3) | 0.010 (3) | −0.008 (3) |
C7 | 0.046 (3) | 0.068 (4) | 0.070 (3) | −0.001 (3) | 0.008 (3) | −0.009 (3) |
C8 | 0.055 (3) | 0.060 (3) | 0.065 (3) | −0.001 (3) | 0.007 (3) | −0.016 (3) |
C9 | 0.056 (3) | 0.072 (4) | 0.076 (4) | 0.008 (3) | 0.007 (3) | −0.015 (3) |
C10 | 0.053 (4) | 0.080 (5) | 0.091 (5) | 0.007 (3) | 0.010 (3) | −0.018 (4) |
C11 | 0.062 (3) | 0.060 (3) | 0.071 (4) | −0.008 (3) | 0.005 (3) | −0.019 (3) |
C12 | 0.102 (6) | 0.064 (4) | 0.084 (5) | 0.001 (4) | −0.002 (4) | −0.005 (4) |
C13 | 0.087 (5) | 0.067 (4) | 0.096 (5) | 0.009 (4) | −0.003 (4) | −0.001 (4) |
C14 | 0.063 (4) | 0.069 (4) | 0.090 (5) | 0.009 (3) | 0.001 (3) | −0.020 (4) |
C15 | 0.076 (4) | 0.065 (4) | 0.077 (4) | −0.001 (3) | 0.015 (3) | −0.002 (3) |
C16 | 0.088 (5) | 0.084 (5) | 0.068 (4) | −0.017 (4) | 0.010 (4) | −0.009 (4) |
C17 | 0.110 (6) | 0.094 (6) | 0.071 (4) | −0.003 (5) | 0.010 (4) | −0.012 (4) |
C18 | 0.059 (3) | 0.065 (4) | 0.083 (4) | −0.004 (3) | 0.018 (3) | −0.026 (3) |
C19 | 0.077 (4) | 0.072 (4) | 0.099 (5) | −0.012 (4) | 0.017 (4) | −0.033 (4) |
C20 | 0.060 (4) | 0.069 (4) | 0.086 (4) | −0.006 (3) | 0.013 (3) | −0.027 (4) |
C21 | 0.052 (3) | 0.075 (4) | 0.071 (4) | 0.004 (3) | 0.012 (3) | −0.023 (3) |
P1 | 0.0650 (10) | 0.0576 (9) | 0.0735 (10) | 0.0126 (7) | −0.0032 (8) | −0.0036 (7) |
F1 | 0.093 (3) | 0.132 (5) | 0.101 (3) | 0.020 (3) | 0.011 (3) | −0.038 (3) |
F2 | 0.123 (5) | 0.171 (7) | 0.137 (6) | 0.051 (5) | 0.030 (5) | −0.020 (5) |
F3 | 0.166 (6) | 0.067 (3) | 0.117 (4) | −0.012 (3) | −0.005 (4) | 0.010 (3) |
F4 | 0.128 (4) | 0.083 (3) | 0.122 (4) | −0.031 (3) | −0.030 (3) | 0.013 (3) |
F5 | 0.109 (4) | 0.105 (4) | 0.121 (4) | 0.005 (3) | −0.046 (4) | 0.020 (3) |
F6 | 0.108 (3) | 0.064 (2) | 0.085 (3) | 0.007 (2) | −0.022 (3) | −0.014 (2) |
P2 | 0.0638 (11) | 0.1057 (16) | 0.1053 (15) | 0.0035 (11) | 0.0099 (10) | −0.0108 (13) |
F7 | 0.097 (4) | 0.252 (10) | 0.153 (6) | −0.040 (5) | 0.036 (4) | −0.118 (7) |
F8 | 0.099 (5) | 0.140 (6) | 0.254 (11) | 0.001 (4) | 0.054 (6) | −0.085 (6) |
F9 | 0.121 (6) | 0.168 (7) | 0.164 (7) | −0.038 (5) | 0.037 (5) | 0.003 (5) |
F10 | 0.087 (3) | 0.122 (4) | 0.186 (6) | −0.016 (3) | 0.047 (4) | −0.048 (4) |
F11 | 0.094 (5) | 0.350 (16) | 0.234 (12) | −0.002 (8) | −0.029 (6) | 0.112 (12) |
F12 | 0.093 (3) | 0.135 (5) | 0.122 (4) | 0.011 (3) | 0.005 (3) | −0.025 (4) |
O1 | 0.146 (8) | 0.188 (11) | 0.163 (8) | −0.016 (7) | 0.032 (7) | −0.032 (8) |
O2 | 0.148 (8) | 0.113 (6) | 0.198 (9) | −0.018 (6) | 0.028 (7) | 0.019 (6) |
O3 | 0.129 (5) | 0.081 (4) | 0.139 (5) | −0.006 (4) | 0.058 (5) | 0.002 (4) |
Ru1—N1 | 2.047 (5) | C3—H3 | 0.9500 |
Ru1—N3 | 2.074 (5) | C5—H5 | 0.9500 |
Ru1—N5 | 2.066 (6) | C5—C6 | 1.355 (9) |
Ru1—N7 | 2.084 (5) | C6—H6A | 0.9500 |
Ru1—N9 | 2.050 (6) | C6—C7 | 1.353 (9) |
Ru1—N11 | 2.089 (5) | C7—H7 | 0.9500 |
N1—C1 | 1.314 (8) | C8—C11 | 1.449 (9) |
N1—C2 | 1.370 (9) | C9—H9 | 0.9500 |
N2—H2 | 0.8800 | C9—C10 | 1.362 (11) |
N2—C1 | 1.335 (8) | C10—H10A | 0.9500 |
N2—C3 | 1.373 (9) | C12—H12 | 0.9500 |
N3—C4 | 1.349 (8) | C12—C13 | 1.339 (13) |
N3—C7 | 1.337 (8) | C13—H13 | 0.9500 |
N4—C4 | 1.322 (8) | C13—C14 | 1.350 (12) |
N4—C5 | 1.344 (8) | C14—H14 | 0.9500 |
N5—C8 | 1.330 (9) | C15—C18 | 1.446 (10) |
N5—C9 | 1.351 (9) | C16—H16 | 0.9500 |
N6—H6 | 0.8800 | C16—C17 | 1.353 (13) |
N6—C8 | 1.341 (9) | C17—H17 | 0.9500 |
N6—C10 | 1.370 (11) | C19—H19 | 0.9500 |
N7—C11 | 1.352 (9) | C19—C20 | 1.331 (12) |
N7—C14 | 1.359 (9) | C20—H20 | 0.9500 |
N8—C11 | 1.320 (9) | C20—C21 | 1.370 (10) |
N8—C12 | 1.341 (11) | C21—H21 | 0.9500 |
N9—C15 | 1.314 (10) | P1—F1 | 1.576 (5) |
N9—C16 | 1.379 (9) | P1—F2 | 1.582 (7) |
N10—H10 | 0.8800 | P1—F3 | 1.574 (6) |
N10—C15 | 1.352 (10) | P1—F4 | 1.587 (6) |
N10—C17 | 1.369 (11) | P1—F5 | 1.565 (5) |
N11—C18 | 1.333 (10) | P1—F6 | 1.581 (5) |
N11—C21 | 1.346 (9) | P2—F7 | 1.565 (7) |
N12—C18 | 1.342 (9) | P2—F8 | 1.575 (8) |
N12—C19 | 1.349 (10) | P2—F9 | 1.566 (8) |
C1—C4 | 1.449 (8) | P2—F10 | 1.619 (7) |
C2—H2A | 0.9500 | P2—F11 | 1.526 (9) |
C2—C3 | 1.352 (11) | P2—F12 | 1.584 (7) |
N1—Ru1—N3 | 78.47 (19) | N5—C9—H9 | 125.5 |
N1—Ru1—N5 | 173.6 (2) | N5—C9—C10 | 109.1 (7) |
N1—Ru1—N7 | 97.0 (2) | C10—C9—H9 | 125.5 |
N1—Ru1—N9 | 87.2 (2) | N6—C10—H10A | 126.8 |
N1—Ru1—N11 | 95.8 (2) | C9—C10—N6 | 106.3 (6) |
N3—Ru1—N7 | 88.69 (19) | C9—C10—H10A | 126.8 |
N3—Ru1—N11 | 170.3 (2) | N7—C11—C8 | 112.4 (6) |
N5—Ru1—N3 | 96.7 (2) | N8—C11—N7 | 126.5 (6) |
N5—Ru1—N7 | 78.5 (2) | N8—C11—C8 | 121.1 (7) |
N5—Ru1—N11 | 89.6 (2) | N8—C12—H12 | 118.9 |
N7—Ru1—N11 | 99.9 (2) | C13—C12—N8 | 122.3 (8) |
N9—Ru1—N3 | 93.1 (2) | C13—C12—H12 | 118.9 |
N9—Ru1—N5 | 97.3 (2) | C12—C13—H13 | 119.7 |
N9—Ru1—N7 | 175.6 (2) | C12—C13—C14 | 120.7 (8) |
N9—Ru1—N11 | 78.7 (2) | C14—C13—H13 | 119.7 |
C1—N1—Ru1 | 114.2 (4) | N7—C14—H14 | 120.4 |
C1—N1—C2 | 106.7 (6) | C13—C14—N7 | 119.1 (8) |
C2—N1—Ru1 | 139.0 (5) | C13—C14—H14 | 120.4 |
C1—N2—H2 | 126.8 | N9—C15—N10 | 110.0 (7) |
C1—N2—C3 | 106.4 (5) | N9—C15—C18 | 119.3 (7) |
C3—N2—H2 | 126.8 | N10—C15—C18 | 130.6 (7) |
C4—N3—Ru1 | 115.0 (4) | N9—C16—H16 | 126.1 |
C7—N3—Ru1 | 128.2 (4) | C17—C16—N9 | 107.9 (7) |
C7—N3—C4 | 116.7 (5) | C17—C16—H16 | 126.1 |
C4—N4—C5 | 115.5 (5) | N10—C17—H17 | 126.3 |
C8—N5—Ru1 | 113.2 (4) | C16—C17—N10 | 107.4 (8) |
C8—N5—C9 | 107.0 (6) | C16—C17—H17 | 126.3 |
C9—N5—Ru1 | 139.7 (5) | N11—C18—N12 | 126.9 (6) |
C8—N6—H6 | 126.3 | N11—C18—C15 | 113.5 (6) |
C8—N6—C10 | 107.4 (6) | N12—C18—C15 | 119.6 (7) |
C10—N6—H6 | 126.3 | N12—C19—H19 | 118.1 |
C11—N7—Ru1 | 115.4 (4) | C20—C19—N12 | 123.8 (7) |
C11—N7—C14 | 116.3 (6) | C20—C19—H19 | 118.1 |
C14—N7—Ru1 | 127.8 (5) | C19—C20—H20 | 120.5 |
C11—N8—C12 | 115.1 (7) | C19—C20—C21 | 119.0 (7) |
C15—N9—Ru1 | 113.5 (5) | C21—C20—H20 | 120.5 |
C15—N9—C16 | 107.5 (7) | N11—C21—C20 | 120.0 (7) |
C16—N9—Ru1 | 138.9 (5) | N11—C21—H21 | 120.0 |
C15—N10—H10 | 126.4 | C20—C21—H21 | 120.0 |
C15—N10—C17 | 107.2 (7) | F1—P1—F2 | 176.2 (4) |
C17—N10—H10 | 126.4 | F1—P1—F4 | 88.4 (4) |
C18—N11—Ru1 | 114.7 (4) | F1—P1—F6 | 89.8 (3) |
C18—N11—C21 | 116.7 (6) | F2—P1—F4 | 91.8 (5) |
C21—N11—Ru1 | 128.6 (5) | F3—P1—F1 | 92.2 (4) |
C18—N12—C19 | 113.7 (7) | F3—P1—F2 | 87.5 (5) |
N1—C1—N2 | 111.4 (5) | F3—P1—F4 | 179.3 (4) |
N1—C1—C4 | 118.5 (5) | F3—P1—F6 | 91.4 (3) |
N2—C1—C4 | 130.0 (5) | F5—P1—F1 | 90.8 (4) |
N1—C2—H2A | 125.9 | F5—P1—F2 | 93.0 (4) |
C3—C2—N1 | 108.2 (6) | F5—P1—F3 | 90.3 (3) |
C3—C2—H2A | 125.9 | F5—P1—F4 | 90.0 (3) |
N2—C3—H3 | 126.3 | F5—P1—F6 | 178.2 (4) |
C2—C3—N2 | 107.4 (6) | F6—P1—F2 | 86.4 (4) |
C2—C3—H3 | 126.3 | F6—P1—F4 | 88.3 (3) |
N3—C4—C1 | 113.1 (5) | F7—P2—F8 | 176.5 (6) |
N4—C4—N3 | 125.6 (5) | F7—P2—F9 | 90.2 (5) |
N4—C4—C1 | 121.2 (5) | F7—P2—F10 | 91.1 (4) |
N4—C5—H5 | 118.7 | F7—P2—F12 | 88.2 (4) |
N4—C5—C6 | 122.6 (6) | F8—P2—F10 | 87.4 (4) |
C6—C5—H5 | 118.7 | F8—P2—F12 | 88.6 (5) |
C5—C6—H6A | 120.8 | F9—P2—F8 | 91.1 (5) |
C7—C6—C5 | 118.4 (6) | F9—P2—F10 | 177.0 (5) |
C7—C6—H6A | 120.8 | F9—P2—F12 | 88.6 (5) |
N3—C7—C6 | 121.2 (6) | F11—P2—F7 | 89.5 (8) |
N3—C7—H7 | 119.4 | F11—P2—F8 | 93.6 (8) |
C6—C7—H7 | 119.4 | F11—P2—F9 | 95.4 (6) |
N5—C8—N6 | 110.1 (6) | F11—P2—F10 | 87.4 (6) |
N5—C8—C11 | 119.6 (6) | F11—P2—F12 | 175.4 (7) |
N6—C8—C11 | 130.2 (7) | F12—P2—F10 | 88.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N4i | 0.88 | 2.13 | 2.935 (7) | 152 |
N6—H6···O3ii | 0.88 | 2.00 | 2.871 (10) | 171 |
N10—H10···O3iii | 0.88 | 1.94 | 2.809 (10) | 167 |
O1···F9 | 3.198 (11) | |||
O1···F12iv | 2.793 (7) | |||
O2···O1v | 2.703 (7) | |||
O2···F3vi | 2.895 (10) | |||
O3···O2 | 2.784 (9) | |||
O3···F11vii | 2.909 (8) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) x−1/2, −y+3/2, z+1/2; (vii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
ALBF would like to express gratitude to Professor Judith Howard, Dr Dmitrii Yufit and Dr Horst Puschmann for an insightful short visit to the Crystallography Group at Durham in April 2017.
Funding information
Funding for this research was provided by: FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo; award Nos. 2013/22127-2, 2014/50906-9); CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico); CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior); INOMAT (INCT for Science, Technology and Innovation in Functional Complex Materials); FAEPEX (Fundo de Apoio ao Ensino, à Pesquisa e Extensão).
References
Baird, I. R., Rettig, S. J., James, B. R. & Skov, K. A. (1998). Can. J. Chem. 76, 1379–1388. CrossRef Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burstall, F. H. (1936). J. Chem. Soc. pp. 173–175. CrossRef Google Scholar
Clarke, M. J., Bailey, V. M., Doan, P. E., Hiller, C. D., LaChance-Galang, K. J., Daghlian, H., Mandal, S., Bastos, C. M. & Lang, D. (1996). Inorg. Chem. 35, 4896–4903. CSD CrossRef PubMed CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, X., Zhao, G., Liu, L., Li, X., Wei, Q. & Cao, W. (2018). Biosens. Bioelectron. 110, 201–206. Web of Science CrossRef Google Scholar
Eberlin, M. N., Tomazela, D. M., Araki, K., Alexiou, A. D. P., Formiga, A. L. B., Toma, H. E. & Nikolaou, S. (2006). Organometallics, 25, 3245–3250. Web of Science CrossRef Google Scholar
Ernst, S. D. & Kaim, W. (1989). Inorg. Chem. 28, 1520–1528. CrossRef Web of Science Google Scholar
Geary, W. J. (1971). Coord. Chem. Rev. 7, 81–122. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Le-Quang, L., Farran, R., Lattach, Y., Bonnet, H., Jamet, H., Guérente, L., Maisonhaute, E. & Chauvin, J. (2018). Langmuir, 34, 5193–5203. Google Scholar
Lever, A. B. P. (1990). Inorg. Chem. 29, 1271–1285. CrossRef CAS Web of Science Google Scholar
Linares, E. M., Formiga, A. L. B., Kubota, L. T., Galembeck, F. & Thalhammer, S. (2013). J. Mater. Chem. B, 1, 2236–2244. Web of Science CrossRef Google Scholar
Metherell, A. J., Cullen, W., Stephenson, A., Hunter, C. A. & Ward, M. D. (2014). Dalton Trans. 43, 71–84. Web of Science CrossRef Google Scholar
Nakahata, D. H., Ribeiro, M. A., Corbi, P. P., Machado, D., Lancellotti, M., Lustri, W. R., da Costa Ferreira, A. M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 458, 224–232. Web of Science CrossRef Google Scholar
Nunes, G. S., Alexiou, A. D. P., Araki, K., Formiga, A. L. B., Rocha, R. C. & Toma, H. E. (2006). Eur. J. Inorg. Chem. pp. 1487–1495. Web of Science CrossRef Google Scholar
Possato, B., Deflon, V. M., Naal, Z., Formiga, A. L. B. & Nikolaou, S. (2017). Dalton Trans. 46, 7926–7938. Web of Science CrossRef Google Scholar
Ratier de Arruda, E. G., de Farias, M. A., Venturinelli Jannuzzi, S. A., de Almeida Gonsales, S., Timm, R. A., Sharma, S., Zoppellaro, G., Kubota, L. T., Knobel, M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 466, 456–463. Web of Science CrossRef Google Scholar
Rillema, D. P., Jones, D. S., Woods, C. & Levy, H. A. (1992). Inorg. Chem. 31, 2935–2938. CSD CrossRef CAS Web of Science Google Scholar
SciFinder (2018). Chemical Abstracts Service: Columbus, OH, 2010; RN 58-08-2 (accessed May 11, 2018). Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2018). Inorg. Chim. Acta, 470, 232–237. Web of Science CrossRef Google Scholar
Stupka, G., Gremaud, L. & Williams, A. F. (2005). Helv. Chim. Acta, 88, 487–495. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.