research communications
Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methylimidazolium acetate or chloride
aDepartment of Chemistry, Kazan State University, Kremlevskaya St. 18, 420008, Kazan, Russian Federation, and bInstitute of Organic & Physical Chemistry, Arbuzov Str.8, 420088 Kazan, Russian Federation
*Correspondence e-mail: serov.nikita@gmail.com
Crystals of four new copper(II) complexes have been grown from copper(II) acetate/chloride–1-ethyl-3-methylimidazolium acetate/chloride–water systems and characterized by X-ray analysis. The first complex, bis(1-ethyl-3-methylimidazolium) tetra-μ-acetato-bis[chloridocuprate(II)], [Emim]2[Cu2(C2H3O2)4Cl2] (1) (Emim is 1-ethyl-3-methylimidazolium, C6H11N2), contains [Cu2(C2H3O2)4Cl2]2− coordination anions with a paddle-wheel structure and ionic liquid cations. Two of the synthesized complexes are one-dimensional polymers, namely catena-poly[1-ethyl-3-methylimidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-chlorido] monohydrate], {[Emim][Cu2(C2H3O2)4Cl]·H2O}n (2), and catena-poly[1-ethyl-3-methylimidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-acetato]], {[Emim][Cu2(C2H3O2)5]}n (3). In these compounds, the Cu2(C2H3O2)4 units with a paddle-wheel structure are connected to each other through chloride (in 2) or acetate (in 3) anions to form parallel chains, between which cations of ionic liquid are situated. The last compound, bis(1-ethyl-3-methylimidazolium) tetra-μ-acetato-bis[aquacopper(II)] tetra-μ-acetato-bis[acetatocuprate(II)] dihydrate, [Emim]2[Cu2(C2H3O2)4(H2O)2][Cu2(C2H3O2)6]·2H2O (4), contains two different binuclear coordination units (neutral and anionic), connected through hydrogen bonds between water molecules and acetate ions.
Keywords: crystal structure; copper(II) complexes; ionic liquids; paddle-wheel.
1. Chemical context
Ionic liquids (ILs) with melting point below 373 K were discovered in 1888 (Gabriel & Weiner, 1888), but have been specific laboratory substances for a long time. However, over the past two decades ionic liquids have been of increased interest for researchers owing to the awareness of their unique properties, such as low dielectric permeability, low movability, wide range of liquid states, high ionic density, high good solubility for many substances, very low volatility among others (Buszewski et al., 2006; Hallett & Welton, 2011). It is important that the properties of ionic liquids can be varied not only by structural design, but also by mixing with other substances, especially with water (Kohno & Ohno, 2012). The use of ILs as unique solvents for the replacement of traditional solvents and the synthesis of new substances from ionic liquids are the goals of many investigations. The application of ILs has already allowed the synthesis of new polyoxometallates, transition metal clusters, main-group element clusters and nanomaterials; the most important catalytic organic syntheses have also been performed in ionic liquids under mild conditions (Sasaki et al., 2005; Ahmed & Ruck, 2011; Betz et al., 2011; Jlassi et al., 2014). Importantly, many oxidation reactions in organic syntheses are catalysed by copper(II) compounds, which is why the synthesis and structural investigation of copper(II) complexes grown from ILs are real scientific tasks. Of particular importance are polynuclear compounds as materials with interesting magnetic and electric properties.
Copper(II) complexes, containing the products of ionic liquid cation C—H bond activation, have previously been isolated from the 1-ethyl-3-methylimidazolium acetate (EmimAcO)–copper(II) acetate [Cu(AcO)2]–water–air (O2) system in the 323–358 K temperature range (Shtyrlin et al., 2014). In the present work, the new complexes 1-4 have been obtained from the same and similar (where the acetate ion is replaced by chloride) systems and their structures investigated by single crystal X-ray analysis.
2. Structural commentary
Compound 1 consists of two 1-ethyl-3-methylimidazolium cations and a binuclear complex anion [Cu2(AcO)4Cl2]2− in which two copper(II) atoms are bonded through four bridging acetate ions. Two chloride ions are situated in the axial positions of both metal atoms, forming the axis of a paddle-wheel structure with the copper(II) ions (Fig. 1).
Compound 2 is a polymer; in the main chain chloride ions and the two copper(II) ions, connected by four acetate ions, alternate with each other (Fig. 2). Disordered 1-ethyl-3-methylimidazolium cations and water molecules are present in the regions between the polyanionic chains. The interatomic Cu⋯Cu distances in the clusters decrease (Table 1) with the transition from the binuclear compound 1 to the polymer 2.
Compound 3 is also a polymer, but differs from 2 in the bridging ligand between clusters and the absence of water molecules (Fig. 3). It is evident that the replacement of the chloride ion by acetate leads to a significant increase in the copper–copper distances between neighboring cluster units. However, the interatomic metal–metal distances in the clusters are practically unchanged (Table 1).
Compound 4 has the most interesting structure because it contains two different clusters (Fig. 4). One of them is anionic and comprises two copper(II) ions and six acetate ions, four of which act as bridges between metal atoms. The other cluster is not charged and differs from the first by the non-bridging ligands (in this case they are water molecules). Furthermore, compound 4 contains 1-ethyl-3-methylimidazolium ions and water molecules. The metal–metal distances in the clusters in 4 are somewhat shorter than in the polymeric compounds 2 and 3 (Table 1).
3. Supramolecular features
In the crystal of 1, weak interactions are found between the [Cu2(AcO)4Cl2]2− anion and the surrounding six 1-ethyl-3-methylimidazolium cations, namely C1—H1⋯O2, C2—H2⋯O5 and C3—H3⋯O3 contacts (see Table 2 for details). The last contact is relatively short and probably the strongest of them. Two different orientations of the paddle-wheels units form herringbone motif (Fig. 5).
|
Polymeric chains in 2 propagate along the c-axis direction (Fig. 6). The water molecule forms hydrogen bonds with oxygen atoms of the acetate residues of two neighbouring clusters in one chain (see Table 3). Those interactions decrease the Cu—Cl—Cu angle from 180° to 169.5° on the side of water molecule and distort the linearity of the polymeric chains.
|
In 3, the polymeric chains are not linear because neighbouring Cu2(AcO)4 fragments are connected by acetate ions (Fig. 7). The C—H⋯O interactions (see Table 4) between 1-ethyl-3-methylimidazolium cations and the anionic chains additionally stabilize the polymeric structure of 3.
|
The 4 contains ordered layers (Fig. 8). Chains are formed by the alternating binuclear clusters, bonded by O—H⋯O hydrogen bonds between the coordinated water molecules and acetate ions as ligands (O5—H5B⋯O11, see Table 5). The other water molecule, which is not coordinated to copper(II), also plays an important role in formation – this water molecule connects two neighbouring chains through the O5—H5⋯O12, O12—H1O⋯O7 and O12—H2O⋯O10 hydrogen bonds. The C—H⋯O interactions (see Table 5) between the 1-ethyl-3-methylimidazolium cations and acetate residues are also relevant for binding the polymeric chains.
of
|
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.58; Groom et al., 2016) revealed 258 structures with the Cu2(AcO)4 fragment. In many of these structures such clusters are included several times. The distribution of Cu⋯Cu distances in such fragments is shown in Fig. 9. From a comparison of Fig. 9 and Table 1, it can be seen that the Cu⋯Cu distances in the title compounds are longer than the mean value of other structures deposited in the CSD. It should be mentioned that in 1 the Cu⋯Cu distance is very close to the maximum distance shown in Fig. 9. This long Cu⋯Cu distance can be explained by the strong interaction between the copper(II) atoms and the chloride ions.
5. Synthesis and crystallization
Synthesis of 1:
A mixture of 1-ethyl-3-methylimidazolium acetate (0.70 g, 4.1 mmol), copper(II) chloride dihydrate (0.14 g, 0.82 mmol) and water (0.037 g, 2.05 mmol) was stirred in a closed vial at 333 K for 40 h. After several weeks, green crystals (yield 51%) were formed from the solution.
Synthesis of 2:
A mixture of 1-ethyl-3-methylimidazolium chloride (0.60 g, 4.1 mmol), copper(II) acetate hydrate (0.40 g, 2 mmol) and water (0.60 g, 33 mmol) was stirred in a closed vial at 343 K for 20 h. After several weeks, a green precipitate had formed from the solution. This precipitate consisted of crystals of compounds 1 and 2 with 1 predominant (and hence the yield of 2 was not determined).
Synthesis of 3:
A mixture of 1-ethyl-3-methylimidazolium acetate (0.70 g, 4.1 mmol) and copper(II) acetate hydrate (0.16 g, 0.80 mmol) was stirred in a closed vial at 323 K for 20 h. After several weeks, blue crystals (yield 41%) were formed from the solution.
Synthesis of 4:
A mixture of 1-ethyl-3-methylimidazolium acetate (1.0 g, 5.9 mmol), copper(II) acetate hydrate (0.078 g, 0.39 mmol) and copper(II) chloride dihydrate (0.133 g, 0.78 mmol) was stirred in a closed vial at 323 K for 30 h. After several weeks, blue crystals were formed from the solution. The yield was not determined because the precipitate additionally contained small green crystals of complex 1. In the absence of copper(II) chloride, compound 3 was grown from the solution.
6. Refinement
Crystal data, data collection and structure . In 2, the Emim cations and water molecules are disordered over two positions with an occupancy ratio of 0.513 (12):0.487 (12) and were refined with constraints and restraints. In 4, the water molecules refined using restraints. Water H atoms were located in difference-Fourier maps and refined using constraints with Uiso(H) = 1.2Ueq(O). C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 (aromatic), 0.98 (methyl or 0.99 Å (methylene bridges) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989018008538/zp2028sup1.cif
contains datablocks global, 1, 2, 3, 4. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018008538/zp20281sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018008538/zp20282sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989018008538/zp20283sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989018008538/zp20284sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008538/zp20281sup6.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008538/zp20282sup7.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008538/zp20283sup8.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008538/zp20284sup9.cdx
For all structures, data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).(C6H11N2)2[Cu2(C2H3O2)4Cl2] | F(000) = 676 |
Mr = 656.49 | Dx = 1.563 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2264 (14) Å | Cell parameters from 1837 reflections |
b = 12.956 (2) Å | θ = 3.0–27.3° |
c = 13.173 (2) Å | µ = 1.76 mm−1 |
β = 96.471 (3)° | T = 150 K |
V = 1395.0 (4) Å3 | Prism, green |
Z = 2 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEX DUO CCD diffractometer | 4275 independent reflections |
Radiation source: fine-focus sealed tube | 2956 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −11→11 |
Tmin = 0.620, Tmax = 0.719 | k = −10→18 |
9428 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.041P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4275 reflections | Δρmax = 0.56 e Å−3 |
167 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.01642 (4) | 0.45929 (2) | 0.90665 (2) | 0.01685 (9) | |
Cl1 | 0.04928 (8) | 0.39420 (5) | 0.73731 (4) | 0.02395 (15) | |
C1 | 0.4413 (3) | 0.5224 (2) | 0.74431 (19) | 0.0231 (6) | |
H1 | 0.3838 | 0.4770 | 0.7842 | 0.028* | |
C3 | 0.4986 (3) | 0.6537 (2) | 0.64963 (19) | 0.0225 (5) | |
H3 | 0.4899 | 0.7163 | 0.6119 | 0.027* | |
C2 | 0.5964 (3) | 0.5110 (2) | 0.72166 (18) | 0.0213 (5) | |
H2 | 0.6691 | 0.4563 | 0.7432 | 0.026* | |
C5 | 0.7800 (3) | 0.6095 (2) | 0.6145 (2) | 0.0288 (6) | |
H5A | 0.8726 | 0.5765 | 0.6570 | 0.035* | |
H5B | 0.8027 | 0.6844 | 0.6115 | 0.035* | |
C4 | 0.2199 (3) | 0.6570 (2) | 0.7028 (2) | 0.0371 (7) | |
H4A | 0.2306 | 0.7253 | 0.7349 | 0.056* | |
H4B | 0.1562 | 0.6119 | 0.7431 | 0.056* | |
H4C | 0.1639 | 0.6637 | 0.6334 | 0.056* | |
C6 | 0.7667 (5) | 0.5654 (3) | 0.5090 (3) | 0.0567 (11) | |
H6A | 0.7434 | 0.4914 | 0.5118 | 0.085* | |
H6B | 0.8701 | 0.5760 | 0.4800 | 0.085* | |
H6C | 0.6780 | 0.6000 | 0.4661 | 0.085* | |
N2 | 0.6290 (3) | 0.59310 (17) | 0.66186 (15) | 0.0197 (4) | |
N1 | 0.3825 (3) | 0.61269 (18) | 0.69846 (16) | 0.0229 (5) | |
C7 | −0.1284 (3) | 0.6607 (2) | 0.91709 (19) | 0.0202 (5) | |
C8 | −0.1941 (4) | 0.7589 (2) | 0.8675 (2) | 0.0356 (7) | |
H8A | −0.1342 | 0.7751 | 0.8093 | 0.053* | |
H8B | −0.1806 | 0.8154 | 0.9172 | 0.053* | |
H8C | −0.3105 | 0.7503 | 0.8436 | 0.053* | |
O2 | 0.2268 (2) | 0.53434 (15) | 0.93042 (13) | 0.0275 (4) | |
O1 | −0.0893 (2) | 0.58958 (14) | 0.86038 (13) | 0.0247 (4) | |
O5 | −0.1994 (2) | 0.39387 (15) | 0.91833 (13) | 0.0259 (4) | |
O3 | 0.1164 (2) | 0.34246 (14) | 0.98635 (13) | 0.0269 (4) | |
C9 | 0.2752 (3) | 0.5904 (2) | 1.00540 (19) | 0.0198 (5) | |
C10 | 0.4370 (3) | 0.6439 (2) | 1.0025 (2) | 0.0310 (6) | |
H10A | 0.5123 | 0.5981 | 0.9714 | 0.047* | |
H10B | 0.4833 | 0.6613 | 1.0722 | 0.047* | |
H10C | 0.4208 | 0.7073 | 0.9620 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01653 (14) | 0.01755 (17) | 0.01630 (13) | −0.00107 (13) | 0.00116 (10) | 0.00019 (12) |
Cl1 | 0.0271 (3) | 0.0263 (4) | 0.0192 (3) | −0.0040 (3) | 0.0056 (2) | −0.0033 (2) |
C1 | 0.0252 (13) | 0.0205 (14) | 0.0240 (12) | 0.0004 (11) | 0.0042 (10) | 0.0053 (10) |
C3 | 0.0234 (13) | 0.0223 (14) | 0.0214 (12) | −0.0019 (11) | 0.0011 (10) | 0.0031 (10) |
C2 | 0.0263 (13) | 0.0184 (13) | 0.0192 (11) | 0.0010 (11) | 0.0019 (10) | 0.0007 (10) |
C5 | 0.0235 (13) | 0.0382 (18) | 0.0261 (13) | 0.0003 (13) | 0.0091 (10) | 0.0058 (12) |
C4 | 0.0233 (14) | 0.0389 (19) | 0.0506 (18) | 0.0063 (14) | 0.0103 (13) | 0.0048 (15) |
C6 | 0.059 (2) | 0.078 (3) | 0.0387 (18) | −0.010 (2) | 0.0296 (17) | −0.0144 (19) |
N2 | 0.0214 (10) | 0.0201 (12) | 0.0179 (9) | −0.0024 (9) | 0.0029 (8) | 0.0016 (8) |
N1 | 0.0218 (11) | 0.0228 (12) | 0.0245 (10) | 0.0015 (10) | 0.0045 (8) | 0.0037 (9) |
C7 | 0.0172 (11) | 0.0171 (13) | 0.0252 (12) | −0.0012 (11) | −0.0022 (9) | 0.0018 (10) |
C8 | 0.0506 (19) | 0.0222 (16) | 0.0320 (15) | 0.0109 (14) | −0.0052 (13) | 0.0056 (12) |
O2 | 0.0181 (9) | 0.0361 (12) | 0.0288 (9) | −0.0099 (9) | 0.0053 (7) | −0.0080 (9) |
O1 | 0.0305 (10) | 0.0208 (10) | 0.0225 (9) | 0.0058 (9) | 0.0018 (7) | 0.0022 (8) |
O5 | 0.0225 (9) | 0.0322 (12) | 0.0235 (9) | −0.0080 (9) | 0.0041 (7) | −0.0014 (8) |
O3 | 0.0359 (11) | 0.0205 (10) | 0.0230 (9) | 0.0067 (9) | −0.0030 (8) | −0.0012 (8) |
C9 | 0.0142 (11) | 0.0172 (13) | 0.0276 (12) | 0.0010 (10) | 0.0006 (9) | 0.0043 (11) |
C10 | 0.0185 (13) | 0.0301 (16) | 0.0458 (16) | −0.0052 (12) | 0.0097 (11) | −0.0057 (14) |
Cu1—O1 | 1.9642 (18) | C4—H4B | 0.9800 |
Cu1—O3 | 1.9685 (18) | C4—H4C | 0.9800 |
Cu1—O2 | 1.9788 (18) | C6—H6A | 0.9800 |
Cu1—O5 | 1.9887 (18) | C6—H6B | 0.9800 |
Cu1—Cl1 | 2.4282 (7) | C6—H6C | 0.9800 |
Cu1—Cu1i | 2.7173 (7) | C7—O1 | 1.251 (3) |
C1—C2 | 1.351 (4) | C7—O3i | 1.265 (3) |
C1—N1 | 1.379 (3) | C7—C8 | 1.503 (4) |
C1—H1 | 0.9500 | C8—H8A | 0.9800 |
C3—N1 | 1.322 (3) | C8—H8B | 0.9800 |
C3—N2 | 1.324 (3) | C8—H8C | 0.9800 |
C3—H3 | 0.9500 | O2—C9 | 1.254 (3) |
C2—N2 | 1.368 (3) | O5—C9i | 1.258 (3) |
C2—H2 | 0.9500 | O3—C7i | 1.265 (3) |
C5—N2 | 1.467 (3) | C9—O5i | 1.258 (3) |
C5—C6 | 1.494 (4) | C9—C10 | 1.505 (3) |
C5—H5A | 0.9900 | C10—H10A | 0.9800 |
C5—H5B | 0.9900 | C10—H10B | 0.9800 |
C4—N1 | 1.463 (3) | C10—H10C | 0.9800 |
C4—H4A | 0.9800 | ||
O1—Cu1—O3 | 165.96 (7) | H4B—C4—H4C | 109.5 |
O1—Cu1—O2 | 88.59 (8) | C5—C6—H6A | 109.5 |
O3—Cu1—O2 | 89.32 (8) | C5—C6—H6B | 109.5 |
O1—Cu1—O5 | 91.28 (8) | H6A—C6—H6B | 109.5 |
O3—Cu1—O5 | 87.37 (8) | C5—C6—H6C | 109.5 |
O2—Cu1—O5 | 165.81 (7) | H6A—C6—H6C | 109.5 |
O1—Cu1—Cl1 | 96.00 (5) | H6B—C6—H6C | 109.5 |
O3—Cu1—Cl1 | 98.04 (6) | C3—N2—C2 | 108.8 (2) |
O2—Cu1—Cl1 | 97.48 (5) | C3—N2—C5 | 125.1 (2) |
O5—Cu1—Cl1 | 96.65 (5) | C2—N2—C5 | 126.0 (2) |
O1—Cu1—Cu1i | 82.04 (5) | C3—N1—C1 | 108.5 (2) |
O3—Cu1—Cu1i | 83.92 (5) | C3—N1—C4 | 125.1 (2) |
O2—Cu1—Cu1i | 80.81 (5) | C1—N1—C4 | 126.4 (2) |
O5—Cu1—Cu1i | 85.11 (5) | O1—C7—O3i | 125.4 (2) |
Cl1—Cu1—Cu1i | 177.41 (3) | O1—C7—C8 | 117.9 (2) |
C2—C1—N1 | 106.8 (2) | O3i—C7—C8 | 116.7 (2) |
C2—C1—H1 | 126.6 | C7—C8—H8A | 109.5 |
N1—C1—H1 | 126.6 | C7—C8—H8B | 109.5 |
N1—C3—N2 | 108.8 (2) | H8A—C8—H8B | 109.5 |
N1—C3—H3 | 125.6 | C7—C8—H8C | 109.5 |
N2—C3—H3 | 125.6 | H8A—C8—H8C | 109.5 |
C1—C2—N2 | 107.1 (2) | H8B—C8—H8C | 109.5 |
C1—C2—H2 | 126.5 | C9—O2—Cu1 | 127.14 (16) |
N2—C2—H2 | 126.5 | C7—O1—Cu1 | 125.64 (16) |
N2—C5—C6 | 111.3 (2) | C9i—O5—Cu1 | 121.34 (17) |
N2—C5—H5A | 109.4 | C7i—O3—Cu1 | 122.82 (17) |
C6—C5—H5A | 109.4 | O2—C9—O5i | 125.5 (2) |
N2—C5—H5B | 109.4 | O2—C9—C10 | 116.8 (2) |
C6—C5—H5B | 109.4 | O5i—C9—C10 | 117.7 (2) |
H5A—C5—H5B | 108.0 | C9—C10—H10A | 109.5 |
N1—C4—H4A | 109.5 | C9—C10—H10B | 109.5 |
N1—C4—H4B | 109.5 | H10A—C10—H10B | 109.5 |
H4A—C4—H4B | 109.5 | C9—C10—H10C | 109.5 |
N1—C4—H4C | 109.5 | H10A—C10—H10C | 109.5 |
H4A—C4—H4C | 109.5 | H10B—C10—H10C | 109.5 |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···Cl1ii | 0.98 | 2.83 | 3.550 (3) | 131 |
C4—H4B···Cl1 | 0.98 | 2.95 | 3.731 (3) | 137 |
C4—H4A···Cl1iii | 0.98 | 2.84 | 3.651 (3) | 141 |
C5—H5A···Cl1iv | 0.99 | 2.91 | 3.808 (3) | 151 |
C2—H2···O5iv | 0.95 | 2.57 | 3.295 (3) | 134 |
C3—H3···O3iii | 0.95 | 2.20 | 3.115 (3) | 160 |
C1—H1···O2 | 0.95 | 2.55 | 3.182 (3) | 124 |
C1—H1···Cl1 | 0.95 | 2.95 | 3.619 (3) | 128 |
Symmetry codes: (ii) −x−1/2, y+1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x+1, y, z. |
(C6H11N2)[Cu2(C2H3O2)4Cl]·H2O | F(000) = 1080 |
Mr = 527.89 | Dx = 1.694 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.438 (4) Å | Cell parameters from 718 reflections |
b = 16.315 (7) Å | θ = 2.4–21.6° |
c = 15.131 (7) Å | µ = 2.23 mm−1 |
β = 96.53 (1)° | T = 198 K |
V = 2069.7 (16) Å3 | Prism, green |
Z = 4 | 0.11 × 0.08 × 0.07 mm |
Bruker Smart APEX II CCD diffractometer | 4229 independent reflections |
Radiation source: fine-focus sealed tube | 2504 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
φ and ω scans | θmax = 26.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −10→10 |
Tmin = 0.795, Tmax = 0.858 | k = −20→20 |
35161 measured reflections | l = −16→18 |
Refinement on F2 | 93 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.265 | w = 1/[σ2(Fo2) + (0.1024P)2 + 19.8459P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4229 reflections | Δρmax = 1.70 e Å−3 |
319 parameters | Δρmin = −0.94 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7268 (11) | 0.5647 (5) | 0.4896 (7) | 0.035 (2) | |
C2 | 0.5618 (11) | 0.6017 (6) | 0.4836 (8) | 0.045 (3) | |
H2A | 0.5704 | 0.6610 | 0.4938 | 0.067* | |
H2B | 0.5025 | 0.5769 | 0.5289 | 0.067* | |
H2C | 0.5055 | 0.5913 | 0.4245 | 0.067* | |
C3 | 0.8705 (10) | 0.3595 (5) | 0.5044 (7) | 0.0313 (19) | |
C4 | 0.7916 (12) | 0.2770 (6) | 0.5083 (8) | 0.044 (3) | |
H4A | 0.7423 | 0.2618 | 0.4488 | 0.067* | |
H4B | 0.7096 | 0.2796 | 0.5491 | 0.067* | |
H4C | 0.8717 | 0.2359 | 0.5295 | 0.067* | |
C5 | 0.7238 (11) | 0.4373 (6) | −0.0335 (8) | 0.039 (2) | |
C6 | 0.5583 (11) | 0.4033 (6) | −0.0541 (8) | 0.047 (3) | |
H6A | 0.4831 | 0.4484 | −0.0686 | 0.070* | |
H6B | 0.5286 | 0.3735 | −0.0023 | 0.070* | |
H6C | 0.5553 | 0.3659 | −0.1050 | 0.070* | |
C7 | 1.1261 (10) | 0.3598 (5) | 0.0057 (6) | 0.0283 (18) | |
C8 | 1.2080 (12) | 0.2769 (5) | 0.0107 (7) | 0.039 (2) | |
H8A | 1.1734 | 0.2453 | 0.0601 | 0.059* | |
H8B | 1.3239 | 0.2846 | 0.0203 | 0.059* | |
H8C | 1.1796 | 0.2472 | −0.0452 | 0.059* | |
N1A | 0.142 (3) | 0.2561 (15) | 0.263 (3) | 0.035 (4) | 0.513 (12) |
N2A | 0.382 (2) | 0.3105 (12) | 0.2719 (13) | 0.033 (3) | 0.513 (12) |
C9A | 0.230 (2) | 0.3252 (13) | 0.2752 (17) | 0.030 (4) | 0.513 (12) |
H9A | 0.1871 | 0.3779 | 0.2847 | 0.036* | 0.513 (12) |
C10A | −0.029 (3) | 0.248 (3) | 0.264 (3) | 0.050 (7) | 0.513 (12) |
H10A | −0.0673 | 0.2935 | 0.2989 | 0.075* | 0.513 (12) |
H10B | −0.0523 | 0.1960 | 0.2920 | 0.075* | 0.513 (12) |
H10C | −0.0817 | 0.2502 | 0.2034 | 0.075* | 0.513 (12) |
C11A | 0.247 (3) | 0.1942 (17) | 0.246 (4) | 0.048 (5) | 0.513 (12) |
H11A | 0.2197 | 0.1383 | 0.2352 | 0.058* | 0.513 (12) |
C12A | 0.391 (3) | 0.2268 (14) | 0.248 (5) | 0.049 (5) | 0.513 (12) |
H12A | 0.4850 | 0.1988 | 0.2357 | 0.059* | 0.513 (12) |
C13A | 0.505 (3) | 0.3747 (17) | 0.2777 (16) | 0.059 (7) | 0.513 (12) |
H13A | 0.5941 | 0.3585 | 0.3224 | 0.071* | 0.513 (12) |
H13B | 0.4592 | 0.4264 | 0.2980 | 0.071* | 0.513 (12) |
C14A | 0.569 (4) | 0.390 (2) | 0.1885 (19) | 0.105 (14) | 0.513 (12) |
H14A | 0.6144 | 0.3386 | 0.1681 | 0.157* | 0.513 (12) |
H14B | 0.6516 | 0.4320 | 0.1956 | 0.157* | 0.513 (12) |
H14C | 0.4816 | 0.4077 | 0.1445 | 0.157* | 0.513 (12) |
N1B | 0.193 (3) | 0.2668 (17) | 0.257 (4) | 0.035 (4) | 0.487 (12) |
N2B | 0.429 (2) | 0.3195 (12) | 0.2470 (14) | 0.033 (3) | 0.487 (12) |
C9B | 0.280 (3) | 0.3363 (14) | 0.2557 (18) | 0.030 (4) | 0.487 (12) |
H9B | 0.2379 | 0.3900 | 0.2605 | 0.036* | 0.487 (12) |
C10B | 0.023 (3) | 0.261 (3) | 0.261 (4) | 0.054 (9) | 0.487 (12) |
H10D | −0.0221 | 0.3163 | 0.2634 | 0.081* | 0.487 (12) |
H10E | 0.0026 | 0.2302 | 0.3138 | 0.081* | 0.487 (12) |
H10F | −0.0270 | 0.2328 | 0.2075 | 0.081* | 0.487 (12) |
C11B | 0.302 (4) | 0.2041 (17) | 0.251 (4) | 0.048 (5) | 0.487 (12) |
H11B | 0.2753 | 0.1475 | 0.2496 | 0.058* | 0.487 (12) |
C12B | 0.448 (4) | 0.2333 (15) | 0.247 (6) | 0.049 (5) | 0.487 (12) |
H12B | 0.5438 | 0.2031 | 0.2453 | 0.059* | 0.487 (12) |
C13B | 0.564 (3) | 0.3763 (13) | 0.246 (2) | 0.052 (6) | 0.487 (12) |
H13C | 0.6156 | 0.3674 | 0.1909 | 0.062* | 0.487 (12) |
H13D | 0.6435 | 0.3656 | 0.2975 | 0.062* | 0.487 (12) |
C14B | 0.506 (2) | 0.4652 (12) | 0.2484 (14) | 0.042 (5) | 0.487 (12) |
H14D | 0.3952 | 0.4686 | 0.2213 | 0.063* | 0.487 (12) |
H14E | 0.5732 | 0.5001 | 0.2154 | 0.063* | 0.487 (12) |
H14F | 0.5131 | 0.4837 | 0.3103 | 0.063* | 0.487 (12) |
Cl1 | 0.9622 (3) | 0.49055 (16) | 0.24814 (16) | 0.0444 (6) | |
Cu1 | 0.98839 (12) | 0.49546 (7) | 0.41183 (7) | 0.0314 (3) | |
Cu2 | 0.98635 (12) | 0.49562 (7) | 0.08689 (7) | 0.0303 (3) | |
O1 | 0.7800 (8) | 0.5456 (5) | 0.4194 (5) | 0.0452 (17) | |
O2 | 0.7991 (8) | 0.5550 (4) | 0.5671 (5) | 0.0444 (17) | |
O3 | 0.8907 (8) | 0.3873 (4) | 0.4302 (5) | 0.0419 (16) | |
O4 | 0.9075 (9) | 0.3949 (4) | 0.5780 (4) | 0.0430 (17) | |
O5 | 0.7770 (8) | 0.4478 (5) | 0.0462 (5) | 0.0471 (18) | |
O6 | 0.7989 (8) | 0.4548 (5) | −0.0980 (5) | 0.053 (2) | |
O7 | 1.0869 (8) | 0.3877 (4) | 0.0774 (4) | 0.0406 (16) | |
O9A | 0.715 (3) | 0.3631 (15) | 0.7359 (15) | 0.056 (5) | 0.513 (12) |
H2WA | 0.77 (2) | 0.367 (12) | 0.689 (10) | 0.067* | 0.513 (12) |
H1WA | 0.72 (3) | 0.413 (7) | 0.761 (16) | 0.067* | 0.513 (12) |
O9B | 0.691 (3) | 0.4074 (14) | 0.7142 (16) | 0.056 (5) | 0.487 (12) |
H2WB | 0.766 (18) | 0.406 (14) | 0.675 (9) | 0.067* | 0.487 (12) |
H1WB | 0.72 (4) | 0.367 (19) | 0.75 (2) | 0.067* | 0.487 (12) |
O8 | 1.1090 (8) | 0.3948 (4) | −0.0674 (4) | 0.0392 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.030 (4) | 0.019 (4) | 0.054 (6) | 0.004 (3) | −0.003 (4) | −0.001 (4) |
C2 | 0.025 (4) | 0.027 (5) | 0.080 (8) | −0.001 (4) | 0.001 (4) | 0.013 (5) |
C3 | 0.025 (4) | 0.024 (4) | 0.043 (5) | 0.002 (3) | −0.002 (4) | −0.005 (4) |
C4 | 0.042 (6) | 0.022 (5) | 0.068 (8) | −0.004 (4) | 0.003 (5) | −0.002 (5) |
C5 | 0.025 (4) | 0.024 (5) | 0.067 (6) | 0.005 (3) | −0.007 (4) | −0.014 (5) |
C6 | 0.023 (4) | 0.041 (6) | 0.075 (8) | 0.000 (4) | −0.004 (4) | −0.022 (5) |
C7 | 0.025 (4) | 0.019 (4) | 0.041 (5) | −0.001 (3) | 0.003 (4) | −0.007 (4) |
C8 | 0.041 (5) | 0.019 (4) | 0.059 (7) | 0.004 (4) | 0.010 (5) | 0.000 (4) |
N1A | 0.043 (12) | 0.036 (7) | 0.029 (8) | −0.007 (7) | 0.008 (15) | −0.001 (7) |
N2A | 0.034 (8) | 0.048 (5) | 0.018 (10) | 0.000 (5) | 0.009 (5) | 0.011 (6) |
C9A | 0.036 (9) | 0.028 (6) | 0.029 (11) | 0.000 (6) | 0.016 (8) | 0.009 (7) |
C10A | 0.047 (13) | 0.08 (2) | 0.029 (14) | −0.018 (12) | 0.010 (15) | 0.008 (14) |
C11A | 0.058 (17) | 0.035 (6) | 0.046 (9) | 0.006 (7) | −0.02 (2) | −0.008 (8) |
C12A | 0.046 (16) | 0.049 (6) | 0.049 (8) | 0.023 (7) | −0.01 (3) | 0.009 (9) |
C13A | 0.051 (14) | 0.077 (13) | 0.050 (15) | −0.023 (12) | 0.010 (11) | 0.029 (13) |
C14A | 0.11 (3) | 0.15 (3) | 0.07 (2) | −0.07 (2) | 0.035 (18) | 0.02 (2) |
N1B | 0.043 (12) | 0.036 (7) | 0.029 (8) | −0.007 (7) | 0.008 (15) | −0.001 (7) |
N2B | 0.034 (8) | 0.048 (5) | 0.018 (10) | 0.000 (5) | 0.009 (5) | 0.011 (6) |
C9B | 0.036 (9) | 0.028 (6) | 0.029 (11) | 0.000 (6) | 0.016 (8) | 0.009 (7) |
C10B | 0.045 (14) | 0.066 (19) | 0.056 (19) | −0.021 (13) | 0.03 (2) | 0.005 (16) |
C11B | 0.058 (17) | 0.035 (6) | 0.046 (9) | 0.006 (7) | −0.02 (2) | −0.008 (8) |
C12B | 0.046 (16) | 0.049 (6) | 0.049 (8) | 0.023 (7) | −0.01 (3) | 0.009 (9) |
C13B | 0.029 (11) | 0.074 (11) | 0.052 (19) | −0.008 (9) | 0.004 (11) | 0.018 (15) |
C14B | 0.017 (8) | 0.067 (9) | 0.041 (12) | −0.018 (8) | −0.002 (8) | 0.005 (11) |
Cl1 | 0.0558 (14) | 0.0398 (13) | 0.0342 (12) | 0.0062 (11) | −0.0095 (10) | −0.0070 (11) |
Cu1 | 0.0339 (6) | 0.0200 (6) | 0.0380 (7) | 0.0020 (4) | −0.0066 (4) | −0.0041 (5) |
Cu2 | 0.0289 (6) | 0.0233 (6) | 0.0370 (7) | 0.0035 (4) | −0.0035 (4) | −0.0095 (5) |
O1 | 0.030 (3) | 0.059 (4) | 0.044 (4) | 0.013 (3) | −0.007 (3) | −0.006 (4) |
O2 | 0.038 (4) | 0.049 (4) | 0.046 (4) | 0.009 (3) | 0.003 (3) | −0.003 (3) |
O3 | 0.055 (4) | 0.028 (3) | 0.042 (4) | −0.009 (3) | 0.003 (3) | −0.009 (3) |
O4 | 0.062 (5) | 0.028 (4) | 0.038 (4) | −0.009 (3) | −0.001 (3) | −0.003 (3) |
O5 | 0.029 (3) | 0.053 (5) | 0.057 (4) | −0.011 (3) | −0.006 (3) | −0.007 (4) |
O6 | 0.031 (4) | 0.074 (6) | 0.053 (4) | −0.005 (4) | 0.000 (3) | −0.025 (4) |
O7 | 0.056 (4) | 0.029 (3) | 0.036 (4) | 0.015 (3) | 0.002 (3) | 0.000 (3) |
O9A | 0.056 (8) | 0.061 (12) | 0.054 (11) | −0.032 (10) | 0.016 (7) | −0.023 (10) |
O9B | 0.056 (8) | 0.061 (12) | 0.054 (11) | −0.032 (10) | 0.016 (7) | −0.023 (10) |
O8 | 0.057 (4) | 0.025 (3) | 0.038 (4) | 0.013 (3) | 0.015 (3) | 0.001 (3) |
C1—O1 | 1.240 (12) | C14A—H14B | 0.9800 |
C1—O2 | 1.269 (12) | C14A—H14C | 0.9800 |
C1—C2 | 1.511 (12) | N1B—C9B | 1.348 (17) |
C2—H2A | 0.9800 | N1B—C11B | 1.382 (17) |
C2—H2B | 0.9800 | N1B—C10B | 1.45 (2) |
C2—H2C | 0.9800 | N2B—C9B | 1.309 (18) |
C3—O3 | 1.241 (11) | N2B—C12B | 1.42 (2) |
C3—O4 | 1.261 (11) | N2B—C13B | 1.47 (2) |
C3—C4 | 1.506 (12) | C9B—H9B | 0.9500 |
C4—H4A | 0.9800 | C10B—H10D | 0.9800 |
C4—H4B | 0.9800 | C10B—H10E | 0.9800 |
C4—H4C | 0.9800 | C10B—H10F | 0.9800 |
C5—O5 | 1.250 (12) | C11B—C12B | 1.33 (2) |
C5—O6 | 1.256 (13) | C11B—H11B | 0.9500 |
C5—C6 | 1.502 (12) | C12B—H12B | 0.9500 |
C6—H6A | 0.9800 | C13B—C14B | 1.531 (18) |
C6—H6B | 0.9800 | C13B—H13C | 0.9900 |
C6—H6C | 0.9800 | C13B—H13D | 0.9900 |
C7—O8 | 1.239 (11) | C14B—H14D | 0.9800 |
C7—O7 | 1.255 (11) | C14B—H14E | 0.9800 |
C7—C8 | 1.518 (11) | C14B—H14F | 0.9800 |
C8—H8A | 0.9800 | Cl1—Cu1 | 2.463 (3) |
C8—H8B | 0.9800 | Cl1—Cu2 | 2.473 (3) |
C8—H8C | 0.9800 | Cu1—O1 | 1.954 (7) |
N1A—C9A | 1.350 (17) | Cu1—O2i | 1.966 (7) |
N1A—C11A | 1.383 (17) | Cu1—O3 | 1.981 (7) |
N1A—C10A | 1.45 (2) | Cu1—O4i | 1.990 (7) |
N2A—C9A | 1.308 (18) | Cu1—Cu1i | 2.657 (3) |
N2A—C12A | 1.42 (2) | Cu2—O5 | 1.965 (6) |
N2A—C13A | 1.47 (2) | Cu2—O7 | 1.967 (6) |
C9A—H9A | 0.9500 | Cu2—O8ii | 1.969 (6) |
C10A—H10A | 0.9800 | Cu2—O6ii | 1.974 (7) |
C10A—H10B | 0.9800 | Cu2—Cu2ii | 2.669 (3) |
C10A—H10C | 0.9800 | O2—Cu1i | 1.966 (7) |
C11A—C12A | 1.33 (2) | O4—Cu1i | 1.990 (7) |
C11A—H11A | 0.9500 | O6—Cu2ii | 1.974 (7) |
C12A—H12A | 0.9500 | O9A—H2WA | 0.90 (2) |
C13A—C14A | 1.529 (16) | O9A—H1WA | 0.90 (2) |
C13A—H13A | 0.9900 | O9B—H2WB | 0.909 (19) |
C13A—H13B | 0.9900 | O9B—H1WB | 0.90 (2) |
C14A—H14A | 0.9800 | O8—Cu2ii | 1.969 (6) |
O1—C1—O2 | 125.3 (8) | C9B—N2B—C12B | 108.6 (17) |
O1—C1—C2 | 118.1 (9) | C9B—N2B—C13B | 128.7 (18) |
O2—C1—C2 | 116.6 (9) | C12B—N2B—C13B | 122.5 (19) |
C1—C2—H2A | 109.5 | N2B—C9B—N1B | 110.6 (16) |
C1—C2—H2B | 109.5 | N2B—C9B—H9B | 124.7 |
H2A—C2—H2B | 109.5 | N1B—C9B—H9B | 124.7 |
C1—C2—H2C | 109.5 | N1B—C10B—H10D | 109.5 |
H2A—C2—H2C | 109.5 | N1B—C10B—H10E | 109.5 |
H2B—C2—H2C | 109.5 | H10D—C10B—H10E | 109.5 |
O3—C3—O4 | 125.9 (9) | N1B—C10B—H10F | 109.5 |
O3—C3—C4 | 117.9 (9) | H10D—C10B—H10F | 109.5 |
O4—C3—C4 | 116.2 (9) | H10E—C10B—H10F | 109.5 |
C3—C4—H4A | 109.5 | C12B—C11B—N1B | 111.2 (19) |
C3—C4—H4B | 109.5 | C12B—C11B—H11B | 124.4 |
H4A—C4—H4B | 109.5 | N1B—C11B—H11B | 124.4 |
C3—C4—H4C | 109.5 | C11B—C12B—N2B | 104.4 (19) |
H4A—C4—H4C | 109.5 | C11B—C12B—H12B | 127.8 |
H4B—C4—H4C | 109.5 | N2B—C12B—H12B | 127.8 |
O5—C5—O6 | 124.2 (9) | N2B—C13B—C14B | 110.3 (18) |
O5—C5—C6 | 118.3 (10) | N2B—C13B—H13C | 109.6 |
O6—C5—C6 | 117.5 (10) | C14B—C13B—H13C | 109.6 |
C5—C6—H6A | 109.5 | N2B—C13B—H13D | 109.6 |
C5—C6—H6B | 109.5 | C14B—C13B—H13D | 109.6 |
H6A—C6—H6B | 109.5 | H13C—C13B—H13D | 108.1 |
C5—C6—H6C | 109.5 | C13B—C14B—H14D | 109.5 |
H6A—C6—H6C | 109.5 | C13B—C14B—H14E | 109.5 |
H6B—C6—H6C | 109.5 | H14D—C14B—H14E | 109.5 |
O8—C7—O7 | 126.2 (8) | C13B—C14B—H14F | 109.5 |
O8—C7—C8 | 117.4 (8) | H14D—C14B—H14F | 109.5 |
O7—C7—C8 | 116.3 (8) | H14E—C14B—H14F | 109.5 |
C7—C8—H8A | 109.5 | Cu1—Cl1—Cu2 | 169.49 (13) |
C7—C8—H8B | 109.5 | O1—Cu1—O2i | 167.4 (3) |
H8A—C8—H8B | 109.5 | O1—Cu1—O3 | 88.4 (3) |
C7—C8—H8C | 109.5 | O2i—Cu1—O3 | 89.5 (3) |
H8A—C8—H8C | 109.5 | O1—Cu1—O4i | 90.7 (3) |
H8B—C8—H8C | 109.5 | O2i—Cu1—O4i | 88.7 (3) |
C9A—N1A—C11A | 106.5 (17) | O3—Cu1—O4i | 167.6 (3) |
C9A—N1A—C10A | 127.1 (18) | O1—Cu1—Cl1 | 95.4 (2) |
C11A—N1A—C10A | 126 (2) | O2i—Cu1—Cl1 | 97.2 (2) |
C9A—N2A—C12A | 105.8 (17) | O3—Cu1—Cl1 | 96.9 (2) |
C9A—N2A—C13A | 123.7 (19) | O4i—Cu1—Cl1 | 95.5 (2) |
C12A—N2A—C13A | 129.8 (19) | O1—Cu1—Cu1i | 83.2 (2) |
N2A—C9A—N1A | 111.4 (16) | O2i—Cu1—Cu1i | 84.2 (2) |
N2A—C9A—H9A | 124.3 | O3—Cu1—Cu1i | 83.9 (2) |
N1A—C9A—H9A | 124.3 | O4i—Cu1—Cu1i | 83.7 (2) |
N1A—C10A—H10A | 109.5 | Cl1—Cu1—Cu1i | 178.39 (9) |
N1A—C10A—H10B | 109.5 | O5—Cu2—O7 | 90.1 (3) |
H10A—C10A—H10B | 109.5 | O5—Cu2—O8ii | 88.6 (3) |
N1A—C10A—H10C | 109.5 | O7—Cu2—O8ii | 167.0 (3) |
H10A—C10A—H10C | 109.5 | O5—Cu2—O6ii | 166.7 (3) |
H10B—C10A—H10C | 109.5 | O7—Cu2—O6ii | 88.5 (3) |
C12A—C11A—N1A | 107.8 (19) | O8ii—Cu2—O6ii | 89.8 (3) |
C12A—C11A—H11A | 126.1 | O5—Cu2—Cl1 | 97.1 (2) |
N1A—C11A—H11A | 126.1 | O7—Cu2—Cl1 | 97.3 (2) |
C11A—C12A—N2A | 108.2 (19) | O8ii—Cu2—Cl1 | 95.7 (2) |
C11A—C12A—H12A | 125.9 | O6ii—Cu2—Cl1 | 96.2 (2) |
N2A—C12A—H12A | 125.9 | O5—Cu2—Cu2ii | 83.6 (2) |
N2A—C13A—C14A | 112 (2) | O7—Cu2—Cu2ii | 83.7 (2) |
N2A—C13A—H13A | 109.2 | O8ii—Cu2—Cu2ii | 83.3 (2) |
C14A—C13A—H13A | 109.2 | O6ii—Cu2—Cu2ii | 83.2 (2) |
N2A—C13A—H13B | 109.2 | Cl1—Cu2—Cu2ii | 178.82 (9) |
C14A—C13A—H13B | 109.2 | C1—O1—Cu1 | 124.9 (6) |
H13A—C13A—H13B | 107.9 | C1—O2—Cu1i | 122.4 (6) |
C13A—C14A—H14A | 109.5 | C3—O3—Cu1 | 123.6 (6) |
C13A—C14A—H14B | 109.5 | C3—O4—Cu1i | 122.9 (6) |
H14A—C14A—H14B | 109.5 | C5—O5—Cu2 | 124.6 (7) |
C13A—C14A—H14C | 109.5 | C5—O6—Cu2ii | 124.5 (6) |
H14A—C14A—H14C | 109.5 | C7—O7—Cu2 | 123.0 (6) |
H14B—C14A—H14C | 109.5 | H2WA—O9A—H1WA | 105 (5) |
C9B—N1B—C11B | 105.1 (17) | H2WB—O9B—H1WB | 105 (5) |
C9B—N1B—C10B | 126.4 (19) | C7—O8—Cu2ii | 123.8 (6) |
C11B—N1B—C10B | 128 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9B—H2WB···O4 | 0.91 (2) | 2.01 (2) | 2.91 (2) | 172 (18) |
O9A—H1WA···O6iii | 0.90 (2) | 2.3 (2) | 2.94 (3) | 131 (23) |
O9A—H2WA···O4 | 0.90 (2) | 2.19 (5) | 3.08 (2) | 172 (18) |
C14B—H14D···O6iv | 0.98 | 2.65 | 3.49 (2) | 144 |
C12B—H12B···O9Bv | 0.95 | 2.27 | 3.16 (3) | 155 |
C10B—H10D···Cl1vi | 0.98 | 2.85 | 3.78 (5) | 158 |
C9B—H9B···Cl1vi | 0.95 | 2.84 | 3.67 (2) | 147 |
C14A—H14B···Cl1 | 0.98 | 2.82 | 3.72 (3) | 154 |
C12A—H12A···O9Av | 0.95 | 2.19 | 3.13 (3) | 168 |
C11A—H11A···Cl1vii | 0.95 | 2.88 | 3.77 (3) | 155 |
C10A—H10B···O9Aviii | 0.98 | 2.26 | 2.82 (4) | 115 |
C10A—H10A···O3vi | 0.98 | 2.56 | 3.50 (5) | 161 |
C9A—H9A···O2ix | 0.95 | 2.48 | 3.11 (3) | 124 |
C9A—H9A···Cl1vi | 0.95 | 2.65 | 3.51 (2) | 151 |
C2—H2C···O9Bix | 0.98 | 2.52 | 3.48 (3) | 165 |
Symmetry codes: (iii) x, y, z+1; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z−1/2; (vi) x−1, y, z; (vii) −x+1, y−1/2, −z+1/2; (viii) x−1, −y+1/2, z−1/2; (ix) −x+1, −y+1, −z+1. |
(C6H11N2)[Cu2(C2H3O2)5] | Z = 2 |
Mr = 533.47 | F(000) = 548 |
Triclinic, P1 | Dx = 1.637 Mg m−3 |
a = 8.0542 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1633 (9) Å | Cell parameters from 4553 reflections |
c = 16.7195 (19) Å | θ = 2.5–30.5° |
α = 98.126 (3)° | µ = 2.02 mm−1 |
β = 94.745 (3)° | T = 198 K |
γ = 92.964 (3)° | Prism, blue |
V = 1082.3 (2) Å3 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEX DUO CCD diffractometer | 4343 independent reflections |
Radiation source: fine-focus sealed tube | 3662 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 26.4°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −7→10 |
Tmin = 0.583, Tmax = 0.688 | k = −10→10 |
11652 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.81 | (Δ/σ)max = 0.044 |
4343 reflections | Δρmax = 0.38 e Å−3 |
278 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.92345 (4) | 0.99123 (3) | 0.92550 (2) | 0.01579 (11) | |
Cu2 | 0.56051 (4) | 0.98913 (3) | 0.57530 (2) | 0.01600 (11) | |
O7 | 0.7481 (2) | 0.8938 (2) | 0.52154 (11) | 0.0256 (4) | |
O5 | 0.7615 (3) | 0.9983 (2) | 0.82103 (10) | 0.0239 (4) | |
O2 | 1.1356 (2) | 1.0928 (2) | 0.89944 (11) | 0.0269 (4) | |
O8 | 0.6506 (2) | 0.9156 (2) | 0.39488 (10) | 0.0254 (4) | |
O4 | 0.8587 (2) | 1.2104 (2) | 0.97397 (10) | 0.0266 (4) | |
O6 | 0.6474 (2) | 1.0114 (2) | 0.69902 (11) | 0.0261 (4) | |
O9 | 0.4417 (2) | 0.7682 (2) | 0.55935 (11) | 0.0287 (5) | |
O10 | 0.3447 (2) | 0.7862 (2) | 0.43204 (11) | 0.0272 (4) | |
O1 | 1.2610 (2) | 1.1154 (2) | 1.02491 (11) | 0.0315 (5) | |
O3 | 0.9849 (3) | 1.2283 (2) | 1.09893 (11) | 0.0291 (5) | |
N1 | 0.6086 (3) | 0.4848 (3) | 0.78982 (12) | 0.0236 (5) | |
N2 | 0.4357 (3) | 0.6683 (3) | 0.76515 (14) | 0.0281 (5) | |
C7 | 0.7587 (3) | 0.8778 (3) | 0.44641 (15) | 0.0176 (5) | |
C1 | 1.2586 (3) | 1.1306 (3) | 0.95090 (15) | 0.0209 (5) | |
C9 | 0.3605 (3) | 0.7127 (3) | 0.49278 (16) | 0.0217 (5) | |
C3 | 0.8935 (3) | 1.2817 (3) | 1.04474 (15) | 0.0197 (5) | |
C11 | 0.5724 (3) | 0.6410 (3) | 0.80908 (16) | 0.0253 (6) | |
H11 | 0.6350 | 0.7209 | 0.8484 | 0.030* | |
C4 | 0.8185 (4) | 1.4451 (3) | 1.06738 (17) | 0.0302 (6) | |
H4A | 0.9004 | 1.5360 | 1.0633 | 0.045* | |
H4B | 0.7874 | 1.4537 | 1.1232 | 0.045* | |
H4C | 0.7190 | 1.4522 | 1.0304 | 0.045* | |
C5 | 0.7598 (3) | 0.9663 (3) | 0.74538 (13) | 0.0191 (5) | |
C8 | 0.9154 (3) | 0.8103 (3) | 0.41572 (18) | 0.0305 (6) | |
H8A | 0.8967 | 0.7734 | 0.3571 | 0.046* | |
H8B | 0.9454 | 0.7162 | 0.4432 | 0.046* | |
H8C | 1.0064 | 0.8971 | 0.4268 | 0.046* | |
C2 | 1.4171 (4) | 1.1998 (4) | 0.92301 (19) | 0.0323 (7) | |
H2A | 1.5008 | 1.1168 | 0.9223 | 0.048* | |
H2B | 1.4593 | 1.2996 | 0.9602 | 0.048* | |
H2C | 1.3944 | 1.2280 | 0.8683 | 0.048* | |
C13 | 0.4900 (4) | 0.4082 (4) | 0.73099 (17) | 0.0360 (7) | |
H13 | 0.4849 | 0.2961 | 0.7057 | 0.043* | |
C14 | 0.7545 (4) | 0.4061 (4) | 0.82256 (17) | 0.0331 (7) | |
H14A | 0.7178 | 0.2979 | 0.8376 | 0.040* | |
H14B | 0.8061 | 0.4770 | 0.8723 | 0.040* | |
C15 | 0.8825 (4) | 0.3799 (4) | 0.76169 (19) | 0.0360 (7) | |
H15A | 0.8301 | 0.3149 | 0.7113 | 0.054* | |
H15B | 0.9740 | 0.3201 | 0.7838 | 0.054* | |
H15C | 0.9267 | 0.4876 | 0.7504 | 0.054* | |
C12 | 0.3825 (4) | 0.5232 (4) | 0.71625 (18) | 0.0410 (8) | |
H12 | 0.2863 | 0.5066 | 0.6784 | 0.049* | |
C10 | 0.2743 (4) | 0.5423 (3) | 0.4847 (2) | 0.0415 (8) | |
H10A | 0.3418 | 0.4724 | 0.5158 | 0.062* | |
H10B | 0.2605 | 0.4930 | 0.4274 | 0.062* | |
H10C | 0.1644 | 0.5506 | 0.5056 | 0.062* | |
C6 | 0.8976 (5) | 0.8706 (5) | 0.71030 (18) | 0.0480 (9) | |
H6A | 0.8610 | 0.8196 | 0.6546 | 0.072* | |
H6B | 0.9253 | 0.7838 | 0.7432 | 0.072* | |
H6C | 0.9964 | 0.9458 | 0.7102 | 0.072* | |
C16 | 0.3528 (4) | 0.8234 (4) | 0.7685 (2) | 0.0467 (9) | |
H16A | 0.2508 | 0.8140 | 0.7961 | 0.070* | |
H16B | 0.3242 | 0.8465 | 0.7133 | 0.070* | |
H16C | 0.4278 | 0.9139 | 0.7984 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01738 (19) | 0.01679 (18) | 0.01239 (18) | 0.00049 (13) | −0.00352 (12) | 0.00242 (13) |
Cu2 | 0.01685 (19) | 0.01832 (18) | 0.01209 (18) | 0.00081 (13) | −0.00266 (13) | 0.00212 (13) |
O7 | 0.0227 (10) | 0.0340 (10) | 0.0206 (10) | 0.0092 (8) | 0.0008 (8) | 0.0035 (8) |
O5 | 0.0274 (10) | 0.0272 (10) | 0.0155 (9) | 0.0027 (8) | −0.0073 (7) | 0.0024 (7) |
O2 | 0.0239 (11) | 0.0349 (11) | 0.0221 (10) | −0.0033 (8) | 0.0013 (8) | 0.0069 (8) |
O8 | 0.0207 (10) | 0.0351 (10) | 0.0193 (9) | 0.0049 (8) | −0.0002 (8) | 0.0001 (8) |
O4 | 0.0345 (12) | 0.0228 (9) | 0.0204 (10) | 0.0101 (8) | −0.0057 (8) | −0.0020 (8) |
O6 | 0.0273 (11) | 0.0355 (11) | 0.0144 (9) | 0.0051 (8) | −0.0071 (8) | 0.0040 (8) |
O9 | 0.0337 (12) | 0.0232 (9) | 0.0291 (10) | −0.0033 (8) | −0.0020 (9) | 0.0082 (8) |
O10 | 0.0321 (11) | 0.0216 (9) | 0.0261 (10) | −0.0046 (8) | −0.0020 (8) | 0.0028 (8) |
O1 | 0.0248 (11) | 0.0426 (12) | 0.0262 (10) | −0.0107 (9) | −0.0023 (8) | 0.0093 (9) |
O3 | 0.0421 (13) | 0.0211 (9) | 0.0221 (10) | 0.0089 (8) | −0.0072 (9) | −0.0008 (8) |
N1 | 0.0285 (13) | 0.0216 (11) | 0.0193 (11) | −0.0012 (9) | 0.0016 (9) | −0.0006 (9) |
N2 | 0.0268 (13) | 0.0292 (12) | 0.0292 (12) | 0.0016 (10) | 0.0068 (10) | 0.0048 (10) |
C7 | 0.0158 (13) | 0.0113 (11) | 0.0236 (13) | −0.0017 (9) | 0.0005 (10) | −0.0032 (9) |
C1 | 0.0198 (14) | 0.0170 (12) | 0.0259 (14) | 0.0004 (10) | 0.0021 (11) | 0.0036 (10) |
C9 | 0.0199 (13) | 0.0169 (12) | 0.0287 (14) | 0.0022 (10) | 0.0028 (11) | 0.0038 (10) |
C3 | 0.0192 (13) | 0.0184 (12) | 0.0218 (13) | 0.0004 (10) | 0.0023 (10) | 0.0043 (10) |
C11 | 0.0234 (15) | 0.0242 (13) | 0.0265 (14) | −0.0063 (11) | 0.0040 (11) | −0.0005 (11) |
C4 | 0.0350 (17) | 0.0220 (13) | 0.0331 (15) | 0.0093 (12) | 0.0015 (13) | 0.0000 (12) |
C5 | 0.0247 (14) | 0.0169 (11) | 0.0150 (13) | −0.0028 (10) | −0.0038 (11) | 0.0050 (9) |
C8 | 0.0193 (15) | 0.0312 (15) | 0.0406 (17) | 0.0043 (12) | 0.0075 (12) | 0.0005 (13) |
C2 | 0.0230 (16) | 0.0332 (15) | 0.0423 (17) | −0.0027 (12) | 0.0096 (13) | 0.0085 (13) |
C13 | 0.0410 (19) | 0.0334 (16) | 0.0273 (15) | −0.0029 (14) | −0.0010 (13) | −0.0122 (12) |
C14 | 0.0397 (18) | 0.0304 (15) | 0.0307 (15) | 0.0070 (13) | 0.0022 (13) | 0.0085 (12) |
C15 | 0.0322 (17) | 0.0310 (15) | 0.0429 (18) | −0.0018 (13) | 0.0015 (14) | 0.0013 (13) |
C12 | 0.0364 (19) | 0.054 (2) | 0.0273 (16) | −0.0020 (15) | −0.0063 (13) | −0.0040 (14) |
C10 | 0.043 (2) | 0.0216 (14) | 0.057 (2) | −0.0115 (13) | −0.0064 (16) | 0.0083 (14) |
C6 | 0.053 (2) | 0.073 (2) | 0.0240 (15) | 0.0370 (19) | 0.0071 (15) | 0.0124 (15) |
C16 | 0.0346 (19) | 0.048 (2) | 0.065 (2) | 0.0147 (15) | 0.0178 (17) | 0.0199 (17) |
Cu1—O2 | 1.9684 (19) | C1—C2 | 1.505 (4) |
Cu1—O4 | 1.9714 (18) | C9—C10 | 1.505 (4) |
Cu1—O3i | 1.9755 (17) | C3—C4 | 1.506 (3) |
Cu1—O1i | 1.9811 (19) | C11—H11 | 0.9500 |
Cu1—O5 | 2.1012 (17) | C4—H4A | 0.9800 |
Cu1—Cu1i | 2.6685 (6) | C4—H4B | 0.9800 |
Cu2—O7 | 1.9607 (19) | C4—H4C | 0.9800 |
Cu2—O9 | 1.9706 (18) | C5—C6 | 1.501 (4) |
Cu2—O10ii | 1.9742 (18) | C8—H8A | 0.9800 |
Cu2—O8ii | 1.9774 (18) | C8—H8B | 0.9800 |
Cu2—O6 | 2.1077 (18) | C8—H8C | 0.9800 |
Cu2—Cu2ii | 2.6571 (6) | C2—H2A | 0.9800 |
O7—C7 | 1.255 (3) | C2—H2B | 0.9800 |
O5—C5 | 1.254 (3) | C2—H2C | 0.9800 |
O2—C1 | 1.253 (3) | C13—C12 | 1.344 (4) |
O8—C7 | 1.255 (3) | C13—H13 | 0.9500 |
O8—Cu2ii | 1.9774 (18) | C14—C15 | 1.510 (4) |
O4—C3 | 1.246 (3) | C14—H14A | 0.9900 |
O6—C5 | 1.247 (3) | C14—H14B | 0.9900 |
O9—C9 | 1.256 (3) | C15—H15A | 0.9800 |
O10—C9 | 1.251 (3) | C15—H15B | 0.9800 |
O10—Cu2ii | 1.9742 (18) | C15—H15C | 0.9800 |
O1—C1 | 1.260 (3) | C12—H12 | 0.9500 |
O1—Cu1i | 1.9811 (19) | C10—H10A | 0.9800 |
O3—C3 | 1.260 (3) | C10—H10B | 0.9800 |
O3—Cu1i | 1.9755 (17) | C10—H10C | 0.9800 |
N1—C11 | 1.324 (3) | C6—H6A | 0.9800 |
N1—C13 | 1.371 (4) | C6—H6B | 0.9800 |
N1—C14 | 1.471 (3) | C6—H6C | 0.9800 |
N2—C11 | 1.319 (3) | C16—H16A | 0.9800 |
N2—C12 | 1.368 (4) | C16—H16B | 0.9800 |
N2—C16 | 1.458 (4) | C16—H16C | 0.9800 |
C7—C8 | 1.503 (4) | ||
O2—Cu1—O4 | 90.22 (9) | N2—C11—H11 | 125.3 |
O2—Cu1—O3i | 88.50 (9) | N1—C11—H11 | 125.3 |
O4—Cu1—O3i | 167.17 (7) | C3—C4—H4A | 109.5 |
O2—Cu1—O1i | 167.09 (7) | C3—C4—H4B | 109.5 |
O4—Cu1—O1i | 89.57 (9) | H4A—C4—H4B | 109.5 |
O3i—Cu1—O1i | 88.85 (9) | C3—C4—H4C | 109.5 |
O2—Cu1—O5 | 103.44 (8) | H4A—C4—H4C | 109.5 |
O4—Cu1—O5 | 90.86 (7) | H4B—C4—H4C | 109.5 |
O3i—Cu1—O5 | 101.85 (7) | O6—C5—O5 | 121.9 (3) |
O1i—Cu1—O5 | 89.47 (8) | O6—C5—C6 | 119.6 (2) |
O2—Cu1—Cu1i | 84.72 (5) | O5—C5—C6 | 118.5 (2) |
O4—Cu1—Cu1i | 80.15 (5) | C7—C8—H8A | 109.5 |
O3i—Cu1—Cu1i | 87.02 (5) | C7—C8—H8B | 109.5 |
O1i—Cu1—Cu1i | 82.53 (5) | H8A—C8—H8B | 109.5 |
O5—Cu1—Cu1i | 167.97 (6) | C7—C8—H8C | 109.5 |
O7—Cu2—O9 | 89.95 (8) | H8A—C8—H8C | 109.5 |
O7—Cu2—O10ii | 89.75 (8) | H8B—C8—H8C | 109.5 |
O9—Cu2—O10ii | 167.61 (7) | C1—C2—H2A | 109.5 |
O7—Cu2—O8ii | 167.52 (7) | C1—C2—H2B | 109.5 |
O9—Cu2—O8ii | 88.09 (8) | H2A—C2—H2B | 109.5 |
O10ii—Cu2—O8ii | 89.52 (8) | C1—C2—H2C | 109.5 |
O7—Cu2—O6 | 102.37 (8) | H2A—C2—H2C | 109.5 |
O9—Cu2—O6 | 100.56 (7) | H2B—C2—H2C | 109.5 |
O10ii—Cu2—O6 | 91.60 (7) | C12—C13—N1 | 106.4 (3) |
O8ii—Cu2—O6 | 90.10 (7) | C12—C13—H13 | 126.8 |
O7—Cu2—Cu2ii | 83.53 (5) | N1—C13—H13 | 126.8 |
O9—Cu2—Cu2ii | 86.21 (5) | N1—C14—C15 | 111.6 (2) |
O10ii—Cu2—Cu2ii | 81.44 (5) | N1—C14—H14A | 109.3 |
O8ii—Cu2—Cu2ii | 84.05 (5) | C15—C14—H14A | 109.3 |
O6—Cu2—Cu2ii | 170.92 (5) | N1—C14—H14B | 109.3 |
C7—O7—Cu2 | 124.17 (16) | C15—C14—H14B | 109.3 |
C5—O5—Cu1 | 139.44 (18) | H14A—C14—H14B | 108.0 |
C1—O2—Cu1 | 122.82 (16) | C14—C15—H15A | 109.5 |
C7—O8—Cu2ii | 122.70 (17) | C14—C15—H15B | 109.5 |
C3—O4—Cu1 | 127.95 (15) | H15A—C15—H15B | 109.5 |
C5—O6—Cu2 | 141.70 (19) | C14—C15—H15C | 109.5 |
C9—O9—Cu2 | 120.40 (15) | H15A—C15—H15C | 109.5 |
C9—O10—Cu2ii | 126.01 (17) | H15B—C15—H15C | 109.5 |
C1—O1—Cu1i | 124.53 (17) | C13—C12—N2 | 108.1 (3) |
C3—O3—Cu1i | 119.18 (17) | C13—C12—H12 | 125.9 |
C11—N1—C13 | 108.5 (2) | N2—C12—H12 | 125.9 |
C11—N1—C14 | 126.6 (2) | C9—C10—H10A | 109.5 |
C13—N1—C14 | 124.9 (2) | C9—C10—H10B | 109.5 |
C11—N2—C12 | 107.7 (2) | H10A—C10—H10B | 109.5 |
C11—N2—C16 | 126.7 (3) | C9—C10—H10C | 109.5 |
C12—N2—C16 | 125.6 (3) | H10A—C10—H10C | 109.5 |
O8—C7—O7 | 125.5 (2) | H10B—C10—H10C | 109.5 |
O8—C7—C8 | 117.3 (2) | C5—C6—H6A | 109.5 |
O7—C7—C8 | 117.2 (2) | C5—C6—H6B | 109.5 |
O2—C1—O1 | 125.2 (2) | H6A—C6—H6B | 109.5 |
O2—C1—C2 | 118.1 (2) | C5—C6—H6C | 109.5 |
O1—C1—C2 | 116.7 (2) | H6A—C6—H6C | 109.5 |
O10—C9—O9 | 125.9 (2) | H6B—C6—H6C | 109.5 |
O10—C9—C10 | 116.6 (2) | N2—C16—H16A | 109.5 |
O9—C9—C10 | 117.5 (2) | N2—C16—H16B | 109.5 |
O4—C3—O3 | 125.6 (2) | H16A—C16—H16B | 109.5 |
O4—C3—C4 | 116.9 (2) | N2—C16—H16C | 109.5 |
O3—C3—C4 | 117.4 (2) | H16A—C16—H16C | 109.5 |
N2—C11—N1 | 109.4 (2) | H16B—C16—H16C | 109.5 |
Cu2ii—O8—C7—O7 | 0.4 (3) | C12—N2—C11—N1 | 0.3 (3) |
Cu2ii—O8—C7—C8 | −178.57 (17) | C16—N2—C11—N1 | 179.2 (2) |
Cu2—O7—C7—O8 | −2.0 (4) | C13—N1—C11—N2 | 0.0 (3) |
Cu2—O7—C7—C8 | 176.93 (17) | C14—N1—C11—N2 | 177.5 (2) |
Cu1—O2—C1—O1 | −2.9 (4) | Cu2—O6—C5—O5 | −174.30 (18) |
Cu1—O2—C1—C2 | 177.00 (18) | Cu2—O6—C5—C6 | 5.5 (4) |
Cu1i—O1—C1—O2 | 5.8 (4) | Cu1—O5—C5—O6 | −167.95 (18) |
Cu1i—O1—C1—C2 | −174.07 (18) | Cu1—O5—C5—C6 | 12.2 (4) |
Cu2ii—O10—C9—O9 | −1.2 (4) | C11—N1—C13—C12 | −0.2 (3) |
Cu2ii—O10—C9—C10 | 179.0 (2) | C14—N1—C13—C12 | −177.8 (3) |
Cu2—O9—C9—O10 | −0.4 (4) | C11—N1—C14—C15 | −105.3 (3) |
Cu2—O9—C9—C10 | 179.4 (2) | C13—N1—C14—C15 | 71.8 (4) |
Cu1—O4—C3—O3 | 3.2 (4) | N1—C13—C12—N2 | 0.4 (4) |
Cu1—O4—C3—C4 | −176.27 (19) | C11—N2—C12—C13 | −0.4 (3) |
Cu1i—O3—C3—O4 | −2.8 (4) | C16—N2—C12—C13 | −179.3 (3) |
Cu1i—O3—C3—C4 | 176.66 (19) |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O7 | 0.98 | 2.50 | 3.320 (4) | 141 |
C14—H14A···O5iii | 0.99 | 2.47 | 3.329 (3) | 145 |
C13—H13···O8iv | 0.95 | 2.38 | 3.229 (4) | 148 |
C8—H8C···O7v | 0.98 | 2.55 | 3.522 (4) | 170 |
C11—H11···O1i | 0.95 | 2.40 | 3.317 (3) | 162 |
C11—H11···O5 | 0.95 | 2.55 | 3.192 (3) | 125 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+2, −z+1. |
(C6H11N2)2[Cu2(C2H3O2)6][Cu2(C2H3O2)4(H2O)2]·2H2O | Z = 1 |
Mr = 1139.00 | F(000) = 588 |
Triclinic, P1 | Dx = 1.615 Mg m−3 |
a = 7.9526 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0951 (5) Å | Cell parameters from 4961 reflections |
c = 18.8886 (11) Å | θ = 2.6–29.6° |
α = 79.1770 (16)° | µ = 1.88 mm−1 |
β = 78.9500 (16)° | T = 198 K |
γ = 89.9320 (15)° | Prism, blue |
V = 1171.46 (12) Å3 | 0.30 × 0.27 × 0.22 mm |
Bruker Kappa APEX DUO CCD diffractometer | 4775 independent reflections |
Radiation source: fine-focus sealed tube | 3593 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 26.4°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −9→9 |
Tmin = 0.605, Tmax = 0.685 | k = −10→10 |
20914 measured reflections | l = −23→23 |
Refinement on F2 | 72 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.038P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.42 | (Δ/σ)max = 0.001 |
4775 reflections | Δρmax = 0.40 e Å−3 |
307 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.91056 (4) | 0.44336 (4) | 0.06690 (2) | 0.01957 (12) | |
Cu2 | 0.09960 (5) | 0.06109 (5) | 0.43531 (2) | 0.02361 (12) | |
O1 | 0.7251 (3) | 0.5696 (3) | 0.02852 (12) | 0.0273 (5) | |
O2 | 0.8722 (3) | 0.6597 (3) | −0.08616 (12) | 0.0277 (5) | |
O3 | 0.9897 (3) | 0.6526 (3) | 0.09078 (13) | 0.0316 (6) | |
O4 | 1.1418 (3) | 0.7477 (3) | −0.02273 (13) | 0.0289 (5) | |
O11 | 0.4649 (3) | 0.2016 (3) | 0.23534 (13) | 0.0355 (6) | |
O6 | 0.2604 (3) | 0.1127 (3) | 0.49611 (13) | 0.0356 (6) | |
O5 | 0.7795 (3) | 0.3431 (3) | 0.17670 (13) | 0.0354 (6) | |
H5 | 0.8414 | 0.2734 | 0.1976 | 0.053* | |
O9 | −0.1846 (3) | 0.1702 (3) | 0.55415 (14) | 0.0366 (6) | |
O7 | 0.0942 (3) | 0.0128 (3) | 0.60447 (12) | 0.0333 (6) | |
O8 | −0.0205 (3) | 0.2707 (3) | 0.44485 (14) | 0.0386 (6) | |
O10 | 0.2485 (3) | 0.1352 (3) | 0.32793 (13) | 0.0378 (6) | |
C1 | 0.7382 (4) | 0.6483 (4) | −0.03698 (18) | 0.0220 (7) | |
N2 | 0.4809 (4) | 0.7850 (4) | 0.19273 (18) | 0.0449 (8) | |
C3 | 1.0864 (4) | 0.7590 (4) | 0.04339 (19) | 0.0256 (7) | |
N1 | 0.2327 (5) | 0.6858 (4) | 0.25088 (17) | 0.0476 (9) | |
C5 | 0.2322 (4) | 0.0782 (4) | 0.56465 (18) | 0.0246 (7) | |
O12 | 0.0083 (5) | 0.1154 (5) | 0.23115 (18) | 0.0715 (10) | |
C9 | 0.3888 (4) | 0.2120 (4) | 0.29812 (18) | 0.0259 (7) | |
C7 | −0.1375 (4) | 0.2826 (4) | 0.4983 (2) | 0.0317 (8) | |
C2 | 0.5825 (4) | 0.7351 (4) | −0.0578 (2) | 0.0310 (8) | |
H2A | 0.6105 | 0.7943 | −0.1090 | 0.046* | |
H2B | 0.5461 | 0.8161 | −0.0258 | 0.046* | |
H2C | 0.4896 | 0.6514 | −0.0520 | 0.046* | |
C4 | 1.1405 (5) | 0.9151 (4) | 0.0676 (2) | 0.0367 (9) | |
H4A | 1.2383 | 0.9718 | 0.0315 | 0.055* | |
H4B | 1.1735 | 0.8834 | 0.1156 | 0.055* | |
H4C | 1.0447 | 0.9913 | 0.0713 | 0.055* | |
C6 | 0.3746 (5) | 0.1154 (5) | 0.6017 (2) | 0.0392 (9) | |
H6A | 0.4806 | 0.0680 | 0.5794 | 0.059* | |
H6B | 0.3451 | 0.0651 | 0.6541 | 0.059* | |
H6C | 0.3911 | 0.2375 | 0.5960 | 0.059* | |
C10 | 0.4686 (5) | 0.3206 (5) | 0.3413 (2) | 0.0465 (10) | |
H10A | 0.5846 | 0.3585 | 0.3149 | 0.070* | |
H10B | 0.4743 | 0.2547 | 0.3899 | 0.070* | |
H10C | 0.3985 | 0.4186 | 0.3471 | 0.070* | |
C12 | 0.4448 (6) | 0.6441 (5) | 0.1662 (2) | 0.0482 (10) | |
H12 | 0.5179 | 0.5991 | 0.1290 | 0.058* | |
C13 | 0.2902 (6) | 0.5817 (5) | 0.2016 (2) | 0.0490 (10) | |
H13 | 0.2315 | 0.4858 | 0.1944 | 0.059* | |
C11 | 0.3486 (5) | 0.8073 (5) | 0.2436 (2) | 0.0471 (10) | |
H11 | 0.3385 | 0.8960 | 0.2705 | 0.056* | |
C8 | −0.2333 (5) | 0.4447 (5) | 0.4944 (2) | 0.0477 (10) | |
H8A | −0.3362 | 0.4323 | 0.4742 | 0.072* | |
H8B | −0.1591 | 0.5367 | 0.4627 | 0.072* | |
H8C | −0.2665 | 0.4698 | 0.5438 | 0.072* | |
C16 | 0.6413 (5) | 0.8940 (6) | 0.1651 (3) | 0.0675 (14) | |
H16A | 0.6340 | 0.9661 | 0.1180 | 0.101* | |
H16B | 0.7406 | 0.8228 | 0.1584 | 0.101* | |
H16C | 0.6539 | 0.9644 | 0.2008 | 0.101* | |
C14 | 0.0722 (6) | 0.6606 (8) | 0.3061 (3) | 0.0893 (19) | |
H14A | 0.0901 | 0.5741 | 0.3483 | 0.107* | |
H14B | 0.0479 | 0.7670 | 0.3242 | 0.107* | |
C15 | −0.0685 (7) | 0.6127 (11) | 0.2825 (3) | 0.140 (4) | |
H15A | −0.0972 | 0.7036 | 0.2451 | 0.209* | |
H15B | −0.1654 | 0.5886 | 0.3242 | 0.209* | |
H15C | −0.0442 | 0.5115 | 0.2615 | 0.209* | |
H5B | 0.678 (3) | 0.307 (5) | 0.202 (2) | 0.062 (14)* | |
H1O | −0.052 (5) | 0.106 (6) | 0.2779 (14) | 0.074* | |
H2O | 0.090 (4) | 0.146 (6) | 0.251 (2) | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0164 (2) | 0.0196 (2) | 0.0217 (2) | −0.00175 (15) | −0.00105 (16) | −0.00408 (16) |
Cu2 | 0.0196 (2) | 0.0277 (2) | 0.0207 (2) | −0.00132 (16) | 0.00128 (16) | −0.00271 (17) |
O1 | 0.0197 (12) | 0.0294 (12) | 0.0302 (13) | 0.0025 (9) | −0.0013 (10) | −0.0033 (10) |
O2 | 0.0187 (12) | 0.0347 (13) | 0.0275 (13) | 0.0010 (10) | −0.0030 (10) | −0.0025 (10) |
O3 | 0.0368 (14) | 0.0260 (12) | 0.0329 (14) | −0.0069 (10) | −0.0032 (11) | −0.0115 (10) |
O4 | 0.0296 (13) | 0.0234 (12) | 0.0345 (14) | −0.0046 (10) | −0.0049 (11) | −0.0088 (10) |
O11 | 0.0304 (13) | 0.0434 (15) | 0.0287 (14) | −0.0085 (11) | 0.0083 (11) | −0.0109 (11) |
O6 | 0.0279 (13) | 0.0488 (16) | 0.0276 (14) | −0.0085 (11) | −0.0039 (11) | −0.0026 (11) |
O5 | 0.0292 (14) | 0.0439 (16) | 0.0265 (14) | −0.0061 (12) | 0.0031 (11) | 0.0011 (11) |
O9 | 0.0312 (14) | 0.0347 (14) | 0.0415 (16) | 0.0082 (11) | 0.0008 (12) | −0.0087 (12) |
O7 | 0.0253 (13) | 0.0492 (16) | 0.0243 (13) | −0.0052 (11) | −0.0029 (10) | −0.0063 (11) |
O8 | 0.0412 (15) | 0.0295 (14) | 0.0399 (16) | 0.0062 (11) | 0.0000 (12) | −0.0020 (11) |
O10 | 0.0242 (13) | 0.0605 (17) | 0.0232 (13) | −0.0128 (12) | 0.0036 (10) | −0.0027 (12) |
C1 | 0.0207 (16) | 0.0183 (16) | 0.0291 (18) | −0.0031 (12) | −0.0061 (14) | −0.0085 (13) |
N2 | 0.045 (2) | 0.049 (2) | 0.046 (2) | 0.0203 (16) | −0.0117 (16) | −0.0194 (17) |
C3 | 0.0210 (17) | 0.0214 (17) | 0.039 (2) | 0.0035 (13) | −0.0130 (15) | −0.0093 (15) |
N1 | 0.056 (2) | 0.053 (2) | 0.035 (2) | 0.0090 (17) | 0.0004 (16) | −0.0206 (16) |
C5 | 0.0262 (18) | 0.0208 (16) | 0.0271 (19) | 0.0037 (13) | −0.0051 (14) | −0.0056 (13) |
O12 | 0.087 (3) | 0.080 (2) | 0.057 (2) | 0.012 (2) | −0.0423 (19) | −0.0094 (19) |
C9 | 0.0269 (18) | 0.0246 (17) | 0.0231 (18) | 0.0011 (14) | −0.0010 (15) | −0.0006 (14) |
C7 | 0.0274 (19) | 0.0299 (19) | 0.040 (2) | 0.0013 (15) | −0.0101 (16) | −0.0091 (16) |
C2 | 0.0200 (17) | 0.0293 (18) | 0.043 (2) | 0.0009 (14) | −0.0094 (15) | −0.0026 (16) |
C4 | 0.040 (2) | 0.0249 (18) | 0.051 (2) | −0.0036 (16) | −0.0151 (19) | −0.0178 (17) |
C6 | 0.030 (2) | 0.050 (2) | 0.041 (2) | 0.0032 (17) | −0.0139 (17) | −0.0107 (18) |
C10 | 0.057 (3) | 0.045 (2) | 0.033 (2) | −0.021 (2) | 0.0052 (19) | −0.0097 (18) |
C12 | 0.060 (3) | 0.047 (2) | 0.044 (3) | 0.027 (2) | −0.013 (2) | −0.022 (2) |
C13 | 0.067 (3) | 0.043 (2) | 0.041 (2) | 0.016 (2) | −0.009 (2) | −0.0196 (19) |
C11 | 0.049 (2) | 0.051 (3) | 0.048 (3) | 0.0108 (19) | −0.012 (2) | −0.025 (2) |
C8 | 0.048 (3) | 0.034 (2) | 0.062 (3) | 0.0153 (18) | −0.009 (2) | −0.0132 (19) |
C16 | 0.040 (3) | 0.059 (3) | 0.110 (4) | 0.009 (2) | −0.012 (3) | −0.032 (3) |
C14 | 0.067 (3) | 0.121 (5) | 0.079 (4) | −0.023 (3) | 0.024 (3) | −0.055 (4) |
C15 | 0.068 (4) | 0.289 (11) | 0.072 (4) | −0.041 (5) | 0.008 (3) | −0.082 (6) |
Cu1—O3 | 1.967 (2) | N1—C14 | 1.473 (5) |
Cu1—O1 | 1.968 (2) | C5—C6 | 1.499 (4) |
Cu1—O4i | 1.970 (2) | O12—H1O | 0.910 (18) |
Cu1—O2i | 1.984 (2) | O12—H2O | 0.874 (19) |
Cu1—O5 | 2.142 (2) | C9—C10 | 1.520 (5) |
Cu1—Cu1i | 2.6469 (7) | C7—C8 | 1.513 (5) |
Cu2—O8 | 1.967 (2) | C2—H2A | 0.9800 |
Cu2—O6 | 1.968 (2) | C2—H2B | 0.9800 |
Cu2—O9ii | 1.978 (2) | C2—H2C | 0.9800 |
Cu2—O7ii | 1.978 (2) | C4—H4A | 0.9800 |
Cu2—O10 | 2.121 (2) | C4—H4B | 0.9800 |
Cu2—Cu2ii | 2.6592 (8) | C4—H4C | 0.9800 |
O1—C1 | 1.266 (4) | C6—H6A | 0.9800 |
O2—C1 | 1.263 (4) | C6—H6B | 0.9800 |
O2—Cu1i | 1.984 (2) | C6—H6C | 0.9800 |
O3—C3 | 1.258 (4) | C10—H10A | 0.9800 |
O4—C3 | 1.263 (4) | C10—H10B | 0.9800 |
O4—Cu1i | 1.970 (2) | C10—H10C | 0.9800 |
O11—C9 | 1.242 (4) | C12—C13 | 1.331 (6) |
O6—C5 | 1.248 (4) | C12—H12 | 0.9500 |
O5—H5 | 0.8400 | C13—H13 | 0.9500 |
O5—H5B | 0.878 (18) | C11—H11 | 0.9500 |
O9—C7 | 1.253 (4) | C8—H8A | 0.9800 |
O9—Cu2ii | 1.978 (2) | C8—H8B | 0.9800 |
O7—C5 | 1.259 (4) | C8—H8C | 0.9800 |
O7—Cu2ii | 1.978 (2) | C16—H16A | 0.9800 |
O8—C7 | 1.253 (4) | C16—H16B | 0.9800 |
O10—C9 | 1.256 (4) | C16—H16C | 0.9800 |
C1—C2 | 1.504 (4) | C14—C15 | 1.363 (6) |
N2—C11 | 1.319 (5) | C14—H14A | 0.9900 |
N2—C12 | 1.381 (5) | C14—H14B | 0.9900 |
N2—C16 | 1.501 (5) | C15—H15A | 0.9800 |
C3—C4 | 1.511 (4) | C15—H15B | 0.9800 |
N1—C11 | 1.318 (5) | C15—H15C | 0.9800 |
N1—C13 | 1.385 (5) | ||
O3—Cu1—O1 | 88.30 (10) | O8—C7—O9 | 125.6 (3) |
O3—Cu1—O4i | 168.28 (10) | O8—C7—C8 | 117.4 (3) |
O1—Cu1—O4i | 90.23 (9) | O9—C7—C8 | 117.0 (3) |
O3—Cu1—O2i | 88.82 (10) | C1—C2—H2A | 109.5 |
O1—Cu1—O2i | 168.07 (9) | C1—C2—H2B | 109.5 |
O4i—Cu1—O2i | 90.24 (9) | H2A—C2—H2B | 109.5 |
O3—Cu1—O5 | 94.73 (10) | C1—C2—H2C | 109.5 |
O1—Cu1—O5 | 99.95 (9) | H2A—C2—H2C | 109.5 |
O4i—Cu1—O5 | 96.98 (10) | H2B—C2—H2C | 109.5 |
O2i—Cu1—O5 | 91.83 (9) | C3—C4—H4A | 109.5 |
O3—Cu1—Cu1i | 85.55 (7) | C3—C4—H4B | 109.5 |
O1—Cu1—Cu1i | 83.63 (7) | H4A—C4—H4B | 109.5 |
O4i—Cu1—Cu1i | 82.74 (7) | C3—C4—H4C | 109.5 |
O2i—Cu1—Cu1i | 84.60 (7) | H4A—C4—H4C | 109.5 |
O5—Cu1—Cu1i | 176.41 (7) | H4B—C4—H4C | 109.5 |
O8—Cu2—O6 | 91.32 (11) | C5—C6—H6A | 109.5 |
O8—Cu2—O9ii | 167.41 (10) | C5—C6—H6B | 109.5 |
O6—Cu2—O9ii | 88.28 (10) | H6A—C6—H6B | 109.5 |
O8—Cu2—O7ii | 87.89 (10) | C5—C6—H6C | 109.5 |
O6—Cu2—O7ii | 167.25 (10) | H6A—C6—H6C | 109.5 |
O9ii—Cu2—O7ii | 89.73 (10) | H6B—C6—H6C | 109.5 |
O8—Cu2—O10 | 99.52 (10) | C9—C10—H10A | 109.5 |
O6—Cu2—O10 | 101.45 (9) | C9—C10—H10B | 109.5 |
O9ii—Cu2—O10 | 92.89 (10) | H10A—C10—H10B | 109.5 |
O7ii—Cu2—O10 | 91.22 (9) | C9—C10—H10C | 109.5 |
O8—Cu2—Cu2ii | 84.34 (7) | H10A—C10—H10C | 109.5 |
O6—Cu2—Cu2ii | 83.49 (7) | H10B—C10—H10C | 109.5 |
O9ii—Cu2—Cu2ii | 83.11 (7) | C13—C12—N2 | 108.5 (4) |
O7ii—Cu2—Cu2ii | 83.77 (7) | C13—C12—H12 | 125.8 |
O10—Cu2—Cu2ii | 173.59 (7) | N2—C12—H12 | 125.8 |
C1—O1—Cu1 | 124.3 (2) | C12—C13—N1 | 105.6 (4) |
C1—O2—Cu1i | 122.4 (2) | C12—C13—H13 | 127.2 |
C3—O3—Cu1 | 121.4 (2) | N1—C13—H13 | 127.2 |
C3—O4—Cu1i | 124.4 (2) | N1—C11—N2 | 108.6 (4) |
C5—O6—Cu2 | 124.5 (2) | N1—C11—H11 | 125.7 |
Cu1—O5—H5 | 109.5 | N2—C11—H11 | 125.7 |
Cu1—O5—H5B | 142 (3) | C7—C8—H8A | 109.5 |
H5—O5—H5B | 100.1 | C7—C8—H8B | 109.5 |
C7—O9—Cu2ii | 123.8 (2) | H8A—C8—H8B | 109.5 |
C5—O7—Cu2ii | 123.4 (2) | C7—C8—H8C | 109.5 |
C7—O8—Cu2 | 122.9 (2) | H8A—C8—H8C | 109.5 |
C9—O10—Cu2 | 137.9 (2) | H8B—C8—H8C | 109.5 |
O2—C1—O1 | 125.0 (3) | N2—C16—H16A | 109.5 |
O2—C1—C2 | 117.5 (3) | N2—C16—H16B | 109.5 |
O1—C1—C2 | 117.5 (3) | H16A—C16—H16B | 109.5 |
C11—N2—C12 | 107.8 (4) | N2—C16—H16C | 109.5 |
C11—N2—C16 | 127.5 (4) | H16A—C16—H16C | 109.5 |
C12—N2—C16 | 124.7 (4) | H16B—C16—H16C | 109.5 |
O3—C3—O4 | 125.9 (3) | C15—C14—N1 | 115.7 (5) |
O3—C3—C4 | 117.1 (3) | C15—C14—H14A | 108.3 |
O4—C3—C4 | 117.0 (3) | N1—C14—H14A | 108.3 |
C11—N1—C13 | 109.4 (4) | C15—C14—H14B | 108.3 |
C11—N1—C14 | 124.7 (4) | N1—C14—H14B | 108.3 |
C13—N1—C14 | 125.7 (4) | H14A—C14—H14B | 107.4 |
O6—C5—O7 | 124.8 (3) | C14—C15—H15A | 109.5 |
O6—C5—C6 | 117.2 (3) | C14—C15—H15B | 109.5 |
O7—C5—C6 | 118.0 (3) | H15A—C15—H15B | 109.5 |
H1O—O12—H2O | 82 (3) | C14—C15—H15C | 109.5 |
O11—C9—O10 | 122.7 (3) | H15A—C15—H15C | 109.5 |
O11—C9—C10 | 119.0 (3) | H15B—C15—H15C | 109.5 |
O10—C9—C10 | 118.3 (3) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H2O···O10 | 0.84 (2) | 2.14 (3) | 2.912 (4) | 152 (4) |
O5—H5B···O11 | 0.85 (2) | 1.86 (2) | 2.695 (3) | 171 (4) |
C14—H14B···O7iii | 0.99 | 2.57 | 3.530 (6) | 162 |
C16—H16C···O11iv | 0.98 | 2.56 | 3.239 (5) | 126 |
C16—H16B···O3 | 0.98 | 2.65 | 3.598 (5) | 162 |
C11—H11···O10iv | 0.95 | 2.44 | 3.365 (4) | 166 |
C11—H11···O11iv | 0.95 | 2.59 | 3.291 (4) | 131 |
C12—H12···O1 | 0.95 | 2.30 | 3.224 (4) | 163 |
C10—H10B···O6 | 0.98 | 2.47 | 3.241 (4) | 136 |
C2—H2C···O1v | 0.98 | 2.40 | 3.371 (3) | 173 |
C2—H2A···O11v | 0.98 | 2.58 | 3.387 (4) | 140 |
O5—H5···O12vi | 0.84 | 1.96 | 2.789 (4) | 170 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z; (vi) x+1, y, z. |
Compound | Cu—Cu distance |
Complex 1 | 2.7173 (7) |
Complex 2 | 2.657 (3) and 2.669 (3) |
Complex 3 | 2.6571 (6) and 2.6685 (6) |
Complex 4 | 2.6469 (7) and 2.6592 (8) |
Compounds 2–4 each contain two crystallographically independent clusters. |
Funding information
Funding for this research was provided by: RFBR (grant No. 16-33-00641).
References
Ahmed, E. & Ruck, M. (2011). Dalton Trans. 40, 9347–9357. Web of Science CrossRef Google Scholar
Betz, D., Altmann, P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Coord. Chem. Rev. 255, 1518–1540. Web of Science CrossRef Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buszewski, B., Kowalska, S. & Stepnowski, P. (2006). J. Sep. Sci. 29, 1116–1125. Web of Science CrossRef Google Scholar
Gabriel, S. & Weiner, J. (1888). Ber. Dtsch. Chem. Ges. 21, 2669–2679. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576. Web of Science CrossRef CAS PubMed Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550. Web of Science CrossRef Google Scholar
Kohno, Y. & Ohno, H. (2012). Chem. Commun. 48, 7119–7130. Web of Science CrossRef Google Scholar
Sasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506–2508. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shtyrlin, V. G., Serov, N. Y., Islamov, D. R., Konkin, A. L., Bukharov, M. S., Gnezdilov, O. I., Krivolapov, D. B., Kataeva, O. N., Nazmutdinova, G. A. & Wendler, F. (2014). Dalton Trans. 43, 799–805. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.