research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methyl­imidazolium acetate or chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kazan State University, Kremlevskaya St. 18, 420008, Kazan, Russian Federation, and bInstitute of Organic & Physical Chemistry, Arbuzov Str.8, 420088 Kazan, Russian Federation
*Correspondence e-mail: serov.nikita@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 6 February 2018; accepted 9 June 2018; online 19 June 2018)

Crystals of four new copper(II) complexes have been grown from copper(II) acetate/chloride–1-ethyl-3-methyl­imidazolium acetate/chloride–water systems and characterized by X-ray analysis. The first complex, bis­(1-ethyl-3-methyl­imidazolium) tetra-μ-acetato-bis[chloridocuprate(II)], [Emim]2[Cu2(C2H3O2)4Cl2] (1) (Emim is 1-ethyl-3-methyl­imidazolium, C6H11N2), contains [Cu2(C2H3O2)4Cl2]2− coordination anions with a paddle-wheel structure and ionic liquid cations. Two of the synthesized complexes are one-dimensional polymers, namely catena-poly[1-ethyl-3-methyl­imidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-chlorido] monohydrate], {[Emim][Cu2(C2H3O2)4Cl]·H2O}n (2), and catena-poly[1-ethyl-3-methyl­imidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-acetato]], {[Emim][Cu2(C2H3O2)5]}n (3). In these compounds, the Cu2(C2H3O2)4 units with a paddle-wheel structure are connected to each other through chloride (in 2) or acetate (in 3) anions to form parallel chains, between which cations of ionic liquid are situated. The last compound, bis­(1-ethyl-3-methyl­imidazolium) tetra-μ-acetato-bis[aquacopper(II)] tetra-μ-acetato-bis[acetatocuprate(II)] dihydrate, [Emim]2[Cu2(C2H3O2)4(H2O)2][Cu2(C2H3O2)6]·2H2O (4), contains two different binuclear coordination units (neutral and anionic), connected through hydrogen bonds between water mol­ecules and acetate ions.

1. Chemical context

Ionic liquids (ILs) with melting point below 373 K were discovered in 1888 (Gabriel & Weiner, 1888[Gabriel, S. & Weiner, J. (1888). Ber. Dtsch. Chem. Ges. 21, 2669-2679.]), but have been specific laboratory substances for a long time. However, over the past two decades ionic liquids have been of increased inter­est for researchers owing to the awareness of their unique properties, such as low dielectric permeability, low movability, wide range of liquid states, high ionic density, high ionic conductivity, good solubility for many substances, very low volatility among others (Buszewski et al., 2006[Buszewski, B., Kowalska, S. & Stepnowski, P. (2006). J. Sep. Sci. 29, 1116-1125.]; Hallett & Welton, 2011[Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508-3576.]). It is important that the properties of ionic liquids can be varied not only by structural design, but also by mixing with other substances, especially with water (Kohno & Ohno, 2012[Kohno, Y. & Ohno, H. (2012). Chem. Commun. 48, 7119-7130.]). The use of ILs as unique solvents for the replacement of traditional solvents and the synthesis of new substances from ionic liquids are the goals of many investigations. The application of ILs has already allowed the synthesis of new polyoxometallates, transition metal clusters, main-group element clusters and nanomaterials; the most important catalytic organic syntheses have also been performed in ionic liquids under mild conditions (Sasaki et al., 2005[Sasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506-2508.]; Ahmed & Ruck, 2011[Ahmed, E. & Ruck, M. (2011). Dalton Trans. 40, 9347-9357.]; Betz et al., 2011[Betz, D., Altmann, P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Coord. Chem. Rev. 255, 1518-1540.]; Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]). Importantly, many oxidation reactions in organic syntheses are catalysed by copper(II) compounds, which is why the synthesis and structural investigation of copper(II) complexes grown from ILs are real scientific tasks. Of particular importance are polynuclear compounds as materials with inter­esting magnetic and electric properties.

[Scheme 1]

Copper(II) complexes, containing the products of ionic liquid cation C—H bond activation, have previously been isolated from the 1-ethyl-3-methyl­imidazolium acetate (EmimAcO)–copper(II) acetate [Cu(AcO)2]–water–air (O2) system in the 323–358 K temperature range (Shtyrlin et al., 2014[Shtyrlin, V. G., Serov, N. Y., Islamov, D. R., Konkin, A. L., Bukharov, M. S., Gnezdilov, O. I., Krivolapov, D. B., Kataeva, O. N., Nazmutdinova, G. A. & Wendler, F. (2014). Dalton Trans. 43, 799-805.]). In the present work, the new complexes 1-4 have been obtained from the same and similar (where the acetate ion is replaced by chloride) systems and their structures investigated by single crystal X-ray analysis.

2. Structural commentary

Compound 1 consists of two 1-ethyl-3-methyl­imidazolium cations and a binuclear complex anion [Cu2(AcO)4Cl2]2− in which two copper(II) atoms are bonded through four bridging acetate ions. Two chloride ions are situated in the axial positions of both metal atoms, forming the axis of a paddle-wheel structure with the copper(II) ions (Fig. 1[link]).

[Figure 1]
Figure 1
Compound 1 with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, 1 − y, 2 − z.]

Compound 2 is a polymer; in the main chain chloride ions and the two copper(II) ions, connected by four acetate ions, alternate with each other (Fig. 2[link]). Disordered 1-ethyl-3-methyl­imidazolium cations and water mol­ecules are present in the regions between the polyanionic chains. The inter­atomic Cu⋯Cu distances in the clusters decrease (Table 1[link]) with the transition from the binuclear compound 1 to the polymer 2.

Table 1
Metal–metal distances (Å) in complexes 14

Compound Cu—Cu distance
Complex 1 2.7173 (7)
Complex 2 2.657 (3) and 2.669 (3)
Complex 3 2.6571 (6) and 2.6685 (6)
Complex 4 2.6469 (7) and 2.6592 (8)
Compounds 24 each contain two crystallographically independent clusters.
[Figure 2]
Figure 2
Compound 2 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 2 − x, 1 − y, 1 − z; (iii) x, y, −1 + z; (iv) 1 − x, 1 − y, 1 − z.]

Compound 3 is also a polymer, but differs from 2 in the bridging ligand between clusters and the absence of water mol­ecules (Fig. 3[link]). It is evident that the replacement of the chloride ion by acetate leads to a significant increase in the copper–copper distances between neighboring cluster units. However, the inter­atomic metal–metal distances in the clusters are practically unchanged (Table 1[link]).

[Figure 3]
Figure 3
Compound 3 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 2 − y, 2 − z; (ii) 1 − x, 2 − y, 1 − z.]

Compound 4 has the most inter­esting structure because it contains two different clusters (Fig. 4[link]). One of them is anionic and comprises two copper(II) ions and six acetate ions, four of which act as bridges between metal atoms. The other cluster is not charged and differs from the first by the non-bridging ligands (in this case they are water mol­ecules). Furthermore, compound 4 contains 1-ethyl-3-methyl­imidazolium ions and water mol­ecules. The metal–metal distances in the clusters in 4 are somewhat shorter than in the polymeric compounds 2 and 3 (Table 1[link]).

[Figure 4]
Figure 4
Compound 4 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) −x, −y, 1 − z.]

3. Supra­molecular features

In the crystal of 1, weak inter­actions are found between the [Cu2(AcO)4Cl2]2− anion and the surrounding six 1-ethyl-3-methyl­imidazolium cations, namely C1—H1⋯O2, C2—H2⋯O5 and C3—H3⋯O3 contacts (see Table 2[link] for details). The last contact is relatively short and probably the strongest of them. Two different orientations of the paddle-wheels units form herringbone motif (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯Cl1i 0.98 2.83 3.550 (3) 131
C4—H4B⋯Cl1 0.98 2.95 3.731 (3) 137
C4—H4A⋯Cl1ii 0.98 2.84 3.651 (3) 141
C5—H5A⋯Cl1iii 0.99 2.91 3.808 (3) 151
C2—H2⋯O5iii 0.95 2.57 3.295 (3) 134
C3—H3⋯O3ii 0.95 2.20 3.115 (3) 160
C1—H1⋯O2 0.95 2.55 3.182 (3) 124
C1—H1⋯Cl1 0.95 2.95 3.619 (3) 128
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z.
[Figure 5]
Figure 5
The packing of compound 1, viewed along the a and b axes.

Polymeric chains in 2 propagate along the c-axis direction (Fig. 6[link]). The water mol­ecule forms hydrogen bonds with oxygen atoms of the acetate residues of two neighbouring clusters in one chain (see Table 3[link]). Those inter­actions decrease the Cu—Cl—Cu angle from 180° to 169.5° on the side of water mol­ecule and distort the linearity of the polymeric chains.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O9B—H2WB⋯O4 0.91 (2) 2.01 (2) 2.91 (2) 172 (18)
O9A—H1WA⋯O6i 0.90 (2) 2.3 (2) 2.94 (3) 131 (23)
O9A—H2WA⋯O4 0.90 (2) 2.19 (5) 3.08 (2) 172 (18)
C14B—H14D⋯O6ii 0.98 2.65 3.49 (2) 144
C12B—H12B⋯O9Biii 0.95 2.27 3.16 (3) 155
C10B—H10D⋯Cl1iv 0.98 2.85 3.78 (5) 158
C9B—H9B⋯Cl1iv 0.95 2.84 3.67 (2) 147
C14A—H14B⋯Cl1 0.98 2.82 3.72 (3) 154
C12A—H12A⋯O9Aiii 0.95 2.19 3.13 (3) 168
C11A—H11A⋯Cl1v 0.95 2.88 3.77 (3) 155
C10A—H10B⋯O9Avi 0.98 2.26 2.82 (4) 115
C10A—H10A⋯O3iv 0.98 2.56 3.50 (5) 161
C9A—H9A⋯O2vii 0.95 2.48 3.11 (3) 124
C9A—H9A⋯Cl1iv 0.95 2.65 3.51 (2) 151
C2—H2C⋯O9Bvii 0.98 2.52 3.48 (3) 165
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.
[Figure 6]
Figure 6
The packing of compound 2, viewed along the a and c axes.

In 3, the polymeric chains are not linear because neighbouring Cu2(AcO)4 fragments are connected by acetate ions (Fig. 7[link]). The C—H⋯O inter­actions (see Table 4[link]) between 1-ethyl-3-methyl­imidazolium cations and the anionic chains additionally stabilize the polymeric structure of 3.

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O7 0.98 2.50 3.320 (4) 141
C14—H14A⋯O5i 0.99 2.47 3.329 (3) 145
C13—H13⋯O8ii 0.95 2.38 3.229 (4) 148
C8—H8C⋯O7iii 0.98 2.55 3.522 (4) 170
C11—H11⋯O1iv 0.95 2.40 3.317 (3) 162
C11—H11⋯O5 0.95 2.55 3.192 (3) 125
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+2, -y+2, -z+2.
[Figure 7]
Figure 7
The packing of compound 3, viewed along the b axis.

The crystal structure of 4 contains ordered layers (Fig. 8[link]). Chains are formed by the alternating binuclear clusters, bonded by O—H⋯O hydrogen bonds between the coordin­ated water mol­ecules and acetate ions as ligands (O5—H5B⋯O11, see Table 5[link]). The other water mol­ecule, which is not coordinated to copper(II), also plays an important role in crystal lattice formation – this water mol­ecule connects two neighbouring chains through the O5—H5⋯O12, O12—H1O⋯O7 and O12—H2O⋯O10 hydrogen bonds. The C—H⋯O inter­actions (see Table 5[link]) between the 1-ethyl-3-methyl­imidazolium cations and acetate residues are also relevant for binding the polymeric chains.

Table 5
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1O⋯O7i 0.91 (3) 2.21 (3) 3.034 (4) 150 (4)
O12—H2O⋯O10 0.87 (18) 2.09 (3) 2.910 (4) 158 (4)
O5—H5⋯O12ii 0.84 1.95 2.786 (5) 171
O5—H5B⋯O11 0.88 (3) 1.84 (3) 2.696 (3) 165 (4)
C2—H2A⋯O11iii 0.98 2.56 3.390 (4) 142
C2—H2C⋯O1iii 0.98 2.39 3.370 (4) 174
C10—H10B⋯O6 0.98 2.46 3.229 (4) 135
C11—H11⋯O10iv 0.95 2.43 3.364 (4) 166
C11—H11⋯O11iv 0.95 2.59 3.291 (4) 131
C12—H12⋯O1 0.95 2.31 3.234 (5) 163
C14—H14B⋯O7v 0.99 2.57 3.522 (7) 162
C16—H16C⋯O11iv 0.98 2.54 3.232 (6) 127
C16—H16B⋯O3 0.98 2.64 3.598 (5) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) x, y+1, z; (v) -x, -y+1, -z+1.
[Figure 8]
Figure 8
The packing of compound 4, viewed along the b axis.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.58; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 258 structures with the Cu2(AcO)4 fragment. In many of these structures such clusters are included several times. The distribution of Cu⋯Cu distances in such fragments is shown in Fig. 9[link]. From a comparison of Fig. 9[link] and Table 1[link], it can be seen that the Cu⋯Cu distances in the title compounds are longer than the mean value of other structures deposited in the CSD. It should be mentioned that in 1 the Cu⋯Cu distance is very close to the maximum distance shown in Fig. 9[link]. This long Cu⋯Cu distance can be explained by the strong inter­action between the copper(II) atoms and the chloride ions.

[Figure 9]
Figure 9
Histogram of the distribution of Cu⋯Cu distances in the Cu2(AcO)4 fragment based on a fragment search in the CSD.

5. Synthesis and crystallization

Synthesis of 1:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (0.70 g, 4.1 mmol), copper(II) chloride dihydrate (0.14 g, 0.82 mmol) and water (0.037 g, 2.05 mmol) was stirred in a closed vial at 333 K for 40 h. After several weeks, green crystals (yield 51%) were formed from the solution.

Synthesis of 2:

A mixture of 1-ethyl-3-methyl­imidazolium chloride (0.60 g, 4.1 mmol), copper(II) acetate hydrate (0.40 g, 2 mmol) and water (0.60 g, 33 mmol) was stirred in a closed vial at 343 K for 20 h. After several weeks, a green precipitate had formed from the solution. This precipitate consisted of crystals of compounds 1 and 2 with 1 predominant (and hence the yield of 2 was not determined).

Synthesis of 3:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (0.70 g, 4.1 mmol) and copper(II) acetate hydrate (0.16 g, 0.80 mmol) was stirred in a closed vial at 323 K for 20 h. After several weeks, blue crystals (yield 41%) were formed from the solution.

Synthesis of 4:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (1.0 g, 5.9 mmol), copper(II) acetate hydrate (0.078 g, 0.39 mmol) and copper(II) chloride dihydrate (0.133 g, 0.78 mmol) was stirred in a closed vial at 323 K for 30 h. After several weeks, blue crystals were formed from the solution. The yield was not determined because the precipitate additionally contained small green crystals of complex 1. In the absence of copper(II) chloride, compound 3 was grown from the solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. In 2, the Emim cations and water mol­ecules are disordered over two positions with an occupancy ratio of 0.513 (12):0.487 (12) and were refined with constraints and restraints. In 4, the water mol­ecules refined using restraints. Water H atoms were located in difference-Fourier maps and refined using constraints with Uiso(H) = 1.2Ueq(O). C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 (aromatic), 0.98 (methyl or 0.99 Å (methyl­ene bridges) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 6
Experimental details

  1 2 3 4
Crystal data
Chemical formula (C6H11N2)2[Cu2(C2H3O2)4Cl2] (C6H11N2)[Cu2(C2H3O2)4Cl]·H2O (C6H11N2)[Cu2(C2H3O2)5] (C6H11N2)2[Cu2(C2H3O2)6][Cu2(C2H3O2)4(H2O)2]·2H2O
Mr 656.49 527.89 533.47 1139.00
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 150 198 198 198
a, b, c (Å) 8.2264 (14), 12.956 (2), 13.173 (2) 8.438 (4), 16.315 (7), 15.131 (7) 8.0542 (9), 8.1633 (9), 16.7195 (19) 7.9526 (5), 8.0951 (5), 18.8886 (11)
α, β, γ (°) 90, 96.471 (3), 90 90, 96.53 (1), 90 98.126 (3), 94.745 (3), 92.964 (3) 79.1770 (16), 78.9500 (16), 89.9320 (15)
V3) 1395.0 (4) 2069.7 (16) 1082.3 (2) 1171.46 (12)
Z 2 4 2 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.76 2.23 2.02 1.88
Crystal size (mm) 0.30 × 0.20 × 0.20 0.11 × 0.08 × 0.07 0.30 × 0.20 × 0.20 0.30 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD Bruker SMART APEX II CCD Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.620, 0.719 0.795, 0.858 0.583, 0.688 0.605, 0.685
No. of measured, independent and observed [I > 2σ(I)] reflections 9428, 4275, 2956 35161, 4229, 2504 11652, 4343, 3662 20914, 4775, 3593
Rint 0.039 0.105 0.025 0.037
(sin θ/λ)max−1) 0.717 0.625 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.02 0.082, 0.265, 1.08 0.029, 0.107, 0.81 0.034, 0.101, 1.42
No. of reflections 4275 4229 4343 4775
No. of parameters 167 319 278 307
No. of restraints 0 93 0 72
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.56 1.70, −0.94 0.38, −0.46 0.40, −0.57
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1) top
Crystal data top
(C6H11N2)2[Cu2(C2H3O2)4Cl2]F(000) = 676
Mr = 656.49Dx = 1.563 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2264 (14) ÅCell parameters from 1837 reflections
b = 12.956 (2) Åθ = 3.0–27.3°
c = 13.173 (2) ŵ = 1.76 mm1
β = 96.471 (3)°T = 150 K
V = 1395.0 (4) Å3Prism, green
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4275 independent reflections
Radiation source: fine-focus sealed tube2956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1111
Tmin = 0.620, Tmax = 0.719k = 1018
9428 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4275 reflectionsΔρmax = 0.56 e Å3
167 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.01642 (4)0.45929 (2)0.90665 (2)0.01685 (9)
Cl10.04928 (8)0.39420 (5)0.73731 (4)0.02395 (15)
C10.4413 (3)0.5224 (2)0.74431 (19)0.0231 (6)
H10.38380.47700.78420.028*
C30.4986 (3)0.6537 (2)0.64963 (19)0.0225 (5)
H30.48990.71630.61190.027*
C20.5964 (3)0.5110 (2)0.72166 (18)0.0213 (5)
H20.66910.45630.74320.026*
C50.7800 (3)0.6095 (2)0.6145 (2)0.0288 (6)
H5A0.87260.57650.65700.035*
H5B0.80270.68440.61150.035*
C40.2199 (3)0.6570 (2)0.7028 (2)0.0371 (7)
H4A0.23060.72530.73490.056*
H4B0.15620.61190.74310.056*
H4C0.16390.66370.63340.056*
C60.7667 (5)0.5654 (3)0.5090 (3)0.0567 (11)
H6A0.74340.49140.51180.085*
H6B0.87010.57600.48000.085*
H6C0.67800.60000.46610.085*
N20.6290 (3)0.59310 (17)0.66186 (15)0.0197 (4)
N10.3825 (3)0.61269 (18)0.69846 (16)0.0229 (5)
C70.1284 (3)0.6607 (2)0.91709 (19)0.0202 (5)
C80.1941 (4)0.7589 (2)0.8675 (2)0.0356 (7)
H8A0.13420.77510.80930.053*
H8B0.18060.81540.91720.053*
H8C0.31050.75030.84360.053*
O20.2268 (2)0.53434 (15)0.93042 (13)0.0275 (4)
O10.0893 (2)0.58958 (14)0.86038 (13)0.0247 (4)
O50.1994 (2)0.39387 (15)0.91833 (13)0.0259 (4)
O30.1164 (2)0.34246 (14)0.98635 (13)0.0269 (4)
C90.2752 (3)0.5904 (2)1.00540 (19)0.0198 (5)
C100.4370 (3)0.6439 (2)1.0025 (2)0.0310 (6)
H10A0.51230.59810.97140.047*
H10B0.48330.66131.07220.047*
H10C0.42080.70730.96200.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01653 (14)0.01755 (17)0.01630 (13)0.00107 (13)0.00116 (10)0.00019 (12)
Cl10.0271 (3)0.0263 (4)0.0192 (3)0.0040 (3)0.0056 (2)0.0033 (2)
C10.0252 (13)0.0205 (14)0.0240 (12)0.0004 (11)0.0042 (10)0.0053 (10)
C30.0234 (13)0.0223 (14)0.0214 (12)0.0019 (11)0.0011 (10)0.0031 (10)
C20.0263 (13)0.0184 (13)0.0192 (11)0.0010 (11)0.0019 (10)0.0007 (10)
C50.0235 (13)0.0382 (18)0.0261 (13)0.0003 (13)0.0091 (10)0.0058 (12)
C40.0233 (14)0.0389 (19)0.0506 (18)0.0063 (14)0.0103 (13)0.0048 (15)
C60.059 (2)0.078 (3)0.0387 (18)0.010 (2)0.0296 (17)0.0144 (19)
N20.0214 (10)0.0201 (12)0.0179 (9)0.0024 (9)0.0029 (8)0.0016 (8)
N10.0218 (11)0.0228 (12)0.0245 (10)0.0015 (10)0.0045 (8)0.0037 (9)
C70.0172 (11)0.0171 (13)0.0252 (12)0.0012 (11)0.0022 (9)0.0018 (10)
C80.0506 (19)0.0222 (16)0.0320 (15)0.0109 (14)0.0052 (13)0.0056 (12)
O20.0181 (9)0.0361 (12)0.0288 (9)0.0099 (9)0.0053 (7)0.0080 (9)
O10.0305 (10)0.0208 (10)0.0225 (9)0.0058 (9)0.0018 (7)0.0022 (8)
O50.0225 (9)0.0322 (12)0.0235 (9)0.0080 (9)0.0041 (7)0.0014 (8)
O30.0359 (11)0.0205 (10)0.0230 (9)0.0067 (9)0.0030 (8)0.0012 (8)
C90.0142 (11)0.0172 (13)0.0276 (12)0.0010 (10)0.0006 (9)0.0043 (11)
C100.0185 (13)0.0301 (16)0.0458 (16)0.0052 (12)0.0097 (11)0.0057 (14)
Geometric parameters (Å, º) top
Cu1—O11.9642 (18)C4—H4B0.9800
Cu1—O31.9685 (18)C4—H4C0.9800
Cu1—O21.9788 (18)C6—H6A0.9800
Cu1—O51.9887 (18)C6—H6B0.9800
Cu1—Cl12.4282 (7)C6—H6C0.9800
Cu1—Cu1i2.7173 (7)C7—O11.251 (3)
C1—C21.351 (4)C7—O3i1.265 (3)
C1—N11.379 (3)C7—C81.503 (4)
C1—H10.9500C8—H8A0.9800
C3—N11.322 (3)C8—H8B0.9800
C3—N21.324 (3)C8—H8C0.9800
C3—H30.9500O2—C91.254 (3)
C2—N21.368 (3)O5—C9i1.258 (3)
C2—H20.9500O3—C7i1.265 (3)
C5—N21.467 (3)C9—O5i1.258 (3)
C5—C61.494 (4)C9—C101.505 (3)
C5—H5A0.9900C10—H10A0.9800
C5—H5B0.9900C10—H10B0.9800
C4—N11.463 (3)C10—H10C0.9800
C4—H4A0.9800
O1—Cu1—O3165.96 (7)H4B—C4—H4C109.5
O1—Cu1—O288.59 (8)C5—C6—H6A109.5
O3—Cu1—O289.32 (8)C5—C6—H6B109.5
O1—Cu1—O591.28 (8)H6A—C6—H6B109.5
O3—Cu1—O587.37 (8)C5—C6—H6C109.5
O2—Cu1—O5165.81 (7)H6A—C6—H6C109.5
O1—Cu1—Cl196.00 (5)H6B—C6—H6C109.5
O3—Cu1—Cl198.04 (6)C3—N2—C2108.8 (2)
O2—Cu1—Cl197.48 (5)C3—N2—C5125.1 (2)
O5—Cu1—Cl196.65 (5)C2—N2—C5126.0 (2)
O1—Cu1—Cu1i82.04 (5)C3—N1—C1108.5 (2)
O3—Cu1—Cu1i83.92 (5)C3—N1—C4125.1 (2)
O2—Cu1—Cu1i80.81 (5)C1—N1—C4126.4 (2)
O5—Cu1—Cu1i85.11 (5)O1—C7—O3i125.4 (2)
Cl1—Cu1—Cu1i177.41 (3)O1—C7—C8117.9 (2)
C2—C1—N1106.8 (2)O3i—C7—C8116.7 (2)
C2—C1—H1126.6C7—C8—H8A109.5
N1—C1—H1126.6C7—C8—H8B109.5
N1—C3—N2108.8 (2)H8A—C8—H8B109.5
N1—C3—H3125.6C7—C8—H8C109.5
N2—C3—H3125.6H8A—C8—H8C109.5
C1—C2—N2107.1 (2)H8B—C8—H8C109.5
C1—C2—H2126.5C9—O2—Cu1127.14 (16)
N2—C2—H2126.5C7—O1—Cu1125.64 (16)
N2—C5—C6111.3 (2)C9i—O5—Cu1121.34 (17)
N2—C5—H5A109.4C7i—O3—Cu1122.82 (17)
C6—C5—H5A109.4O2—C9—O5i125.5 (2)
N2—C5—H5B109.4O2—C9—C10116.8 (2)
C6—C5—H5B109.4O5i—C9—C10117.7 (2)
H5A—C5—H5B108.0C9—C10—H10A109.5
N1—C4—H4A109.5C9—C10—H10B109.5
N1—C4—H4B109.5H10A—C10—H10B109.5
H4A—C4—H4B109.5C9—C10—H10C109.5
N1—C4—H4C109.5H10A—C10—H10C109.5
H4A—C4—H4C109.5H10B—C10—H10C109.5
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···Cl1ii0.982.833.550 (3)131
C4—H4B···Cl10.982.953.731 (3)137
C4—H4A···Cl1iii0.982.843.651 (3)141
C5—H5A···Cl1iv0.992.913.808 (3)151
C2—H2···O5iv0.952.573.295 (3)134
C3—H3···O3iii0.952.203.115 (3)160
C1—H1···O20.952.553.182 (3)124
C1—H1···Cl10.952.953.619 (3)128
Symmetry codes: (ii) x1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z.
catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) top
Crystal data top
(C6H11N2)[Cu2(C2H3O2)4Cl]·H2OF(000) = 1080
Mr = 527.89Dx = 1.694 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.438 (4) ÅCell parameters from 718 reflections
b = 16.315 (7) Åθ = 2.4–21.6°
c = 15.131 (7) ŵ = 2.23 mm1
β = 96.53 (1)°T = 198 K
V = 2069.7 (16) Å3Prism, green
Z = 40.11 × 0.08 × 0.07 mm
Data collection top
Bruker Smart APEX II CCD
diffractometer
4229 independent reflections
Radiation source: fine-focus sealed tube2504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1010
Tmin = 0.795, Tmax = 0.858k = 2020
35161 measured reflectionsl = 1618
Refinement top
Refinement on F293 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.082H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.265 w = 1/[σ2(Fo2) + (0.1024P)2 + 19.8459P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4229 reflectionsΔρmax = 1.70 e Å3
319 parametersΔρmin = 0.94 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7268 (11)0.5647 (5)0.4896 (7)0.035 (2)
C20.5618 (11)0.6017 (6)0.4836 (8)0.045 (3)
H2A0.57040.66100.49380.067*
H2B0.50250.57690.52890.067*
H2C0.50550.59130.42450.067*
C30.8705 (10)0.3595 (5)0.5044 (7)0.0313 (19)
C40.7916 (12)0.2770 (6)0.5083 (8)0.044 (3)
H4A0.74230.26180.44880.067*
H4B0.70960.27960.54910.067*
H4C0.87170.23590.52950.067*
C50.7238 (11)0.4373 (6)0.0335 (8)0.039 (2)
C60.5583 (11)0.4033 (6)0.0541 (8)0.047 (3)
H6A0.48310.44840.06860.070*
H6B0.52860.37350.00230.070*
H6C0.55530.36590.10500.070*
C71.1261 (10)0.3598 (5)0.0057 (6)0.0283 (18)
C81.2080 (12)0.2769 (5)0.0107 (7)0.039 (2)
H8A1.17340.24530.06010.059*
H8B1.32390.28460.02030.059*
H8C1.17960.24720.04520.059*
N1A0.142 (3)0.2561 (15)0.263 (3)0.035 (4)0.513 (12)
N2A0.382 (2)0.3105 (12)0.2719 (13)0.033 (3)0.513 (12)
C9A0.230 (2)0.3252 (13)0.2752 (17)0.030 (4)0.513 (12)
H9A0.18710.37790.28470.036*0.513 (12)
C10A0.029 (3)0.248 (3)0.264 (3)0.050 (7)0.513 (12)
H10A0.06730.29350.29890.075*0.513 (12)
H10B0.05230.19600.29200.075*0.513 (12)
H10C0.08170.25020.20340.075*0.513 (12)
C11A0.247 (3)0.1942 (17)0.246 (4)0.048 (5)0.513 (12)
H11A0.21970.13830.23520.058*0.513 (12)
C12A0.391 (3)0.2268 (14)0.248 (5)0.049 (5)0.513 (12)
H12A0.48500.19880.23570.059*0.513 (12)
C13A0.505 (3)0.3747 (17)0.2777 (16)0.059 (7)0.513 (12)
H13A0.59410.35850.32240.071*0.513 (12)
H13B0.45920.42640.29800.071*0.513 (12)
C14A0.569 (4)0.390 (2)0.1885 (19)0.105 (14)0.513 (12)
H14A0.61440.33860.16810.157*0.513 (12)
H14B0.65160.43200.19560.157*0.513 (12)
H14C0.48160.40770.14450.157*0.513 (12)
N1B0.193 (3)0.2668 (17)0.257 (4)0.035 (4)0.487 (12)
N2B0.429 (2)0.3195 (12)0.2470 (14)0.033 (3)0.487 (12)
C9B0.280 (3)0.3363 (14)0.2557 (18)0.030 (4)0.487 (12)
H9B0.23790.39000.26050.036*0.487 (12)
C10B0.023 (3)0.261 (3)0.261 (4)0.054 (9)0.487 (12)
H10D0.02210.31630.26340.081*0.487 (12)
H10E0.00260.23020.31380.081*0.487 (12)
H10F0.02700.23280.20750.081*0.487 (12)
C11B0.302 (4)0.2041 (17)0.251 (4)0.048 (5)0.487 (12)
H11B0.27530.14750.24960.058*0.487 (12)
C12B0.448 (4)0.2333 (15)0.247 (6)0.049 (5)0.487 (12)
H12B0.54380.20310.24530.059*0.487 (12)
C13B0.564 (3)0.3763 (13)0.246 (2)0.052 (6)0.487 (12)
H13C0.61560.36740.19090.062*0.487 (12)
H13D0.64350.36560.29750.062*0.487 (12)
C14B0.506 (2)0.4652 (12)0.2484 (14)0.042 (5)0.487 (12)
H14D0.39520.46860.22130.063*0.487 (12)
H14E0.57320.50010.21540.063*0.487 (12)
H14F0.51310.48370.31030.063*0.487 (12)
Cl10.9622 (3)0.49055 (16)0.24814 (16)0.0444 (6)
Cu10.98839 (12)0.49546 (7)0.41183 (7)0.0314 (3)
Cu20.98635 (12)0.49562 (7)0.08689 (7)0.0303 (3)
O10.7800 (8)0.5456 (5)0.4194 (5)0.0452 (17)
O20.7991 (8)0.5550 (4)0.5671 (5)0.0444 (17)
O30.8907 (8)0.3873 (4)0.4302 (5)0.0419 (16)
O40.9075 (9)0.3949 (4)0.5780 (4)0.0430 (17)
O50.7770 (8)0.4478 (5)0.0462 (5)0.0471 (18)
O60.7989 (8)0.4548 (5)0.0980 (5)0.053 (2)
O71.0869 (8)0.3877 (4)0.0774 (4)0.0406 (16)
O9A0.715 (3)0.3631 (15)0.7359 (15)0.056 (5)0.513 (12)
H2WA0.77 (2)0.367 (12)0.689 (10)0.067*0.513 (12)
H1WA0.72 (3)0.413 (7)0.761 (16)0.067*0.513 (12)
O9B0.691 (3)0.4074 (14)0.7142 (16)0.056 (5)0.487 (12)
H2WB0.766 (18)0.406 (14)0.675 (9)0.067*0.487 (12)
H1WB0.72 (4)0.367 (19)0.75 (2)0.067*0.487 (12)
O81.1090 (8)0.3948 (4)0.0674 (4)0.0392 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (4)0.019 (4)0.054 (6)0.004 (3)0.003 (4)0.001 (4)
C20.025 (4)0.027 (5)0.080 (8)0.001 (4)0.001 (4)0.013 (5)
C30.025 (4)0.024 (4)0.043 (5)0.002 (3)0.002 (4)0.005 (4)
C40.042 (6)0.022 (5)0.068 (8)0.004 (4)0.003 (5)0.002 (5)
C50.025 (4)0.024 (5)0.067 (6)0.005 (3)0.007 (4)0.014 (5)
C60.023 (4)0.041 (6)0.075 (8)0.000 (4)0.004 (4)0.022 (5)
C70.025 (4)0.019 (4)0.041 (5)0.001 (3)0.003 (4)0.007 (4)
C80.041 (5)0.019 (4)0.059 (7)0.004 (4)0.010 (5)0.000 (4)
N1A0.043 (12)0.036 (7)0.029 (8)0.007 (7)0.008 (15)0.001 (7)
N2A0.034 (8)0.048 (5)0.018 (10)0.000 (5)0.009 (5)0.011 (6)
C9A0.036 (9)0.028 (6)0.029 (11)0.000 (6)0.016 (8)0.009 (7)
C10A0.047 (13)0.08 (2)0.029 (14)0.018 (12)0.010 (15)0.008 (14)
C11A0.058 (17)0.035 (6)0.046 (9)0.006 (7)0.02 (2)0.008 (8)
C12A0.046 (16)0.049 (6)0.049 (8)0.023 (7)0.01 (3)0.009 (9)
C13A0.051 (14)0.077 (13)0.050 (15)0.023 (12)0.010 (11)0.029 (13)
C14A0.11 (3)0.15 (3)0.07 (2)0.07 (2)0.035 (18)0.02 (2)
N1B0.043 (12)0.036 (7)0.029 (8)0.007 (7)0.008 (15)0.001 (7)
N2B0.034 (8)0.048 (5)0.018 (10)0.000 (5)0.009 (5)0.011 (6)
C9B0.036 (9)0.028 (6)0.029 (11)0.000 (6)0.016 (8)0.009 (7)
C10B0.045 (14)0.066 (19)0.056 (19)0.021 (13)0.03 (2)0.005 (16)
C11B0.058 (17)0.035 (6)0.046 (9)0.006 (7)0.02 (2)0.008 (8)
C12B0.046 (16)0.049 (6)0.049 (8)0.023 (7)0.01 (3)0.009 (9)
C13B0.029 (11)0.074 (11)0.052 (19)0.008 (9)0.004 (11)0.018 (15)
C14B0.017 (8)0.067 (9)0.041 (12)0.018 (8)0.002 (8)0.005 (11)
Cl10.0558 (14)0.0398 (13)0.0342 (12)0.0062 (11)0.0095 (10)0.0070 (11)
Cu10.0339 (6)0.0200 (6)0.0380 (7)0.0020 (4)0.0066 (4)0.0041 (5)
Cu20.0289 (6)0.0233 (6)0.0370 (7)0.0035 (4)0.0035 (4)0.0095 (5)
O10.030 (3)0.059 (4)0.044 (4)0.013 (3)0.007 (3)0.006 (4)
O20.038 (4)0.049 (4)0.046 (4)0.009 (3)0.003 (3)0.003 (3)
O30.055 (4)0.028 (3)0.042 (4)0.009 (3)0.003 (3)0.009 (3)
O40.062 (5)0.028 (4)0.038 (4)0.009 (3)0.001 (3)0.003 (3)
O50.029 (3)0.053 (5)0.057 (4)0.011 (3)0.006 (3)0.007 (4)
O60.031 (4)0.074 (6)0.053 (4)0.005 (4)0.000 (3)0.025 (4)
O70.056 (4)0.029 (3)0.036 (4)0.015 (3)0.002 (3)0.000 (3)
O9A0.056 (8)0.061 (12)0.054 (11)0.032 (10)0.016 (7)0.023 (10)
O9B0.056 (8)0.061 (12)0.054 (11)0.032 (10)0.016 (7)0.023 (10)
O80.057 (4)0.025 (3)0.038 (4)0.013 (3)0.015 (3)0.001 (3)
Geometric parameters (Å, º) top
C1—O11.240 (12)C14A—H14B0.9800
C1—O21.269 (12)C14A—H14C0.9800
C1—C21.511 (12)N1B—C9B1.348 (17)
C2—H2A0.9800N1B—C11B1.382 (17)
C2—H2B0.9800N1B—C10B1.45 (2)
C2—H2C0.9800N2B—C9B1.309 (18)
C3—O31.241 (11)N2B—C12B1.42 (2)
C3—O41.261 (11)N2B—C13B1.47 (2)
C3—C41.506 (12)C9B—H9B0.9500
C4—H4A0.9800C10B—H10D0.9800
C4—H4B0.9800C10B—H10E0.9800
C4—H4C0.9800C10B—H10F0.9800
C5—O51.250 (12)C11B—C12B1.33 (2)
C5—O61.256 (13)C11B—H11B0.9500
C5—C61.502 (12)C12B—H12B0.9500
C6—H6A0.9800C13B—C14B1.531 (18)
C6—H6B0.9800C13B—H13C0.9900
C6—H6C0.9800C13B—H13D0.9900
C7—O81.239 (11)C14B—H14D0.9800
C7—O71.255 (11)C14B—H14E0.9800
C7—C81.518 (11)C14B—H14F0.9800
C8—H8A0.9800Cl1—Cu12.463 (3)
C8—H8B0.9800Cl1—Cu22.473 (3)
C8—H8C0.9800Cu1—O11.954 (7)
N1A—C9A1.350 (17)Cu1—O2i1.966 (7)
N1A—C11A1.383 (17)Cu1—O31.981 (7)
N1A—C10A1.45 (2)Cu1—O4i1.990 (7)
N2A—C9A1.308 (18)Cu1—Cu1i2.657 (3)
N2A—C12A1.42 (2)Cu2—O51.965 (6)
N2A—C13A1.47 (2)Cu2—O71.967 (6)
C9A—H9A0.9500Cu2—O8ii1.969 (6)
C10A—H10A0.9800Cu2—O6ii1.974 (7)
C10A—H10B0.9800Cu2—Cu2ii2.669 (3)
C10A—H10C0.9800O2—Cu1i1.966 (7)
C11A—C12A1.33 (2)O4—Cu1i1.990 (7)
C11A—H11A0.9500O6—Cu2ii1.974 (7)
C12A—H12A0.9500O9A—H2WA0.90 (2)
C13A—C14A1.529 (16)O9A—H1WA0.90 (2)
C13A—H13A0.9900O9B—H2WB0.909 (19)
C13A—H13B0.9900O9B—H1WB0.90 (2)
C14A—H14A0.9800O8—Cu2ii1.969 (6)
O1—C1—O2125.3 (8)C9B—N2B—C12B108.6 (17)
O1—C1—C2118.1 (9)C9B—N2B—C13B128.7 (18)
O2—C1—C2116.6 (9)C12B—N2B—C13B122.5 (19)
C1—C2—H2A109.5N2B—C9B—N1B110.6 (16)
C1—C2—H2B109.5N2B—C9B—H9B124.7
H2A—C2—H2B109.5N1B—C9B—H9B124.7
C1—C2—H2C109.5N1B—C10B—H10D109.5
H2A—C2—H2C109.5N1B—C10B—H10E109.5
H2B—C2—H2C109.5H10D—C10B—H10E109.5
O3—C3—O4125.9 (9)N1B—C10B—H10F109.5
O3—C3—C4117.9 (9)H10D—C10B—H10F109.5
O4—C3—C4116.2 (9)H10E—C10B—H10F109.5
C3—C4—H4A109.5C12B—C11B—N1B111.2 (19)
C3—C4—H4B109.5C12B—C11B—H11B124.4
H4A—C4—H4B109.5N1B—C11B—H11B124.4
C3—C4—H4C109.5C11B—C12B—N2B104.4 (19)
H4A—C4—H4C109.5C11B—C12B—H12B127.8
H4B—C4—H4C109.5N2B—C12B—H12B127.8
O5—C5—O6124.2 (9)N2B—C13B—C14B110.3 (18)
O5—C5—C6118.3 (10)N2B—C13B—H13C109.6
O6—C5—C6117.5 (10)C14B—C13B—H13C109.6
C5—C6—H6A109.5N2B—C13B—H13D109.6
C5—C6—H6B109.5C14B—C13B—H13D109.6
H6A—C6—H6B109.5H13C—C13B—H13D108.1
C5—C6—H6C109.5C13B—C14B—H14D109.5
H6A—C6—H6C109.5C13B—C14B—H14E109.5
H6B—C6—H6C109.5H14D—C14B—H14E109.5
O8—C7—O7126.2 (8)C13B—C14B—H14F109.5
O8—C7—C8117.4 (8)H14D—C14B—H14F109.5
O7—C7—C8116.3 (8)H14E—C14B—H14F109.5
C7—C8—H8A109.5Cu1—Cl1—Cu2169.49 (13)
C7—C8—H8B109.5O1—Cu1—O2i167.4 (3)
H8A—C8—H8B109.5O1—Cu1—O388.4 (3)
C7—C8—H8C109.5O2i—Cu1—O389.5 (3)
H8A—C8—H8C109.5O1—Cu1—O4i90.7 (3)
H8B—C8—H8C109.5O2i—Cu1—O4i88.7 (3)
C9A—N1A—C11A106.5 (17)O3—Cu1—O4i167.6 (3)
C9A—N1A—C10A127.1 (18)O1—Cu1—Cl195.4 (2)
C11A—N1A—C10A126 (2)O2i—Cu1—Cl197.2 (2)
C9A—N2A—C12A105.8 (17)O3—Cu1—Cl196.9 (2)
C9A—N2A—C13A123.7 (19)O4i—Cu1—Cl195.5 (2)
C12A—N2A—C13A129.8 (19)O1—Cu1—Cu1i83.2 (2)
N2A—C9A—N1A111.4 (16)O2i—Cu1—Cu1i84.2 (2)
N2A—C9A—H9A124.3O3—Cu1—Cu1i83.9 (2)
N1A—C9A—H9A124.3O4i—Cu1—Cu1i83.7 (2)
N1A—C10A—H10A109.5Cl1—Cu1—Cu1i178.39 (9)
N1A—C10A—H10B109.5O5—Cu2—O790.1 (3)
H10A—C10A—H10B109.5O5—Cu2—O8ii88.6 (3)
N1A—C10A—H10C109.5O7—Cu2—O8ii167.0 (3)
H10A—C10A—H10C109.5O5—Cu2—O6ii166.7 (3)
H10B—C10A—H10C109.5O7—Cu2—O6ii88.5 (3)
C12A—C11A—N1A107.8 (19)O8ii—Cu2—O6ii89.8 (3)
C12A—C11A—H11A126.1O5—Cu2—Cl197.1 (2)
N1A—C11A—H11A126.1O7—Cu2—Cl197.3 (2)
C11A—C12A—N2A108.2 (19)O8ii—Cu2—Cl195.7 (2)
C11A—C12A—H12A125.9O6ii—Cu2—Cl196.2 (2)
N2A—C12A—H12A125.9O5—Cu2—Cu2ii83.6 (2)
N2A—C13A—C14A112 (2)O7—Cu2—Cu2ii83.7 (2)
N2A—C13A—H13A109.2O8ii—Cu2—Cu2ii83.3 (2)
C14A—C13A—H13A109.2O6ii—Cu2—Cu2ii83.2 (2)
N2A—C13A—H13B109.2Cl1—Cu2—Cu2ii178.82 (9)
C14A—C13A—H13B109.2C1—O1—Cu1124.9 (6)
H13A—C13A—H13B107.9C1—O2—Cu1i122.4 (6)
C13A—C14A—H14A109.5C3—O3—Cu1123.6 (6)
C13A—C14A—H14B109.5C3—O4—Cu1i122.9 (6)
H14A—C14A—H14B109.5C5—O5—Cu2124.6 (7)
C13A—C14A—H14C109.5C5—O6—Cu2ii124.5 (6)
H14A—C14A—H14C109.5C7—O7—Cu2123.0 (6)
H14B—C14A—H14C109.5H2WA—O9A—H1WA105 (5)
C9B—N1B—C11B105.1 (17)H2WB—O9B—H1WB105 (5)
C9B—N1B—C10B126.4 (19)C7—O8—Cu2ii123.8 (6)
C11B—N1B—C10B128 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9B—H2WB···O40.91 (2)2.01 (2)2.91 (2)172 (18)
O9A—H1WA···O6iii0.90 (2)2.3 (2)2.94 (3)131 (23)
O9A—H2WA···O40.90 (2)2.19 (5)3.08 (2)172 (18)
C14B—H14D···O6iv0.982.653.49 (2)144
C12B—H12B···O9Bv0.952.273.16 (3)155
C10B—H10D···Cl1vi0.982.853.78 (5)158
C9B—H9B···Cl1vi0.952.843.67 (2)147
C14A—H14B···Cl10.982.823.72 (3)154
C12A—H12A···O9Av0.952.193.13 (3)168
C11A—H11A···Cl1vii0.952.883.77 (3)155
C10A—H10B···O9Aviii0.982.262.82 (4)115
C10A—H10A···O3vi0.982.563.50 (5)161
C9A—H9A···O2ix0.952.483.11 (3)124
C9A—H9A···Cl1vi0.952.653.51 (2)151
C2—H2C···O9Bix0.982.523.48 (3)165
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y+1/2, z1/2; (vi) x1, y, z; (vii) x+1, y1/2, z+1/2; (viii) x1, y+1/2, z1/2; (ix) x+1, y+1, z+1.
catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) top
Crystal data top
(C6H11N2)[Cu2(C2H3O2)5]Z = 2
Mr = 533.47F(000) = 548
Triclinic, P1Dx = 1.637 Mg m3
a = 8.0542 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1633 (9) ÅCell parameters from 4553 reflections
c = 16.7195 (19) Åθ = 2.5–30.5°
α = 98.126 (3)°µ = 2.02 mm1
β = 94.745 (3)°T = 198 K
γ = 92.964 (3)°Prism, blue
V = 1082.3 (2) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4343 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 710
Tmin = 0.583, Tmax = 0.688k = 1010
11652 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.044
4343 reflectionsΔρmax = 0.38 e Å3
278 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.92345 (4)0.99123 (3)0.92550 (2)0.01579 (11)
Cu20.56051 (4)0.98913 (3)0.57530 (2)0.01600 (11)
O70.7481 (2)0.8938 (2)0.52154 (11)0.0256 (4)
O50.7615 (3)0.9983 (2)0.82103 (10)0.0239 (4)
O21.1356 (2)1.0928 (2)0.89944 (11)0.0269 (4)
O80.6506 (2)0.9156 (2)0.39488 (10)0.0254 (4)
O40.8587 (2)1.2104 (2)0.97397 (10)0.0266 (4)
O60.6474 (2)1.0114 (2)0.69902 (11)0.0261 (4)
O90.4417 (2)0.7682 (2)0.55935 (11)0.0287 (5)
O100.3447 (2)0.7862 (2)0.43204 (11)0.0272 (4)
O11.2610 (2)1.1154 (2)1.02491 (11)0.0315 (5)
O30.9849 (3)1.2283 (2)1.09893 (11)0.0291 (5)
N10.6086 (3)0.4848 (3)0.78982 (12)0.0236 (5)
N20.4357 (3)0.6683 (3)0.76515 (14)0.0281 (5)
C70.7587 (3)0.8778 (3)0.44641 (15)0.0176 (5)
C11.2586 (3)1.1306 (3)0.95090 (15)0.0209 (5)
C90.3605 (3)0.7127 (3)0.49278 (16)0.0217 (5)
C30.8935 (3)1.2817 (3)1.04474 (15)0.0197 (5)
C110.5724 (3)0.6410 (3)0.80908 (16)0.0253 (6)
H110.63500.72090.84840.030*
C40.8185 (4)1.4451 (3)1.06738 (17)0.0302 (6)
H4A0.90041.53601.06330.045*
H4B0.78741.45371.12320.045*
H4C0.71901.45221.03040.045*
C50.7598 (3)0.9663 (3)0.74538 (13)0.0191 (5)
C80.9154 (3)0.8103 (3)0.41572 (18)0.0305 (6)
H8A0.89670.77340.35710.046*
H8B0.94540.71620.44320.046*
H8C1.00640.89710.42680.046*
C21.4171 (4)1.1998 (4)0.92301 (19)0.0323 (7)
H2A1.50081.11680.92230.048*
H2B1.45931.29960.96020.048*
H2C1.39441.22800.86830.048*
C130.4900 (4)0.4082 (4)0.73099 (17)0.0360 (7)
H130.48490.29610.70570.043*
C140.7545 (4)0.4061 (4)0.82256 (17)0.0331 (7)
H14A0.71780.29790.83760.040*
H14B0.80610.47700.87230.040*
C150.8825 (4)0.3799 (4)0.76169 (19)0.0360 (7)
H15A0.83010.31490.71130.054*
H15B0.97400.32010.78380.054*
H15C0.92670.48760.75040.054*
C120.3825 (4)0.5232 (4)0.71625 (18)0.0410 (8)
H120.28630.50660.67840.049*
C100.2743 (4)0.5423 (3)0.4847 (2)0.0415 (8)
H10A0.34180.47240.51580.062*
H10B0.26050.49300.42740.062*
H10C0.16440.55060.50560.062*
C60.8976 (5)0.8706 (5)0.71030 (18)0.0480 (9)
H6A0.86100.81960.65460.072*
H6B0.92530.78380.74320.072*
H6C0.99640.94580.71020.072*
C160.3528 (4)0.8234 (4)0.7685 (2)0.0467 (9)
H16A0.25080.81400.79610.070*
H16B0.32420.84650.71330.070*
H16C0.42780.91390.79840.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01738 (19)0.01679 (18)0.01239 (18)0.00049 (13)0.00352 (12)0.00242 (13)
Cu20.01685 (19)0.01832 (18)0.01209 (18)0.00081 (13)0.00266 (13)0.00212 (13)
O70.0227 (10)0.0340 (10)0.0206 (10)0.0092 (8)0.0008 (8)0.0035 (8)
O50.0274 (10)0.0272 (10)0.0155 (9)0.0027 (8)0.0073 (7)0.0024 (7)
O20.0239 (11)0.0349 (11)0.0221 (10)0.0033 (8)0.0013 (8)0.0069 (8)
O80.0207 (10)0.0351 (10)0.0193 (9)0.0049 (8)0.0002 (8)0.0001 (8)
O40.0345 (12)0.0228 (9)0.0204 (10)0.0101 (8)0.0057 (8)0.0020 (8)
O60.0273 (11)0.0355 (11)0.0144 (9)0.0051 (8)0.0071 (8)0.0040 (8)
O90.0337 (12)0.0232 (9)0.0291 (10)0.0033 (8)0.0020 (9)0.0082 (8)
O100.0321 (11)0.0216 (9)0.0261 (10)0.0046 (8)0.0020 (8)0.0028 (8)
O10.0248 (11)0.0426 (12)0.0262 (10)0.0107 (9)0.0023 (8)0.0093 (9)
O30.0421 (13)0.0211 (9)0.0221 (10)0.0089 (8)0.0072 (9)0.0008 (8)
N10.0285 (13)0.0216 (11)0.0193 (11)0.0012 (9)0.0016 (9)0.0006 (9)
N20.0268 (13)0.0292 (12)0.0292 (12)0.0016 (10)0.0068 (10)0.0048 (10)
C70.0158 (13)0.0113 (11)0.0236 (13)0.0017 (9)0.0005 (10)0.0032 (9)
C10.0198 (14)0.0170 (12)0.0259 (14)0.0004 (10)0.0021 (11)0.0036 (10)
C90.0199 (13)0.0169 (12)0.0287 (14)0.0022 (10)0.0028 (11)0.0038 (10)
C30.0192 (13)0.0184 (12)0.0218 (13)0.0004 (10)0.0023 (10)0.0043 (10)
C110.0234 (15)0.0242 (13)0.0265 (14)0.0063 (11)0.0040 (11)0.0005 (11)
C40.0350 (17)0.0220 (13)0.0331 (15)0.0093 (12)0.0015 (13)0.0000 (12)
C50.0247 (14)0.0169 (11)0.0150 (13)0.0028 (10)0.0038 (11)0.0050 (9)
C80.0193 (15)0.0312 (15)0.0406 (17)0.0043 (12)0.0075 (12)0.0005 (13)
C20.0230 (16)0.0332 (15)0.0423 (17)0.0027 (12)0.0096 (13)0.0085 (13)
C130.0410 (19)0.0334 (16)0.0273 (15)0.0029 (14)0.0010 (13)0.0122 (12)
C140.0397 (18)0.0304 (15)0.0307 (15)0.0070 (13)0.0022 (13)0.0085 (12)
C150.0322 (17)0.0310 (15)0.0429 (18)0.0018 (13)0.0015 (14)0.0013 (13)
C120.0364 (19)0.054 (2)0.0273 (16)0.0020 (15)0.0063 (13)0.0040 (14)
C100.043 (2)0.0216 (14)0.057 (2)0.0115 (13)0.0064 (16)0.0083 (14)
C60.053 (2)0.073 (2)0.0240 (15)0.0370 (19)0.0071 (15)0.0124 (15)
C160.0346 (19)0.048 (2)0.065 (2)0.0147 (15)0.0178 (17)0.0199 (17)
Geometric parameters (Å, º) top
Cu1—O21.9684 (19)C1—C21.505 (4)
Cu1—O41.9714 (18)C9—C101.505 (4)
Cu1—O3i1.9755 (17)C3—C41.506 (3)
Cu1—O1i1.9811 (19)C11—H110.9500
Cu1—O52.1012 (17)C4—H4A0.9800
Cu1—Cu1i2.6685 (6)C4—H4B0.9800
Cu2—O71.9607 (19)C4—H4C0.9800
Cu2—O91.9706 (18)C5—C61.501 (4)
Cu2—O10ii1.9742 (18)C8—H8A0.9800
Cu2—O8ii1.9774 (18)C8—H8B0.9800
Cu2—O62.1077 (18)C8—H8C0.9800
Cu2—Cu2ii2.6571 (6)C2—H2A0.9800
O7—C71.255 (3)C2—H2B0.9800
O5—C51.254 (3)C2—H2C0.9800
O2—C11.253 (3)C13—C121.344 (4)
O8—C71.255 (3)C13—H130.9500
O8—Cu2ii1.9774 (18)C14—C151.510 (4)
O4—C31.246 (3)C14—H14A0.9900
O6—C51.247 (3)C14—H14B0.9900
O9—C91.256 (3)C15—H15A0.9800
O10—C91.251 (3)C15—H15B0.9800
O10—Cu2ii1.9742 (18)C15—H15C0.9800
O1—C11.260 (3)C12—H120.9500
O1—Cu1i1.9811 (19)C10—H10A0.9800
O3—C31.260 (3)C10—H10B0.9800
O3—Cu1i1.9755 (17)C10—H10C0.9800
N1—C111.324 (3)C6—H6A0.9800
N1—C131.371 (4)C6—H6B0.9800
N1—C141.471 (3)C6—H6C0.9800
N2—C111.319 (3)C16—H16A0.9800
N2—C121.368 (4)C16—H16B0.9800
N2—C161.458 (4)C16—H16C0.9800
C7—C81.503 (4)
O2—Cu1—O490.22 (9)N2—C11—H11125.3
O2—Cu1—O3i88.50 (9)N1—C11—H11125.3
O4—Cu1—O3i167.17 (7)C3—C4—H4A109.5
O2—Cu1—O1i167.09 (7)C3—C4—H4B109.5
O4—Cu1—O1i89.57 (9)H4A—C4—H4B109.5
O3i—Cu1—O1i88.85 (9)C3—C4—H4C109.5
O2—Cu1—O5103.44 (8)H4A—C4—H4C109.5
O4—Cu1—O590.86 (7)H4B—C4—H4C109.5
O3i—Cu1—O5101.85 (7)O6—C5—O5121.9 (3)
O1i—Cu1—O589.47 (8)O6—C5—C6119.6 (2)
O2—Cu1—Cu1i84.72 (5)O5—C5—C6118.5 (2)
O4—Cu1—Cu1i80.15 (5)C7—C8—H8A109.5
O3i—Cu1—Cu1i87.02 (5)C7—C8—H8B109.5
O1i—Cu1—Cu1i82.53 (5)H8A—C8—H8B109.5
O5—Cu1—Cu1i167.97 (6)C7—C8—H8C109.5
O7—Cu2—O989.95 (8)H8A—C8—H8C109.5
O7—Cu2—O10ii89.75 (8)H8B—C8—H8C109.5
O9—Cu2—O10ii167.61 (7)C1—C2—H2A109.5
O7—Cu2—O8ii167.52 (7)C1—C2—H2B109.5
O9—Cu2—O8ii88.09 (8)H2A—C2—H2B109.5
O10ii—Cu2—O8ii89.52 (8)C1—C2—H2C109.5
O7—Cu2—O6102.37 (8)H2A—C2—H2C109.5
O9—Cu2—O6100.56 (7)H2B—C2—H2C109.5
O10ii—Cu2—O691.60 (7)C12—C13—N1106.4 (3)
O8ii—Cu2—O690.10 (7)C12—C13—H13126.8
O7—Cu2—Cu2ii83.53 (5)N1—C13—H13126.8
O9—Cu2—Cu2ii86.21 (5)N1—C14—C15111.6 (2)
O10ii—Cu2—Cu2ii81.44 (5)N1—C14—H14A109.3
O8ii—Cu2—Cu2ii84.05 (5)C15—C14—H14A109.3
O6—Cu2—Cu2ii170.92 (5)N1—C14—H14B109.3
C7—O7—Cu2124.17 (16)C15—C14—H14B109.3
C5—O5—Cu1139.44 (18)H14A—C14—H14B108.0
C1—O2—Cu1122.82 (16)C14—C15—H15A109.5
C7—O8—Cu2ii122.70 (17)C14—C15—H15B109.5
C3—O4—Cu1127.95 (15)H15A—C15—H15B109.5
C5—O6—Cu2141.70 (19)C14—C15—H15C109.5
C9—O9—Cu2120.40 (15)H15A—C15—H15C109.5
C9—O10—Cu2ii126.01 (17)H15B—C15—H15C109.5
C1—O1—Cu1i124.53 (17)C13—C12—N2108.1 (3)
C3—O3—Cu1i119.18 (17)C13—C12—H12125.9
C11—N1—C13108.5 (2)N2—C12—H12125.9
C11—N1—C14126.6 (2)C9—C10—H10A109.5
C13—N1—C14124.9 (2)C9—C10—H10B109.5
C11—N2—C12107.7 (2)H10A—C10—H10B109.5
C11—N2—C16126.7 (3)C9—C10—H10C109.5
C12—N2—C16125.6 (3)H10A—C10—H10C109.5
O8—C7—O7125.5 (2)H10B—C10—H10C109.5
O8—C7—C8117.3 (2)C5—C6—H6A109.5
O7—C7—C8117.2 (2)C5—C6—H6B109.5
O2—C1—O1125.2 (2)H6A—C6—H6B109.5
O2—C1—C2118.1 (2)C5—C6—H6C109.5
O1—C1—C2116.7 (2)H6A—C6—H6C109.5
O10—C9—O9125.9 (2)H6B—C6—H6C109.5
O10—C9—C10116.6 (2)N2—C16—H16A109.5
O9—C9—C10117.5 (2)N2—C16—H16B109.5
O4—C3—O3125.6 (2)H16A—C16—H16B109.5
O4—C3—C4116.9 (2)N2—C16—H16C109.5
O3—C3—C4117.4 (2)H16A—C16—H16C109.5
N2—C11—N1109.4 (2)H16B—C16—H16C109.5
Cu2ii—O8—C7—O70.4 (3)C12—N2—C11—N10.3 (3)
Cu2ii—O8—C7—C8178.57 (17)C16—N2—C11—N1179.2 (2)
Cu2—O7—C7—O82.0 (4)C13—N1—C11—N20.0 (3)
Cu2—O7—C7—C8176.93 (17)C14—N1—C11—N2177.5 (2)
Cu1—O2—C1—O12.9 (4)Cu2—O6—C5—O5174.30 (18)
Cu1—O2—C1—C2177.00 (18)Cu2—O6—C5—C65.5 (4)
Cu1i—O1—C1—O25.8 (4)Cu1—O5—C5—O6167.95 (18)
Cu1i—O1—C1—C2174.07 (18)Cu1—O5—C5—C612.2 (4)
Cu2ii—O10—C9—O91.2 (4)C11—N1—C13—C120.2 (3)
Cu2ii—O10—C9—C10179.0 (2)C14—N1—C13—C12177.8 (3)
Cu2—O9—C9—O100.4 (4)C11—N1—C14—C15105.3 (3)
Cu2—O9—C9—C10179.4 (2)C13—N1—C14—C1571.8 (4)
Cu1—O4—C3—O33.2 (4)N1—C13—C12—N20.4 (4)
Cu1—O4—C3—C4176.27 (19)C11—N2—C12—C130.4 (3)
Cu1i—O3—C3—O42.8 (4)C16—N2—C12—C13179.3 (3)
Cu1i—O3—C3—C4176.66 (19)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O70.982.503.320 (4)141
C14—H14A···O5iii0.992.473.329 (3)145
C13—H13···O8iv0.952.383.229 (4)148
C8—H8C···O7v0.982.553.522 (4)170
C11—H11···O1i0.952.403.317 (3)162
C11—H11···O50.952.553.192 (3)125
Symmetry codes: (i) x+2, y+2, z+2; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1.
Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4) top
Crystal data top
(C6H11N2)2[Cu2(C2H3O2)6][Cu2(C2H3O2)4(H2O)2]·2H2OZ = 1
Mr = 1139.00F(000) = 588
Triclinic, P1Dx = 1.615 Mg m3
a = 7.9526 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0951 (5) ÅCell parameters from 4961 reflections
c = 18.8886 (11) Åθ = 2.6–29.6°
α = 79.1770 (16)°µ = 1.88 mm1
β = 78.9500 (16)°T = 198 K
γ = 89.9320 (15)°Prism, blue
V = 1171.46 (12) Å30.30 × 0.27 × 0.22 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4775 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 26.4°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 99
Tmin = 0.605, Tmax = 0.685k = 1010
20914 measured reflectionsl = 2323
Refinement top
Refinement on F272 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.42(Δ/σ)max = 0.001
4775 reflectionsΔρmax = 0.40 e Å3
307 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91056 (4)0.44336 (4)0.06690 (2)0.01957 (12)
Cu20.09960 (5)0.06109 (5)0.43531 (2)0.02361 (12)
O10.7251 (3)0.5696 (3)0.02852 (12)0.0273 (5)
O20.8722 (3)0.6597 (3)0.08616 (12)0.0277 (5)
O30.9897 (3)0.6526 (3)0.09078 (13)0.0316 (6)
O41.1418 (3)0.7477 (3)0.02273 (13)0.0289 (5)
O110.4649 (3)0.2016 (3)0.23534 (13)0.0355 (6)
O60.2604 (3)0.1127 (3)0.49611 (13)0.0356 (6)
O50.7795 (3)0.3431 (3)0.17670 (13)0.0354 (6)
H50.84140.27340.19760.053*
O90.1846 (3)0.1702 (3)0.55415 (14)0.0366 (6)
O70.0942 (3)0.0128 (3)0.60447 (12)0.0333 (6)
O80.0205 (3)0.2707 (3)0.44485 (14)0.0386 (6)
O100.2485 (3)0.1352 (3)0.32793 (13)0.0378 (6)
C10.7382 (4)0.6483 (4)0.03698 (18)0.0220 (7)
N20.4809 (4)0.7850 (4)0.19273 (18)0.0449 (8)
C31.0864 (4)0.7590 (4)0.04339 (19)0.0256 (7)
N10.2327 (5)0.6858 (4)0.25088 (17)0.0476 (9)
C50.2322 (4)0.0782 (4)0.56465 (18)0.0246 (7)
O120.0083 (5)0.1154 (5)0.23115 (18)0.0715 (10)
C90.3888 (4)0.2120 (4)0.29812 (18)0.0259 (7)
C70.1375 (4)0.2826 (4)0.4983 (2)0.0317 (8)
C20.5825 (4)0.7351 (4)0.0578 (2)0.0310 (8)
H2A0.61050.79430.10900.046*
H2B0.54610.81610.02580.046*
H2C0.48960.65140.05200.046*
C41.1405 (5)0.9151 (4)0.0676 (2)0.0367 (9)
H4A1.23830.97180.03150.055*
H4B1.17350.88340.11560.055*
H4C1.04470.99130.07130.055*
C60.3746 (5)0.1154 (5)0.6017 (2)0.0392 (9)
H6A0.48060.06800.57940.059*
H6B0.34510.06510.65410.059*
H6C0.39110.23750.59600.059*
C100.4686 (5)0.3206 (5)0.3413 (2)0.0465 (10)
H10A0.58460.35850.31490.070*
H10B0.47430.25470.38990.070*
H10C0.39850.41860.34710.070*
C120.4448 (6)0.6441 (5)0.1662 (2)0.0482 (10)
H120.51790.59910.12900.058*
C130.2902 (6)0.5817 (5)0.2016 (2)0.0490 (10)
H130.23150.48580.19440.059*
C110.3486 (5)0.8073 (5)0.2436 (2)0.0471 (10)
H110.33850.89600.27050.056*
C80.2333 (5)0.4447 (5)0.4944 (2)0.0477 (10)
H8A0.33620.43230.47420.072*
H8B0.15910.53670.46270.072*
H8C0.26650.46980.54380.072*
C160.6413 (5)0.8940 (6)0.1651 (3)0.0675 (14)
H16A0.63400.96610.11800.101*
H16B0.74060.82280.15840.101*
H16C0.65390.96440.20080.101*
C140.0722 (6)0.6606 (8)0.3061 (3)0.0893 (19)
H14A0.09010.57410.34830.107*
H14B0.04790.76700.32420.107*
C150.0685 (7)0.6127 (11)0.2825 (3)0.140 (4)
H15A0.09720.70360.24510.209*
H15B0.16540.58860.32420.209*
H15C0.04420.51150.26150.209*
H5B0.678 (3)0.307 (5)0.202 (2)0.062 (14)*
H1O0.052 (5)0.106 (6)0.2779 (14)0.074*
H2O0.090 (4)0.146 (6)0.251 (2)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0164 (2)0.0196 (2)0.0217 (2)0.00175 (15)0.00105 (16)0.00408 (16)
Cu20.0196 (2)0.0277 (2)0.0207 (2)0.00132 (16)0.00128 (16)0.00271 (17)
O10.0197 (12)0.0294 (12)0.0302 (13)0.0025 (9)0.0013 (10)0.0033 (10)
O20.0187 (12)0.0347 (13)0.0275 (13)0.0010 (10)0.0030 (10)0.0025 (10)
O30.0368 (14)0.0260 (12)0.0329 (14)0.0069 (10)0.0032 (11)0.0115 (10)
O40.0296 (13)0.0234 (12)0.0345 (14)0.0046 (10)0.0049 (11)0.0088 (10)
O110.0304 (13)0.0434 (15)0.0287 (14)0.0085 (11)0.0083 (11)0.0109 (11)
O60.0279 (13)0.0488 (16)0.0276 (14)0.0085 (11)0.0039 (11)0.0026 (11)
O50.0292 (14)0.0439 (16)0.0265 (14)0.0061 (12)0.0031 (11)0.0011 (11)
O90.0312 (14)0.0347 (14)0.0415 (16)0.0082 (11)0.0008 (12)0.0087 (12)
O70.0253 (13)0.0492 (16)0.0243 (13)0.0052 (11)0.0029 (10)0.0063 (11)
O80.0412 (15)0.0295 (14)0.0399 (16)0.0062 (11)0.0000 (12)0.0020 (11)
O100.0242 (13)0.0605 (17)0.0232 (13)0.0128 (12)0.0036 (10)0.0027 (12)
C10.0207 (16)0.0183 (16)0.0291 (18)0.0031 (12)0.0061 (14)0.0085 (13)
N20.045 (2)0.049 (2)0.046 (2)0.0203 (16)0.0117 (16)0.0194 (17)
C30.0210 (17)0.0214 (17)0.039 (2)0.0035 (13)0.0130 (15)0.0093 (15)
N10.056 (2)0.053 (2)0.035 (2)0.0090 (17)0.0004 (16)0.0206 (16)
C50.0262 (18)0.0208 (16)0.0271 (19)0.0037 (13)0.0051 (14)0.0056 (13)
O120.087 (3)0.080 (2)0.057 (2)0.012 (2)0.0423 (19)0.0094 (19)
C90.0269 (18)0.0246 (17)0.0231 (18)0.0011 (14)0.0010 (15)0.0006 (14)
C70.0274 (19)0.0299 (19)0.040 (2)0.0013 (15)0.0101 (16)0.0091 (16)
C20.0200 (17)0.0293 (18)0.043 (2)0.0009 (14)0.0094 (15)0.0026 (16)
C40.040 (2)0.0249 (18)0.051 (2)0.0036 (16)0.0151 (19)0.0178 (17)
C60.030 (2)0.050 (2)0.041 (2)0.0032 (17)0.0139 (17)0.0107 (18)
C100.057 (3)0.045 (2)0.033 (2)0.021 (2)0.0052 (19)0.0097 (18)
C120.060 (3)0.047 (2)0.044 (3)0.027 (2)0.013 (2)0.022 (2)
C130.067 (3)0.043 (2)0.041 (2)0.016 (2)0.009 (2)0.0196 (19)
C110.049 (2)0.051 (3)0.048 (3)0.0108 (19)0.012 (2)0.025 (2)
C80.048 (3)0.034 (2)0.062 (3)0.0153 (18)0.009 (2)0.0132 (19)
C160.040 (3)0.059 (3)0.110 (4)0.009 (2)0.012 (3)0.032 (3)
C140.067 (3)0.121 (5)0.079 (4)0.023 (3)0.024 (3)0.055 (4)
C150.068 (4)0.289 (11)0.072 (4)0.041 (5)0.008 (3)0.082 (6)
Geometric parameters (Å, º) top
Cu1—O31.967 (2)N1—C141.473 (5)
Cu1—O11.968 (2)C5—C61.499 (4)
Cu1—O4i1.970 (2)O12—H1O0.910 (18)
Cu1—O2i1.984 (2)O12—H2O0.874 (19)
Cu1—O52.142 (2)C9—C101.520 (5)
Cu1—Cu1i2.6469 (7)C7—C81.513 (5)
Cu2—O81.967 (2)C2—H2A0.9800
Cu2—O61.968 (2)C2—H2B0.9800
Cu2—O9ii1.978 (2)C2—H2C0.9800
Cu2—O7ii1.978 (2)C4—H4A0.9800
Cu2—O102.121 (2)C4—H4B0.9800
Cu2—Cu2ii2.6592 (8)C4—H4C0.9800
O1—C11.266 (4)C6—H6A0.9800
O2—C11.263 (4)C6—H6B0.9800
O2—Cu1i1.984 (2)C6—H6C0.9800
O3—C31.258 (4)C10—H10A0.9800
O4—C31.263 (4)C10—H10B0.9800
O4—Cu1i1.970 (2)C10—H10C0.9800
O11—C91.242 (4)C12—C131.331 (6)
O6—C51.248 (4)C12—H120.9500
O5—H50.8400C13—H130.9500
O5—H5B0.878 (18)C11—H110.9500
O9—C71.253 (4)C8—H8A0.9800
O9—Cu2ii1.978 (2)C8—H8B0.9800
O7—C51.259 (4)C8—H8C0.9800
O7—Cu2ii1.978 (2)C16—H16A0.9800
O8—C71.253 (4)C16—H16B0.9800
O10—C91.256 (4)C16—H16C0.9800
C1—C21.504 (4)C14—C151.363 (6)
N2—C111.319 (5)C14—H14A0.9900
N2—C121.381 (5)C14—H14B0.9900
N2—C161.501 (5)C15—H15A0.9800
C3—C41.511 (4)C15—H15B0.9800
N1—C111.318 (5)C15—H15C0.9800
N1—C131.385 (5)
O3—Cu1—O188.30 (10)O8—C7—O9125.6 (3)
O3—Cu1—O4i168.28 (10)O8—C7—C8117.4 (3)
O1—Cu1—O4i90.23 (9)O9—C7—C8117.0 (3)
O3—Cu1—O2i88.82 (10)C1—C2—H2A109.5
O1—Cu1—O2i168.07 (9)C1—C2—H2B109.5
O4i—Cu1—O2i90.24 (9)H2A—C2—H2B109.5
O3—Cu1—O594.73 (10)C1—C2—H2C109.5
O1—Cu1—O599.95 (9)H2A—C2—H2C109.5
O4i—Cu1—O596.98 (10)H2B—C2—H2C109.5
O2i—Cu1—O591.83 (9)C3—C4—H4A109.5
O3—Cu1—Cu1i85.55 (7)C3—C4—H4B109.5
O1—Cu1—Cu1i83.63 (7)H4A—C4—H4B109.5
O4i—Cu1—Cu1i82.74 (7)C3—C4—H4C109.5
O2i—Cu1—Cu1i84.60 (7)H4A—C4—H4C109.5
O5—Cu1—Cu1i176.41 (7)H4B—C4—H4C109.5
O8—Cu2—O691.32 (11)C5—C6—H6A109.5
O8—Cu2—O9ii167.41 (10)C5—C6—H6B109.5
O6—Cu2—O9ii88.28 (10)H6A—C6—H6B109.5
O8—Cu2—O7ii87.89 (10)C5—C6—H6C109.5
O6—Cu2—O7ii167.25 (10)H6A—C6—H6C109.5
O9ii—Cu2—O7ii89.73 (10)H6B—C6—H6C109.5
O8—Cu2—O1099.52 (10)C9—C10—H10A109.5
O6—Cu2—O10101.45 (9)C9—C10—H10B109.5
O9ii—Cu2—O1092.89 (10)H10A—C10—H10B109.5
O7ii—Cu2—O1091.22 (9)C9—C10—H10C109.5
O8—Cu2—Cu2ii84.34 (7)H10A—C10—H10C109.5
O6—Cu2—Cu2ii83.49 (7)H10B—C10—H10C109.5
O9ii—Cu2—Cu2ii83.11 (7)C13—C12—N2108.5 (4)
O7ii—Cu2—Cu2ii83.77 (7)C13—C12—H12125.8
O10—Cu2—Cu2ii173.59 (7)N2—C12—H12125.8
C1—O1—Cu1124.3 (2)C12—C13—N1105.6 (4)
C1—O2—Cu1i122.4 (2)C12—C13—H13127.2
C3—O3—Cu1121.4 (2)N1—C13—H13127.2
C3—O4—Cu1i124.4 (2)N1—C11—N2108.6 (4)
C5—O6—Cu2124.5 (2)N1—C11—H11125.7
Cu1—O5—H5109.5N2—C11—H11125.7
Cu1—O5—H5B142 (3)C7—C8—H8A109.5
H5—O5—H5B100.1C7—C8—H8B109.5
C7—O9—Cu2ii123.8 (2)H8A—C8—H8B109.5
C5—O7—Cu2ii123.4 (2)C7—C8—H8C109.5
C7—O8—Cu2122.9 (2)H8A—C8—H8C109.5
C9—O10—Cu2137.9 (2)H8B—C8—H8C109.5
O2—C1—O1125.0 (3)N2—C16—H16A109.5
O2—C1—C2117.5 (3)N2—C16—H16B109.5
O1—C1—C2117.5 (3)H16A—C16—H16B109.5
C11—N2—C12107.8 (4)N2—C16—H16C109.5
C11—N2—C16127.5 (4)H16A—C16—H16C109.5
C12—N2—C16124.7 (4)H16B—C16—H16C109.5
O3—C3—O4125.9 (3)C15—C14—N1115.7 (5)
O3—C3—C4117.1 (3)C15—C14—H14A108.3
O4—C3—C4117.0 (3)N1—C14—H14A108.3
C11—N1—C13109.4 (4)C15—C14—H14B108.3
C11—N1—C14124.7 (4)N1—C14—H14B108.3
C13—N1—C14125.7 (4)H14A—C14—H14B107.4
O6—C5—O7124.8 (3)C14—C15—H15A109.5
O6—C5—C6117.2 (3)C14—C15—H15B109.5
O7—C5—C6118.0 (3)H15A—C15—H15B109.5
H1O—O12—H2O82 (3)C14—C15—H15C109.5
O11—C9—O10122.7 (3)H15A—C15—H15C109.5
O11—C9—C10119.0 (3)H15B—C15—H15C109.5
O10—C9—C10118.3 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H2O···O100.84 (2)2.14 (3)2.912 (4)152 (4)
O5—H5B···O110.85 (2)1.86 (2)2.695 (3)171 (4)
C14—H14B···O7iii0.992.573.530 (6)162
C16—H16C···O11iv0.982.563.239 (5)126
C16—H16B···O30.982.653.598 (5)162
C11—H11···O10iv0.952.443.365 (4)166
C11—H11···O11iv0.952.593.291 (4)131
C12—H12···O10.952.303.224 (4)163
C10—H10B···O60.982.473.241 (4)136
C2—H2C···O1v0.982.403.371 (3)173
C2—H2A···O11v0.982.583.387 (4)140
O5—H5···O12vi0.841.962.789 (4)170
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y, z.
Metal–metal distances (Å) in complexes 14 top
CompoundCu—Cu distance
Complex 12.7173 (7)
Complex 22.657 (3) and 2.669 (3)
Complex 32.6571 (6) and 2.6685 (6)
Complex 42.6469 (7) and 2.6592 (8)
Compounds 24 each contain two crystallographically independent clusters.
 

Funding information

Funding for this research was provided by: RFBR (grant No. 16-33-00641).

References

First citationAhmed, E. & Ruck, M. (2011). Dalton Trans. 40, 9347–9357.  Web of Science CrossRef Google Scholar
First citationBetz, D., Altmann, P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Coord. Chem. Rev. 255, 1518–1540.  Web of Science CrossRef Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuszewski, B., Kowalska, S. & Stepnowski, P. (2006). J. Sep. Sci. 29, 1116–1125.  Web of Science CrossRef Google Scholar
First citationGabriel, S. & Weiner, J. (1888). Ber. Dtsch. Chem. Ges. 21, 2669–2679.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CrossRef Google Scholar
First citationKohno, Y. & Ohno, H. (2012). Chem. Commun. 48, 7119–7130.  Web of Science CrossRef Google Scholar
First citationSasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506–2508.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtyrlin, V. G., Serov, N. Y., Islamov, D. R., Konkin, A. L., Bukharov, M. S., Gnezdilov, O. I., Krivolapov, D. B., Kataeva, O. N., Nazmutdinova, G. A. & Wendler, F. (2014). Dalton Trans. 43, 799–805.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds