research communications
The E)-4-bromo-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenol]nickel(II) bis[(E)-4-bromo-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato]nickel(II) bis(perchlorate) methanol monosolvate, a structure containing strong inter-species hydrogen bonds
of bis[(aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, [Ni(C14H12BrN2O)2][Ni(C14H13BrN2O)2](ClO4)2·CH3OH consists of two mononuclear ([Ni(HL)2]2+ and [NiL2]) complex molecules linked by strong hydrogen bonding [O⋯O separations of only 2.430 (5) Å], which is the shortest reported to date for such species. In one of the complexes, both the coordinated phenoxy groups retain their protons and thus this is the cationic equivalent species of the other complex where both coordinated phenoxy groups are deprotonated. In addition, perchlorate anions are present for charge balance, as well as methanol solvate molecules. For the neutral NiL2 complex, each 2-ethylaminepyridine arm is disordered over two equivalent conformations with occupancies of 0.750 (8):0.250 (8). The perchlorate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). The perchlorate ions also link to the H atoms on the methanol methyl and hydroxyl groups. These interactions link the moieties into a complex three-dimensional array. The crystal studied was refined as a two-component twin.
Keywords: crystal structure; hydrogen bonding; nickel complexes; Schiff bases.
CCDC reference: 1856226
1. Chemical context
Metal–Schiff base complexes have been of interest for a variety of reactions, in particular catalytic reactions (Egekenze et al., 2017a,b, 2018a,b). The urease contains NiII at its active site. Ureases can be found in a variety of species and efficiently accelerate by several orders of magnitude the rate of hydrolysis of urea into CO2 and NH3 (Mobley, 2001). It has been of great interest to catalyze a variety of reactions to mimic the catalytic efficiency of metalloenzymes. The crystal structures of related NiII–Schiff base complexes have been reported (Ayikoé et al., 2011; Butcher et al., 2009; Elmali et al., 2000; Kobayashi et al., 2017; Kuchtanin et al., 2016; Okeke et al., 2017; Duran et al., 1989). Similar complexes have been studied in relation to catalytic redox reactions, catechol oxidase activity, and alkaline phosphatase reactivity (Özalp-Yaman et al., 2005; Sanyal et al., 2016; Bhardwaj & Singh, 2014). In view of this interest and in a continuation of our previous research listed above, the title NiII–Schiff base complex has been synthesized to be used as a catalyst for the hydrolysis of phosphate esters.
While the vast majority of such Ni complexes are of the type [NiL2] where HL is the neutral Schiff base, there are a few examples where, upon coordination, the Schiff base retains its protons (You & Chi, 2006; Layek et al., 2013; Ohta et al., 2001; You et al., 2004; Paital et al., 2007; Xua et al., 2015; Lucas et al., 2011; Dutta et al., 2010; Chakraborty et al., 2006; Mukherjee et al., 2007; Yamaguchi et al., 2008; Fondo et al., 2006; Zhang & Liang, 2017). The present structure is an unusual variant of this theme.
2. Structural commentary
The title compound crystallizes in the orthorhombic Pbcn and consists of a coordination cation [NiL2]2+, a neutral compound [Ni(HL2)] and perchlorate as anion to balance the charge. There is methanol in the lattice. Thus the stoichiometry is [Ni(HL)2]2+[NiL2](ClO4−)2·MeOH. The NiII atoms are coordinated by nitrogen and oxygen donor groups from the two tridentate ligands, thus making the NiII atoms six-coordinate (see Figs. 1 and 2). For the neutral NiL2, the 2-ethylaminepyridine arm is disordered over two equivalent conformations with occupancies of 0.750 (8):0.250 (8). The perchlorate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). As noted in the synthesis section, no base was used in the preparation of the title compound, hence the presence of protonated (i.e. neutral) ligand molecules. There is precedent in the literature (You & Chi, 2006; Layek et al., 2013; Ohta et al., 2001; You et al., 2004; Paital et al., 2007; Xua et al., 2015; Lucas et al., 2011; Dutta et al., 2010; Chakraborty et al., 2006; Mukherjee et al., 2007; Yamaguchi et al., 2008; Fondo et al., 2006; Zhang & Liang, 2017) for nickel complexes with where the ligand is not deprotonated, although this is the only example where these are separated into independent metal complexes. A common motif of these examples is the presence of a strong intermolecular hydrogen bond between these species with O⋯O separations ranging from 2.438 Å (Mukherjee et al., 2007) to 2.592 Å (Layek, et al., 2013). In the present case (Table 1, Fig. 3), this distance is 2.430 (5) Å, which is the shortest reported. The NiII atoms are coordinated to nitrogen and oxygen donor groups from the two tridentate ligands, thus making the NiII atoms six-coordinate, with two perchlorate anions present for charge balance (see Fig. 1). While both Ni1 and Ni2 are six-coordinate, they are distorted from an octahedral geometry because of the chelate bite with cis angles ranging from 84.01 (16) to 93.07 (16)° for Ni1 and 84.10 (18) to 95.7 (6)° for Ni2. Surprisingly, the Ni—O bond lengths for Ni1 [2.070 (4) Å] are slightly shorter than for Ni2 [2.091 (4) Å], even though atom O1A is neutral and retains its proton while O1B is deprotonated and thus formally negatively charged. The Ni—Nimine and Ni—Npy bond lengths are 2.080 (4), 2.079 (5) Å and 2.095 (5), 2.128 (6) Å, respectively, with the bonds involving the imine group being shorter than those involving pyridine, as is expected based on the metrical parameters of similar complexes.
3. Supramolecular features
The main point of interest in this structure is the presence of very strong inter-species hydrogen bonding between the phenol and phenolate moieties as mentioned above. In addition, the perchlorate anions link the complexes and methanol solvate molecules through both C—H⋯O and O—H⋯O interactions (Table 1). These, along with C—H⋯Br interactions (Table 1), link all the species into a complex three-dimensional array as shown in Fig. 4.
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.39 with November 2017 update; Groom et al., 2016) for similar Ni complexes of Schiff base ligands where the coordinated O atoms are linked by O—H⋯O hydrogen bonds gave 15 hits (ADIKOO, You & Chi, 2006; HEWDUK, Layek et al., 2013; IDAVOY, Ohta et al., 2001; IWOVIZ, You et al., 2004; LERXIS, Zhang & Liang, 2017; MIHJOD, Paital et al., 2007; QUGZOJ, Xua et al., 2015; UBICIT, Lucas et al., 2011; UJUNIX, Dutta et al., 2010; VESMAI, Chakraborty et al., 2006; VIKMUY, Mukherjee et al., 2007; WIZFAN, Yamaguchi et al., 2008; YEQGIL, YEQHAE, YEQHEI, Fondo et al., 2006).
5. Synthesis and crystallization
2-(2-Pyridyl)ethylamine (0.1613 g, 1.320 mmol) was added to a reaction flask and dissolved in 50 ml of methanol. 5-Bromosalicylaldehyde (0.2654 g, 1.320 mmol) was added to the solution. The mixture was refluxed for 5 h. The nickel(II) complex was prepared by reacting the ligand in 50 ml of methanol with Ni(ClO4)2·6H2O (0.7242 g, 1.980 mmol) with no added base. The mixture was stirred at room temperature overnight. The product was crystallized by slow diffusion in methanol for two weeks giving green crystals.
6. Refinement
Crystal data, data collection and structure . For the neutral NiL2, each 2-ethylaminepyridine arm is disordered over two equivalent conformation with occupancies of 0.750 (8):0.250 (8). The perchlorate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). In addition there is pseudo-merohedral present with a of 0 0 0 0 0 0 and BASF value of 0.0016 (3). The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H ranging from 0.95 to 0.98 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The OH hydrogen atom was refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1856226
https://doi.org/10.1107/S2056989018010277/lh5876sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018010277/lh5876Isup2.hkl
Data collection: APEX3 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C14H12BrN2O)2][Ni(C14H13BrN2O)2](ClO4)2·CH4O | Dx = 1.642 Mg m−3 |
Mr = 1567.04 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 4627 reflections |
a = 19.103 (5) Å | θ = 2.4–26.3° |
b = 17.414 (4) Å | µ = 3.27 mm−1 |
c = 19.053 (5) Å | T = 296 K |
V = 6339 (3) Å3 | Prism, transparent light olive-green |
Z = 4 | 0.32 × 0.28 × 0.13 mm |
F(000) = 3144 |
Bruker APEXII CCD diffractometer | 3693 reflections with I > 2σ(I) |
w scans | Rint = 0.088 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 26.5°, θmin = 1.6° |
Tmin = 0.433, Tmax = 0.745 | h = −16→23 |
6170 measured reflections | k = −17→19 |
6170 independent reflections | l = −22→23 |
Refinement on F2 | 332 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.178 | w = 1/[σ2(Fo2) + (0.0767P)2 + 9.3718P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
6170 reflections | Δρmax = 0.90 e Å−3 |
492 parameters | Δρmin = −0.89 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.500000 | 0.55970 (5) | 0.250000 | 0.0426 (3) | |
Br1 | 0.87543 (3) | 0.64179 (5) | 0.18413 (5) | 0.0946 (3) | |
O1A | 0.57178 (18) | 0.6453 (2) | 0.2724 (2) | 0.0503 (9) | |
H1A | 0.567 (4) | 0.686 (3) | 0.294 (4) | 0.11 (3)* | |
N1A | 0.5439 (2) | 0.5639 (3) | 0.1502 (2) | 0.0466 (11) | |
N2A | 0.4284 (2) | 0.4763 (3) | 0.2165 (2) | 0.0502 (11) | |
C1A | 0.6398 (3) | 0.6417 (3) | 0.2536 (3) | 0.0478 (12) | |
C2A | 0.6928 (3) | 0.6663 (4) | 0.2984 (3) | 0.0607 (16) | |
H2AA | 0.681286 | 0.683694 | 0.343027 | 0.073* | |
C3A | 0.7625 (3) | 0.6653 (4) | 0.2778 (4) | 0.0636 (17) | |
H3AA | 0.797194 | 0.682336 | 0.308245 | 0.076* | |
C4A | 0.7794 (3) | 0.6394 (3) | 0.2132 (4) | 0.0608 (16) | |
C5A | 0.7296 (3) | 0.6124 (3) | 0.1678 (3) | 0.0581 (15) | |
H5AA | 0.742734 | 0.593314 | 0.124161 | 0.070* | |
C6A | 0.6583 (2) | 0.6133 (3) | 0.1872 (3) | 0.0463 (13) | |
C7A | 0.6069 (3) | 0.5853 (3) | 0.1373 (3) | 0.0532 (14) | |
H7AA | 0.621250 | 0.582503 | 0.090759 | 0.064* | |
C8A | 0.5050 (3) | 0.5342 (4) | 0.0888 (3) | 0.0662 (17) | |
H8AA | 0.520105 | 0.482112 | 0.079184 | 0.079* | |
H8AB | 0.516229 | 0.565325 | 0.048055 | 0.079* | |
C9A | 0.4255 (3) | 0.5347 (4) | 0.0998 (3) | 0.0635 (17) | |
H9AA | 0.411465 | 0.585451 | 0.115535 | 0.076* | |
H9AB | 0.402788 | 0.525256 | 0.055118 | 0.076* | |
C10A | 0.4001 (3) | 0.4772 (4) | 0.1514 (3) | 0.0562 (15) | |
C11A | 0.3483 (4) | 0.4241 (4) | 0.1335 (4) | 0.077 (2) | |
H11A | 0.328428 | 0.425746 | 0.088979 | 0.093* | |
C12A | 0.3262 (4) | 0.3696 (5) | 0.1806 (5) | 0.088 (2) | |
H12A | 0.291893 | 0.334153 | 0.168416 | 0.105* | |
C13A | 0.3560 (4) | 0.3686 (4) | 0.2461 (4) | 0.077 (2) | |
H13A | 0.342541 | 0.332136 | 0.279138 | 0.092* | |
C14A | 0.4063 (3) | 0.4225 (4) | 0.2620 (3) | 0.0647 (17) | |
H14A | 0.426067 | 0.421569 | 0.306602 | 0.078* | |
Ni2 | 0.500000 | 0.85234 (6) | 0.250000 | 0.0536 (3) | |
Br2 | 0.45642 (5) | 0.75407 (7) | 0.62684 (4) | 0.1140 (4) | |
O1B | 0.53437 (18) | 0.7680 (2) | 0.32016 (19) | 0.0532 (9) | |
N1B | 0.4042 (2) | 0.8375 (3) | 0.2999 (3) | 0.0628 (14) | |
C1B | 0.5161 (3) | 0.7651 (3) | 0.3887 (3) | 0.0532 (14) | |
C2B | 0.5638 (3) | 0.7434 (4) | 0.4396 (3) | 0.0689 (18) | |
H2BA | 0.609303 | 0.731075 | 0.426250 | 0.083* | |
C3B | 0.5457 (4) | 0.7395 (4) | 0.5095 (4) | 0.0718 (18) | |
H3BA | 0.578777 | 0.725434 | 0.542938 | 0.086* | |
C4B | 0.4787 (3) | 0.7565 (4) | 0.5292 (3) | 0.0694 (19) | |
C5B | 0.4306 (3) | 0.7773 (4) | 0.4815 (4) | 0.0682 (18) | |
H5BA | 0.385214 | 0.788122 | 0.496166 | 0.082* | |
C6B | 0.4474 (3) | 0.7833 (3) | 0.4096 (3) | 0.0577 (15) | |
C7B | 0.3934 (3) | 0.8077 (4) | 0.3602 (4) | 0.0672 (18) | |
H7BA | 0.347101 | 0.800911 | 0.373764 | 0.081* | |
C8B | 0.3418 (7) | 0.8540 (6) | 0.2606 (6) | 0.072 (3) | 0.750 (8) |
H8BA | 0.300765 | 0.841264 | 0.288191 | 0.087* | 0.750 (8) |
H8BB | 0.340919 | 0.823569 | 0.217958 | 0.087* | 0.750 (8) |
C9B | 0.3412 (5) | 0.9387 (5) | 0.2424 (5) | 0.078 (2) | 0.750 (8) |
H9BA | 0.293708 | 0.953252 | 0.230515 | 0.094* | 0.750 (8) |
H9BB | 0.354464 | 0.967433 | 0.283973 | 0.094* | 0.750 (8) |
N2B | 0.4574 (3) | 0.9393 (4) | 0.1842 (4) | 0.0778 (18) | 0.750 (8) |
C10B | 0.3876 (3) | 0.9618 (4) | 0.1844 (4) | 0.081 (2) | 0.750 (8) |
C11B | 0.3634 (3) | 1.0139 (4) | 0.1347 (5) | 0.094 (2) | 0.750 (8) |
H11B | 0.316734 | 1.028997 | 0.134862 | 0.113* | 0.750 (8) |
C12B | 0.4091 (4) | 1.0436 (4) | 0.0848 (4) | 0.104 (3) | 0.750 (8) |
H12B | 0.393009 | 1.078435 | 0.051579 | 0.125* | 0.750 (8) |
C13B | 0.4790 (4) | 1.0211 (5) | 0.0846 (4) | 0.104 (3) | 0.750 (8) |
H13B | 0.509529 | 1.040883 | 0.051222 | 0.125* | 0.750 (8) |
C14B | 0.5031 (3) | 0.9689 (5) | 0.1343 (4) | 0.087 (2) | 0.750 (8) |
H14B | 0.549774 | 0.953894 | 0.134149 | 0.105* | 0.750 (8) |
C8C | 0.340 (2) | 0.877 (3) | 0.2588 (15) | 0.075 (4) | 0.250 (8) |
H8CA | 0.298029 | 0.848864 | 0.270933 | 0.090* | 0.250 (8) |
H8CB | 0.335150 | 0.928550 | 0.276206 | 0.090* | 0.250 (8) |
C9C | 0.3451 (12) | 0.8802 (13) | 0.1796 (12) | 0.078 (3) | 0.250 (8) |
H9CA | 0.356268 | 0.829295 | 0.162178 | 0.094* | 0.250 (8) |
H9CB | 0.299344 | 0.893832 | 0.161295 | 0.094* | 0.250 (8) |
N2C | 0.4645 (9) | 0.9346 (14) | 0.1779 (12) | 0.082 (3) | 0.250 (8) |
C10C | 0.3968 (8) | 0.9346 (12) | 0.1512 (12) | 0.086 (3) | 0.250 (8) |
C11C | 0.3795 (10) | 0.9826 (13) | 0.0956 (13) | 0.094 (3) | 0.250 (8) |
H11C | 0.334160 | 0.982612 | 0.077782 | 0.112* | 0.250 (8) |
C12C | 0.4299 (13) | 1.0306 (13) | 0.0666 (12) | 0.101 (3) | 0.250 (8) |
H12C | 0.418312 | 1.062737 | 0.029362 | 0.121* | 0.250 (8) |
C13C | 0.4976 (12) | 1.0306 (15) | 0.0932 (15) | 0.099 (3) | 0.250 (8) |
H13C | 0.531373 | 1.062758 | 0.073817 | 0.119* | 0.250 (8) |
C14C | 0.5150 (9) | 0.9826 (16) | 0.1489 (15) | 0.090 (3) | 0.250 (8) |
H14C | 0.560283 | 0.982653 | 0.166693 | 0.109* | 0.250 (8) |
Cl1 | 0.73020 (12) | 0.41261 (15) | 0.04156 (12) | 0.1002 (7) | |
O11 | 0.7917 (4) | 0.4471 (5) | 0.0653 (5) | 0.145 (4) | 0.602 (8) |
O12 | 0.7358 (6) | 0.3960 (6) | −0.0303 (3) | 0.135 (4) | 0.602 (8) |
O13 | 0.7219 (5) | 0.3417 (5) | 0.0779 (5) | 0.145 (4) | 0.602 (8) |
O14 | 0.6721 (5) | 0.4583 (6) | 0.0544 (6) | 0.179 (5) | 0.602 (8) |
O11A | 0.7786 (8) | 0.4212 (8) | 0.0960 (7) | 0.157 (6) | 0.398 (8) |
O12A | 0.6654 (5) | 0.3894 (10) | 0.0683 (9) | 0.175 (6) | 0.398 (8) |
O13A | 0.7546 (9) | 0.3604 (8) | −0.0080 (7) | 0.156 (6) | 0.398 (8) |
O14A | 0.7209 (8) | 0.4854 (5) | 0.0090 (7) | 0.133 (5) | 0.398 (8) |
O1S | 0.7449 (6) | 0.2322 (7) | −0.0582 (6) | 0.094 (3) | 0.5 |
H1S | 0.739358 | 0.275191 | −0.041527 | 0.141* | 0.5 |
C1S | 0.7385 (9) | 0.1792 (10) | −0.0070 (8) | 0.098 (5) | 0.5 |
H1S1 | 0.783439 | 0.156617 | 0.002282 | 0.146* | 0.5 |
H1S2 | 0.706437 | 0.139927 | −0.021727 | 0.146* | 0.5 |
H1S3 | 0.721208 | 0.203222 | 0.034875 | 0.146* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0392 (5) | 0.0488 (6) | 0.0399 (5) | 0.000 | 0.0026 (4) | 0.000 |
Br1 | 0.0406 (3) | 0.1081 (7) | 0.1351 (7) | −0.0032 (4) | 0.0209 (4) | −0.0139 (5) |
O1A | 0.0375 (18) | 0.055 (3) | 0.058 (2) | −0.0020 (18) | 0.0072 (16) | −0.018 (2) |
N1A | 0.046 (2) | 0.054 (3) | 0.039 (2) | 0.001 (2) | 0.0004 (18) | −0.002 (2) |
N2A | 0.049 (2) | 0.049 (3) | 0.053 (3) | −0.004 (2) | 0.003 (2) | 0.000 (2) |
C1A | 0.038 (3) | 0.046 (3) | 0.060 (3) | 0.001 (2) | 0.003 (2) | 0.002 (3) |
C2A | 0.048 (3) | 0.067 (4) | 0.067 (4) | −0.002 (3) | −0.003 (3) | −0.016 (3) |
C3A | 0.044 (3) | 0.058 (4) | 0.089 (5) | 0.000 (3) | −0.006 (3) | −0.017 (3) |
C4A | 0.039 (3) | 0.052 (4) | 0.092 (5) | 0.002 (3) | 0.015 (3) | −0.004 (3) |
C5A | 0.044 (3) | 0.060 (4) | 0.071 (4) | 0.003 (3) | 0.018 (3) | −0.004 (3) |
C6A | 0.038 (3) | 0.051 (3) | 0.050 (3) | 0.003 (2) | 0.007 (2) | 0.000 (3) |
C7A | 0.052 (3) | 0.064 (4) | 0.043 (3) | 0.003 (3) | 0.010 (2) | −0.001 (3) |
C8A | 0.059 (3) | 0.095 (5) | 0.044 (3) | −0.010 (3) | 0.000 (3) | −0.014 (3) |
C9A | 0.050 (3) | 0.091 (5) | 0.050 (3) | −0.004 (3) | −0.009 (3) | −0.013 (3) |
C10A | 0.044 (3) | 0.062 (4) | 0.063 (4) | 0.003 (3) | −0.003 (3) | −0.006 (3) |
C11A | 0.068 (4) | 0.084 (5) | 0.080 (5) | −0.010 (4) | −0.004 (4) | −0.022 (4) |
C12A | 0.074 (5) | 0.077 (6) | 0.113 (7) | −0.017 (4) | 0.003 (4) | −0.020 (5) |
C13A | 0.070 (4) | 0.056 (4) | 0.104 (6) | −0.013 (3) | 0.024 (4) | −0.006 (4) |
C14A | 0.059 (4) | 0.062 (4) | 0.073 (4) | 0.005 (3) | 0.012 (3) | −0.003 (3) |
Ni2 | 0.0385 (5) | 0.0453 (6) | 0.0770 (7) | 0.000 | −0.0050 (5) | 0.000 |
Br2 | 0.0980 (6) | 0.1772 (11) | 0.0669 (5) | −0.0334 (6) | 0.0250 (4) | 0.0002 (5) |
O1B | 0.051 (2) | 0.053 (2) | 0.055 (2) | 0.0138 (18) | 0.0065 (17) | −0.0076 (18) |
N1B | 0.039 (2) | 0.079 (4) | 0.070 (3) | 0.009 (2) | −0.001 (2) | −0.016 (3) |
C1B | 0.054 (3) | 0.049 (4) | 0.057 (3) | 0.005 (3) | 0.005 (3) | −0.008 (3) |
C2B | 0.060 (4) | 0.082 (5) | 0.065 (4) | 0.018 (3) | 0.009 (3) | −0.006 (3) |
C3B | 0.072 (4) | 0.078 (5) | 0.066 (4) | 0.007 (4) | 0.003 (3) | −0.007 (4) |
C4B | 0.065 (4) | 0.082 (5) | 0.060 (4) | −0.024 (4) | 0.011 (3) | −0.010 (3) |
C5B | 0.051 (3) | 0.077 (5) | 0.077 (4) | −0.012 (3) | 0.019 (3) | −0.018 (4) |
C6B | 0.044 (3) | 0.056 (4) | 0.074 (4) | −0.006 (3) | 0.010 (3) | −0.016 (3) |
C7B | 0.038 (3) | 0.076 (5) | 0.087 (5) | 0.002 (3) | 0.005 (3) | −0.030 (4) |
C8B | 0.048 (4) | 0.066 (6) | 0.103 (5) | 0.007 (5) | −0.007 (4) | −0.011 (4) |
C9B | 0.058 (4) | 0.069 (5) | 0.108 (5) | 0.008 (4) | −0.015 (4) | −0.007 (4) |
N2B | 0.070 (4) | 0.052 (4) | 0.111 (4) | −0.006 (3) | −0.028 (3) | 0.011 (3) |
C10B | 0.071 (4) | 0.058 (4) | 0.114 (4) | 0.007 (3) | −0.025 (4) | 0.008 (4) |
C11B | 0.083 (5) | 0.071 (5) | 0.128 (5) | 0.015 (4) | −0.026 (4) | 0.019 (4) |
C12B | 0.098 (5) | 0.081 (5) | 0.133 (5) | 0.014 (4) | −0.029 (4) | 0.028 (4) |
C13B | 0.101 (5) | 0.080 (5) | 0.132 (5) | −0.009 (4) | −0.030 (5) | 0.028 (4) |
C14B | 0.083 (4) | 0.062 (4) | 0.117 (5) | −0.008 (4) | −0.035 (4) | 0.023 (4) |
C8C | 0.052 (6) | 0.067 (8) | 0.105 (6) | 0.010 (7) | −0.013 (6) | −0.009 (7) |
C9C | 0.059 (5) | 0.066 (6) | 0.109 (5) | 0.010 (5) | −0.017 (5) | −0.002 (5) |
N2C | 0.074 (5) | 0.057 (5) | 0.114 (5) | −0.002 (5) | −0.029 (5) | 0.012 (5) |
C10C | 0.075 (5) | 0.064 (5) | 0.118 (5) | 0.006 (5) | −0.023 (5) | 0.011 (5) |
C11C | 0.084 (5) | 0.072 (5) | 0.126 (6) | 0.010 (5) | −0.027 (5) | 0.018 (5) |
C12C | 0.093 (6) | 0.078 (5) | 0.132 (6) | 0.009 (5) | −0.028 (5) | 0.026 (5) |
C13C | 0.095 (6) | 0.074 (5) | 0.128 (6) | −0.003 (5) | −0.033 (5) | 0.025 (5) |
C14C | 0.087 (5) | 0.064 (5) | 0.120 (6) | −0.007 (5) | −0.031 (5) | 0.020 (5) |
Cl1 | 0.0979 (15) | 0.1148 (19) | 0.0879 (14) | 0.0206 (14) | −0.0121 (11) | −0.0020 (13) |
O11 | 0.159 (9) | 0.137 (9) | 0.141 (9) | −0.016 (7) | −0.045 (8) | 0.059 (7) |
O12 | 0.181 (10) | 0.139 (10) | 0.085 (7) | 0.047 (8) | 0.013 (7) | −0.004 (6) |
O13 | 0.103 (7) | 0.175 (10) | 0.158 (8) | −0.006 (7) | −0.017 (7) | 0.044 (8) |
O14 | 0.167 (10) | 0.213 (12) | 0.157 (10) | 0.109 (10) | −0.025 (8) | −0.031 (10) |
O11A | 0.169 (11) | 0.147 (12) | 0.154 (12) | −0.003 (10) | −0.093 (10) | 0.062 (10) |
O12A | 0.156 (12) | 0.200 (15) | 0.168 (12) | 0.000 (12) | 0.051 (11) | 0.028 (13) |
O13A | 0.175 (12) | 0.157 (13) | 0.137 (12) | 0.063 (11) | 0.015 (11) | −0.008 (11) |
O14A | 0.141 (10) | 0.149 (10) | 0.108 (9) | 0.035 (9) | −0.020 (8) | 0.034 (9) |
O1S | 0.091 (7) | 0.098 (8) | 0.093 (7) | 0.033 (7) | 0.005 (6) | −0.012 (7) |
C1S | 0.120 (11) | 0.089 (10) | 0.084 (9) | 0.068 (9) | 0.015 (8) | 0.019 (8) |
Ni1—O1A | 2.070 (4) | C2B—H2BA | 0.9300 |
Ni1—O1Ai | 2.070 (4) | C3B—C4B | 1.367 (9) |
Ni1—N1A | 2.080 (4) | C3B—H3BA | 0.9300 |
Ni1—N1Ai | 2.080 (4) | C4B—C5B | 1.342 (9) |
Ni1—N2A | 2.095 (5) | C5B—C6B | 1.411 (9) |
Ni1—N2Ai | 2.095 (5) | C5B—H5BA | 0.9300 |
Br1—C4A | 1.917 (5) | C6B—C7B | 1.459 (9) |
O1A—C1A | 1.349 (6) | C7B—H7BA | 0.9300 |
O1A—H1A | 0.82 (2) | C8B—C9B | 1.514 (14) |
N1A—C7A | 1.283 (6) | C8B—H8BA | 0.9700 |
N1A—C8A | 1.480 (7) | C8B—H8BB | 0.9700 |
N2A—C14A | 1.344 (7) | C9B—C10B | 1.472 (11) |
N2A—C10A | 1.353 (7) | C9B—H9BA | 0.9700 |
C1A—C2A | 1.391 (8) | C9B—H9BB | 0.9700 |
C1A—C6A | 1.404 (7) | N2B—C10B | 1.3900 |
C2A—C3A | 1.387 (8) | N2B—C14B | 1.3900 |
C2A—H2AA | 0.9300 | C10B—C11B | 1.3900 |
C3A—C4A | 1.350 (9) | C11B—C12B | 1.3900 |
C3A—H3AA | 0.9300 | C11B—H11B | 0.9300 |
C4A—C5A | 1.370 (9) | C12B—C13B | 1.3900 |
C5A—C6A | 1.411 (7) | C12B—H12B | 0.9300 |
C5A—H5AA | 0.9300 | C13B—C14B | 1.3900 |
C6A—C7A | 1.451 (7) | C13B—H13B | 0.9300 |
C7A—H7AA | 0.9300 | C14B—H14B | 0.9300 |
C8A—C9A | 1.534 (8) | C8C—C9C | 1.513 (15) |
C8A—H8AA | 0.9700 | C8C—H8CA | 0.9700 |
C8A—H8AB | 0.9700 | C8C—H8CB | 0.9700 |
C9A—C10A | 1.485 (9) | C9C—C10C | 1.472 (11) |
C9A—H9AA | 0.9700 | C9C—H9CA | 0.9700 |
C9A—H9AB | 0.9700 | C9C—H9CB | 0.9700 |
C10A—C11A | 1.396 (9) | N2C—C10C | 1.3900 |
C11A—C12A | 1.373 (10) | N2C—C14C | 1.3900 |
C11A—H11A | 0.9300 | C10C—C11C | 1.3900 |
C12A—C13A | 1.371 (11) | C11C—C12C | 1.3900 |
C12A—H12A | 0.9300 | C11C—H11C | 0.9300 |
C13A—C14A | 1.377 (9) | C12C—C13C | 1.3900 |
C13A—H13A | 0.9300 | C12C—H12C | 0.9300 |
C14A—H14A | 0.9300 | C13C—C14C | 1.3900 |
Ni2—N1B | 2.079 (5) | C13C—H13C | 0.9300 |
Ni2—N1Bi | 2.079 (5) | C14C—H14C | 0.9300 |
Ni2—O1Bi | 2.091 (4) | Cl1—O14 | 1.387 (6) |
Ni2—O1B | 2.091 (4) | Cl1—O13A | 1.391 (6) |
Ni2—N2C | 2.098 (18) | Cl1—O11 | 1.396 (6) |
Ni2—N2Ci | 2.098 (18) | Cl1—O11A | 1.397 (6) |
Ni2—N2Bi | 2.128 (6) | Cl1—O12A | 1.399 (6) |
Ni2—N2B | 2.128 (6) | Cl1—O12 | 1.403 (6) |
Br2—C4B | 1.909 (6) | Cl1—O14A | 1.422 (6) |
O1B—C1B | 1.353 (7) | Cl1—O13 | 1.424 (6) |
N1B—C7B | 1.277 (8) | O1S—C1S | 1.349 (17) |
N1B—C8B | 1.436 (14) | O1S—H1S | 0.8200 |
N1B—C8C | 1.60 (5) | C1S—H1S1 | 0.9600 |
C1B—C2B | 1.383 (9) | C1S—H1S2 | 0.9600 |
C1B—C6B | 1.409 (8) | C1S—H1S3 | 0.9600 |
C2B—C3B | 1.378 (9) | ||
O1A—Ni1—O1Ai | 87.8 (2) | C8C—N1B—Ni2 | 113.2 (10) |
O1A—Ni1—N1A | 84.01 (16) | O1B—C1B—C2B | 121.2 (5) |
O1Ai—Ni1—N1A | 93.07 (16) | O1B—C1B—C6B | 120.2 (5) |
O1A—Ni1—N1Ai | 93.07 (16) | C2B—C1B—C6B | 118.6 (6) |
O1Ai—Ni1—N1Ai | 84.01 (16) | C3B—C2B—C1B | 121.7 (6) |
N1A—Ni1—N1Ai | 176.0 (2) | C3B—C2B—H2BA | 119.2 |
O1A—Ni1—N2A | 174.13 (17) | C1B—C2B—H2BA | 119.2 |
O1Ai—Ni1—N2A | 90.23 (17) | C4B—C3B—C2B | 119.3 (7) |
N1A—Ni1—N2A | 90.56 (17) | C4B—C3B—H3BA | 120.3 |
N1Ai—Ni1—N2A | 92.25 (17) | C2B—C3B—H3BA | 120.3 |
O1A—Ni1—N2Ai | 90.23 (17) | C5B—C4B—C3B | 120.9 (6) |
O1Ai—Ni1—N2Ai | 174.13 (17) | C5B—C4B—Br2 | 120.9 (5) |
N1A—Ni1—N2Ai | 92.25 (17) | C3B—C4B—Br2 | 118.1 (5) |
N1Ai—Ni1—N2Ai | 90.56 (17) | C4B—C5B—C6B | 121.5 (6) |
N2A—Ni1—N2Ai | 92.2 (3) | C4B—C5B—H5BA | 119.3 |
C1A—O1A—Ni1 | 123.4 (3) | C6B—C5B—H5BA | 119.3 |
C1A—O1A—H1A | 107 (6) | C1B—C6B—C5B | 118.0 (6) |
Ni1—O1A—H1A | 130 (6) | C1B—C6B—C7B | 122.8 (6) |
C7A—N1A—C8A | 115.0 (4) | C5B—C6B—C7B | 119.2 (5) |
C7A—N1A—Ni1 | 124.3 (4) | N1B—C7B—C6B | 125.8 (5) |
C8A—N1A—Ni1 | 120.5 (3) | N1B—C7B—H7BA | 117.1 |
C14A—N2A—C10A | 118.3 (5) | C6B—C7B—H7BA | 117.1 |
C14A—N2A—Ni1 | 119.5 (4) | N1B—C8B—C9B | 108.6 (9) |
C10A—N2A—Ni1 | 122.1 (4) | N1B—C8B—H8BA | 110.0 |
O1A—C1A—C2A | 121.6 (5) | C9B—C8B—H8BA | 110.0 |
O1A—C1A—C6A | 119.9 (5) | N1B—C8B—H8BB | 110.0 |
C2A—C1A—C6A | 118.5 (5) | C9B—C8B—H8BB | 110.0 |
C3A—C2A—C1A | 121.4 (6) | H8BA—C8B—H8BB | 108.3 |
C3A—C2A—H2AA | 119.3 | C10B—C9B—C8B | 115.7 (8) |
C1A—C2A—H2AA | 119.3 | C10B—C9B—H9BA | 108.4 |
C4A—C3A—C2A | 119.4 (6) | C8B—C9B—H9BA | 108.4 |
C4A—C3A—H3AA | 120.3 | C10B—C9B—H9BB | 108.4 |
C2A—C3A—H3AA | 120.3 | C8B—C9B—H9BB | 108.4 |
C3A—C4A—C5A | 121.6 (5) | H9BA—C9B—H9BB | 107.4 |
C3A—C4A—Br1 | 119.1 (5) | C10B—N2B—C14B | 120.0 |
C5A—C4A—Br1 | 119.3 (5) | C10B—N2B—Ni2 | 124.5 (3) |
C4A—C5A—C6A | 120.1 (5) | C14B—N2B—Ni2 | 115.3 (3) |
C4A—C5A—H5AA | 120.0 | C11B—C10B—N2B | 120.0 |
C6A—C5A—H5AA | 120.0 | C11B—C10B—C9B | 119.4 (5) |
C1A—C6A—C5A | 118.9 (5) | N2B—C10B—C9B | 120.1 (5) |
C1A—C6A—C7A | 122.6 (4) | C10B—C11B—C12B | 120.0 |
C5A—C6A—C7A | 118.5 (5) | C10B—C11B—H11B | 120.0 |
N1A—C7A—C6A | 127.4 (5) | C12B—C11B—H11B | 120.0 |
N1A—C7A—H7AA | 116.3 | C13B—C12B—C11B | 120.0 |
C6A—C7A—H7AA | 116.3 | C13B—C12B—H12B | 120.0 |
N1A—C8A—C9A | 112.8 (5) | C11B—C12B—H12B | 120.0 |
N1A—C8A—H8AA | 109.0 | C12B—C13B—C14B | 120.0 |
C9A—C8A—H8AA | 109.0 | C12B—C13B—H13B | 120.0 |
N1A—C8A—H8AB | 109.0 | C14B—C13B—H13B | 120.0 |
C9A—C8A—H8AB | 109.0 | C13B—C14B—N2B | 120.0 |
H8AA—C8A—H8AB | 107.8 | C13B—C14B—H14B | 120.0 |
C10A—C9A—C8A | 114.2 (5) | N2B—C14B—H14B | 120.0 |
C10A—C9A—H9AA | 108.7 | C9C—C8C—N1B | 117 (3) |
C8A—C9A—H9AA | 108.7 | C9C—C8C—H8CA | 107.9 |
C10A—C9A—H9AB | 108.7 | N1B—C8C—H8CA | 107.9 |
C8A—C9A—H9AB | 108.7 | C9C—C8C—H8CB | 107.9 |
H9AA—C9A—H9AB | 107.6 | N1B—C8C—H8CB | 107.9 |
N2A—C10A—C11A | 120.0 (6) | H8CA—C8C—H8CB | 107.2 |
N2A—C10A—C9A | 119.0 (5) | C10C—C9C—C8C | 115.6 (11) |
C11A—C10A—C9A | 121.1 (6) | C10C—C9C—H9CA | 108.4 |
C12A—C11A—C10A | 121.0 (7) | C8C—C9C—H9CA | 108.4 |
C12A—C11A—H11A | 119.5 | C10C—C9C—H9CB | 108.4 |
C10A—C11A—H11A | 119.5 | C8C—C9C—H9CB | 108.4 |
C13A—C12A—C11A | 118.4 (7) | H9CA—C9C—H9CB | 107.4 |
C13A—C12A—H12A | 120.8 | C10C—N2C—C14C | 120.0 |
C11A—C12A—H12A | 120.8 | C10C—N2C—Ni2 | 122.7 (9) |
C12A—C13A—C14A | 118.8 (7) | C14C—N2C—Ni2 | 116.6 (9) |
C12A—C13A—H13A | 120.6 | C11C—C10C—N2C | 120.0 |
C14A—C13A—H13A | 120.6 | C11C—C10C—C9C | 120.5 (7) |
N2A—C14A—C13A | 123.5 (7) | N2C—C10C—C9C | 119.4 (7) |
N2A—C14A—H14A | 118.2 | C10C—C11C—C12C | 120.0 |
C13A—C14A—H14A | 118.2 | C10C—C11C—H11C | 120.0 |
N1B—Ni2—N1Bi | 165.8 (3) | C12C—C11C—H11C | 120.0 |
N1B—Ni2—O1Bi | 85.91 (17) | C13C—C12C—C11C | 120.0 |
N1Bi—Ni2—O1Bi | 84.10 (18) | C13C—C12C—H12C | 120.0 |
N1B—Ni2—O1B | 84.10 (18) | C11C—C12C—H12C | 120.0 |
N1Bi—Ni2—O1B | 85.91 (17) | C12C—C13C—C14C | 120.0 |
O1Bi—Ni2—O1B | 90.8 (2) | C12C—C13C—H13C | 120.0 |
N1B—Ni2—N2C | 95.7 (6) | C14C—C13C—H13C | 120.0 |
N1Bi—Ni2—N2C | 94.0 (6) | C13C—C14C—N2C | 120.0 |
O1Bi—Ni2—N2C | 87.7 (7) | C13C—C14C—H14C | 120.0 |
O1B—Ni2—N2C | 178.5 (7) | N2C—C14C—H14C | 120.0 |
N1B—Ni2—N2Ci | 94.0 (6) | O14—Cl1—O11 | 111.7 (4) |
N1Bi—Ni2—N2Ci | 95.7 (6) | O13A—Cl1—O11A | 110.6 (4) |
O1Bi—Ni2—N2Ci | 178.5 (7) | O13A—Cl1—O12A | 110.8 (4) |
O1B—Ni2—N2Ci | 87.7 (7) | O11A—Cl1—O12A | 110.2 (4) |
N2C—Ni2—N2Ci | 93.8 (14) | O14—Cl1—O12 | 110.6 (4) |
N1B—Ni2—N2Bi | 99.0 (2) | O11—Cl1—O12 | 109.9 (4) |
N1Bi—Ni2—N2Bi | 91.2 (2) | O13A—Cl1—O14A | 109.1 (4) |
O1Bi—Ni2—N2Bi | 175.1 (2) | O11A—Cl1—O14A | 108.1 (4) |
O1B—Ni2—N2Bi | 90.2 (2) | O12A—Cl1—O14A | 107.8 (4) |
N1B—Ni2—N2B | 91.2 (2) | O14—Cl1—O13 | 108.8 (4) |
N1Bi—Ni2—N2B | 99.0 (2) | O11—Cl1—O13 | 108.0 (4) |
O1Bi—Ni2—N2B | 90.2 (2) | O12—Cl1—O13 | 107.7 (4) |
O1B—Ni2—N2B | 175.1 (2) | C1S—O1S—H1S | 109.5 |
N2Bi—Ni2—N2B | 89.3 (4) | O1S—C1S—H1S1 | 109.5 |
C1B—O1B—Ni2 | 124.3 (3) | O1S—C1S—H1S2 | 109.5 |
C7B—N1B—C8B | 114.7 (6) | H1S1—C1S—H1S2 | 109.5 |
C7B—N1B—C8C | 119.4 (10) | O1S—C1S—H1S3 | 109.5 |
C7B—N1B—Ni2 | 127.1 (4) | H1S1—C1S—H1S3 | 109.5 |
C8B—N1B—Ni2 | 117.9 (6) | H1S2—C1S—H1S3 | 109.5 |
Ni1—O1A—C1A—C2A | −139.6 (5) | O1B—C1B—C6B—C5B | 178.3 (5) |
Ni1—O1A—C1A—C6A | 41.1 (7) | C2B—C1B—C6B—C5B | −0.8 (9) |
O1A—C1A—C2A—C3A | −177.4 (6) | O1B—C1B—C6B—C7B | −1.6 (9) |
C6A—C1A—C2A—C3A | 2.0 (9) | C2B—C1B—C6B—C7B | 179.3 (6) |
C1A—C2A—C3A—C4A | −0.6 (10) | C4B—C5B—C6B—C1B | 1.3 (9) |
C2A—C3A—C4A—C5A | −1.5 (10) | C4B—C5B—C6B—C7B | −178.8 (6) |
C2A—C3A—C4A—Br1 | 177.8 (5) | C8B—N1B—C7B—C6B | 178.0 (8) |
C3A—C4A—C5A—C6A | 2.1 (10) | C8C—N1B—C7B—C6B | −168 (2) |
Br1—C4A—C5A—C6A | −177.2 (4) | Ni2—N1B—C7B—C6B | 5.5 (10) |
O1A—C1A—C6A—C5A | 178.0 (5) | C1B—C6B—C7B—N1B | −22.5 (10) |
C2A—C1A—C6A—C5A | −1.4 (8) | C5B—C6B—C7B—N1B | 157.6 (6) |
O1A—C1A—C6A—C7A | −1.6 (8) | C7B—N1B—C8B—C9B | 122.8 (8) |
C2A—C1A—C6A—C7A | 179.0 (6) | Ni2—N1B—C8B—C9B | −63.9 (10) |
C4A—C5A—C6A—C1A | −0.6 (9) | N1B—C8B—C9B—C10B | 77.1 (10) |
C4A—C5A—C6A—C7A | 179.1 (6) | C14B—N2B—C10B—C11B | 0.0 |
C8A—N1A—C7A—C6A | −177.0 (6) | Ni2—N2B—C10B—C11B | −173.8 (6) |
Ni1—N1A—C7A—C6A | −2.9 (9) | C14B—N2B—C10B—C9B | −172.0 (8) |
C1A—C6A—C7A—N1A | −19.0 (9) | Ni2—N2B—C10B—C9B | 14.3 (8) |
C5A—C6A—C7A—N1A | 161.4 (6) | C8B—C9B—C10B—C11B | 137.7 (8) |
C7A—N1A—C8A—C9A | −160.9 (6) | C8B—C9B—C10B—N2B | −50.3 (11) |
Ni1—N1A—C8A—C9A | 24.7 (7) | N2B—C10B—C11B—C12B | 0.0 |
N1A—C8A—C9A—C10A | −70.4 (7) | C9B—C10B—C11B—C12B | 172.0 (8) |
C14A—N2A—C10A—C11A | 1.4 (8) | C10B—C11B—C12B—C13B | 0.0 |
Ni1—N2A—C10A—C11A | −174.7 (5) | C11B—C12B—C13B—C14B | 0.0 |
C14A—N2A—C10A—C9A | −178.1 (5) | C12B—C13B—C14B—N2B | 0.0 |
Ni1—N2A—C10A—C9A | 5.7 (7) | C10B—N2B—C14B—C13B | 0.0 |
C8A—C9A—C10A—N2A | 54.1 (7) | Ni2—N2B—C14B—C13B | 174.3 (5) |
C8A—C9A—C10A—C11A | −125.5 (6) | C7B—N1B—C8C—C9C | −154.4 (15) |
N2A—C10A—C11A—C12A | −1.3 (10) | Ni2—N1B—C8C—C9C | 32 (3) |
C9A—C10A—C11A—C12A | 178.2 (6) | N1B—C8C—C9C—C10C | −71 (3) |
C10A—C11A—C12A—C13A | 0.4 (11) | C14C—N2C—C10C—C11C | 0.0 |
C11A—C12A—C13A—C14A | 0.5 (11) | Ni2—N2C—C10C—C11C | −169.7 (19) |
C10A—N2A—C14A—C13A | −0.6 (9) | C14C—N2C—C10C—C9C | 176 (2) |
Ni1—N2A—C14A—C13A | 175.6 (5) | Ni2—N2C—C10C—C9C | 7 (3) |
C12A—C13A—C14A—N2A | −0.4 (10) | C8C—C9C—C10C—C11C | −135 (3) |
Ni2—O1B—C1B—C2B | −141.8 (5) | C8C—C9C—C10C—N2C | 48 (4) |
Ni2—O1B—C1B—C6B | 39.1 (7) | N2C—C10C—C11C—C12C | 0.0 |
O1B—C1B—C2B—C3B | −179.4 (6) | C9C—C10C—C11C—C12C | −176 (2) |
C6B—C1B—C2B—C3B | −0.2 (10) | C10C—C11C—C12C—C13C | 0.0 |
C1B—C2B—C3B—C4B | 0.9 (11) | C11C—C12C—C13C—C14C | 0.0 |
C2B—C3B—C4B—C5B | −0.5 (11) | C12C—C13C—C14C—N2C | 0.0 |
C2B—C3B—C4B—Br2 | −177.7 (5) | C10C—N2C—C14C—C13C | 0.0 |
C3B—C4B—C5B—C6B | −0.6 (10) | Ni2—N2C—C14C—C13C | 170.3 (18) |
Br2—C4B—C5B—C6B | 176.6 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O1B | 0.82 (2) | 1.64 (3) | 2.430 (5) | 161 (8) |
C7A—H7AA···O14 | 0.93 | 2.47 | 2.990 (9) | 115 |
C9A—H9AA···O1Ai | 0.97 | 2.40 | 3.105 (7) | 129 |
C9A—H9AB···O14ii | 0.97 | 2.55 | 3.482 (12) | 162 |
C11A—H11A···O14Aii | 0.93 | 2.60 | 3.406 (12) | 145 |
C14A—H14A···N1Ai | 0.93 | 2.67 | 3.126 (8) | 111 |
C7B—H7BA···O11Aiii | 0.93 | 2.54 | 3.069 (14) | 117 |
C9B—H9BB···Br1iii | 0.97 | 3.12 | 3.859 (10) | 134 |
C14B—H14B···N1Bi | 0.93 | 2.54 | 3.155 (9) | 124 |
C9C—H9CA···O1Bi | 0.97 | 2.37 | 3.02 (3) | 124 |
C13C—H13C···Br1iv | 0.93 | 3.08 | 3.55 (2) | 114 |
C14C—H14C···Br1iv | 0.93 | 3.05 | 3.54 (2) | 115 |
O1S—H1S···O12 | 0.82 | 2.12 | 2.907 (15) | 162 |
O1S—H1S···O13 | 0.82 | 2.57 | 3.249 (15) | 140 |
O1S—H1S···O13A | 0.82 | 1.64 | 2.436 (16) | 162 |
C1S—H1S3···O13 | 0.96 | 2.55 | 3.276 (19) | 133 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+1, −z; (iii) x−1/2, y+1/2, −z+1/2; (iv) −x+3/2, y+1/2, z. |
Acknowledgements
UO and RO acknowledge the Howard University College of Arts & Sciences for a Teaching Fellowship. RJB is grateful to the Howard University Nanoscience Facility access to liquid nitrogen.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1205608; grant No. CHE-0619278).
References
Ayikoé, K., Gultneh, Y. & Butcher, R. J. (2011). Acta Cryst. E67, m1211. Web of Science CrossRef IUCr Journals Google Scholar
Bhardwaj, V. K. & Singh, A. (2014). Inorg. Chem. 53, 10731–10742. CrossRef Google Scholar
Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193–m1194. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chakraborty, J., Singh, R. K. B., Samanta, B., Choudhury, C. R., Dey, S. K., Talukder, P., Borah, M. J. & Mitra, S. (2006). Z. Naturforsch. Teil B, 61, 1209–1216. Google Scholar
Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Z. Anorg. Allg. Chem. 573, 215–222. CrossRef Google Scholar
Dutta, S., Biswas, P., Flörke, U. & Nag, K. (2010). Inorg. Chem. 49, 7382–7400. CrossRef Google Scholar
Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1113–1116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1479–1482. CrossRef IUCr Journals Google Scholar
Egekenze, R., Gultneh, Y. & Butcher, R. J. (2018a). Polyhedron, 144, 198–209. CrossRef Google Scholar
Egekenze, R., Gultneh, Y. & Butcher, R. J. (2018b). Inorg. Chim. Acta, 478, 232–242. CrossRef Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fondo, M., García-Deibe, A. M., Ocampo, N., Sanmartín, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260–4270. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kobayashi, F., Koga, A., Ohtani, R., Hayami, S. & Nakamura, M. (2017). Acta Cryst. E73, 637–639. CrossRef IUCr Journals Google Scholar
Kuchtanin, V., Kleščíková, L., Šoral, M., Fischer, R., Růžičková, Z., Rakovský, E., Moncoľ, J. & Segľa, P. (2016). Polyhedron, 117, 90–96. CrossRef Google Scholar
Layek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422–426. CrossRef Google Scholar
Lucas, C. R., Byrne, J. M. D., Collins, J. L., Dawe, L. N. & Miller, D. O. (2011). Can. J. Chem. 89, 1174–1189. CrossRef Google Scholar
Mobley, H. L. T. (2001). Urease. In Helicobacter pylori: Physiology and Genetics, edited by H. L. Mobley, G. L. Mendz and S. L Hazell. Washington (DC): ASM Press. Google Scholar
Mukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121–3128. CrossRef Google Scholar
Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842–843. CrossRef Google Scholar
Okeke, U., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1708–1711. CrossRef IUCr Journals Google Scholar
Özalp-Yaman, Ş., Kasumov, V. T. & Önal, A. M. (2005). Polyhedron, 24, 1821–1828. Google Scholar
Paital, A. R., Wong, W. T., Aromí, G. & Ray, D. (2007). Inorg. Chem. 46, 5727–5733. CrossRef Google Scholar
Sanyal, R., Dash, S. K., Kundu, P., Mandal, D., Roy, S. & Das, D. (2016). Inorg. Chim. Acta, 453, 394–401. CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Xua, H., Fan, X., Chao, F. & Zhang, S. (2015). Private Communication (Refcode QUGZOJ01). CCDC, Cambridge, England. Google Scholar
Yamaguchi, T., Sunatsuki, Y. & Ishida, H. (2008). Acta Cryst. C64, m156–m160. CrossRef IUCr Journals Google Scholar
You, Z.-L. & Chi, J.-Y. (2006). Acta Cryst. E62, m1498–m1500. Web of Science CSD CrossRef IUCr Journals Google Scholar
You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m805–m807. CrossRef IUCr Journals Google Scholar
Zhang, W. G. & Liang, J. H. (2017). Russ. J. Coord. Chem. 43, 540–546. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.