research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of (E)-2-ethyl-N-(4-nitro­benzyl­­idene)aniline: three-dimensional supra­molecular assembly mediated by C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bCentre for Biological Sciences (Bioinformatics), School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Patna 800 014, India, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: giri.viji.shiva@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 26 June 2018; accepted 4 July 2018; online 10 July 2018)

In the mol­ecule of the title compound, C15H14N2O2, the 2-ethyl­phenyl group is disordered over two sets of atomic sites having occupancies of 0.515 (19) and 0.485 (19), and the dihedral angle between the two partial-occupancy aryl rings is 6(2)°. A combination of C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions links the mol­ecules into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.

1. Chemical context

Schiff bases exhibit a very wide range of biological activities (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1-8.]) and are also of inter­est because of their photochromic and thermochromic properties (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Minkin et al., 2011[Minkin, V. I., Tsukanov, A. V., Dubonosov, A. D. & Bren, V. A. (2011). J. Mol. Struct. 998, 179-191.]). In view of the general importance of Schiff bases, and in a continuation of our own structural study of compounds of this type (Girisha et al., 2017[Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1835-1839.], 2018[Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376-379.]) we report here the mol­ecular and supra­moleuclar structure of (E)-2-ethyl-N-(4-nitro­benzyl­idene)aniline (I)[link] (Fig. 1[link]), where the ethyl group turns out to be disordered over two sets of atomic sites and where the mol­ecules are linked into a three-dimensional supra­molecular array.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and for the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

2. Structural commentary

The 2-ethyl­phenyl group in compound (I)[link] is disordered over two sets of atomic sites having occupancies of 0.515 (19) and 0.485 (19) and it is possible that the ethyl group is simply making full use of an available space within the structure: the dihedral angle between the two components of the disordered aryl ring is 6(2)°. The nitro group is almost coplanar with the adjacent aryl ring, with a dihedral angle of only 8.3 (2)° between these two units; on the other hand, the dihedral angles between the nitrated aryl ring and the major and minor components of the disordered ring are 36.7 (10)° and 42.6 (11)°, respectively. The mol­ecules of (I)[link] are therefore conformationally chiral but, in the absence of significant resonant scattering, it was not possible to determine the absolute configuration of the mol­ecules in the crystal selected for data collection. It is reasonable to assume that, in solution, the two conformational enanti­omers will be in rapid equilibrium.

The conformational behaviour of compound (I)[link] may be compared with that of some closely related compounds. In (E)-N-(4-nitro­benzyl­idene)-2,3-di­methyl­aniline, (II) (Tariq et al., 2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]), and (E)-N-(4-nitro­benzyl­idene)-3,4-di­meth­oxy­aniline, (III) (Akkurt et al., 2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]), the dihedral angles between the two aryl rings are 24.52 (5) and 29.52 (8)°, respectively. By contrast, in (E)-N-(4-nitro­benzyl­idene)-2-hy­droxy­aniline), (IV) (Madhuprasad et al., 2014[Madhuprasad, Swathi, N., Manjunatha, J. R., Das, U. K., Shetty, A. N. & Trivedi, D. R. (2014). New J. Chem. 38, 1484-1492.]), and (E)-N-(4-chloro­benzyl­idene)-2-hy­droxy­aniline, (V) (Girisha et al., 2018[Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376-379.]), the dihedral angles between the rings are 0.52° [the atomic coordinates retrieved from the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) carry no s.u.s] and 3.31 (9)° respectively, reflecting the influence of the intra­molecular O—H⋯N hydrogen bonds in these two compounds.

3. Supra­molecular features

The supra­molecular assembly depends upon a combination of one C—H⋯O hydrogen bond (Table 1[link]) and three N—O⋯π(arene) inter­actions (Kaafarani et al., 2003[Kaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227-o229.]; Báuza et al., 2016[Báuza, A., Frontera, A. & Mooibroek, T. J. (2016). Cryst. Growth Des. 16, 5520-5524.]) (Table 2[link]), and the three-dimensional assembly can readily be analysed in terms of three one-dimensional substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Thus, the action of the C—H⋯O hydrogen bond alone is to link mol­ecules related by the 21 screw axis along (0.75, 0.5, z) into a C(6) chain running parallel to the [001] direction (Fig. 2[link]). The action of the two nitro⋯π(arene) inter­actions links mol­ecules related by the 21 screw axis along (x, 0.25, 0.5) into a chain running parallel to the [100] direction (Fig. 3[link]), while the combined action of the hydrogen bond and the nitro⋯π(arene) inter­actions links the mol­ecules into a chain running parallel to the [010] direction (Fig. 4[link]). The combination of chain motifs parallel to the [100], [010] and [001] directions then generates a continuous three-dimensional assembly.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O141i 0.93 2.54 3.456 (5) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Table 2
Parameters (Å, °) for nitro⋯π(arene) inter­actions

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

N—O⋯Cg N—O O⋯Cg N⋯Cg N—O⋯Cg
N14—O141⋯Cg1i 1.215 (4) 3.88 (2) 3.91 (2) 82.5 (3)
N14—O141⋯Cg2i 1.215 (4) 3.82 (2) 3.79 (2) 79.4 (3)
N14—O142⋯Cg1ii 1.220 (4) 3.97 (2) 3.85 (2) 75.1 (3)
Symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a C(6) hydrogen-bonded chain along [001]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{3\over 2}] − x, 1 − y, [{1\over 2}] + z), (x, y, 1 + z) and ([{3\over 2}] − x, 1 − y, −[{1\over 2}] + z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a chain along [100] built from nitro⋯π(arene) inter­actions. For the sake of clarity, the H atoms have all been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{1\over 2}] + x, [{1\over 2}] − y, 1 − z), (−[{1\over 2}] + x, [{1\over 2}] − y, 1 − z) and (−1 + x, y, z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a chain parallel to the [010] direction built from alternating C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions ([{3\over 2}] − x, 1 − y, [{1\over 2}] + z), (1 − x, [{1\over 2}] + y, [{3\over 2}] − z), (−[{1\over 2}] + x, [{3\over 2}] − y, 1 − z) and (x, 1 + y, z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

4. Database survey

It is of inter­est to briefly compare the three-dimensional supra­molecular assembly in compound (I)[link], with the patterns of aggregation found in related compounds (II)–(V). In compound (II), two independent aromatic ππ stacking inter­actions combine to link the mol­ecules into chains (Tariq et al., 2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]). The structure of compound (III) (Akkurt et al., 2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]) contains three short C—H⋯O contacts, but two of these involve an H atom in a methyl group, while for the third the C—H⋯O angle is only 131°, so that none of these contacts is likely to be structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). The mol­ecules of compound (IV) (Madhuprasad et al., 2014[Madhuprasad, Swathi, N., Manjunatha, J. R., Das, U. K., Shetty, A. N. & Trivedi, D. R. (2014). New J. Chem. 38, 1484-1492.]) are linked into centrosymmetric dimers by inversion-related O—H⋯O hydrogen bonds, while those of compound (V) are linked into a three-dimensional framework structure by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds and an aromatic ππ stacking inter­action (Girisha et al., 2018[Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376-379.]).

Other Schiff bases which are derived from nitro­benzaldehydes and whose structures have been reported recently include N-(2-nitro­benzyl­idene)aniline (Naveen et al., 2006[Naveen, S., Anil Kumar, K., Channe Gowda, D., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o3790-o3791.]), 4-meth­oxy-N-(2-nitro­benzyl­idene)aniline (Ren & Jian, 2008[Ren, X.-Y. & Jian, F.-F. (2008). Acta Cryst. E64, o2027.]), 2,3-dimethyl-N-(2-nitro­benzyl­idene)aniline (Tahir et al., 2010[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.]) and 2-fluoro-N-(3-nitro­benzyl­idene)-5-(tri­fluoro­meth­yl)aniline (Yang et al., 2007[Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.]).

5. Synthesis and crystallization

Solutions of 2-ethyl­aniline (100 mg, 0.826 mmol) and 4-nitro­benzaldehyde (124 mg, 0.826 mmol), each in ethanol (15 ml). were mixed and a catalytic amount of glacial acetic acid was added. The resulting mixture was heated under reflux for 3 h, when completion of the reaction was confirmed using thin layer chromatography. The solid product was collected by filtration and recrystallized from aceto­nitrile to give crystals of (I)[link] suitable for single crystal X-ray diffraction; yield 150mg, 0.590 mmol, 71%; m.p. 369–373 K.

6. Refinement

It was apparent from an early stage in the refinement that the methyl group of the ethyl substituent was disordered over two sets of atomic sites having unequal occupancies, and satisfactory resolution of the disorder required a model in which the whole 2-ethyl­phenyl unit was disordered over two sets of atomic sites. For the minor disorder component, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for the corresponding pairs of C atoms in the disordered ring were constrained to be identical. All H atoms apart from those in the ethyl unit were located in difference maps and then treated as riding atoms with C—H 0.93 Å and Uiso(H) = 1.2Ueq(C); the H atoms of the ethyl unit were included in calculated positions with C—H distances of 0.96 Å (CH3) or 0.97 Å (CH2) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for the CH2 groups. Subject to these conditions, the occupancies of the two disorder components refined to 0.515 (19) and 0.485 (19). Although the coverage of Friedel pairs was 98%, it was not possible to determine the absolute configuration of the mol­ecules in the crystal selected for study, as the value of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), calculated using 484 quotients of the type [(I+) − (I)]/[(I + )+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), was −0.5 (7), and value calculated for the Hooft y parameter (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) was −0.4 (7). Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C15H14N2O2
Mr 254.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.6419 (7), 11.8889 (13), 14.8082 (16)
V3) 1345.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.841, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 20309, 2535, 1401
Rint 0.055
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.04
No. of reflections 2535
No. of parameters 209
No. of restraints 17
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.11
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-2-Ethyl-N-(4-nitrobenzylidene)aniline top
Crystal data top
C15H14N2O2Dx = 1.255 Mg m3
Mr = 254.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2535 reflections
a = 7.6419 (7) Åθ = 2.2–25.8°
b = 11.8889 (13) ŵ = 0.09 mm1
c = 14.8082 (16) ÅT = 296 K
V = 1345.4 (2) Å3Block, colourless
Z = 40.15 × 0.10 × 0.10 mm
F(000) = 536
Data collection top
Bruker APEXII CCD
diffractometer
2535 independent reflections
Radiation source: fine focus sealed tube1401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 25.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 69
Tmin = 0.841, Tmax = 0.992k = 1414
20309 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.11 e Å3
2535 reflectionsΔρmin = 0.11 e Å3
209 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 restraintsExtinction coefficient: 0.009 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6122 (4)0.1423 (2)0.56000 (17)0.0657 (8)
C170.6533 (5)0.2454 (3)0.5623 (2)0.0643 (9)
H170.69160.27650.61640.077*
C110.6423 (4)0.3173 (3)0.4820 (2)0.0582 (9)
C120.5825 (5)0.2760 (3)0.3999 (2)0.0651 (10)
H120.54730.20140.39510.078*
C130.5754 (5)0.3451 (3)0.3261 (2)0.0689 (10)
H130.53530.31770.27100.083*
C140.6277 (5)0.4549 (3)0.3339 (2)0.0659 (9)
C150.6878 (5)0.4979 (3)0.4132 (3)0.0744 (11)
H150.72340.57250.41710.089*
C160.6949 (5)0.4281 (3)0.4880 (2)0.0704 (10)
H160.73550.45620.54270.084*
N140.6223 (5)0.5279 (4)0.2537 (3)0.0934 (11)
O1410.5892 (5)0.4855 (3)0.1810 (2)0.1275 (13)
O1420.6516 (5)0.6280 (3)0.2643 (2)0.1273 (13)
C1A0.6204 (4)0.0777 (3)0.6407 (2)0.0618 (9)0.515 (19)
C2A0.652 (3)0.0381 (8)0.6399 (9)0.060 (3)0.515 (19)
C21A0.739 (2)0.0913 (13)0.5561 (11)0.089 (6)0.515 (19)
H21A0.78930.03200.51920.107*0.515 (19)
H21B0.83400.13980.57570.107*0.515 (19)
C22A0.612 (2)0.1593 (16)0.4994 (10)0.121 (6)0.515 (19)
H22A0.51620.11210.48100.181*0.515 (19)
H22B0.56750.22100.53440.181*0.515 (19)
H22C0.67070.18780.44690.181*0.515 (19)
C3A0.664 (6)0.0915 (16)0.7237 (12)0.073 (3)0.515 (19)
H3A0.69670.16680.72550.087*0.515 (19)
C4A0.628 (5)0.0372 (17)0.8034 (10)0.072 (4)0.515 (19)
H4A0.64200.07470.85800.087*0.515 (19)
C5A0.573 (8)0.072 (2)0.8022 (10)0.075 (3)0.515 (19)
H5A0.53590.10750.85500.090*0.515 (19)
C6A0.572 (13)0.130 (3)0.7204 (13)0.0739 (19)0.515 (19)
H6A0.53830.20490.71930.089*0.515 (19)
C1B0.6204 (4)0.0777 (3)0.6407 (2)0.0618 (9)0.485 (19)
C2B0.693 (3)0.0285 (9)0.6285 (9)0.060 (3)0.485 (19)
C21B0.704 (3)0.0772 (10)0.5319 (10)0.079 (6)0.485 (19)
H21C0.61740.04120.49360.095*0.485 (19)
H21D0.81880.06270.50650.095*0.485 (19)
C22B0.671 (4)0.2034 (12)0.5351 (15)0.179 (11)0.485 (19)
H22D0.65590.23150.47480.268*0.485 (19)
H22E0.56640.21800.56940.268*0.485 (19)
H22F0.76820.24030.56310.268*0.485 (19)
C3B0.691 (6)0.1024 (17)0.7018 (13)0.073 (3)0.485 (19)
H3B0.72890.17620.69370.087*0.485 (19)
C4B0.635 (5)0.0684 (17)0.7854 (11)0.072 (4)0.485 (19)
H4B0.63310.11950.83290.087*0.485 (19)
C5B0.583 (9)0.040 (2)0.7992 (11)0.075 (3)0.485 (19)
H5B0.55380.06480.85690.090*0.485 (19)
C6B0.574 (14)0.113 (3)0.7262 (14)0.0739 (19)0.485 (19)
H6B0.53640.18710.73490.089*0.485 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0710 (19)0.0625 (19)0.0635 (18)0.0032 (15)0.0085 (15)0.0061 (15)
C170.069 (2)0.065 (2)0.059 (2)0.000 (2)0.0101 (19)0.0022 (19)
C110.059 (2)0.058 (2)0.057 (2)0.0020 (17)0.0041 (17)0.0012 (17)
C120.073 (2)0.062 (2)0.061 (2)0.0010 (17)0.0050 (19)0.0024 (18)
C130.072 (2)0.080 (3)0.054 (2)0.006 (2)0.0016 (19)0.0050 (19)
C140.064 (2)0.072 (2)0.062 (2)0.0094 (19)0.0053 (18)0.0149 (19)
C150.081 (3)0.059 (2)0.082 (3)0.001 (2)0.002 (2)0.004 (2)
C160.082 (3)0.066 (2)0.063 (2)0.001 (2)0.0072 (19)0.0086 (19)
N140.085 (2)0.109 (3)0.085 (3)0.009 (2)0.008 (2)0.033 (3)
O1410.148 (3)0.165 (3)0.069 (2)0.008 (2)0.001 (2)0.032 (2)
O1420.146 (3)0.101 (2)0.135 (3)0.002 (2)0.000 (2)0.053 (2)
C1A0.060 (2)0.065 (2)0.060 (2)0.0052 (19)0.0073 (17)0.0066 (18)
C2A0.049 (10)0.060 (3)0.070 (4)0.021 (4)0.019 (4)0.008 (3)
C21A0.120 (11)0.079 (10)0.067 (9)0.012 (7)0.018 (7)0.030 (7)
C22A0.131 (11)0.132 (14)0.100 (9)0.048 (10)0.002 (7)0.009 (9)
C3A0.086 (12)0.057 (4)0.075 (7)0.007 (3)0.026 (10)0.011 (5)
C4A0.105 (4)0.049 (9)0.064 (5)0.003 (9)0.002 (7)0.001 (6)
C5A0.102 (7)0.059 (12)0.064 (3)0.006 (14)0.003 (2)0.002 (4)
C6A0.086 (3)0.066 (7)0.070 (3)0.004 (10)0.004 (6)0.009 (3)
C1B0.060 (2)0.065 (2)0.060 (2)0.0052 (19)0.0073 (17)0.0066 (18)
C2B0.049 (10)0.060 (3)0.070 (4)0.021 (4)0.019 (4)0.008 (3)
C21B0.123 (12)0.050 (6)0.065 (9)0.004 (7)0.002 (8)0.001 (7)
C22B0.30 (3)0.085 (10)0.147 (17)0.007 (13)0.039 (17)0.044 (10)
C3B0.086 (12)0.057 (4)0.075 (7)0.007 (3)0.026 (10)0.011 (5)
C4B0.105 (4)0.049 (9)0.064 (5)0.003 (9)0.002 (7)0.001 (6)
C5B0.102 (7)0.059 (12)0.064 (3)0.006 (14)0.003 (2)0.002 (4)
C6B0.086 (3)0.066 (7)0.070 (3)0.004 (10)0.004 (6)0.009 (3)
Geometric parameters (Å, º) top
N1—C171.266 (4)C22A—H22B0.9600
N1—C1A1.422 (4)C22A—H22C0.9600
C17—C111.466 (4)C3A—C4A1.372 (10)
C17—H170.9300C3A—H3A0.9300
C11—C161.381 (5)C4A—C5A1.370 (9)
C11—C121.387 (4)C4A—H4A0.9300
C12—C131.369 (4)C5A—C6A1.390 (8)
C12—H120.9300C5A—H5A0.9300
C13—C141.369 (5)C6A—H6A0.9300
C13—H130.9300C2B—C3B1.397 (9)
C14—C151.361 (5)C2B—C21B1.547 (11)
C14—N141.471 (5)C21B—C22B1.523 (13)
C15—C161.385 (5)C21B—H21C0.9700
C15—H150.9300C21B—H21D0.9700
C16—H160.9300C22B—H22D0.9600
N14—O1411.215 (4)C22B—H22E0.9600
N14—O1421.220 (4)C22B—H22F0.9600
C1A—C6A1.383 (8)C3B—C4B1.370 (10)
C1A—C2A1.398 (8)C3B—H3B0.9300
C2A—C3A1.397 (9)C4B—C5B1.368 (9)
C2A—C21A1.545 (11)C4B—H4B0.9300
C21A—C22A1.520 (13)C5B—C6B1.391 (9)
C21A—H21A0.9700C5B—H5B0.9300
C21A—H21B0.9700C6B—H6B0.9300
C22A—H22A0.9600
C17—N1—C1A119.3 (3)H22A—C22A—H22B109.5
N1—C17—C11121.9 (3)C21A—C22A—H22C109.5
N1—C17—H17119.1H22A—C22A—H22C109.5
C11—C17—H17119.1H22B—C22A—H22C109.5
C16—C11—C12119.3 (3)C4A—C3A—C2A122.5 (9)
C16—C11—C17119.1 (3)C4A—C3A—H3A118.7
C12—C11—C17121.6 (3)C2A—C3A—H3A118.7
C13—C12—C11120.0 (3)C5A—C4A—C3A119.8 (10)
C13—C12—H12120.0C5A—C4A—H4A120.1
C11—C12—H12120.0C3A—C4A—H4A120.1
C12—C13—C14119.5 (3)C4A—C5A—C6A118.6 (9)
C12—C13—H13120.2C4A—C5A—H5A120.7
C14—C13—H13120.2C6A—C5A—H5A120.7
C15—C14—C13121.9 (3)C1A—C6A—C5A121.6 (9)
C15—C14—N14118.9 (4)C1A—C6A—H6A119.2
C13—C14—N14119.1 (4)C5A—C6A—H6A119.2
C14—C15—C16118.6 (3)C3B—C2B—C21B118.9 (11)
C14—C15—H15120.7C22B—C21B—C2B109.3 (11)
C16—C15—H15120.7C22B—C21B—H21C109.8
C11—C16—C15120.6 (3)C2B—C21B—H21C109.8
C11—C16—H16119.7C22B—C21B—H21D109.8
C15—C16—H16119.7C2B—C21B—H21D109.8
O141—N14—O142123.8 (4)H21C—C21B—H21D108.3
O141—N14—C14118.4 (4)C21B—C22B—H22D109.5
O142—N14—C14117.8 (4)C21B—C22B—H22E109.5
C6A—C1A—C2A119.6 (10)H22D—C22B—H22E109.5
C6A—C1A—N1117.7 (7)C21B—C22B—H22F109.5
C2A—C1A—N1122.2 (6)H22D—C22B—H22F109.5
C3A—C2A—C1A116.8 (9)H22E—C22B—H22F109.5
C3A—C2A—C21A120.0 (10)C4B—C3B—C2B121.3 (10)
C1A—C2A—C21A118.9 (9)C4B—C3B—H3B119.4
C22A—C21A—C2A112.5 (13)C2B—C3B—H3B119.4
C22A—C21A—H21A109.1C5B—C4B—C3B120.4 (10)
C2A—C21A—H21A109.1C5B—C4B—H4B119.8
C22A—C21A—H21B109.1C3B—C4B—H4B119.8
C2A—C21A—H21B109.1C4B—C5B—C6B119.3 (10)
H21A—C21A—H21B107.8C4B—C5B—H5B120.4
C21A—C22A—H22A109.5C6B—C5B—H5B120.4
C21A—C22A—H22B109.5C5B—C6B—H6B119.8
C1A—N1—C17—C11178.1 (3)C17—N1—C1A—C2A151.9 (12)
N1—C17—C11—C16177.7 (3)C6A—C1A—C2A—C3A12 (6)
N1—C17—C11—C121.4 (5)N1—C1A—C2A—C3A178 (2)
C16—C11—C12—C130.3 (5)C6A—C1A—C2A—C21A168 (5)
C17—C11—C12—C13179.4 (3)N1—C1A—C2A—C21A21 (2)
C11—C12—C13—C140.0 (5)C3A—C2A—C21A—C22A97 (3)
C12—C13—C14—C150.3 (5)C1A—C2A—C21A—C22A107 (2)
C12—C13—C14—N14179.0 (3)C1A—C2A—C3A—C4A7 (5)
C13—C14—C15—C160.4 (5)C21A—C2A—C3A—C4A163 (3)
N14—C14—C15—C16179.1 (3)C2A—C3A—C4A—C5A3 (7)
C12—C11—C16—C150.2 (5)C3A—C4A—C5A—C6A7 (9)
C17—C11—C16—C15179.4 (3)C2A—C1A—C6A—C5A7 (11)
C14—C15—C16—C110.1 (5)N1—C1A—C6A—C5A179 (6)
C15—C14—N14—O141171.1 (4)C4A—C5A—C6A—C1A2 (12)
C13—C14—N14—O1417.7 (5)C3B—C2B—C21B—C22B12 (4)
C15—C14—N14—O1428.9 (5)C21B—C2B—C3B—C4B162 (4)
C13—C14—N14—O142172.3 (4)C2B—C3B—C4B—C5B1 (7)
C17—N1—C1A—C6A37 (5)C3B—C4B—C5B—C6B5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O141i0.932.543.456 (5)167
Symmetry code: (i) x+3/2, y+1, z+1/2.
Parameters (Å, °) for nitro···π(arene) interactions top
Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.
N—O···CgN—OO···CgN···CgN—O···Cg
N14—O141···Cg1i1.215 (4)3.88 (2)3.91 (2)82.5 (3)
N14—O141···Cg2i1.215 (4)3.82 (2)3.79 (2)79.4 (3)
N14—O142···Cg1ii1.220 (4)3.97 (2)3.85 (2)75.1 (3)
Symmetry codes: (i) -1/2 + x, 1/2 - y, 1 - z; (ii) 1/2 + x, 1/2 - y, 1 - z.
 

Acknowledgements

BKS thanks the University of Mysore for the research facilities.

Funding information

HSY acknowledges the UGC (India) for the award of a UGC–BSR Faculty Fellowship and MG thanks the UGC for the award of a Rajeev Gandhi Fellowship.

References

First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBáuza, A., Frontera, A. & Mooibroek, T. J. (2016). Cryst. Growth Des. 16, 5520–5524.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1835–1839.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGirisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376–379.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227–o229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhuprasad, Swathi, N., Manjunatha, J. R., Das, U. K., Shetty, A. N. & Trivedi, D. R. (2014). New J. Chem. 38, 1484–1492.  Web of Science CrossRef Google Scholar
First citationMinkin, V. I., Tsukanov, A. V., Dubonosov, A. D. & Bren, V. A. (2011). J. Mol. Struct. 998, 179–191.  Web of Science CrossRef CAS Google Scholar
First citationNaveen, S., Anil Kumar, K., Channe Gowda, D., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o3790–o3791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, X.-Y. & Jian, F.-F. (2008). Acta Cryst. E64, o2027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds