research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the 1:3 adduct of tetra­aqua­trinitrato­neodymium(III) with 3-amino-1,2,4-triazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College(Autonomous), Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by A. M. Chippindale, University of Reading, England (Received 27 June 2018; accepted 20 August 2018; online 24 August 2018)

In the title compound, [Nd(NO3)3(H2O)4]·3C3H4N4, neodymium is ten-coordinate with a distorted bicapped square-anti­prismatic geometry formed from six O atoms from three nitrate ions and four O atoms from four coordinated water mol­ecules. The structure also contains neutral 3-amino-1,2,4-triazine mol­ecules which are not coordinated to the central metal atom. The coordinated water mol­ecules and nitrate ions of adjacent complexes are linked by O—H⋯O hydrogen bonds to form cyclic R22(8) ring motifs, which in turn are further connected via hydrogen bonds to generate a sheet-like structure. The triazine mol­ecules are involved in a number of hydrogen-bonding inter­actions: N—H⋯N and O—H⋯N inter­actions to form R33(9) motifs and N—H⋯N inter­actions to link the organic mol­ecules into chains. Weak C—H⋯O hydrogen bonds also occur between triazine mol­ecules and coordinated nitrate atoms. All these inter­molecular contacts contribute to the stabilization of the three-dimensional supra­molecular framework. Hirshfeld surface analysis shows that N⋯H/H⋯N and H⋯H inter­actions account for 42.9 and 20.6% of the surface, respectively.

1. Chemical context

Lanthanide complexes with organic ligands have many applications related to the design and synthesis of potential anti­cancer and anti­bacterial agents (Eliseeva & Bunzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Liu et al., 2008[Liu, M., Yuan, W.-B., Zhang, Q., Yan, L. & Yang, R.-D. (2008). Spectrochim. Acta A, 70, 1114-1119.]; Kostova & Stefanova, 2009[Kostova, I. & Stefanova, T. (2009). J. Coord. Chem. 62, 3187-3197.]; Siddiqi et al., 2009[Siddiqi, Z. A., Shahid, M., Khalid, M., Noor, S. & Kumar, S. (2009). Spectrochim. Acta A, 74, 391-397.]; Taha et al., 2011[Taha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011). Spectrochim. Acta A, 81, 570-577.]; Hermann et al., 2008[Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027-3047.]; Gassner et al., 2008[Gassner, A.-L., Duhot, C., Bünzli, J.-C. G. & Chauvin, A.-S. (2008). Inorg. Chem. 47, 7802-7812.]; Xu et al., 2010[Xu, D., Xu, Y., Cheng, N., Zhou, X., Shi, Y. & He, Q. (2010). J. Coord. Chem. 63, 2360-2369.]). Some lanthanide complexes also have potential roles in the treatment of malignant cells (Kostova et al., 2004[Kostova, I., Manolov, I. & Momekov, G. (2004). Eur. J. Med. Chem. 39, 765-775.]). In addition, coordination polymers of lanthanide ions have been investigated for use as sensors, catalysts and MRI contrast agents and in applications in the areas of magnetism, gas absorption, self-assembly and medicine (Li et al., 2015[Li, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40-84.]; Bunzli et al., 2015[Bunzli, J.-C. G. (2015). Coord. Chem. Rev. 19, 293-294.]; Wang et al., 2016[Wang, H., Wang, B.-W., Bian, Y., Gao, S. & Jiang, J. (2016). Coord. Chem. Rev. 306, 195-216.]; Zhang & Lin, 2014[Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982-5993.]).

Triazine heterocyclic π-conjugated structures are attractive organic mol­ecules owing to the chemical flexibility of their systems and have many applications in medicinal chemistry, materials science and organic synthesis (Boesveld & Lappert, 1997[Boesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091-2092.]; Boesveld et al., 1999[Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041-4046.]; Reid et al., 2011[Reid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009-5017.]). Triazine deriv­atives have been used as building blocks for subtle chemical architectures comprising organic–inorganic hybrid frameworks (Ma­thias et al., 1994[Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316-4325.]; Zerkowski & Whitesides, 1994[Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298-4304.]; MacDonald & Whitesides, 1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]; Guru Row, 1999[Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.]; Krische & Lehn, 2000[Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3-29.]; Sherrington & Taskinen, 2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]). We report herein the crystal structure of a new lanthanide complex with 3-amino-1,2,4-triazine.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains a neodymium(III) cation, three coordinated nitrate anions, four coordinated water mol­ecules and three uncoordinated neutral 3-amino-1,2,4-triazine mol­ecules. The NdIII ion is ten coordinate and has a distorted bicapped square-anti­prismatic geometry, being surrounded by six oxygen atoms from three nitrate ions and four oxygen atoms from coordinated water mol­ecules. The lengths of the Ni—O bonds (Table 1[link]) are in good agreement with those reported in the literature (Trzesowska-Kruszynska et al., 2010[Trzesowska-Kruszynska, A., Kruszynski, R., Zalewicz, M. & Bartczak, T. J. (2010). J. Coord. Chem. 63, 1013-1028.]).

Table 1
Selected bond lengths (Å)

Nd1—O1A 2.5876 (15) Nd1—O4B 2.5698 (17)
Nd1—O1W 2.4826 (17) Nd1—O4W 2.4540 (14)
Nd1—O2A 2.5480 (16) Nd1—O5B 2.6402 (17)
Nd1—O2W 2.4603 (18) Nd1—O7C 2.5428 (15)
Nd1—O3W 2.4790 (15) Nd1—O8C 2.6161 (15)
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the coordinated water mol­ecules act as hydrogen-atom donors (Table 2[link]) to the oxygen atoms of nitrate ions in adjacent mol­ecules and are linked by a set of O—H⋯O [O2W—H2A⋯O6Biii and O3W—H3A⋯O7Cv] hydrogen bonds, forming cyclic R22(8) ring motifs. These ring motifs are further connected via O—H⋯O hydrogen bonds to generate a sheet-like structure (Fig. 2[link]). The uncoordinated neutral triazine moieties (A & C) are connected via N—H⋯N [N3C—H2NC⋯N1Avii and N3A—H2NA⋯N1Ciii] hydrogen bonds, forming zigzag chains (Fig. 3[link]). The triazine mol­ecules are also involved in N—H⋯N and O—H⋯N hydrogen-bonding inter­actions, forming R33(9) motifs (Fig. 4[link]). The carbon-bound hydrogen atoms of the triazine moieties (B & C) are linked through weak C—H⋯O [C3B—H3BA⋯O6Bix and C3C—H3CA⋯O4Bvii] hydrogen bonds formed with the coordinated nitrate atoms (B). All these inter­molecular inter­actions appear to play a significant role in stabilizing the crystal structure and result in the formation of a three-dimensional supra­molecular framework (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N4Ai 0.79 (3) 2.09 (3) 2.876 (2) 179 (4)
O1W—H1B⋯N2Cii 0.76 (3) 2.16 (3) 2.899 (3) 167 (3)
O2W—H2A⋯O6Biii 0.67 (3) 2.14 (3) 2.791 (3) 168 (3)
O2W—H2B⋯N2Biv 0.81 (3) 2.01 (3) 2.806 (3) 166 (3)
O3W—H3A⋯O7Cv 0.83 (3) 2.04 (3) 2.864 (2) 173 (3)
O3W—H3B⋯N4B 0.82 (3) 2.02 (3) 2.832 (3) 169 (3)
O4W—H4A⋯N4Cvi 0.82 (2) 2.05 (3) 2.871 (3) 172 (3)
O4W—H4B⋯N2A 0.84 (2) 2.00 (2) 2.829 (2) 170 (2)
N3A—H1NA⋯O2A 0.84 (2) 2.06 (2) 2.883 (2) 168 (2)
N3C—H2NC⋯N1Avii 0.85 (2) 2.10 (2) 2.916 (3) 163 (2)
N3A—H2NA⋯N1Ciii 0.85 (2) 2.12 (2) 2.931 (3) 161 (2)
N3C—H1NC⋯O8Cii 0.83 (2) 2.17 (3) 2.980 (3) 164 (3)
N3B—H1NB⋯O1A 0.83 (2) 2.17 (2) 2.992 (3) 171 (2)
N3B—H2NB⋯O9Cvii 0.84 (2) 2.46 (3) 3.046 (3) 128 (2)
C3A—H3AA⋯N1Bviii 0.93 2.60 3.245 (3) 127
C3B—H3BA⋯O6Bix 0.93 2.58 3.475 (3) 161
C3C—H3CA⋯O4Bvii 0.93 2.54 3.328 (3) 142
Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) x, y-1, z; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view of the O—H⋯O hydrogen-bonding inter­actions (shown as dotted lines) between coordinated water mol­ecules and nitrate ions, which generate a sheet-like structure.
[Figure 3]
Figure 3
A view of N—H⋯N hydrogen-bonded pairs (shown as dotted lines) between triazine moieties (A and C) extending into zigzag chains.
[Figure 4]
Figure 4
An overall view of the three-dimensional supra­molecular framework of the title compound.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots, which are useful tools for describing the surface characteristics of the crystal structure, were generated using CrystalExplorer3.0 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia, Perth.]). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The three-dimensional dnorm surface of the title compound is shown in Fig. 5[link]. The red points represent short contacts and negative dnorm values on the surface correspond to the N—H⋯N, N—H⋯O and O—H⋯O inter­actions. Analysis of the two-dimensional fingerprint plots reveal that the H⋯H (20.6%) and N⋯H/H⋯N (42.9%) inter­actions are the highest contributors to the Hirshfeld surface. Smaller contributions come from O⋯H/H⋯O (13.3%) C⋯H/H⋯C (6.3%), N⋯N (6.2%), C⋯N/N⋯C (4.6%), N⋯O/O⋯N (2.8%) and C⋯O/O⋯C (1.8%) inter­actions (Fig. 6[link]).

[Figure 5]
Figure 5
Three-dimensional Hirshfeld surfaces of the title compound plotted over dnorm.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots of the title compound showing the contributions of the different inter­actions. de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

5. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-amino-1,2,4-triazine yielded four structures crystallizing as metal com­plexes: KUCNAY [with bis­(3-amino-1,2,4-triazine-N2)-bis(hexa­fluoro­acetyl­acetonato-O,O′)copper(II)] and KUCNEC [with bis­(μ 2-3-amino-1,2,4-triazine-N1,N4)hexa­kis­(hexafluoro­acetyl­acetonato-O,O′)tricopper(II)] (Li et al., 2009[Li, L., Turnbull, M. M., Ackers, J., Chen, J., Lin, H., Pan, B., Wang, H. & Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845-3852.]); WOZXOA {with catena-[bis­(μ2-dicyanamido)­bis­(1,2,4-triazin-3-amine)­cobalt]; Palion-Gazda et al., 2015[Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Lloret, F. & Julve, M. (2015). Dalton Trans. 44, 2989-2992.]} and WOZXOA01 {with catena-[bis­(μ2-dicyanamido)­bis­(1,2,4-triazin-3-amine)­cobalt]; Şwitlicka-Olszewska et al., 2016[Świtlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181-10193.]}.

6. Synthesis and crystallization

The title compound was prepared by adding a hot methano­lic solution (20 ml) of 3-amino-1,2,4-triazine (0.043g) (Aldrich) to a hot methano­lic solution (20 ml) of Nd(NO3)3·6H2O (0.219g) (Alfa Aesar). Di­chloro­methane (5 ml) was then added and the mixture refluxed for 7 h at 353 K. The resulting solution was then allowed to cool slowly to room temperature. After two weeks, brown-coloured crystals were obtained, m.p. = 378 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed geometrically and refined using the riding-model approximation: C—H = 0.93 Å with Uiso(H) set to 1.2–1.5Ueq(C). The water and N-bound H atoms were located in difference-Fourier maps and refined with Uiso(H) = 1.2Ueq(O) or 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [Nd(NO3)3(H2O)4]·3C3H4N4
Mr 690.64
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.0279 (5), 10.8496 (5), 15.1239 (8)
α, β, γ (°) 102.228 (2), 96.148 (2), 102.764 (2)
V3) 1239.11 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.18
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.517, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 10023, 6016, 5620
Rint 0.014
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.05
No. of reflections 6016
No. of parameters 399
No. of restraints 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.41
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Tetraaquatrinitratoneodymium(III)–3-amino-1,2,4-triazine (1:3) top
Crystal data top
[Nd(NO3)3(H2O)4]·3C3H4N4Z = 2
Mr = 690.64F(000) = 686
Triclinic, P1Dx = 1.851 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0279 (5) ÅCell parameters from 7537 reflections
b = 10.8496 (5) Åθ = 5.3–56.6°
c = 15.1239 (8) ŵ = 2.18 mm1
α = 102.228 (2)°T = 293 K
β = 96.148 (2)°Block, brown
γ = 102.764 (2)°0.35 × 0.30 × 0.30 mm
V = 1239.11 (12) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6016 independent reflections
Radiation source: fine-focus sealed tube5620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 18.4 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω and φ scanh = 106
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1414
Tmin = 0.517, Tmax = 0.562l = 1720
10023 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3994P]
where P = (Fo2 + 2Fc2)/3
6016 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.48 e Å3
15 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd11.03611 (1)0.21335 (1)0.71016 (1)0.0226 (1)
O1A1.0327 (2)0.43232 (14)0.66866 (10)0.0403 (5)
O1W1.2955 (2)0.21178 (17)0.81482 (11)0.0411 (5)
O2A1.1864 (3)0.44707 (14)0.79616 (10)0.0488 (6)
O2W1.2906 (2)0.26993 (18)0.63563 (13)0.0411 (6)
O3A1.1817 (2)0.62147 (14)0.74931 (13)0.0521 (6)
O3W0.9189 (2)0.18292 (17)0.54640 (10)0.0400 (5)
O4B0.7358 (2)0.05414 (15)0.68162 (12)0.0433 (5)
O4W0.9528 (2)0.25477 (15)0.86308 (9)0.0374 (5)
O5B0.7217 (2)0.24915 (14)0.68278 (11)0.0396 (5)
O6B0.4922 (2)0.09045 (19)0.63361 (18)0.0732 (8)
O7C1.0658 (2)0.00476 (14)0.62008 (10)0.0376 (5)
O8C1.0185 (2)0.00715 (14)0.75724 (9)0.0367 (5)
O9C1.0158 (4)0.18660 (17)0.66249 (15)0.0796 (8)
N41.1347 (2)0.50519 (15)0.73869 (11)0.0309 (5)
N50.6465 (2)0.13104 (17)0.66539 (13)0.0376 (6)
N61.0336 (3)0.06974 (17)0.68007 (12)0.0377 (6)
N1A1.1227 (3)0.36263 (18)1.09013 (13)0.0401 (6)
N2A1.1636 (2)0.42269 (17)1.02436 (11)0.0368 (5)
N3A1.3275 (3)0.5930 (2)0.98173 (13)0.0569 (7)
N4A1.3919 (2)0.58214 (16)1.13098 (11)0.0333 (5)
C1A1.2941 (3)0.53168 (18)1.04680 (13)0.0314 (6)
C2A1.2103 (3)0.4099 (2)1.17336 (15)0.0403 (7)
C3A1.3477 (3)0.5199 (2)1.19349 (14)0.0368 (6)
N1B0.4862 (3)0.4080 (2)0.36226 (14)0.0455 (7)
N2B0.6180 (2)0.49570 (18)0.41878 (13)0.0385 (6)
N3B0.8421 (3)0.5452 (2)0.53804 (15)0.0445 (7)
N4B0.7041 (3)0.32938 (17)0.48005 (13)0.0390 (6)
C1B0.7185 (3)0.45541 (19)0.47817 (14)0.0308 (6)
C2B0.4607 (3)0.2855 (3)0.36603 (18)0.0499 (8)
C3B0.5728 (4)0.2461 (2)0.42432 (18)0.0490 (8)
N1C0.5817 (3)0.82519 (19)0.96809 (14)0.0469 (7)
N2C0.7014 (3)0.91061 (18)1.03239 (13)0.0418 (6)
N3C0.8979 (3)1.1069 (2)1.07868 (14)0.0540 (7)
N4C0.7495 (3)1.05383 (18)0.93164 (12)0.0409 (6)
C1C0.7815 (3)1.02272 (19)1.01297 (14)0.0345 (6)
C2C0.5443 (4)0.8506 (2)0.88785 (17)0.0522 (8)
C3C0.6296 (4)0.9664 (3)0.87013 (16)0.0513 (8)
H1A1.381 (4)0.268 (3)0.8291 (18)0.048 (8)*
H1B1.287 (4)0.170 (3)0.849 (2)0.058 (9)*
H2A1.348 (3)0.234 (3)0.6331 (18)0.034 (8)*
H2B1.327 (4)0.331 (3)0.614 (2)0.069 (10)*
H3A0.924 (4)0.126 (3)0.5008 (19)0.048 (7)*
H3B0.864 (4)0.234 (3)0.5329 (19)0.058 (9)*
H4A0.903 (4)0.199 (2)0.8872 (19)0.070 (10)*
H4B1.018 (3)0.311 (2)0.9070 (14)0.045 (7)*
H2AA1.179900.369101.219600.0480*
H3AA1.409800.550001.252700.0440*
H1NA1.277 (3)0.558 (2)0.9278 (12)0.050 (8)*
H2NA1.408 (3)0.662 (2)0.9910 (17)0.054 (8)*
H2BA0.365800.224000.329000.0600*
H3BA0.553800.158200.423600.0590*
H1NB0.899 (3)0.522 (2)0.5781 (16)0.056 (8)*
H2NB0.852 (4)0.6243 (18)0.5396 (19)0.058 (8)*
H3CA0.601200.982500.813200.0620*
H2CA0.460000.790500.842900.0630*
H2NC0.944 (3)1.1835 (18)1.0753 (17)0.051 (8)*
H1NC0.922 (4)1.094 (3)1.1302 (14)0.057 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0279 (1)0.0191 (1)0.0187 (1)0.0026 (1)0.0010 (1)0.0052 (1)
O1A0.0466 (10)0.0316 (7)0.0363 (8)0.0040 (7)0.0098 (7)0.0088 (6)
O1W0.0354 (9)0.0432 (9)0.0391 (9)0.0078 (7)0.0091 (7)0.0239 (8)
O2A0.0760 (13)0.0296 (7)0.0301 (8)0.0018 (8)0.0119 (8)0.0061 (6)
O2W0.0373 (9)0.0416 (9)0.0584 (11)0.0173 (8)0.0195 (8)0.0289 (8)
O3A0.0621 (12)0.0221 (7)0.0650 (11)0.0003 (7)0.0025 (9)0.0102 (7)
O3W0.0592 (11)0.0419 (9)0.0220 (7)0.0289 (8)0.0022 (7)0.0018 (7)
O4B0.0344 (9)0.0343 (8)0.0657 (11)0.0100 (7)0.0055 (7)0.0214 (8)
O4W0.0438 (9)0.0375 (8)0.0214 (7)0.0074 (7)0.0051 (6)0.0050 (6)
O5B0.0430 (9)0.0302 (7)0.0447 (9)0.0103 (6)0.0091 (7)0.0053 (7)
O6B0.0275 (10)0.0495 (11)0.136 (2)0.0093 (8)0.0057 (11)0.0178 (12)
O7C0.0561 (10)0.0297 (7)0.0311 (7)0.0154 (7)0.0109 (7)0.0097 (6)
O8C0.0503 (10)0.0314 (7)0.0274 (7)0.0086 (7)0.0002 (6)0.0095 (6)
O9C0.149 (2)0.0259 (9)0.0656 (13)0.0272 (11)0.0117 (14)0.0119 (9)
N40.0360 (10)0.0243 (8)0.0300 (8)0.0028 (7)0.0066 (7)0.0055 (7)
N50.0319 (10)0.0344 (9)0.0490 (11)0.0099 (8)0.0088 (8)0.0127 (8)
N60.0503 (12)0.0267 (8)0.0343 (9)0.0114 (8)0.0023 (8)0.0064 (7)
N1A0.0435 (11)0.0342 (9)0.0362 (10)0.0060 (8)0.0033 (8)0.0125 (8)
N2A0.0416 (11)0.0311 (9)0.0280 (8)0.0076 (8)0.0007 (7)0.0067 (7)
N3A0.0721 (16)0.0466 (12)0.0277 (10)0.0302 (11)0.0059 (10)0.0107 (9)
N4A0.0353 (10)0.0287 (8)0.0273 (8)0.0020 (7)0.0029 (7)0.0028 (7)
C1A0.0346 (11)0.0268 (9)0.0258 (9)0.0017 (8)0.0022 (8)0.0026 (8)
C2A0.0486 (14)0.0388 (11)0.0323 (11)0.0026 (10)0.0051 (9)0.0158 (9)
C3A0.0432 (13)0.0350 (10)0.0262 (10)0.0039 (9)0.0023 (8)0.0049 (8)
N1B0.0407 (11)0.0585 (12)0.0442 (11)0.0157 (9)0.0051 (9)0.0248 (10)
N2B0.0398 (11)0.0408 (10)0.0434 (10)0.0136 (8)0.0100 (8)0.0230 (9)
N3B0.0446 (12)0.0340 (10)0.0529 (13)0.0113 (9)0.0010 (9)0.0080 (9)
N4B0.0484 (12)0.0318 (9)0.0400 (10)0.0139 (8)0.0025 (8)0.0139 (8)
C1B0.0332 (11)0.0311 (9)0.0337 (10)0.0125 (8)0.0118 (8)0.0120 (8)
C2B0.0440 (15)0.0515 (14)0.0479 (14)0.0046 (11)0.0021 (11)0.0112 (12)
C3B0.0580 (16)0.0323 (11)0.0544 (15)0.0064 (11)0.0023 (12)0.0139 (11)
N1C0.0499 (13)0.0376 (10)0.0443 (11)0.0094 (9)0.0066 (9)0.0127 (9)
N2C0.0441 (11)0.0355 (9)0.0418 (10)0.0064 (8)0.0036 (8)0.0193 (8)
N3C0.0659 (15)0.0432 (11)0.0392 (11)0.0177 (10)0.0091 (10)0.0223 (9)
N4C0.0496 (12)0.0372 (9)0.0314 (9)0.0029 (8)0.0046 (8)0.0140 (8)
C1C0.0371 (12)0.0316 (10)0.0329 (10)0.0003 (9)0.0058 (8)0.0133 (8)
C2C0.0560 (16)0.0444 (13)0.0403 (13)0.0134 (12)0.0004 (11)0.0076 (11)
C3C0.0609 (17)0.0527 (14)0.0317 (11)0.0053 (12)0.0009 (11)0.0156 (11)
Geometric parameters (Å, º) top
Nd1—O1A2.5876 (15)N3A—C1A1.318 (3)
Nd1—O1W2.4826 (17)N4A—C1A1.356 (3)
Nd1—O2A2.5480 (16)N4A—C3A1.309 (3)
Nd1—O2W2.4603 (18)C2A—C3A1.388 (3)
Nd1—O3W2.4790 (15)N3A—H1NA0.839 (18)
Nd1—O4B2.5698 (17)N3A—H2NA0.85 (2)
Nd1—O4W2.4540 (14)N1B—C2B1.314 (4)
Nd1—O5B2.6402 (17)N1B—N2B1.331 (3)
Nd1—O7C2.5428 (15)C2A—H2AA0.9300
Nd1—O8C2.6161 (15)N2B—C1B1.348 (3)
O1A—N41.261 (2)C3A—H3AA0.9300
O2A—N41.263 (2)N3B—C1B1.327 (3)
O3A—N41.204 (2)N4B—C1B1.353 (3)
O4B—N51.258 (2)N4B—C3B1.305 (3)
O5B—N51.248 (2)C2B—C3B1.389 (4)
O6B—N51.225 (3)N3B—H1NB0.83 (2)
O7C—N61.276 (2)N3B—H2NB0.84 (2)
O8C—N61.253 (2)N1C—C2C1.319 (3)
O9C—N61.212 (3)N1C—N2C1.324 (3)
O1W—H1A0.79 (3)C2B—H2BA0.9300
O1W—H1B0.76 (3)N2C—C1C1.351 (3)
O2W—H2A0.67 (3)C3B—H3BA0.9300
O2W—H2B0.81 (3)N3C—C1C1.317 (3)
O3W—H3A0.83 (3)N4C—C1C1.356 (3)
O3W—H3B0.82 (3)N4C—C3C1.313 (3)
O4W—H4A0.82 (2)C2C—C3C1.386 (4)
O4W—H4B0.84 (2)N3C—H2NC0.85 (2)
N1A—N2A1.331 (3)N3C—H1NC0.83 (2)
N1A—C2A1.311 (3)C2C—H2CA0.9300
N2A—C1A1.348 (3)C3C—H3CA0.9300
O1A—Nd1—O1W116.22 (6)H3A—O3W—H3B112 (3)
O1A—Nd1—O2A49.01 (5)O1A—N4—O2A115.11 (16)
O1A—Nd1—O2W73.35 (6)O2A—N4—O3A122.41 (17)
O1A—Nd1—O3W67.84 (5)O1A—N4—O3A122.47 (17)
O1A—Nd1—O4B113.84 (5)Nd1—O4W—H4B120.9 (16)
O1A—Nd1—O4W100.47 (5)H4A—O4W—H4B104 (2)
O1A—Nd1—O5B67.01 (5)Nd1—O4W—H4A125.6 (19)
O1A—Nd1—O7C133.51 (5)O4B—N5—O5B117.28 (17)
O1A—Nd1—O8C175.74 (5)O5B—N5—O6B121.91 (19)
O1W—Nd1—O2A71.32 (6)O4B—N5—O6B120.81 (19)
O1W—Nd1—O2W72.07 (6)O7C—N6—O9C121.41 (19)
O1W—Nd1—O3W142.96 (5)O8C—N6—O9C121.8 (2)
O1W—Nd1—O4B126.63 (6)O7C—N6—O8C116.75 (17)
O1W—Nd1—O4W75.68 (5)N2A—N1A—C2A119.5 (2)
O1W—Nd1—O5B150.73 (5)N1A—N2A—C1A117.99 (17)
O1W—Nd1—O7C85.26 (5)C1A—N4A—C3A115.25 (18)
O1W—Nd1—O8C65.98 (5)N2A—C1A—N3A117.07 (19)
O2A—Nd1—O2W75.74 (7)N2A—C1A—N4A124.71 (18)
O2A—Nd1—O3W115.37 (5)N3A—C1A—N4A118.2 (2)
O2A—Nd1—O4B138.98 (7)N1A—C2A—C3A121.0 (2)
O2A—Nd1—O4W71.11 (5)N4A—C3A—C2A121.43 (19)
O2A—Nd1—O5B96.55 (6)C1A—N3A—H1NA119.2 (15)
O2A—Nd1—O7C147.45 (7)C1A—N3A—H2NA122.1 (17)
O2A—Nd1—O8C131.19 (5)H1NA—N3A—H2NA118 (2)
O2W—Nd1—O3W74.65 (6)N2B—N1B—C2B118.6 (2)
O2W—Nd1—O4B141.46 (6)N1A—C2A—H2AA119.00
O2W—Nd1—O4W139.48 (6)C3A—C2A—H2AA119.00
O2W—Nd1—O5B132.07 (6)N1B—N2B—C1B118.67 (19)
O2W—Nd1—O7C75.71 (6)C2A—C3A—H3AA119.00
O2W—Nd1—O8C110.91 (6)N4A—C3A—H3AA119.00
O3W—Nd1—O4B74.02 (6)C1B—N4B—C3B115.0 (2)
O3W—Nd1—O4W141.32 (5)N2B—C1B—N3B117.8 (2)
O3W—Nd1—O5B66.28 (5)N2B—C1B—N4B124.5 (2)
O3W—Nd1—O7C71.06 (5)N3B—C1B—N4B117.6 (2)
O3W—Nd1—O8C112.86 (5)N1B—C2B—C3B121.2 (2)
O4B—Nd1—O4W78.33 (5)N4B—C3B—C2B121.7 (2)
O4B—Nd1—O5B48.48 (5)C1B—N3B—H1NB118.5 (16)
O4B—Nd1—O7C73.32 (5)C1B—N3B—H2NB120 (2)
O4B—Nd1—O8C62.95 (5)H1NB—N3B—H2NB121 (3)
O4W—Nd1—O5B75.18 (5)N2C—N1C—C2C120.0 (2)
O4W—Nd1—O7C125.40 (5)N1B—C2B—H2BA119.00
O4W—Nd1—O8C76.33 (5)C3B—C2B—H2BA119.00
O5B—Nd1—O7C114.18 (5)N1C—N2C—C1C118.01 (19)
O5B—Nd1—O8C109.20 (5)C2B—C3B—H3BA119.00
O7C—Nd1—O8C49.31 (5)N4B—C3B—H3BA119.00
Nd1—O1A—N496.98 (11)C1C—N4C—C3C115.1 (2)
Nd1—O2A—N498.85 (12)N2C—C1C—N3C116.8 (2)
Nd1—O4B—N598.07 (12)N2C—C1C—N4C124.7 (2)
Nd1—O5B—N594.94 (11)N3C—C1C—N4C118.6 (2)
Nd1—O7C—N698.21 (12)N1C—C2C—C3C120.5 (2)
Nd1—O8C—N695.31 (11)N4C—C3C—C2C121.7 (2)
Nd1—O1W—H1B120 (2)C1C—N3C—H2NC123.1 (17)
H1A—O1W—H1B111 (3)C1C—N3C—H1NC123 (2)
Nd1—O1W—H1A125 (2)H2NC—N3C—H1NC113 (3)
H2A—O2W—H2B107 (3)N1C—C2C—H2CA120.00
Nd1—O2W—H2A121 (3)C3C—C2C—H2CA120.00
Nd1—O2W—H2B132 (2)N4C—C3C—H3CA119.00
Nd1—O3W—H3B118 (2)C2C—C3C—H3CA119.00
Nd1—O3W—H3A130 (2)
O1W—Nd1—O1A—N424.39 (13)O1W—Nd1—O8C—N6109.08 (14)
O2A—Nd1—O1A—N41.33 (11)O2A—Nd1—O8C—N6140.23 (14)
O2W—Nd1—O1A—N484.04 (12)O2W—Nd1—O8C—N651.15 (15)
O3W—Nd1—O1A—N4163.87 (13)O3W—Nd1—O8C—N630.42 (15)
O4B—Nd1—O1A—N4136.46 (11)O4B—Nd1—O8C—N687.01 (14)
O4W—Nd1—O1A—N454.70 (12)O4W—Nd1—O8C—N6170.72 (14)
O5B—Nd1—O1A—N4123.53 (12)O5B—Nd1—O8C—N6102.04 (14)
O7C—Nd1—O1A—N4134.30 (11)O7C—Nd1—O8C—N63.78 (13)
O1A—Nd1—O2A—N41.33 (11)Nd1—O1A—N4—O2A2.24 (19)
O1W—Nd1—O2A—N4154.40 (15)Nd1—O1A—N4—O3A176.58 (16)
O2W—Nd1—O2A—N478.84 (14)Nd1—O2A—N4—O1A2.28 (19)
O3W—Nd1—O2A—N413.85 (16)Nd1—O2A—N4—O3A176.53 (16)
O4B—Nd1—O2A—N480.79 (15)Nd1—O4B—N5—O5B11.4 (2)
O4W—Nd1—O2A—N4124.82 (15)Nd1—O4B—N5—O6B168.5 (2)
O5B—Nd1—O2A—N452.97 (14)Nd1—O5B—N5—O4B10.98 (19)
O7C—Nd1—O2A—N4108.17 (15)Nd1—O5B—N5—O6B168.9 (2)
O8C—Nd1—O2A—N4175.68 (11)Nd1—O7C—N6—O8C6.6 (2)
O1A—Nd1—O4B—N59.63 (14)Nd1—O7C—N6—O9C172.2 (3)
O1W—Nd1—O4B—N5148.87 (12)Nd1—O8C—N6—O7C6.4 (2)
O2A—Nd1—O4B—N544.60 (16)Nd1—O8C—N6—O9C172.4 (3)
O2W—Nd1—O4B—N5102.61 (14)C2A—N1A—N2A—C1A0.6 (3)
O3W—Nd1—O4B—N565.88 (13)N2A—N1A—C2A—C3A1.5 (4)
O4W—Nd1—O4B—N586.78 (13)N1A—N2A—C1A—N3A177.0 (2)
O5B—Nd1—O4B—N56.34 (11)N1A—N2A—C1A—N4A2.8 (3)
O7C—Nd1—O4B—N5140.42 (13)C3A—N4A—C1A—N2A2.5 (3)
O8C—Nd1—O4B—N5167.26 (14)C3A—N4A—C1A—N3A177.3 (2)
O1A—Nd1—O5B—N5157.78 (13)C1A—N4A—C3A—C2A0.2 (3)
O1W—Nd1—O5B—N599.23 (15)N1A—C2A—C3A—N4A1.8 (4)
O2A—Nd1—O5B—N5162.21 (12)C2B—N1B—N2B—C1B0.7 (3)
O2W—Nd1—O5B—N5121.11 (12)N2B—N1B—C2B—C3B3.1 (4)
O3W—Nd1—O5B—N582.92 (12)N1B—N2B—C1B—N3B175.6 (2)
O4B—Nd1—O5B—N56.36 (11)N1B—N2B—C1B—N4B5.5 (3)
O4W—Nd1—O5B—N593.77 (12)C3B—N4B—C1B—N2B5.9 (4)
O7C—Nd1—O5B—N528.78 (13)C3B—N4B—C1B—N3B175.3 (2)
O8C—Nd1—O5B—N524.32 (13)C1B—N4B—C3B—C2B1.8 (4)
O1A—Nd1—O7C—N6171.95 (13)N1B—C2B—C3B—N4B2.6 (4)
O1W—Nd1—O7C—N665.87 (14)C2C—N1C—N2C—C1C0.2 (4)
O2A—Nd1—O7C—N6109.22 (15)N2C—N1C—C2C—C3C0.0 (4)
O2W—Nd1—O7C—N6138.56 (14)N1C—N2C—C1C—N3C178.9 (2)
O3W—Nd1—O7C—N6143.06 (15)N1C—N2C—C1C—N4C0.8 (4)
O4B—Nd1—O7C—N664.65 (14)C3C—N4C—C1C—N2C0.9 (4)
O4W—Nd1—O7C—N62.82 (16)C3C—N4C—C1C—N3C178.7 (3)
O5B—Nd1—O7C—N691.39 (14)C1C—N4C—C3C—C2C0.6 (4)
O8C—Nd1—O7C—N63.74 (13)N1C—C2C—C3C—N4C0.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N4Ai0.79 (3)2.09 (3)2.876 (2)179 (4)
O1W—H1B···N2Cii0.76 (3)2.16 (3)2.899 (3)167 (3)
O2W—H2A···O6Biii0.67 (3)2.14 (3)2.791 (3)168 (3)
O2W—H2B···N2Biv0.81 (3)2.01 (3)2.806 (3)166 (3)
O3W—H3A···O7Cv0.83 (3)2.04 (3)2.864 (2)173 (3)
O3W—H3B···N4B0.82 (3)2.02 (3)2.832 (3)169 (3)
O4W—H4A···N4Cvi0.82 (2)2.05 (3)2.871 (3)172 (3)
O4W—H4B···N2A0.84 (2)2.00 (2)2.829 (2)170 (2)
N3A—H1NA···O2A0.84 (2)2.06 (2)2.883 (2)168 (2)
N3C—H2NC···N1Avii0.85 (2)2.10 (2)2.916 (3)163 (2)
N3A—H2NA···N1Ciii0.85 (2)2.12 (2)2.931 (3)161 (2)
N3C—H1NC···O8Cii0.83 (2)2.17 (3)2.980 (3)164 (3)
N3B—H1NB···O1A0.83 (2)2.17 (2)2.992 (3)171 (2)
N3B—H2NB···O9Cvii0.84 (2)2.46 (3)3.046 (3)128 (2)
C3A—H3AA···N1Bviii0.932.603.245 (3)127
C3B—H3BA···O6Bix0.932.583.475 (3)161
C3C—H3CA···O4Bvii0.932.543.328 (3)142
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x+1, y, z+1.
 

Acknowledgements

The authors wish to thank SAIF–STIC, Cochin, Kerala, for the data collection.

Funding information

KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041–4046.  Web of Science CrossRef Google Scholar
First citationBoesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091–2092.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunzli, J.-C. G. (2015). Coord. Chem. Rev. 19, 293–294.  Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGassner, A.-L., Duhot, C., Bünzli, J.-C. G. & Chauvin, A.-S. (2008). Inorg. Chem. 47, 7802–7812.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100.  CrossRef CAS Google Scholar
First citationHermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047.  CrossRef Google Scholar
First citationKostova, I., Manolov, I. & Momekov, G. (2004). Eur. J. Med. Chem. 39, 765–775.  CrossRef Google Scholar
First citationKostova, I. & Stefanova, T. (2009). J. Coord. Chem. 62, 3187–3197.  CrossRef Google Scholar
First citationKrische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.  CrossRef CAS Google Scholar
First citationLi, L., Turnbull, M. M., Ackers, J., Chen, J., Lin, H., Pan, B., Wang, H. & Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845–3852.  CrossRef Google Scholar
First citationLi, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40–84.  CrossRef Google Scholar
First citationLiu, M., Yuan, W.-B., Zhang, Q., Yan, L. & Yang, R.-D. (2008). Spectrochim. Acta A, 70, 1114–1119.  CrossRef Google Scholar
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science Google Scholar
First citationMathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.  CrossRef Web of Science Google Scholar
First citationPalion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Lloret, F. & Julve, M. (2015). Dalton Trans. 44, 2989–2992.  Google Scholar
First citationReid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009–5017.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqi, Z. A., Shahid, M., Khalid, M., Noor, S. & Kumar, S. (2009). Spectrochim. Acta A, 74, 391–397.  CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwitlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181–10193.  Google Scholar
First citationTaha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011). Spectrochim. Acta A, 81, 570–577.  CrossRef Google Scholar
First citationTrzesowska-Kruszynska, A., Kruszynski, R., Zalewicz, M. & Bartczak, T. J. (2010). J. Coord. Chem. 63, 1013–1028.  Google Scholar
First citationWang, H., Wang, B.-W., Bian, Y., Gao, S. & Jiang, J. (2016). Coord. Chem. Rev. 306, 195–216.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia, Perth.  Google Scholar
First citationXu, D., Xu, Y., Cheng, N., Zhou, X., Shi, Y. & He, Q. (2010). J. Coord. Chem. 63, 2360–2369.  CrossRef Google Scholar
First citationZerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982–5993.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds