research communications
and Hirshfeld surface analysis of the 1:3 adduct of tetraaquatrinitratoneodymium(III) with 3-amino-1,2,4-triazine
aDepartment of Chemistry, Government Arts College(Autonomous), Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com
In the title compound, [Nd(NO3)3(H2O)4]·3C3H4N4, neodymium is ten-coordinate with a distorted bicapped square-antiprismatic geometry formed from six O atoms from three nitrate ions and four O atoms from four coordinated water molecules. The structure also contains neutral 3-amino-1,2,4-triazine molecules which are not coordinated to the central metal atom. The coordinated water molecules and nitrate ions of adjacent complexes are linked by O—H⋯O hydrogen bonds to form cyclic R22(8) ring motifs, which in turn are further connected via hydrogen bonds to generate a sheet-like structure. The triazine molecules are involved in a number of hydrogen-bonding interactions: N—H⋯N and O—H⋯N interactions to form R33(9) motifs and N—H⋯N interactions to link the organic molecules into chains. Weak C—H⋯O hydrogen bonds also occur between triazine molecules and coordinated nitrate atoms. All these intermolecular contacts contribute to the stabilization of the three-dimensional supramolecular framework. Hirshfeld surface analysis shows that N⋯H/H⋯N and H⋯H interactions account for 42.9 and 20.6% of the surface, respectively.
Keywords: crystal structure; adduct; triazine; neodymium(III); three-dimensional supramolecular hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 1583097
1. Chemical context
Lanthanide complexes with organic ligands have many applications related to the design and synthesis of potential anticancer and antibacterial agents (Eliseeva & Bunzli, 2010; Liu et al., 2008; Kostova & Stefanova, 2009; Siddiqi et al., 2009; Taha et al., 2011; Hermann et al., 2008; Gassner et al., 2008; Xu et al., 2010). Some lanthanide complexes also have potential roles in the treatment of malignant cells (Kostova et al., 2004). In addition, coordination polymers of lanthanide ions have been investigated for use as sensors, catalysts and MRI contrast agents and in applications in the areas of magnetism, gas absorption, self-assembly and medicine (Li et al., 2015; Bunzli et al., 2015; Wang et al., 2016; Zhang & Lin, 2014).
Triazine heterocyclic π-conjugated structures are attractive organic molecules owing to the chemical flexibility of their systems and have many applications in medicinal chemistry, materials science and organic synthesis (Boesveld & Lappert, 1997; Boesveld et al., 1999; Reid et al., 2011). Triazine derivatives have been used as building blocks for subtle chemical architectures comprising organic–inorganic hybrid frameworks (Mathias et al., 1994; Zerkowski & Whitesides, 1994; MacDonald & Whitesides, 1994; Guru Row, 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). We report herein the of a new lanthanide complex with 3-amino-1,2,4-triazine.
2. Structural commentary
The ) contains a neodymium(III) cation, three coordinated nitrate anions, four coordinated water molecules and three uncoordinated neutral 3-amino-1,2,4-triazine molecules. The NdIII ion is ten coordinate and has a distorted bicapped square-antiprismatic geometry, being surrounded by six oxygen atoms from three nitrate ions and four oxygen atoms from coordinated water molecules. The lengths of the Ni—O bonds (Table 1) are in good agreement with those reported in the literature (Trzesowska-Kruszynska et al., 2010).
of the title compound (Fig. 1
|
3. Supramolecular features
In the crystal, the coordinated water molecules act as hydrogen-atom donors (Table 2) to the oxygen atoms of nitrate ions in adjacent molecules and are linked by a set of O—H⋯O [O2W—H2A⋯O6Biii and O3W—H3A⋯O7Cv] hydrogen bonds, forming cyclic R22(8) ring motifs. These ring motifs are further connected via O—H⋯O hydrogen bonds to generate a sheet-like structure (Fig. 2). The uncoordinated neutral triazine moieties (A & C) are connected via N—H⋯N [N3C—H2NC⋯N1Avii and N3A—H2NA⋯N1Ciii] hydrogen bonds, forming zigzag chains (Fig. 3). The triazine molecules are also involved in N—H⋯N and O—H⋯N hydrogen-bonding interactions, forming R33(9) motifs (Fig. 4). The carbon-bound hydrogen atoms of the triazine moieties (B & C) are linked through weak C—H⋯O [C3B—H3BA⋯O6Bix and C3C—H3CA⋯O4Bvii] hydrogen bonds formed with the coordinated nitrate atoms (B). All these intermolecular interactions appear to play a significant role in stabilizing the and result in the formation of a three-dimensional supramolecular framework (Fig. 4).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots, which are useful tools for describing the surface characteristics of the were generated using CrystalExplorer3.0 (Wolff et al., 2012). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The three-dimensional dnorm surface of the title compound is shown in Fig. 5. The red points represent short contacts and negative dnorm values on the surface correspond to the N—H⋯N, N—H⋯O and O—H⋯O interactions. Analysis of the two-dimensional fingerprint plots reveal that the H⋯H (20.6%) and N⋯H/H⋯N (42.9%) interactions are the highest contributors to the Hirshfeld surface. Smaller contributions come from O⋯H/H⋯O (13.3%) C⋯H/H⋯C (6.3%), N⋯N (6.2%), C⋯N/N⋯C (4.6%), N⋯O/O⋯N (2.8%) and C⋯O/O⋯C (1.8%) interactions (Fig. 6).
5. Database survey
A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016) for 3-amino-1,2,4-triazine yielded four structures crystallizing as metal complexes: KUCNAY [with bis(3-amino-1,2,4-triazine-N2)-bis(hexafluoroacetylacetonato-O,O′)copper(II)] and KUCNEC [with bis(μ 2-3-amino-1,2,4-triazine-N1,N4)hexakis(hexafluoroacetylacetonato-O,O′)tricopper(II)] (Li et al., 2009); WOZXOA {with catena-[bis(μ2-dicyanamido)bis(1,2,4-triazin-3-amine)cobalt]; Palion-Gazda et al., 2015} and WOZXOA01 {with catena-[bis(μ2-dicyanamido)bis(1,2,4-triazin-3-amine)cobalt]; Şwitlicka-Olszewska et al., 2016}.
6. Synthesis and crystallization
The title compound was prepared by adding a hot methanolic solution (20 ml) of 3-amino-1,2,4-triazine (0.043g) (Aldrich) to a hot methanolic solution (20 ml) of Nd(NO3)3·6H2O (0.219g) (Alfa Aesar). Dichloromethane (5 ml) was then added and the mixture refluxed for 7 h at 353 K. The resulting solution was then allowed to cool slowly to room temperature. After two weeks, brown-coloured crystals were obtained, m.p. = 378 K.
7. details
Crystal data, data collection and structure . C-bound H atoms were placed geometrically and refined using the riding-model approximation: C—H = 0.93 Å with Uiso(H) set to 1.2–1.5Ueq(C). The water and N-bound H atoms were located in difference-Fourier maps and refined with Uiso(H) = 1.2Ueq(O) or 1.2Ueq(N).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1583097
https://doi.org/10.1107/S2056989018011714/cq2026sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011714/cq2026Isup2.hkl
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Nd(NO3)3(H2O)4]·3C3H4N4 | Z = 2 |
Mr = 690.64 | F(000) = 686 |
Triclinic, P1 | Dx = 1.851 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0279 (5) Å | Cell parameters from 7537 reflections |
b = 10.8496 (5) Å | θ = 5.3–56.6° |
c = 15.1239 (8) Å | µ = 2.18 mm−1 |
α = 102.228 (2)° | T = 293 K |
β = 96.148 (2)° | Block, brown |
γ = 102.764 (2)° | 0.35 × 0.30 × 0.30 mm |
V = 1239.11 (12) Å3 |
Bruker Kappa APEXII CCD diffractometer | 6016 independent reflections |
Radiation source: fine-focus sealed tube | 5620 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Detector resolution: 18.4 pixels mm-1 | θmax = 28.3°, θmin = 2.9° |
ω and φ scan | h = −10→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −14→14 |
Tmin = 0.517, Tmax = 0.562 | l = −17→20 |
10023 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3994P] where P = (Fo2 + 2Fc2)/3 |
6016 reflections | (Δ/σ)max = 0.001 |
399 parameters | Δρmax = 0.48 e Å−3 |
15 restraints | Δρmin = −0.41 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Nd1 | 1.03611 (1) | 0.21335 (1) | 0.71016 (1) | 0.0226 (1) | |
O1A | 1.0327 (2) | 0.43232 (14) | 0.66866 (10) | 0.0403 (5) | |
O1W | 1.2955 (2) | 0.21178 (17) | 0.81482 (11) | 0.0411 (5) | |
O2A | 1.1864 (3) | 0.44707 (14) | 0.79616 (10) | 0.0488 (6) | |
O2W | 1.2906 (2) | 0.26993 (18) | 0.63563 (13) | 0.0411 (6) | |
O3A | 1.1817 (2) | 0.62147 (14) | 0.74931 (13) | 0.0521 (6) | |
O3W | 0.9189 (2) | 0.18292 (17) | 0.54640 (10) | 0.0400 (5) | |
O4B | 0.7358 (2) | 0.05414 (15) | 0.68162 (12) | 0.0433 (5) | |
O4W | 0.9528 (2) | 0.25477 (15) | 0.86308 (9) | 0.0374 (5) | |
O5B | 0.7217 (2) | 0.24915 (14) | 0.68278 (11) | 0.0396 (5) | |
O6B | 0.4922 (2) | 0.09045 (19) | 0.63361 (18) | 0.0732 (8) | |
O7C | 1.0658 (2) | −0.00476 (14) | 0.62008 (10) | 0.0376 (5) | |
O8C | 1.0185 (2) | −0.00715 (14) | 0.75724 (9) | 0.0367 (5) | |
O9C | 1.0158 (4) | −0.18660 (17) | 0.66249 (15) | 0.0796 (8) | |
N4 | 1.1347 (2) | 0.50519 (15) | 0.73869 (11) | 0.0309 (5) | |
N5 | 0.6465 (2) | 0.13104 (17) | 0.66539 (13) | 0.0376 (6) | |
N6 | 1.0336 (3) | −0.06974 (17) | 0.68007 (12) | 0.0377 (6) | |
N1A | 1.1227 (3) | 0.36263 (18) | 1.09013 (13) | 0.0401 (6) | |
N2A | 1.1636 (2) | 0.42269 (17) | 1.02436 (11) | 0.0368 (5) | |
N3A | 1.3275 (3) | 0.5930 (2) | 0.98173 (13) | 0.0569 (7) | |
N4A | 1.3919 (2) | 0.58214 (16) | 1.13098 (11) | 0.0333 (5) | |
C1A | 1.2941 (3) | 0.53168 (18) | 1.04680 (13) | 0.0314 (6) | |
C2A | 1.2103 (3) | 0.4099 (2) | 1.17336 (15) | 0.0403 (7) | |
C3A | 1.3477 (3) | 0.5199 (2) | 1.19349 (14) | 0.0368 (6) | |
N1B | 0.4862 (3) | 0.4080 (2) | 0.36226 (14) | 0.0455 (7) | |
N2B | 0.6180 (2) | 0.49570 (18) | 0.41878 (13) | 0.0385 (6) | |
N3B | 0.8421 (3) | 0.5452 (2) | 0.53804 (15) | 0.0445 (7) | |
N4B | 0.7041 (3) | 0.32938 (17) | 0.48005 (13) | 0.0390 (6) | |
C1B | 0.7185 (3) | 0.45541 (19) | 0.47817 (14) | 0.0308 (6) | |
C2B | 0.4607 (3) | 0.2855 (3) | 0.36603 (18) | 0.0499 (8) | |
C3B | 0.5728 (4) | 0.2461 (2) | 0.42432 (18) | 0.0490 (8) | |
N1C | 0.5817 (3) | 0.82519 (19) | 0.96809 (14) | 0.0469 (7) | |
N2C | 0.7014 (3) | 0.91061 (18) | 1.03239 (13) | 0.0418 (6) | |
N3C | 0.8979 (3) | 1.1069 (2) | 1.07868 (14) | 0.0540 (7) | |
N4C | 0.7495 (3) | 1.05383 (18) | 0.93164 (12) | 0.0409 (6) | |
C1C | 0.7815 (3) | 1.02272 (19) | 1.01297 (14) | 0.0345 (6) | |
C2C | 0.5443 (4) | 0.8506 (2) | 0.88785 (17) | 0.0522 (8) | |
C3C | 0.6296 (4) | 0.9664 (3) | 0.87013 (16) | 0.0513 (8) | |
H1A | 1.381 (4) | 0.268 (3) | 0.8291 (18) | 0.048 (8)* | |
H1B | 1.287 (4) | 0.170 (3) | 0.849 (2) | 0.058 (9)* | |
H2A | 1.348 (3) | 0.234 (3) | 0.6331 (18) | 0.034 (8)* | |
H2B | 1.327 (4) | 0.331 (3) | 0.614 (2) | 0.069 (10)* | |
H3A | 0.924 (4) | 0.126 (3) | 0.5008 (19) | 0.048 (7)* | |
H3B | 0.864 (4) | 0.234 (3) | 0.5329 (19) | 0.058 (9)* | |
H4A | 0.903 (4) | 0.199 (2) | 0.8872 (19) | 0.070 (10)* | |
H4B | 1.018 (3) | 0.311 (2) | 0.9070 (14) | 0.045 (7)* | |
H2AA | 1.17990 | 0.36910 | 1.21960 | 0.0480* | |
H3AA | 1.40980 | 0.55000 | 1.25270 | 0.0440* | |
H1NA | 1.277 (3) | 0.558 (2) | 0.9278 (12) | 0.050 (8)* | |
H2NA | 1.408 (3) | 0.662 (2) | 0.9910 (17) | 0.054 (8)* | |
H2BA | 0.36580 | 0.22400 | 0.32900 | 0.0600* | |
H3BA | 0.55380 | 0.15820 | 0.42360 | 0.0590* | |
H1NB | 0.899 (3) | 0.522 (2) | 0.5781 (16) | 0.056 (8)* | |
H2NB | 0.852 (4) | 0.6243 (18) | 0.5396 (19) | 0.058 (8)* | |
H3CA | 0.60120 | 0.98250 | 0.81320 | 0.0620* | |
H2CA | 0.46000 | 0.79050 | 0.84290 | 0.0630* | |
H2NC | 0.944 (3) | 1.1835 (18) | 1.0753 (17) | 0.051 (8)* | |
H1NC | 0.922 (4) | 1.094 (3) | 1.1302 (14) | 0.057 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.0279 (1) | 0.0191 (1) | 0.0187 (1) | 0.0026 (1) | 0.0010 (1) | 0.0052 (1) |
O1A | 0.0466 (10) | 0.0316 (7) | 0.0363 (8) | 0.0040 (7) | −0.0098 (7) | 0.0088 (6) |
O1W | 0.0354 (9) | 0.0432 (9) | 0.0391 (9) | −0.0078 (7) | −0.0091 (7) | 0.0239 (8) |
O2A | 0.0760 (13) | 0.0296 (7) | 0.0301 (8) | 0.0018 (8) | −0.0119 (8) | 0.0061 (6) |
O2W | 0.0373 (9) | 0.0416 (9) | 0.0584 (11) | 0.0173 (8) | 0.0195 (8) | 0.0289 (8) |
O3A | 0.0621 (12) | 0.0221 (7) | 0.0650 (11) | 0.0003 (7) | 0.0025 (9) | 0.0102 (7) |
O3W | 0.0592 (11) | 0.0419 (9) | 0.0220 (7) | 0.0289 (8) | −0.0022 (7) | 0.0018 (7) |
O4B | 0.0344 (9) | 0.0343 (8) | 0.0657 (11) | 0.0100 (7) | 0.0055 (7) | 0.0214 (8) |
O4W | 0.0438 (9) | 0.0375 (8) | 0.0214 (7) | −0.0074 (7) | 0.0051 (6) | 0.0050 (6) |
O5B | 0.0430 (9) | 0.0302 (7) | 0.0447 (9) | 0.0103 (6) | 0.0091 (7) | 0.0053 (7) |
O6B | 0.0275 (10) | 0.0495 (11) | 0.136 (2) | 0.0093 (8) | −0.0057 (11) | 0.0178 (12) |
O7C | 0.0561 (10) | 0.0297 (7) | 0.0311 (7) | 0.0154 (7) | 0.0109 (7) | 0.0097 (6) |
O8C | 0.0503 (10) | 0.0314 (7) | 0.0274 (7) | 0.0086 (7) | 0.0002 (6) | 0.0095 (6) |
O9C | 0.149 (2) | 0.0259 (9) | 0.0656 (13) | 0.0272 (11) | 0.0117 (14) | 0.0119 (9) |
N4 | 0.0360 (10) | 0.0243 (8) | 0.0300 (8) | 0.0028 (7) | 0.0066 (7) | 0.0055 (7) |
N5 | 0.0319 (10) | 0.0344 (9) | 0.0490 (11) | 0.0099 (8) | 0.0088 (8) | 0.0127 (8) |
N6 | 0.0503 (12) | 0.0267 (8) | 0.0343 (9) | 0.0114 (8) | −0.0023 (8) | 0.0064 (7) |
N1A | 0.0435 (11) | 0.0342 (9) | 0.0362 (10) | −0.0060 (8) | 0.0033 (8) | 0.0125 (8) |
N2A | 0.0416 (11) | 0.0311 (9) | 0.0280 (8) | −0.0076 (8) | −0.0007 (7) | 0.0067 (7) |
N3A | 0.0721 (16) | 0.0466 (12) | 0.0277 (10) | −0.0302 (11) | −0.0059 (10) | 0.0107 (9) |
N4A | 0.0353 (10) | 0.0287 (8) | 0.0273 (8) | −0.0020 (7) | −0.0029 (7) | 0.0028 (7) |
C1A | 0.0346 (11) | 0.0268 (9) | 0.0258 (9) | −0.0017 (8) | 0.0022 (8) | 0.0026 (8) |
C2A | 0.0486 (14) | 0.0388 (11) | 0.0323 (11) | 0.0026 (10) | 0.0051 (9) | 0.0158 (9) |
C3A | 0.0432 (13) | 0.0350 (10) | 0.0262 (10) | 0.0039 (9) | −0.0023 (8) | 0.0049 (8) |
N1B | 0.0407 (11) | 0.0585 (12) | 0.0442 (11) | 0.0157 (9) | 0.0051 (9) | 0.0248 (10) |
N2B | 0.0398 (11) | 0.0408 (10) | 0.0434 (10) | 0.0136 (8) | 0.0100 (8) | 0.0230 (9) |
N3B | 0.0446 (12) | 0.0340 (10) | 0.0529 (13) | 0.0113 (9) | 0.0010 (9) | 0.0080 (9) |
N4B | 0.0484 (12) | 0.0318 (9) | 0.0400 (10) | 0.0139 (8) | 0.0025 (8) | 0.0139 (8) |
C1B | 0.0332 (11) | 0.0311 (9) | 0.0337 (10) | 0.0125 (8) | 0.0118 (8) | 0.0120 (8) |
C2B | 0.0440 (15) | 0.0515 (14) | 0.0479 (14) | 0.0046 (11) | −0.0021 (11) | 0.0112 (12) |
C3B | 0.0580 (16) | 0.0323 (11) | 0.0544 (15) | 0.0064 (11) | 0.0023 (12) | 0.0139 (11) |
N1C | 0.0499 (13) | 0.0376 (10) | 0.0443 (11) | −0.0094 (9) | 0.0066 (9) | 0.0127 (9) |
N2C | 0.0441 (11) | 0.0355 (9) | 0.0418 (10) | −0.0064 (8) | 0.0036 (8) | 0.0193 (8) |
N3C | 0.0659 (15) | 0.0432 (11) | 0.0392 (11) | −0.0177 (10) | −0.0091 (10) | 0.0223 (9) |
N4C | 0.0496 (12) | 0.0372 (9) | 0.0314 (9) | −0.0029 (8) | 0.0046 (8) | 0.0140 (8) |
C1C | 0.0371 (12) | 0.0316 (10) | 0.0329 (10) | −0.0003 (9) | 0.0058 (8) | 0.0133 (8) |
C2C | 0.0560 (16) | 0.0444 (13) | 0.0403 (13) | −0.0134 (12) | −0.0004 (11) | 0.0076 (11) |
C3C | 0.0609 (17) | 0.0527 (14) | 0.0317 (11) | −0.0053 (12) | 0.0009 (11) | 0.0156 (11) |
Nd1—O1A | 2.5876 (15) | N3A—C1A | 1.318 (3) |
Nd1—O1W | 2.4826 (17) | N4A—C1A | 1.356 (3) |
Nd1—O2A | 2.5480 (16) | N4A—C3A | 1.309 (3) |
Nd1—O2W | 2.4603 (18) | C2A—C3A | 1.388 (3) |
Nd1—O3W | 2.4790 (15) | N3A—H1NA | 0.839 (18) |
Nd1—O4B | 2.5698 (17) | N3A—H2NA | 0.85 (2) |
Nd1—O4W | 2.4540 (14) | N1B—C2B | 1.314 (4) |
Nd1—O5B | 2.6402 (17) | N1B—N2B | 1.331 (3) |
Nd1—O7C | 2.5428 (15) | C2A—H2AA | 0.9300 |
Nd1—O8C | 2.6161 (15) | N2B—C1B | 1.348 (3) |
O1A—N4 | 1.261 (2) | C3A—H3AA | 0.9300 |
O2A—N4 | 1.263 (2) | N3B—C1B | 1.327 (3) |
O3A—N4 | 1.204 (2) | N4B—C1B | 1.353 (3) |
O4B—N5 | 1.258 (2) | N4B—C3B | 1.305 (3) |
O5B—N5 | 1.248 (2) | C2B—C3B | 1.389 (4) |
O6B—N5 | 1.225 (3) | N3B—H1NB | 0.83 (2) |
O7C—N6 | 1.276 (2) | N3B—H2NB | 0.84 (2) |
O8C—N6 | 1.253 (2) | N1C—C2C | 1.319 (3) |
O9C—N6 | 1.212 (3) | N1C—N2C | 1.324 (3) |
O1W—H1A | 0.79 (3) | C2B—H2BA | 0.9300 |
O1W—H1B | 0.76 (3) | N2C—C1C | 1.351 (3) |
O2W—H2A | 0.67 (3) | C3B—H3BA | 0.9300 |
O2W—H2B | 0.81 (3) | N3C—C1C | 1.317 (3) |
O3W—H3A | 0.83 (3) | N4C—C1C | 1.356 (3) |
O3W—H3B | 0.82 (3) | N4C—C3C | 1.313 (3) |
O4W—H4A | 0.82 (2) | C2C—C3C | 1.386 (4) |
O4W—H4B | 0.84 (2) | N3C—H2NC | 0.85 (2) |
N1A—N2A | 1.331 (3) | N3C—H1NC | 0.83 (2) |
N1A—C2A | 1.311 (3) | C2C—H2CA | 0.9300 |
N2A—C1A | 1.348 (3) | C3C—H3CA | 0.9300 |
O1A—Nd1—O1W | 116.22 (6) | H3A—O3W—H3B | 112 (3) |
O1A—Nd1—O2A | 49.01 (5) | O1A—N4—O2A | 115.11 (16) |
O1A—Nd1—O2W | 73.35 (6) | O2A—N4—O3A | 122.41 (17) |
O1A—Nd1—O3W | 67.84 (5) | O1A—N4—O3A | 122.47 (17) |
O1A—Nd1—O4B | 113.84 (5) | Nd1—O4W—H4B | 120.9 (16) |
O1A—Nd1—O4W | 100.47 (5) | H4A—O4W—H4B | 104 (2) |
O1A—Nd1—O5B | 67.01 (5) | Nd1—O4W—H4A | 125.6 (19) |
O1A—Nd1—O7C | 133.51 (5) | O4B—N5—O5B | 117.28 (17) |
O1A—Nd1—O8C | 175.74 (5) | O5B—N5—O6B | 121.91 (19) |
O1W—Nd1—O2A | 71.32 (6) | O4B—N5—O6B | 120.81 (19) |
O1W—Nd1—O2W | 72.07 (6) | O7C—N6—O9C | 121.41 (19) |
O1W—Nd1—O3W | 142.96 (5) | O8C—N6—O9C | 121.8 (2) |
O1W—Nd1—O4B | 126.63 (6) | O7C—N6—O8C | 116.75 (17) |
O1W—Nd1—O4W | 75.68 (5) | N2A—N1A—C2A | 119.5 (2) |
O1W—Nd1—O5B | 150.73 (5) | N1A—N2A—C1A | 117.99 (17) |
O1W—Nd1—O7C | 85.26 (5) | C1A—N4A—C3A | 115.25 (18) |
O1W—Nd1—O8C | 65.98 (5) | N2A—C1A—N3A | 117.07 (19) |
O2A—Nd1—O2W | 75.74 (7) | N2A—C1A—N4A | 124.71 (18) |
O2A—Nd1—O3W | 115.37 (5) | N3A—C1A—N4A | 118.2 (2) |
O2A—Nd1—O4B | 138.98 (7) | N1A—C2A—C3A | 121.0 (2) |
O2A—Nd1—O4W | 71.11 (5) | N4A—C3A—C2A | 121.43 (19) |
O2A—Nd1—O5B | 96.55 (6) | C1A—N3A—H1NA | 119.2 (15) |
O2A—Nd1—O7C | 147.45 (7) | C1A—N3A—H2NA | 122.1 (17) |
O2A—Nd1—O8C | 131.19 (5) | H1NA—N3A—H2NA | 118 (2) |
O2W—Nd1—O3W | 74.65 (6) | N2B—N1B—C2B | 118.6 (2) |
O2W—Nd1—O4B | 141.46 (6) | N1A—C2A—H2AA | 119.00 |
O2W—Nd1—O4W | 139.48 (6) | C3A—C2A—H2AA | 119.00 |
O2W—Nd1—O5B | 132.07 (6) | N1B—N2B—C1B | 118.67 (19) |
O2W—Nd1—O7C | 75.71 (6) | C2A—C3A—H3AA | 119.00 |
O2W—Nd1—O8C | 110.91 (6) | N4A—C3A—H3AA | 119.00 |
O3W—Nd1—O4B | 74.02 (6) | C1B—N4B—C3B | 115.0 (2) |
O3W—Nd1—O4W | 141.32 (5) | N2B—C1B—N3B | 117.8 (2) |
O3W—Nd1—O5B | 66.28 (5) | N2B—C1B—N4B | 124.5 (2) |
O3W—Nd1—O7C | 71.06 (5) | N3B—C1B—N4B | 117.6 (2) |
O3W—Nd1—O8C | 112.86 (5) | N1B—C2B—C3B | 121.2 (2) |
O4B—Nd1—O4W | 78.33 (5) | N4B—C3B—C2B | 121.7 (2) |
O4B—Nd1—O5B | 48.48 (5) | C1B—N3B—H1NB | 118.5 (16) |
O4B—Nd1—O7C | 73.32 (5) | C1B—N3B—H2NB | 120 (2) |
O4B—Nd1—O8C | 62.95 (5) | H1NB—N3B—H2NB | 121 (3) |
O4W—Nd1—O5B | 75.18 (5) | N2C—N1C—C2C | 120.0 (2) |
O4W—Nd1—O7C | 125.40 (5) | N1B—C2B—H2BA | 119.00 |
O4W—Nd1—O8C | 76.33 (5) | C3B—C2B—H2BA | 119.00 |
O5B—Nd1—O7C | 114.18 (5) | N1C—N2C—C1C | 118.01 (19) |
O5B—Nd1—O8C | 109.20 (5) | C2B—C3B—H3BA | 119.00 |
O7C—Nd1—O8C | 49.31 (5) | N4B—C3B—H3BA | 119.00 |
Nd1—O1A—N4 | 96.98 (11) | C1C—N4C—C3C | 115.1 (2) |
Nd1—O2A—N4 | 98.85 (12) | N2C—C1C—N3C | 116.8 (2) |
Nd1—O4B—N5 | 98.07 (12) | N2C—C1C—N4C | 124.7 (2) |
Nd1—O5B—N5 | 94.94 (11) | N3C—C1C—N4C | 118.6 (2) |
Nd1—O7C—N6 | 98.21 (12) | N1C—C2C—C3C | 120.5 (2) |
Nd1—O8C—N6 | 95.31 (11) | N4C—C3C—C2C | 121.7 (2) |
Nd1—O1W—H1B | 120 (2) | C1C—N3C—H2NC | 123.1 (17) |
H1A—O1W—H1B | 111 (3) | C1C—N3C—H1NC | 123 (2) |
Nd1—O1W—H1A | 125 (2) | H2NC—N3C—H1NC | 113 (3) |
H2A—O2W—H2B | 107 (3) | N1C—C2C—H2CA | 120.00 |
Nd1—O2W—H2A | 121 (3) | C3C—C2C—H2CA | 120.00 |
Nd1—O2W—H2B | 132 (2) | N4C—C3C—H3CA | 119.00 |
Nd1—O3W—H3B | 118 (2) | C2C—C3C—H3CA | 119.00 |
Nd1—O3W—H3A | 130 (2) | ||
O1W—Nd1—O1A—N4 | −24.39 (13) | O1W—Nd1—O8C—N6 | −109.08 (14) |
O2A—Nd1—O1A—N4 | 1.33 (11) | O2A—Nd1—O8C—N6 | −140.23 (14) |
O2W—Nd1—O1A—N4 | −84.04 (12) | O2W—Nd1—O8C—N6 | −51.15 (15) |
O3W—Nd1—O1A—N4 | −163.87 (13) | O3W—Nd1—O8C—N6 | 30.42 (15) |
O4B—Nd1—O1A—N4 | 136.46 (11) | O4B—Nd1—O8C—N6 | 87.01 (14) |
O4W—Nd1—O1A—N4 | 54.70 (12) | O4W—Nd1—O8C—N6 | 170.72 (14) |
O5B—Nd1—O1A—N4 | 123.53 (12) | O5B—Nd1—O8C—N6 | 102.04 (14) |
O7C—Nd1—O1A—N4 | −134.30 (11) | O7C—Nd1—O8C—N6 | −3.78 (13) |
O1A—Nd1—O2A—N4 | −1.33 (11) | Nd1—O1A—N4—O2A | −2.24 (19) |
O1W—Nd1—O2A—N4 | 154.40 (15) | Nd1—O1A—N4—O3A | 176.58 (16) |
O2W—Nd1—O2A—N4 | 78.84 (14) | Nd1—O2A—N4—O1A | 2.28 (19) |
O3W—Nd1—O2A—N4 | 13.85 (16) | Nd1—O2A—N4—O3A | −176.53 (16) |
O4B—Nd1—O2A—N4 | −80.79 (15) | Nd1—O4B—N5—O5B | −11.4 (2) |
O4W—Nd1—O2A—N4 | −124.82 (15) | Nd1—O4B—N5—O6B | 168.5 (2) |
O5B—Nd1—O2A—N4 | −52.97 (14) | Nd1—O5B—N5—O4B | 10.98 (19) |
O7C—Nd1—O2A—N4 | 108.17 (15) | Nd1—O5B—N5—O6B | −168.9 (2) |
O8C—Nd1—O2A—N4 | −175.68 (11) | Nd1—O7C—N6—O8C | −6.6 (2) |
O1A—Nd1—O4B—N5 | −9.63 (14) | Nd1—O7C—N6—O9C | 172.2 (3) |
O1W—Nd1—O4B—N5 | 148.87 (12) | Nd1—O8C—N6—O7C | 6.4 (2) |
O2A—Nd1—O4B—N5 | 44.60 (16) | Nd1—O8C—N6—O9C | −172.4 (3) |
O2W—Nd1—O4B—N5 | −102.61 (14) | C2A—N1A—N2A—C1A | −0.6 (3) |
O3W—Nd1—O4B—N5 | −65.88 (13) | N2A—N1A—C2A—C3A | −1.5 (4) |
O4W—Nd1—O4B—N5 | 86.78 (13) | N1A—N2A—C1A—N3A | −177.0 (2) |
O5B—Nd1—O4B—N5 | 6.34 (11) | N1A—N2A—C1A—N4A | 2.8 (3) |
O7C—Nd1—O4B—N5 | −140.42 (13) | C3A—N4A—C1A—N2A | −2.5 (3) |
O8C—Nd1—O4B—N5 | 167.26 (14) | C3A—N4A—C1A—N3A | 177.3 (2) |
O1A—Nd1—O5B—N5 | 157.78 (13) | C1A—N4A—C3A—C2A | 0.2 (3) |
O1W—Nd1—O5B—N5 | −99.23 (15) | N1A—C2A—C3A—N4A | 1.8 (4) |
O2A—Nd1—O5B—N5 | −162.21 (12) | C2B—N1B—N2B—C1B | −0.7 (3) |
O2W—Nd1—O5B—N5 | 121.11 (12) | N2B—N1B—C2B—C3B | −3.1 (4) |
O3W—Nd1—O5B—N5 | 82.92 (12) | N1B—N2B—C1B—N3B | −175.6 (2) |
O4B—Nd1—O5B—N5 | −6.36 (11) | N1B—N2B—C1B—N4B | 5.5 (3) |
O4W—Nd1—O5B—N5 | −93.77 (12) | C3B—N4B—C1B—N2B | −5.9 (4) |
O7C—Nd1—O5B—N5 | 28.78 (13) | C3B—N4B—C1B—N3B | 175.3 (2) |
O8C—Nd1—O5B—N5 | −24.32 (13) | C1B—N4B—C3B—C2B | 1.8 (4) |
O1A—Nd1—O7C—N6 | −171.95 (13) | N1B—C2B—C3B—N4B | 2.6 (4) |
O1W—Nd1—O7C—N6 | 65.87 (14) | C2C—N1C—N2C—C1C | 0.2 (4) |
O2A—Nd1—O7C—N6 | 109.22 (15) | N2C—N1C—C2C—C3C | 0.0 (4) |
O2W—Nd1—O7C—N6 | 138.56 (14) | N1C—N2C—C1C—N3C | 178.9 (2) |
O3W—Nd1—O7C—N6 | −143.06 (15) | N1C—N2C—C1C—N4C | −0.8 (4) |
O4B—Nd1—O7C—N6 | −64.65 (14) | C3C—N4C—C1C—N2C | 0.9 (4) |
O4W—Nd1—O7C—N6 | −2.82 (16) | C3C—N4C—C1C—N3C | −178.7 (3) |
O5B—Nd1—O7C—N6 | −91.39 (14) | C1C—N4C—C3C—C2C | −0.6 (4) |
O8C—Nd1—O7C—N6 | 3.74 (13) | N1C—C2C—C3C—N4C | 0.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···N4Ai | 0.79 (3) | 2.09 (3) | 2.876 (2) | 179 (4) |
O1W—H1B···N2Cii | 0.76 (3) | 2.16 (3) | 2.899 (3) | 167 (3) |
O2W—H2A···O6Biii | 0.67 (3) | 2.14 (3) | 2.791 (3) | 168 (3) |
O2W—H2B···N2Biv | 0.81 (3) | 2.01 (3) | 2.806 (3) | 166 (3) |
O3W—H3A···O7Cv | 0.83 (3) | 2.04 (3) | 2.864 (2) | 173 (3) |
O3W—H3B···N4B | 0.82 (3) | 2.02 (3) | 2.832 (3) | 169 (3) |
O4W—H4A···N4Cvi | 0.82 (2) | 2.05 (3) | 2.871 (3) | 172 (3) |
O4W—H4B···N2A | 0.84 (2) | 2.00 (2) | 2.829 (2) | 170 (2) |
N3A—H1NA···O2A | 0.84 (2) | 2.06 (2) | 2.883 (2) | 168 (2) |
N3C—H2NC···N1Avii | 0.85 (2) | 2.10 (2) | 2.916 (3) | 163 (2) |
N3A—H2NA···N1Ciii | 0.85 (2) | 2.12 (2) | 2.931 (3) | 161 (2) |
N3C—H1NC···O8Cii | 0.83 (2) | 2.17 (3) | 2.980 (3) | 164 (3) |
N3B—H1NB···O1A | 0.83 (2) | 2.17 (2) | 2.992 (3) | 171 (2) |
N3B—H2NB···O9Cvii | 0.84 (2) | 2.46 (3) | 3.046 (3) | 128 (2) |
C3A—H3AA···N1Bviii | 0.93 | 2.60 | 3.245 (3) | 127 |
C3B—H3BA···O6Bix | 0.93 | 2.58 | 3.475 (3) | 161 |
C3C—H3CA···O4Bvii | 0.93 | 2.54 | 3.328 (3) | 142 |
Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y, −z+1; (vi) x, y−1, z; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) −x+1, −y, −z+1. |
Acknowledgements
The authors wish to thank SAIF–STIC, Cochin, Kerala, for the data collection.
Funding information
KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041–4046. Web of Science CrossRef Google Scholar
Boesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091–2092. CrossRef Web of Science Google Scholar
Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bunzli, J.-C. G. (2015). Coord. Chem. Rev. 19, 293–294. Google Scholar
Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227. Web of Science CrossRef CAS PubMed Google Scholar
Gassner, A.-L., Duhot, C., Bünzli, J.-C. G. & Chauvin, A.-S. (2008). Inorg. Chem. 47, 7802–7812. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100. CrossRef CAS Google Scholar
Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047. CrossRef Google Scholar
Kostova, I., Manolov, I. & Momekov, G. (2004). Eur. J. Med. Chem. 39, 765–775. CrossRef Google Scholar
Kostova, I. & Stefanova, T. (2009). J. Coord. Chem. 62, 3187–3197. CrossRef Google Scholar
Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29. CrossRef CAS Google Scholar
Li, L., Turnbull, M. M., Ackers, J., Chen, J., Lin, H., Pan, B., Wang, H. & Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845–3852. CrossRef Google Scholar
Li, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40–84. CrossRef Google Scholar
Liu, M., Yuan, W.-B., Zhang, Q., Yan, L. & Yang, R.-D. (2008). Spectrochim. Acta A, 70, 1114–1119. CrossRef Google Scholar
MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420. CrossRef CAS Web of Science Google Scholar
Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325. CrossRef Web of Science Google Scholar
Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Lloret, F. & Julve, M. (2015). Dalton Trans. 44, 2989–2992. Google Scholar
Reid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009–5017. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93. Web of Science CrossRef CAS Google Scholar
Siddiqi, Z. A., Shahid, M., Khalid, M., Noor, S. & Kumar, S. (2009). Spectrochim. Acta A, 74, 391–397. CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Świtlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181–10193. Google Scholar
Taha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011). Spectrochim. Acta A, 81, 570–577. CrossRef Google Scholar
Trzesowska-Kruszynska, A., Kruszynski, R., Zalewicz, M. & Bartczak, T. J. (2010). J. Coord. Chem. 63, 1013–1028. Google Scholar
Wang, H., Wang, B.-W., Bian, Y., Gao, S. & Jiang, J. (2016). Coord. Chem. Rev. 306, 195–216. CrossRef Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia, Perth. Google Scholar
Xu, D., Xu, Y., Cheng, N., Zhou, X., Shi, Y. & He, Q. (2010). J. Coord. Chem. 63, 2360–2369. CrossRef Google Scholar
Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304. CSD CrossRef CAS Web of Science Google Scholar
Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982–5993. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.