research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-3-(2,4-di­chloro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sri Siddhartha Academy of Higher Education, Tumkur 572 107, Karnataka, India, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, Karnataka, India, eDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, fX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and gDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 22 June 2018; accepted 1 August 2018; online 10 August 2018)

The mol­ecular structure of the title compound, C13H6Cl4OS, consists of a 2,5-di­chloro­thio­phene ring and a 2,4-di­chloro­phenyl ring linked via a prop-2-en-1-one spacer. The dihedral angle between the 2,5-di­chloro­thio­phene ring and the 2,4-di­chloro­phenyl ring is 12.24 (15)°. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl contacts, producing S(6) and S(5) ring motifs. In the crystal, the mol­ecules are linked along the a-axis direction through face-to-face π-stacking between the thio­phene rings and the benzene rings of the mol­ecules in zigzag sheets lying parallel to the bc plane along the c axis. The inter­molecular inter­actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are Cl⋯H/ H⋯Cl (20.8%), followed by Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%).

1. Chemical context

Compounds bearing the 1,3-diphenyl-2-propen-1-one framework and belong to the flavonoid family are commonly called by its generic name `chalcone'. These are abundant in nature, ranging from ferns to higher plants, and are considered to be the precursors of flavonoids and isoflavonoids, in which the two aromatic rings are joined by a three carbon α,β-unsaturated carbonyl system. In plants, chalcones are converted to the corresponding (2S)-flavanones in a stereospecific reaction catalysed by the enzyme chalcone isomerase. The chemistry of chalcones remains a fascination among researchers because of the large number of replaceable hydrogen atoms that allows a number of derivatives with a variety of promising biological activities. They are found in fruits and vegetables, which attracted attention because of their pharmacological activities such as anti-inflamatory (Yadav et al., 2011[Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295-309.]), anti­fungal (Mahapatra et al., 2015[Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839-865.]), anti­viral (Nowakowska, 2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]; Chimenti et al., 2010[Chimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F., Alcaro, S., Cirilli, R., Ferretti, R. & Sanna, M. L. (2010). Bioorg. Med. Chem. 18, 1273-1279.]; Elarfi &Al-Difar, 2012[Elarfi, M. J. & Al-Difar, H. A. (2012). Sci. Rev. Chem. Commun. 2, 103-107.]), anti­oxidant (Ferreira et al., 2006[Ferreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]) and anti­cancer (Stiborova et al., 2011[Stiborová, M., Poljaková, I., Martínková, E., Bořek-Dohalská, L., Eckschlager, T., Kizek, R. & Frei, E. (2011). Interdiscipl. Toxicol. 4, 98-105.] activities). The synthesis and anti­microbial evaluation of new chalcones containing a 2,5-di­chloro­thio­phene moiety has been reported (Tomar et al., 2007[Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321-5324.]). In recent years, chalcones have been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017[Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550-2556.]; Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205-213.]). In view of all the above and as part of our ongoing work (Harrison et al., 2010[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010). Acta Cryst. E66, o2479.]; Jasinski et al., 2010[Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.]; Dutkiewicz et al., 2010[Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139.]) herewith we report the crystal and mol­ecular structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], is constructed from two aromatic rings (2,5-di­chloro­thio­phene and terminal 2,4-di­chloro­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. Probably as a result of the steric repulsion between the chlorine atoms of the adjacent mol­ecules, the C3—C4—C5—O1 and O1—C5—C6—C7 torsion angles about the enone bridge are −11.8 (5) and 0.4 (6)°, respectively. Hence, the dihedral angle between the 2,5-di­chloro­thio­phene ring and the 2,4-di­chloro­phenyl ring increases to 12.24 (15)°. The bond lengths and angles in the title compound are comparable with those of the related compounds (E)-3-(3,4-di­meth­oxy­phen­yl)-1-(1-hy­droxy­naphthalen-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Escobar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]). The mol­ecular conformation of the title compound is stabilized by intra­molecular C—H⋯Cl contacts (Table 1[link]), producing S(6) and S(5) ring motifs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1 0.93 2.48 3.220 (3) 136
C7—H7A⋯Cl3 0.93 2.65 3.075 (3) 108
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The two intra­molecular C—H⋯Cl contacts (see Table1) are shown as dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, conventional hydrogen bonds are not observed. π-stacking is observed between the thio­phene rings (S1/C1–C4, centroid Cg1) of adjacent mol­ecules in the alternating sheets along the [100] direction [Cg1⋯Cg1i,ii: centroid–centroid distance = 3.987 (2) Å, shortest perpendicular distance for the centroid of one ring to the plane of the other = 3.6143 (12) Å, ring-centroid offset = 1.683 Å; symmetry codes: (i) −1 + x, y, z; (i) 1 + x, y, z] and between the benzene rings (C8–C13, centroid Cg2) of the same mol­ecules [Cg2⋯Cg2i,ii: centroid–centroid distance = 3.987 (2) Å, shortest perpendic­ular distance = 3.5213 (13) Å, offset = 1.869 Å]. As shown Fig. 2[link], the mol­ecules are packed to form zigzag sheets lying parallel to (011) along the c-axis direction through face-to-face π-stacking between the thio­phene and benzene rings of pairs of adjacent mol­ecules along the [100] direction (Cl⋯S and Cl⋯H inter­actions; Table 2[link] and Fig. 2[link]). The Cl⋯S contact, at 3.660 (1) Å, is equal to the sum of the van der Waals radii of S and Cl atoms (3.65 Å; Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl2⋯S1 3.660 (1) [{1\over 2}] + x, [{3\over 2}] − y, 2 − z
H10A⋯Cl4 3.03 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
C8⋯C9 3.573 (4) 1 + x, y, z
[Figure 2]
Figure 2
A view of the offset face-to-face π-stacking in the title compound, with the thick dashed lines indicating centroid-to-centroid inter­actions. The Cl⋯H and Cl⋯S inter­actions are also shown as dashed lines.

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. The overall two-dimensional fingerprint plot for the title compound and those delineated into Cl⋯H/ H⋯Cl, Cl⋯Cl, C⋯C, Cl⋯S/S⋯Cl, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts are illus­trated in Fig. 3[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯H/ H⋯Cl (20.8%), Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are Cl⋯C/C⋯Cl (3.6%), S⋯C/C⋯S (2.8%), Cl⋯O/O⋯Cl (2.3%), S⋯S (0.9%), O⋯O (0.6%) and C⋯O/O⋯C (0.6%).

[Figure 3]
Figure 3
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/ H⋯Cl, (c) Cl⋯Cl, (d) C⋯C, (e) Cl⋯S/S⋯Cl, (f) H⋯H, (g) C⋯H/H⋯C and (h) O⋯H/H⋯O inter­actions.

The C—H⋯Cl inter­actions appear as two distinct spikes in the fingerprint plot (Fig. 3[link]b) of the title compound, where the sum of Cl⋯H/H⋯Cl inter­actions comprises 20.8% of the total Hirshfeld surface area of the mol­ecule. The Cl⋯H/H⋯Cl inter­actions represented by the spikes in the bottom right and left region (de + di ≃ 2.83 Å) indicate that the hydrogen atoms are in contact with the Cl atoms to build the two-dimensional supra­molecular framework [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively]. Cl⋯Cl contacts (Fig. 3[link]c; 18.7%) are disfavoured when the number of H atoms on the mol­ecular surface is large because of competition with the more attractive H⋯Cl contacts. Cl⋯Cl contacts from a parallel alignment of C—Cl bonds (C10—H10A⋯Cl4iii; (iii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z] may be indicated. They are known in the literature as type-I halogen–halogen inter­actions (Bui et al., 2009[Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838-3841.]), with both C—Cl⋯Cl angles equal to one another. In the present case, these angles are close to 165°. The C⋯C contacts (Fig. 3[link]d); 11.9%) reflect ππ inter­actions between the above-mentioned aromatic rings. The S⋯Cl contacts (Fig. 3[link]e; 10.9%) contracted to a much lesser degree. The C⋯H/H⋯C inter­actions (Fig. 3[link]g) account for 9.3% of the total Hirshfeld surface of the mol­ecules. The scattered points in the breakdown of the fingerprint plot show the ππ stacking inter­actions. In the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 3[link]h), the 7.6% contribution to the Hirshfeld surface arises from inter­molecular C=O⋯H hydrogen bonding and is viewed as pair of spikes with the tip at de + di ∼ 2.9 Å.

The large number of Cl⋯H/ H⋯Cl, Cl⋯Cl, C⋯C, Cl⋯S/S⋯Cl, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

4. Database survey

The closest related compounds with the same skeleton and containing a similar bis-chalcone moiety to the title compound but with different substituents on the aromatic rings are: (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one [(I); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop- 2-en-1-one [(II); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one [(III); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one [(IV); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-3-(4-bromo­phen­yl)-1-(5-chloro­thio­phen-2-yl)prop-2-en-1-one [(V); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(3-meth­oxy­phen­yl)prop-2-en-1-one [(VI); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (E)-1-(5-chloro­thio­phen-2-yl)-3-(p-tol­yl)prop-2-en-1-one [(VII); Kumara et al., 2017[Kumara, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170038.]], (E)-1-(5-chloro­thio­phen-2-yl)-3-(2,4-di­methyl­phen­yl) prop-2-en-1-one [(VIII); Naveen et al., 2016[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974.]], (2E)-1-(5-bromo­thio­phen- 2-yl)-3-(2-chloro­phen­yl)prop-2-en-1-one [(IX); Anitha et al., 2015[Anitha, B. R., Vinduvahini, M., Ravi, A. J. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o930.]], (2E)-1-[4-hy­droxy-3-(morpholin-4-ylmeth­yl)phen­yl]-3-(thio­phen-2-yl)prop-2-en-1-one [(X); Yesilyurt et al., 2018[Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960-963.]] and (E)-1-(2-amino­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one [(XI); Chantrapromma et al., 2013[Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004-o1005.]].

In (I)[link] and (II), the structures are isostructural in space group P1, while (III) and (IV) are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I)[link] and (II), but in the structures of compounds (III) and (IV), the mol­ecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In (V), there are again no hydrogen bonds nor ππ stacking inter­actions but in (VI), the mol­ecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the mol­ecular skeletons are close to planarity, and there are short halogen–halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI).

In (VII), the mol­ecule is non-planar, with a dihedral angle of 22.6 (2)° between the aromatic rings. The mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present. In (VIII), the mol­ecule is nearly planar, the dihedral angle between the thio­phene and phenyl rings being 9.07 (8)°. The mol­ecules are linked via weak C—H⋯O and C—H⋯S hydrogen bonds, forming chains propagating along the c-axis direction. In (IX), the thienyl ring is not coplanar with the benzene ring, their planes forming a dihedral angle of 13.2 (4)°. In the crystal, mol­ecules stack along the a-axis direction, with the inter­planar separation between the thienyl rings and between the benzene rings being 3.925 (6) Å. In (X), the thio­phene ring forms a dihedral angle of 26.04 (9)° with the benzene ring. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond. The mol­ecules are connected through C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane, which are further linked into a three-dimensional network by C—H⋯π inter­actions. In (XI), the mol­ecule is almost planar with a dihedral angle of 3.73 (8)° between the phenyl and thio­phene rings. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Adjacent mol­ecules are linked into dimers in an anti-parallel face-to-face manner by pairs of C—H⋯O inter­actions. Neighboring dimers are further linked into chains along the c-axis direction by N—H⋯N hydrogen bonds.

5. Synthesis and crystallization

The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707-12724.]; Chidan Kumar et al., 2014[Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A, 132, 174-182.]). 1-(2,5-Di­chloro­thio­phen-3-yl)ethanone (0.01 mol) (Harrison et al., 2010[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010). Acta Cryst. E66, o2479.]) and 2,4-di­chloro­benzaldehyde (0.01 mol) was dissolved in 20 ml methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 2 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol to get the title chalcone. The melting point (381–383 K) was determined by Stuart Scientific (UK) apparatus.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H. Owing to poor agreement between observed and calculated intensities, twelve outliers (2 7 2, 2 8 0, 2 8 1, 0 1 28, 2 8 23, 0 14 8, 0 0 6, 3 0 29, 1 0 8, 0 17 4, 1 3 27, 2 12 19) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C13H6Cl4OS
Mr 352.04
Crystal system, space group Orthorhombic, P212121
Temperature (K) 294
a, b, c (Å) 3.9867 (3), 13.4564 (11), 25.573 (2)
V3) 1371.91 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.63 × 0.23 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.757, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 11402, 4226, 3425
Rint 0.026
(sin θ/λ)max−1) 0.720
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.03
No. of reflections 4226
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Absolute structure Flack x determined using 1124 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (5)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-3-(2,4-Dichlorophenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one top
Crystal data top
C13H6Cl4OSDx = 1.704 Mg m3
Mr = 352.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4362 reflections
a = 3.9867 (3) Åθ = 2.2–28.5°
b = 13.4564 (11) ŵ = 1.00 mm1
c = 25.573 (2) ÅT = 294 K
V = 1371.91 (19) Å3Block, yellow
Z = 40.63 × 0.23 × 0.11 mm
F(000) = 704
Data collection top
Bruker APEXII CCD
diffractometer
3425 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 30.8°, θmin = 1.6°
Tmin = 0.757, Tmax = 0.894h = 52
11402 measured reflectionsk = 1919
4226 independent reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.011P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.25 e Å3
4226 reflectionsΔρmin = 0.20 e Å3
172 parametersAbsolute structure: Flack x determined using 1124 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.04 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1673 (8)0.77797 (19)0.84012 (9)0.0391 (6)
C21.2553 (8)0.6794 (2)0.91880 (10)0.0419 (6)
C31.1115 (8)0.6258 (2)0.88062 (10)0.0410 (6)
H3A1.0524320.5592460.8842230.049*
C41.0587 (8)0.6820 (2)0.83366 (10)0.0382 (6)
C50.9016 (9)0.6327 (2)0.78763 (10)0.0444 (7)
C60.7779 (10)0.6938 (2)0.74420 (11)0.0493 (7)
H6A0.8098370.7621580.7462660.059*
C70.6253 (9)0.6588 (2)0.70264 (10)0.0462 (7)
H7A0.5960050.5903160.7007600.055*
C80.4975 (8)0.7177 (2)0.65917 (10)0.0386 (6)
C90.3384 (8)0.67552 (19)0.61621 (10)0.0403 (6)
C100.2191 (8)0.7316 (2)0.57472 (10)0.0431 (6)
H10A0.1125030.7013150.5465610.052*
C110.2620 (8)0.8330 (2)0.57612 (10)0.0425 (7)
C120.4192 (9)0.8788 (2)0.61805 (11)0.0465 (7)
H12A0.4477710.9473730.6184830.056*
C130.5316 (9)0.8219 (2)0.65879 (11)0.0438 (7)
H13A0.6337190.8529750.6871010.053*
O10.8718 (9)0.54311 (16)0.78790 (9)0.0721 (9)
S11.3313 (2)0.80047 (5)0.90119 (3)0.04511 (19)
Cl11.1738 (3)0.87633 (5)0.79734 (3)0.0556 (2)
Cl21.3606 (3)0.63887 (6)0.98017 (3)0.0593 (2)
Cl30.2772 (3)0.54840 (5)0.61241 (3)0.0639 (3)
Cl40.1204 (3)0.90504 (6)0.52453 (3)0.0605 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (17)0.0375 (11)0.0377 (11)0.0021 (13)0.0062 (12)0.0015 (9)
C20.0429 (18)0.0443 (13)0.0384 (12)0.0015 (13)0.0020 (11)0.0019 (10)
C30.0430 (18)0.0392 (12)0.0408 (12)0.0001 (13)0.0012 (12)0.0003 (10)
C40.0376 (16)0.0406 (12)0.0364 (11)0.0014 (12)0.0021 (11)0.0021 (10)
C50.051 (2)0.0462 (14)0.0362 (12)0.0046 (14)0.0005 (12)0.0046 (10)
C60.059 (2)0.0451 (13)0.0437 (13)0.0026 (15)0.0080 (14)0.0013 (11)
C70.058 (2)0.0429 (13)0.0382 (12)0.0006 (15)0.0010 (14)0.0022 (10)
C80.0385 (16)0.0415 (13)0.0358 (11)0.0001 (12)0.0045 (11)0.0038 (10)
C90.0416 (16)0.0380 (11)0.0412 (12)0.0018 (13)0.0027 (13)0.0046 (9)
C100.0433 (18)0.0481 (13)0.0378 (12)0.0008 (13)0.0001 (12)0.0066 (10)
C110.0387 (18)0.0488 (14)0.0401 (12)0.0061 (13)0.0018 (11)0.0002 (10)
C120.048 (2)0.0396 (13)0.0522 (15)0.0007 (13)0.0013 (14)0.0061 (11)
C130.0468 (19)0.0422 (13)0.0426 (13)0.0004 (13)0.0034 (13)0.0080 (11)
O10.123 (3)0.0414 (11)0.0517 (12)0.0110 (15)0.0209 (16)0.0012 (9)
S10.0504 (5)0.0422 (3)0.0427 (3)0.0035 (3)0.0008 (3)0.0055 (3)
Cl10.0766 (6)0.0403 (3)0.0498 (4)0.0043 (4)0.0001 (4)0.0048 (3)
Cl20.0740 (6)0.0589 (4)0.0450 (3)0.0016 (4)0.0159 (4)0.0056 (3)
Cl30.0883 (8)0.0410 (3)0.0625 (4)0.0127 (4)0.0148 (5)0.0023 (3)
Cl40.0684 (6)0.0556 (4)0.0576 (4)0.0076 (4)0.0106 (4)0.0080 (3)
Geometric parameters (Å, º) top
C1—C41.372 (4)C7—C81.458 (4)
C1—Cl11.717 (3)C7—H7A0.9300
C1—S11.720 (3)C8—C91.390 (4)
C2—C31.343 (4)C8—C131.408 (4)
C2—Cl21.714 (3)C9—C101.386 (4)
C2—S11.717 (3)C9—Cl31.731 (3)
C3—C41.435 (4)C10—C111.375 (4)
C3—H3A0.9300C10—H10A0.9300
C4—C51.489 (4)C11—C121.387 (4)
C5—O11.212 (4)C11—Cl41.732 (3)
C5—C61.467 (4)C12—C131.368 (4)
C6—C71.312 (4)C12—H12A0.9300
C6—H6A0.9300C13—H13A0.9300
C4—C1—Cl1130.8 (2)C8—C7—H7A117.1
C4—C1—S1113.3 (2)C9—C8—C13116.5 (3)
Cl1—C1—S1115.92 (16)C9—C8—C7122.7 (3)
C3—C2—Cl2126.8 (2)C13—C8—C7120.9 (3)
C3—C2—S1113.3 (2)C10—C9—C8122.6 (3)
Cl2—C2—S1119.95 (17)C10—C9—Cl3116.5 (2)
C2—C3—C4112.8 (3)C8—C9—Cl3120.8 (2)
C2—C3—H3A123.6C11—C10—C9118.5 (3)
C4—C3—H3A123.6C11—C10—H10A120.7
C1—C4—C3110.5 (2)C9—C10—H10A120.7
C1—C4—C5130.3 (2)C10—C11—C12121.2 (3)
C3—C4—C5119.2 (3)C10—C11—Cl4119.7 (2)
O1—C5—C6121.9 (3)C12—C11—Cl4119.2 (2)
O1—C5—C4118.7 (3)C13—C12—C11119.2 (3)
C6—C5—C4119.3 (3)C13—C12—H12A120.4
C7—C6—C5124.6 (3)C11—C12—H12A120.4
C7—C6—H6A117.7C12—C13—C8122.0 (3)
C5—C6—H6A117.7C12—C13—H13A119.0
C6—C7—C8125.7 (3)C8—C13—H13A119.0
C6—C7—H7A117.1C2—S1—C190.24 (13)
Cl2—C2—C3—C4179.6 (2)C13—C8—C9—C100.3 (5)
S1—C2—C3—C40.7 (4)C7—C8—C9—C10179.5 (3)
Cl1—C1—C4—C3178.6 (3)C13—C8—C9—Cl3179.3 (3)
S1—C1—C4—C30.2 (4)C7—C8—C9—Cl30.9 (4)
Cl1—C1—C4—C52.0 (6)C8—C9—C10—C110.4 (5)
S1—C1—C4—C5179.6 (3)Cl3—C9—C10—C11179.9 (3)
C2—C3—C4—C10.6 (4)C9—C10—C11—C120.3 (5)
C2—C3—C4—C5179.9 (3)C9—C10—C11—Cl4179.2 (2)
C1—C4—C5—O1168.9 (4)C10—C11—C12—C130.3 (5)
C3—C4—C5—O111.8 (5)Cl4—C11—C12—C13179.9 (3)
C1—C4—C5—C613.1 (5)C11—C12—C13—C81.0 (5)
C3—C4—C5—C6166.3 (3)C9—C8—C13—C121.0 (5)
O1—C5—C6—C70.4 (6)C7—C8—C13—C12178.8 (3)
C4—C5—C6—C7177.6 (3)C3—C2—S1—C10.5 (3)
C5—C6—C7—C8179.5 (3)Cl2—C2—S1—C1179.8 (2)
C6—C7—C8—C9179.9 (4)C4—C1—S1—C20.1 (3)
C6—C7—C8—C130.1 (5)Cl1—C1—S1—C2178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl10.932.483.220 (3)136
C7—H7A···Cl30.932.653.075 (3)108
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl2···S13.660 (1)1/2 + x, 3/2 - y, 2 - z
H10A···Cl43.03-1/2 + x, 3/2 - y, 1 - z
C8···C93.573 (4)1 + x, y, z
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationAnitha, B. R., Vinduvahini, M., Ravi, A. J. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o930.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838–3841.  Web of Science CrossRef Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205–213.  Web of Science CrossRef Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A, 132, 174–182.  Web of Science CrossRef Google Scholar
First citationChimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F., Alcaro, S., Cirilli, R., Ferretti, R. & Sanna, M. L. (2010). Bioorg. Med. Chem. 18, 1273–1279.  Web of Science CrossRef Google Scholar
First citationDutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139.  Web of Science CrossRef IUCr Journals Google Scholar
First citationElarfi, M. J. & Al-Difar, H. A. (2012). Sci. Rev. Chem. Commun. 2, 103–107.  Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CrossRef IUCr Journals Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010). Acta Cryst. E66, o2479.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumara, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170038.  Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011.  Web of Science CrossRef Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724.  Web of Science CrossRef Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CrossRef IUCr Journals Google Scholar
First citationMahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839–865.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093–1099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationRaghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStiborová, M., Poljaková, I., Martínková, E., Bořek-Dohalská, L., Eckschlager, T., Kizek, R. & Frei, E. (2011). Interdiscipl. Toxicol. 4, 98–105.  Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324.  Google Scholar
First citationYadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds