research communications
E)-2-(5-bromo-2-methoxybenzylidene)hydrazinyl]-3-nitrobenzoate
and Hirshfeld surface analysis of methyl 4-[(aLDRP–Institute of Technology & Research, Kadi Sarva Vishwavidhayalay, Gandhinagar, India, bBhavan's Shri I. L. Pandya Arts –Science and Smt. J. M. Shah Commerce College, Dakor, Gujarat, India, cP.G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, India, and dDepartment of Physics, Sardar Patel University, Vallabh Vidyanagar, India
*Correspondence e-mail: sahajg7@gmail.com
The title compound, C16H14BrN3O5, is a novel halogen (Br) substituted hydrazine derivative. The hydrazine derivatives were the group of compounds with the general structure, R1R2C=NNH2 (Uppal et al., 2011), with the central RC=NNH2 moiety bridging two different groups on both sides. An all-trans configuration of the backbone (RC=NNH2) results in an extended molecular conformation. The dihedral angle between the 5-bromo-2-methoxyphenyl ring and the nitrophenyl ring is 4.4 (3)°. Intramolecular N—H⋯O interactions form S(6) graph-set motifs, while C—H⋯O and C—H⋯N interactions form S(5) graph-set motifs. Symmetry-related molecules are linked by C—H⋯O intermolecular interactions forming an R21(10) graph-set motif. There are nearly face-to-face directional specific π–π stacking interactions between the centroids of the nitrophenyl ring and the benzene ring of the 5-bromo-2-methoxy group [centroid–centroid distance = 3.6121 (5) Å and slippage = 1.115 Å], which also contributes to the molecular packing. The Hirshfeld surface analysis was performed in order to visualize, explore and quantify the intermolecular interactions in the of the title compound.
Keywords: crystal structure; hydrazine derivative; graph set motif; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 1860856
1. Chemical context
Hydrazine and its derivatives have attracted much attention due to their synthetic potential for organic and inorganic chemical reactions and diverse useful properties (Levrand et al., 2007; Li et al., 2011). Hydrazine-based coupling methods are used in medical biotechnology to couple drugs to targeted antibodies, e.g. antibodies against a certain type of cancer cell (Wu et al., 2005). Hydrazine possesses diverse biological and pharmacological properties, such as antimicrobial, anti-inflammatory, analgesic, antifungal, antitubercular, antiviral, anticancer, antiplatelet, antimalarial, anticonvulsant, cardio-protective, antihelmintic, antiprotozoal (Rollas & Küçükgüzel, 2007), antitrypanosomal and antischistosomiasis (Narang et al., 2012). These compounds contain a C=N bond, which is conjugated with a lone pair of electrons of the functional N atom (Corey & Enders, 1976). The N atom of the hydrazine is nucleophilic and the C atom has both an electrophilic and a nucleophilic nature (Corey & Enders, 1976). The α-hydrogen of hydrazine is more potent than that of acidic (Belskaya et al., 2010). The combination of hydrazine with other functional groups results in new compounds with unique physical and chemical characteristics (Xavier et al., 2012). Owing to their biological and pharmacological properties, hydrazine derivatives play an important role for the synthesis of (Banerjee et al., 2009).
2. Structural commentary
Fig. 1 displays the title molecule with the atom-labelling scheme. Intramolecular N2—H2A⋯O4 interactions form S(6) graph-set motifs and C3—H3⋯O1 and C6—H6⋯N3 interactions form S(5) graph-set motifs. The central bridging moiety R2C=NNHR1 adopts an all-trans conformation about the C10—C9, C9—N3, N3—N2 and N2—C5 bonds, with torsion angles of 176.0 (6), −178.1 (5), −177.0 (6) and 173.6 (6)°, leading to an extended molecular conformation, thereby causing the terminal bromomethoxyphenyl ring and nitrophenylring to occupy almost the same plane; the dihedral angle between the rings is 4.4 (3)°.
3. Supramolecular features and Hirshfeld surface analysis
A significant number of weak C—H⋯O, C—H⋯N and N—H⋯O intramolecular interactions and C—H⋯O intermolecular interactions (Table 1), along with direction-specific nearly face-to-face π–π stacking interactions, are responsible for the stability of the molecular packing. Intermolecular C—H⋯O hydrogen-bond interactions forming R21(10) ring (Fig. 2). There are nearly face-to-face direction-specific π–π stacking interactions between the centroids of the nitrophenyl ring (x, y, z) and the benzene ring of the 5-bromo-2-methoxy group (x − 1, y, z) [centroid–centroid distance = 3.6121 (5) Å and slippage = 1.115 Å], which also contributes to the molecular packing. The Br atom does not take part in any interactions. The nearest Br⋯C7(−x + , y − , −z + ) distance in the molecular structure is 3.6112 (7) Å.
Hirshfeld surface analysis serves as a powerful tool for gaining additional insight into intermolecular interactions of molecular crystals. The Hirshfeld surfaces are mapped with 2D fingerprint plots presented using CrystalExplorer3.1 and it provides a summary of the intermolecular contacts in the crystal (McKinnon et al., 2004; Spackman & Jayatilaka, 2009). The 2D fingerprint plots (Fig. 3) show that the intermolecular H⋯H and O⋯H interactions dominate and complement the Hirshfeld surfaces. The fingerprint plots can also be decomposed to highlight particular atom-pair close contacts (Luo et al., 2013) and enables separation of contributions from different interaction types. Two sharp spikes pointing towards the upper left of the plot are typical C—H⋯O hydrogen bonds. This portion corresponds to H⋯O interactions comprising 25.1% of the total Hirshfed surfaces. Two sharp spikes pointing towards the lower left of the plot are typical Br⋯H hydrogen bonds. This portion corresponds to Br⋯H interactions comprising 11.7% of the total Hirshfeld surfaces. The broad region bearing short and narrow spikes at the middle of plot is reflected as H⋯H interaction comprising 27.2% of the total Hirshfeld surfaces. Apart from these, the presence of Br⋯C, Br⋯N, Br⋯O, C⋯O, H⋯N, N⋯O and O⋯O interactions were observed (Pi chart; Fig. 4g), which are summarized in Table 2 (Li et al., 2013; Luo & Sun, 2014; Seth et al., 2011).
|
4. Database survey
While searching for 2-phenylhydrazine in the Cambridge Structural Database (CSD, Version 53.7; Groom et al., 2016), four significant structures were found [CSD refcodes AYSOD (Tahir et al., 2011), DUSBID (Mufakkar et al. 2010), DUSNUB (Shad et al. 2010) and DUSNUB01 (Toledano-Magaña et al., 2015)]. Also, the of the unsubstituted phenyl hydrazine has been reported in the CSD [ZZZGWW02 (Vickery et al., 1985) and ZZZGWW03 (Günes, et al., 2003)]. The two phenyl rings in AYSOD (two molecules in the asymmetric unit), DUSBID and DUSNUB (two molecules in the asymmetric unit) are inclined to each other by 2.44 (18) and 14.08 (19)° (in molecules A and B), 9.30 (6)°, and 13.01 (10) and 14.05 (10)° (in molecules A and B), respectively, compared to 4.4 (3)° in the title compound. The crystal packing of the two compounds is significantly different. In AYSOD, N—H groups do not form hydrogen bonds, in DUSBID, the molecules are linked by N—H⋯π interactions, and in DUSNUB, both molecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, thereby generating R22(16) motif rings (Bernstein et al., 1995). In the title compound, intramolecular N—H⋯O and only intermolecular C—H⋯O hydrogen bonds are present; there are no C—H⋯π interactions. Very few similar hydrazine derivatives are reported in the literature (Cortés et al., 2013; Dey & Chopra, 2017). In those crystal structures, a halogen group (Cl and F, respectively) is present, while in this Br is present.
5. Synthesis and crystallization
The title compound was synthesized in one step by heating the hydrazine derivative 3-nitrobenzohydrazide (0.181 mg) with a slight excess of 5-bromo-2-methoxybenzaldehyde (0.215 mg) in an acetic acid solution (10 ml). The reaction mixture was refluxed for 8 h. The solid product formed during reflux was filtered off, washed and dried over anhydrous calcium chloride in a vacuum desiccator (yield 75%). The final product was soluble in acetone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), methanol, ethanol and ethyl acetate, etc. Transparent orange-coloured needle-shaped diffraction-quality single crystals of the title compound were grown by slow evaporation using methanol as the solvent at room temperature.
6. Refinement
Crystal data, data collection and structure . The coordinates of the H atoms of the N2—H2 and C9—H9 groups were refined [N2—H2 = 0.83 (6) Å and C9—H9 = 0.90 (5) Å]. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1860856
https://doi.org/10.1107/S2056989018011325/dx2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011325/dx2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018011325/dx2007Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H14BrN3O5 | F(000) = 824 |
Mr = 408.21 | Dx = 1.627 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3262 (11) Å | Cell parameters from 1261 reflections |
b = 14.8369 (19) Å | θ = 3.3–23.2° |
c = 14.0764 (13) Å | µ = 2.50 mm−1 |
β = 106.558 (14)° | T = 293 K |
V = 1666.8 (4) Å3 | Plate, yellow |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
Bruker APEXII CCD diffractometer | 1726 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.065 |
φ and ω scans | θmax = 29.0°, θmin = 3.6° |
Absorption correction: multi-scan (North et al., 1968) | h = −10→11 |
Tmin = 0.666, Tmax = 1.000 | k = −19→10 |
4830 measured reflections | l = −9→18 |
3187 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.096 | w = 1/[σ2(Fo2) + (0.0381P)2 + 5.1653P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.202 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.66 e Å−3 |
3187 reflections | Δρmin = −0.69 e Å−3 |
235 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0076 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3935 (9) | 0.2162 (5) | 0.6270 (5) | 0.038 (2) | |
H1 | 0.415174 | 0.223200 | 0.695123 | 0.046* | |
C2 | 0.2457 (9) | 0.1749 (5) | 0.5739 (5) | 0.0348 (19) | |
C3 | 0.2169 (9) | 0.1645 (5) | 0.4728 (5) | 0.0339 (18) | |
H3 | 0.118584 | 0.137270 | 0.435409 | 0.041* | |
C4 | 0.3340 (9) | 0.1944 (5) | 0.4272 (5) | 0.0328 (18) | |
C5 | 0.4810 (9) | 0.2391 (5) | 0.4784 (5) | 0.0308 (17) | |
C6 | 0.5083 (9) | 0.2468 (6) | 0.5818 (5) | 0.040 (2) | |
H6 | 0.606744 | 0.273342 | 0.620051 | 0.049* | |
C7 | 0.1197 (10) | 0.1486 (6) | 0.6245 (6) | 0.0386 (19) | |
C8 | −0.1484 (10) | 0.0834 (7) | 0.6023 (6) | 0.061 (3) | |
H8A | −0.236862 | 0.055874 | 0.551367 | 0.091* | |
H8B | −0.107222 | 0.041302 | 0.655468 | 0.091* | |
H8C | −0.190635 | 0.135968 | 0.626904 | 0.091* | |
C9 | 0.8528 (10) | 0.3310 (6) | 0.4527 (5) | 0.040 (2) | |
C10 | 1.0108 (9) | 0.3711 (6) | 0.5111 (5) | 0.0373 (19) | |
C11 | 1.1267 (10) | 0.4052 (5) | 0.4648 (6) | 0.040 (2) | |
C12 | 1.2709 (10) | 0.4470 (6) | 0.5203 (6) | 0.046 (2) | |
H12 | 1.345065 | 0.471252 | 0.488742 | 0.055* | |
C13 | 1.3069 (10) | 0.4532 (6) | 0.6226 (6) | 0.052 (2) | |
H13 | 1.404718 | 0.480982 | 0.659877 | 0.063* | |
C14 | 1.1940 (10) | 0.4174 (6) | 0.6681 (5) | 0.043 (2) | |
C15 | 1.0485 (9) | 0.3762 (5) | 0.6140 (5) | 0.0357 (18) | |
H15 | 0.975310 | 0.351682 | 0.646202 | 0.043* | |
C16 | 1.1856 (12) | 0.4401 (7) | 0.3120 (6) | 0.069 (3) | |
H16A | 1.141419 | 0.428322 | 0.242387 | 0.104* | |
H16B | 1.185656 | 0.503869 | 0.323555 | 0.104* | |
H16C | 1.298062 | 0.417511 | 0.335016 | 0.104* | |
N1 | 0.2911 (8) | 0.1797 (5) | 0.3208 (4) | 0.0370 (16) | |
N2 | 0.5978 (8) | 0.2714 (5) | 0.4364 (5) | 0.0424 (18) | |
N3 | 0.7457 (8) | 0.3049 (5) | 0.4962 (4) | 0.0393 (16) | |
O1 | −0.0146 (7) | 0.1088 (4) | 0.5621 (4) | 0.0494 (16) | |
O2 | 0.1325 (7) | 0.1613 (4) | 0.7107 (4) | 0.0548 (17) | |
O3 | 0.1809 (8) | 0.1260 (5) | 0.2817 (4) | 0.0612 (18) | |
O4 | 0.3693 (6) | 0.2228 (4) | 0.2728 (3) | 0.0544 (17) | |
O5 | 1.0838 (7) | 0.3963 (4) | 0.3644 (4) | 0.0545 (17) | |
BR1 | 1.24638 (13) | 0.41918 (8) | 0.80847 (6) | 0.0681 (5) | |
H2A | 0.576 (7) | 0.270 (4) | 0.375 (4) | 0.014 (16)* | |
H9 | 0.825 (7) | 0.329 (4) | 0.386 (4) | 0.012 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (4) | 0.050 (6) | 0.025 (3) | 0.001 (4) | 0.004 (4) | 0.002 (4) |
C2 | 0.035 (4) | 0.046 (5) | 0.025 (3) | 0.004 (4) | 0.011 (3) | 0.004 (3) |
C3 | 0.033 (4) | 0.040 (5) | 0.028 (3) | 0.005 (4) | 0.007 (3) | 0.004 (3) |
C4 | 0.038 (4) | 0.040 (5) | 0.020 (3) | 0.002 (4) | 0.008 (3) | −0.003 (3) |
C5 | 0.025 (4) | 0.039 (5) | 0.028 (3) | 0.001 (4) | 0.006 (3) | −0.003 (3) |
C6 | 0.033 (4) | 0.056 (6) | 0.030 (3) | −0.003 (4) | 0.006 (4) | −0.005 (4) |
C7 | 0.038 (4) | 0.041 (6) | 0.039 (4) | 0.008 (4) | 0.016 (4) | 0.004 (4) |
C8 | 0.038 (5) | 0.091 (8) | 0.059 (5) | −0.003 (5) | 0.022 (4) | 0.007 (5) |
C9 | 0.037 (5) | 0.051 (6) | 0.027 (4) | 0.002 (4) | 0.004 (4) | −0.001 (4) |
C10 | 0.032 (4) | 0.044 (5) | 0.035 (4) | 0.007 (4) | 0.008 (4) | 0.003 (4) |
C11 | 0.035 (4) | 0.040 (6) | 0.042 (4) | 0.006 (4) | 0.010 (4) | 0.004 (4) |
C12 | 0.039 (5) | 0.042 (6) | 0.056 (5) | −0.008 (4) | 0.012 (4) | −0.001 (4) |
C13 | 0.039 (5) | 0.055 (6) | 0.060 (5) | 0.000 (4) | 0.011 (5) | 0.003 (5) |
C14 | 0.044 (5) | 0.042 (6) | 0.037 (4) | 0.003 (4) | 0.002 (4) | −0.001 (4) |
C15 | 0.031 (4) | 0.037 (5) | 0.038 (4) | −0.006 (4) | 0.007 (4) | −0.003 (4) |
C16 | 0.073 (6) | 0.095 (9) | 0.052 (5) | −0.006 (6) | 0.037 (5) | 0.010 (5) |
N1 | 0.034 (4) | 0.053 (5) | 0.025 (3) | 0.001 (3) | 0.011 (3) | 0.003 (3) |
N2 | 0.038 (4) | 0.064 (5) | 0.025 (3) | −0.002 (4) | 0.008 (3) | −0.004 (3) |
N3 | 0.033 (4) | 0.053 (5) | 0.030 (3) | −0.009 (3) | 0.004 (3) | −0.003 (3) |
O1 | 0.044 (3) | 0.070 (5) | 0.040 (3) | −0.005 (3) | 0.021 (3) | 0.000 (3) |
O2 | 0.060 (4) | 0.079 (5) | 0.031 (3) | 0.002 (3) | 0.023 (3) | 0.000 (3) |
O3 | 0.065 (4) | 0.081 (5) | 0.032 (3) | −0.035 (4) | 0.004 (3) | −0.012 (3) |
O4 | 0.046 (3) | 0.090 (5) | 0.028 (3) | −0.012 (3) | 0.013 (3) | −0.001 (3) |
O5 | 0.054 (4) | 0.075 (5) | 0.038 (3) | −0.008 (3) | 0.020 (3) | 0.005 (3) |
BR1 | 0.0721 (8) | 0.0855 (9) | 0.0375 (5) | −0.0200 (6) | 0.0007 (5) | −0.0053 (5) |
C1—C6 | 1.369 (10) | C9—H9 | 0.90 (5) |
C1—C2 | 1.386 (10) | C10—C15 | 1.394 (9) |
C1—H1 | 0.9300 | C10—C11 | 1.404 (10) |
C2—C3 | 1.383 (9) | C11—O5 | 1.362 (9) |
C2—C7 | 1.479 (10) | C11—C12 | 1.379 (11) |
C3—C4 | 1.385 (9) | C12—C13 | 1.388 (11) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.399 (10) | C13—C14 | 1.385 (11) |
C4—N1 | 1.454 (8) | C13—H13 | 0.9300 |
C5—N2 | 1.361 (9) | C14—C15 | 1.377 (10) |
C5—C6 | 1.411 (9) | C14—BR1 | 1.899 (7) |
C6—H6 | 0.9300 | C15—H15 | 0.9300 |
C7—O2 | 1.201 (8) | C16—O5 | 1.428 (9) |
C7—O1 | 1.346 (9) | C16—H16A | 0.9600 |
C8—O1 | 1.437 (9) | C16—H16B | 0.9600 |
C8—H8A | 0.9600 | C16—H16C | 0.9600 |
C8—H8B | 0.9600 | N1—O3 | 1.221 (8) |
C8—H8C | 0.9600 | N1—O4 | 1.240 (7) |
C9—N3 | 1.277 (9) | N2—N3 | 1.371 (8) |
C9—C10 | 1.464 (11) | N2—H2A | 0.83 (6) |
C6—C1—C2 | 121.8 (6) | C11—C10—C9 | 120.8 (7) |
C6—C1—H1 | 119.1 | O5—C11—C12 | 124.1 (7) |
C2—C1—H1 | 119.1 | O5—C11—C10 | 115.8 (7) |
C3—C2—C1 | 118.1 (7) | C12—C11—C10 | 120.1 (7) |
C3—C2—C7 | 121.8 (7) | C11—C12—C13 | 120.9 (8) |
C1—C2—C7 | 120.0 (6) | C11—C12—H12 | 119.5 |
C2—C3—C4 | 120.2 (7) | C13—C12—H12 | 119.5 |
C2—C3—H3 | 119.9 | C14—C13—C12 | 118.6 (8) |
C4—C3—H3 | 119.9 | C14—C13—H13 | 120.7 |
C3—C4—C5 | 122.8 (6) | C12—C13—H13 | 120.7 |
C3—C4—N1 | 115.5 (7) | C15—C14—C13 | 121.5 (7) |
C5—C4—N1 | 121.7 (6) | C15—C14—BR1 | 119.1 (6) |
N2—C5—C4 | 124.8 (6) | C13—C14—BR1 | 119.4 (6) |
N2—C5—C6 | 119.6 (7) | C14—C15—C10 | 120.0 (7) |
C4—C5—C6 | 115.5 (6) | C14—C15—H15 | 120.0 |
C1—C6—C5 | 121.6 (7) | C10—C15—H15 | 120.0 |
C1—C6—H6 | 119.2 | O5—C16—H16A | 109.5 |
C5—C6—H6 | 119.2 | O5—C16—H16B | 109.5 |
O2—C7—O1 | 123.1 (7) | H16A—C16—H16B | 109.5 |
O2—C7—C2 | 125.0 (8) | O5—C16—H16C | 109.5 |
O1—C7—C2 | 111.9 (6) | H16A—C16—H16C | 109.5 |
O1—C8—H8A | 109.5 | H16B—C16—H16C | 109.5 |
O1—C8—H8B | 109.5 | O3—N1—O4 | 122.3 (6) |
H8A—C8—H8B | 109.5 | O3—N1—C4 | 119.6 (6) |
O1—C8—H8C | 109.5 | O4—N1—C4 | 118.0 (6) |
H8A—C8—H8C | 109.5 | C5—N2—N3 | 119.2 (6) |
H8B—C8—H8C | 109.5 | C5—N2—H2A | 118 (4) |
N3—C9—C10 | 119.5 (7) | N3—N2—H2A | 122 (4) |
N3—C9—H9 | 119 (4) | C9—N3—N2 | 116.3 (6) |
C10—C9—H9 | 121 (4) | C7—O1—C8 | 116.8 (6) |
C15—C10—C11 | 118.9 (7) | C11—O5—C16 | 118.2 (7) |
C15—C10—C9 | 120.3 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4 | 0.83 | 2.03 | 2.635 (3) | 129 |
C3—H3···O1 | 0.93 | 2.39 | 2.712 (4) | 100 |
C6—H6···N3 | 0.93 | 2.40 | 2.731 (4) | 101 |
C6—H6···O4i | 0.93 | 2.59 | 3.444 (5) | 152 |
C15—H15···O4i | 0.93 | 2.46 | 3.358 (4) | 161 |
Symmetry code: (i) x−1/2, −y−1/2, z−1/2. |
Contacts | Percentage contribution |
Br···C/ C···Br | 1.6 |
Br···H/ H···Br | 11.7 |
Br···N/ N···Br | 0.7 |
Br···O/ O···Br | 2.8 |
C···C | 8.1 |
C···H/ H···C | 12.5 |
C···O/ O···C | 2.7 |
H···H | 27.2 |
H···N/ N···H | 5.5 |
H···O/ O···H | 25.1 |
N···O/ O···N | 1.1 |
O···O | 1.0 |
Acknowledgements
Authors are thankful to the DST–FIST, New Delhi, for providing the Kappa APEXII single-crystal X-ray diffractometer facility at Department of Physics, Sardar Patel University, Vallabh vidyanagar, Gujarat, India. One of the authors (TJM) is thankful to LDRP–Institute of Technology & Research, Gandhinagar, for giving necessary permission.
References
Banerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785–2793. Web of Science CSD CrossRef CAS Google Scholar
Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arch. Org. Chem. 1, 275–332. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Corey, E. J. & Enders, D. (1976). Tetrahedron Lett. 17, 11–14. CrossRef Google Scholar
Cortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 754–760. Web of Science CrossRef IUCr Journals Google Scholar
Dey, D. & Chopra, D. (2017). Acta Cryst. B73, 781–793. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Günes, B., Özbey, S. & Tezcan, H. (2003). Anal. Sci. 19, 1091–1092. Google Scholar
Levrand, B., Fiebera, W., Lehn, J.-M. & Herrmann, A. (2007). Helv. Chim. Acta, 90, 2281–2314. Web of Science CrossRef Google Scholar
Li, Y., Zhang, C. G., Cai, L. Y. & Wang, Z. X. (2013). J. Coord. Chem. 66, 3100–3112. Web of Science CrossRef Google Scholar
Li, L., Zhu, L., Chen, D., Hu, X. & Wang, R. (2011). Eur. J. Org. Chem. pp. 2692–2696. Web of Science CrossRef Google Scholar
Luo, Y. H. & Sun, B. W. (2014). Spectrochim. Acta Part A, 120, 381–388. Web of Science CrossRef Google Scholar
Luo, Y. H., Wu, G. G., Mao, S. L. & Sun, B. W. (2013). Inorg. Chim. Acta, 397, 1–9. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887. Web of Science CSD CrossRef IUCr Journals Google Scholar
Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612. Web of Science CrossRef Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939. Web of Science CrossRef PubMed CAS Google Scholar
Seth, S. K., Mandal, P. C., Kar, T. & Mukhopadhyay, S. (2011). J. Mol. Struct. 994, 109–116. Web of Science CrossRef Google Scholar
Shad, H. A., Tahir, M. N., Tariq, M. I., Sarfraz, M. & Ahmad, S. (2010). Acta Cryst. E66, o1955. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377. Web of Science CrossRef IUCr Journals Google Scholar
Toledano-Magaña, Y., García-Ramos, J. C., Navarro-Olivarria, M., Flores-Alamo, M., Manzanera-Estrada, M., Ortiz-Frade, L., Galindo-Murillo, R., Ruiz-Azuara, L., Meléndrez-Luevano, R. M. & Cabrera-Vivas, B. M. (2015). Molecules, 20, 9929–9948. Google Scholar
Uppal, G., Bala, S., Kamboj, S. & Saini, M. (2011). Der. Pharma Chem. 3, 250–68. Google Scholar
Vickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072–1075. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wu, A., Senter, M. & Peter, D. (2005). Nat. Biotechnol. 23, 1137–1146. Web of Science CrossRef Google Scholar
Xavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986–990. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.