research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of methyl 4-[(E)-2-(5-bromo-2-meth­­oxy­benzyl­­idene)hydrazin­yl]-3-nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aLDRP–Institute of Technology & Research, Kadi Sarva Vishwavidhayalay, Gandhinagar, India, bBhavan's Shri I. L. Pandya Arts –Science and Smt. J. M. Shah Commerce College, Dakor, Gujarat, India, cP.G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, India, and dDepartment of Physics, Sardar Patel University, Vallabh Vidyanagar, India
*Correspondence e-mail: sahajg7@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 9 July 2018; accepted 8 August 2018; online 14 August 2018)

The title compound, C16H14BrN3O5, is a novel halogen (Br) substituted hydrazine derivative. The hydrazine derivatives were the group of compounds with the general structure, R1R2C=NNH2 (Uppal et al., 2011[Uppal, G., Bala, S., Kamboj, S. & Saini, M. (2011). Der. Pharma Chem. 3, 250-68.]), with the central RC=NNH2 moiety bridging two different groups on both sides. An all-trans configuration of the backbone (RC=NNH2) results in an extended mol­ecular conformation. The dihedral angle between the 5-bromo-2-meth­oxy­phenyl ring and the nitrophenyl ring is 4.4 (3)°. Intra­molecular N—H⋯O inter­actions form S(6) graph-set motifs, while C—H⋯O and C—H⋯N inter­actions form S(5) graph-set motifs. Symmetry-related mol­ecules are linked by C—H⋯O inter­molecular inter­actions forming an R21(10) graph-set motif. There are nearly face-to-face directional specific ππ stacking inter­actions between the centroids of the nitrophenyl ring and the benzene ring of the 5-bromo-2-meth­oxy group [centroid–centroid distance = 3.6121 (5) Å and slippage = 1.115 Å], which also contributes to the mol­ecular packing. The Hirshfeld surface analysis was performed in order to visualize, explore and qu­antify the inter­molecular inter­actions in the crystal lattice of the title compound.

1. Chemical context

Hydrazine and its derivatives have attracted much attention due to their synthetic potential for organic and inorganic chemical reactions and diverse useful properties (Levrand et al., 2007[Levrand, B., Fiebera, W., Lehn, J.-M. & Herrmann, A. (2007). Helv. Chim. Acta, 90, 2281-2314.]; Li et al., 2011[Li, L., Zhu, L., Chen, D., Hu, X. & Wang, R. (2011). Eur. J. Org. Chem. pp. 2692-2696.]). Hydrazine-based coupling methods are used in medical biotechnology to couple drugs to targeted anti­bodies, e.g. anti­bodies against a certain type of cancer cell (Wu et al., 2005[Wu, A., Senter, M. & Peter, D. (2005). Nat. Biotechnol. 23, 1137-1146.]). Hydrazine possesses diverse biological and pharmacological properties, such as anti­microbial, anti-inflammatory, analgesic, anti­fungal, anti­tubercular, anti­viral, anti­cancer, anti­platelet, anti­malarial, anti­convulsant, cardio-protective, anti­helmintic, anti­protozoal (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]), anti­trypanosomal and anti­schistosomiasis (Narang et al., 2012[Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569-612.]). These compounds contain a C=N bond, which is conjugated with a lone pair of electrons of the functional N atom (Corey & Enders, 1976[Corey, E. J. & Enders, D. (1976). Tetrahedron Lett. 17, 11-14.]). The N atom of the hydrazine is nucleophilic and the C atom has both an electrophilic and a nucleophilic nature (Corey & Enders, 1976[Corey, E. J. & Enders, D. (1976). Tetrahedron Lett. 17, 11-14.]). The α-hydrogen of hydrazine is more potent than that of acidic ketones (Belskaya et al., 2010[Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arch. Org. Chem. 1, 275-332.]). The combination of hydrazine with other functional groups results in new compounds with unique physical and chemical characteristics (Xavier et al., 2012[Xavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986-990.]). Owing to their biological and pharmacological properties, hydrazine derivatives play an important role for the synthesis of heterocyclic compounds (Banerjee et al., 2009[Banerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785-2793.]).

[Scheme 1]

2. Structural commentary

Fig. 1[link] displays the title mol­ecule with the atom-labelling scheme. Intra­molecular N2—H2A⋯O4 inter­actions form S(6) graph-set motifs and C3—H3⋯O1 and C6—H6⋯N3 inter­actions form S(5) graph-set motifs. The central bridging moiety R2C=NNHR1 adopts an all-trans conformation about the C10—C9, C9—N3, N3—N2 and N2—C5 bonds, with torsion angles of 176.0 (6), −178.1 (5), −177.0 (6) and 173.6 (6)°, leading to an extended mol­ecular conformation, thereby causing the terminal bromo­meth­oxy­phenyl ring and nitro­phenyl­ring to occupy almost the same plane; the dihedral angle between the rings is 4.4 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

A significant number of weak C—H⋯O, C—H⋯N and N—H⋯O intra­molecular inter­actions and C—H⋯O inter­molecular inter­actions (Table 1[link]), along with direction-specific nearly face-to-face ππ stacking inter­actions, are responsible for the stability of the mol­ecular packing. Inter­molecular C—H⋯O hydrogen-bond inter­actions forming R21(10) ring (Fig. 2[link]). There are nearly face-to-face direction-specific ππ stacking inter­actions between the centroids of the nitrophenyl ring (x, y, z) and the benzene ring of the 5-bromo-2-meth­oxy group (x − 1, y, z) [centroid–centroid distance = 3.6121 (5) Å and slippage = 1.115 Å], which also contributes to the mol­ecular packing. The Br atom does not take part in any inter­actions. The nearest Br⋯C7(−x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]) distance in the mol­ecular structure is 3.6112 (7) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.83 2.03 2.635 (3) 129
C3—H3⋯O1 0.93 2.39 2.712 (4) 100
C6—H6⋯N3 0.93 2.40 2.731 (4) 101
C6—H6⋯O4i 0.93 2.59 3.444 (5) 152
C15—H15⋯O4i 0.93 2.46 3.358 (4) 161
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of part of the crystal structure of the title compound, showing the formation of C—H⋯O hydrogen bonds (dashed bonds).

Hirshfeld surface analysis serves as a powerful tool for gaining additional insight into inter­molecular inter­actions of mol­ecular crystals. The Hirshfeld surfaces are mapped with 2D fingerprint plots presented using CrystalExplorer3.1 and it provides a summary of the inter­molecular contacts in the crystal (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The 2D fingerprint plots (Fig. 3[link]) show that the inter­molecular H⋯H and O⋯H inter­actions dominate and complement the Hirshfeld surfaces. The fingerprint plots can also be decomposed to highlight particular atom-pair close contacts (Luo et al., 2013[Luo, Y. H., Wu, G. G., Mao, S. L. & Sun, B. W. (2013). Inorg. Chim. Acta, 397, 1-9.]) and enables separation of contributions from different inter­action types. Two sharp spikes pointing towards the upper left of the plot are typical C—H⋯O hydrogen bonds. This portion corresponds to H⋯O inter­actions comprising 25.1% of the total Hirshfed surfaces. Two sharp spikes pointing towards the lower left of the plot are typical Br⋯H hydrogen bonds. This portion corresponds to Br⋯H inter­actions comprising 11.7% of the total Hirshfeld surfaces. The broad region bearing short and narrow spikes at the middle of plot is reflected as H⋯H inter­action comprising 27.2% of the total Hirshfeld surfaces. Apart from these, the presence of Br⋯C, Br⋯N, Br⋯O, C⋯O, H⋯N, N⋯O and O⋯O inter­actions were observed (Pi chart; Fig. 4g), which are summarized in Table 2[link] (Li et al., 2013[Li, Y., Zhang, C. G., Cai, L. Y. & Wang, Z. X. (2013). J. Coord. Chem. 66, 3100-3112.]; Luo & Sun, 2014[Luo, Y. H. & Sun, B. W. (2014). Spectrochim. Acta Part A, 120, 381-388.]; Seth et al., 2011[Seth, S. K., Mandal, P. C., Kar, T. & Mukhopadhyay, S. (2011). J. Mol. Struct. 994, 109-116.]).

Table 2
Summary of the various contacts and their contributions to the Hirshfeld surface

Contacts Percentage contribution
Br⋯C/C⋯Br 1.6
Br⋯H/H⋯Br 11.7
Br⋯N/N⋯Br 0.7
Br⋯O/O⋯Br 2.8
C⋯C 8.1
C⋯H/H⋯C 12.5
C⋯O/O⋯C 2.7
H⋯H 27.2
H⋯N/N⋯H 5.5
H⋯O/O⋯H 25.1
N⋯O/O⋯N 1.1
O⋯O 1.0
[Figure 3]
Figure 3
The full two-dimensional fingerprint plots, and those delineated into (a) all inter­actions (b) Br⋯H, (c) C⋯C, (d) C⋯H/H⋯C, (e) H⋯H and (f) H⋯O/O⋯H contacts showing the percentages of contacts contributed to the total Hirshfeld surface area. (g) Pi chart.

4. Database survey

While searching for 2-phenyl­hydrazine in the Cambridge Structural Database (CSD, Version 53.7; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), four significant structures were found [CSD refcodes AYSOD (Tahir et al., 2011[Tahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377.]), DUSBID (Mufakkar et al. 2010[Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.]), DUSNUB (Shad et al. 2010[Shad, H. A., Tahir, M. N., Tariq, M. I., Sarfraz, M. & Ahmad, S. (2010). Acta Cryst. E66, o1955.]) and DUSNUB01 (Toledano-Magaña et al., 2015[Toledano-Magaña, Y., García-Ramos, J. C., Navarro-Olivarria, M., Flores-Alamo, M., Manzanera-Estrada, M., Ortiz-Frade, L., Galindo-Murillo, R., Ruiz-Azuara, L., Meléndrez-Luevano, R. M. & Cabrera-Vivas, B. M. (2015). Molecules, 20, 9929-9948.])]. Also, the crystal structure of the unsubstituted phenyl hydrazine has been reported in the CSD [ZZZGWW02 (Vickery et al., 1985[Vickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072-1075.]) and ZZZGWW03 (Günes, et al., 2003[Günes, B., Özbey, S. & Tezcan, H. (2003). Anal. Sci. 19, 1091-1092.])]. The two phenyl rings in AYSOD (two mol­ecules in the asymmetric unit), DUSBID and DUSNUB (two mol­ecules in the asymmetric unit) are inclined to each other by 2.44 (18) and 14.08 (19)° (in mol­ecules A and B), 9.30 (6)°, and 13.01 (10) and 14.05 (10)° (in mol­ecules A and B), respectively, compared to 4.4 (3)° in the title compound. The crystal packing of the two compounds is significantly different. In AYSOD, N—H groups do not form hydrogen bonds, in DUSBID, the mol­ecules are linked by N—H⋯π inter­actions, and in DUSNUB, both mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, thereby generating R22(16) motif rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In the title compound, intra­molecular N—H⋯O and only inter­molecular C—H⋯O hydrogen bonds are present; there are no C—H⋯π inter­actions. Very few similar hydrazine derivatives are reported in the literature (Cortés et al., 2013[Cortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 754-760.]; Dey & Chopra, 2017[Dey, D. & Chopra, D. (2017). Acta Cryst. B73, 781-793.]). In those crystal structures, a halogen group (Cl and F, respectively) is present, while in this crystal structure, Br is present.

5. Synthesis and crystallization

The title compound was synthesized in one step by heating the hydrazine derivative 3-nitro­benzohydrazide (0.181 mg) with a slight excess of 5-bromo-2-meth­oxy­benzaldehyde (0.215 mg) in an acetic acid solution (10 ml). The reaction mixture was refluxed for 8 h. The solid product formed during reflux was filtered off, washed and dried over anhydrous calcium chloride in a vacuum desiccator (yield 75%). The final product was soluble in acetone, dimethyl sulfoxide (DMSO), di­methyl­formamide (DMF), methanol, ethanol and ethyl acetate, etc. Transparent orange-coloured needle-shaped diffraction-quality single crystals of the title compound were grown by slow evaporation using methanol as the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The coordinates of the H atoms of the N2—H2 and C9—H9 groups were refined [N2—H2 = 0.83 (6) Å and C9—H9 = 0.90 (5) Å]. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C16H14BrN3O5
Mr 408.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.3262 (11), 14.8369 (19), 14.0764 (13)
β (°) 106.558 (14)
V3) 1666.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.50
Crystal size (mm) 0.09 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.666, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4830, 3187, 1726
Rint 0.065
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.202, 1.09
No. of reflections 3187
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Methyl 4-[(E)-2-(5-bromo-2-methoxybenzylidene)hydrazinyl]-3-nitrobenzoate top
Crystal data top
C16H14BrN3O5F(000) = 824
Mr = 408.21Dx = 1.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3262 (11) ÅCell parameters from 1261 reflections
b = 14.8369 (19) Åθ = 3.3–23.2°
c = 14.0764 (13) ŵ = 2.50 mm1
β = 106.558 (14)°T = 293 K
V = 1666.8 (4) Å3Plate, yellow
Z = 40.09 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.065
φ and ω scansθmax = 29.0°, θmin = 3.6°
Absorption correction: multi-scan
(North et al., 1968)
h = 1011
Tmin = 0.666, Tmax = 1.000k = 1910
4830 measured reflectionsl = 918
3187 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.096 w = 1/[σ2(Fo2) + (0.0381P)2 + 5.1653P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.66 e Å3
3187 reflectionsΔρmin = 0.69 e Å3
235 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0076 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3935 (9)0.2162 (5)0.6270 (5)0.038 (2)
H10.4151740.2232000.6951230.046*
C20.2457 (9)0.1749 (5)0.5739 (5)0.0348 (19)
C30.2169 (9)0.1645 (5)0.4728 (5)0.0339 (18)
H30.1185840.1372700.4354090.041*
C40.3340 (9)0.1944 (5)0.4272 (5)0.0328 (18)
C50.4810 (9)0.2391 (5)0.4784 (5)0.0308 (17)
C60.5083 (9)0.2468 (6)0.5818 (5)0.040 (2)
H60.6067440.2733420.6200510.049*
C70.1197 (10)0.1486 (6)0.6245 (6)0.0386 (19)
C80.1484 (10)0.0834 (7)0.6023 (6)0.061 (3)
H8A0.2368620.0558740.5513670.091*
H8B0.1072220.0413020.6554680.091*
H8C0.1906350.1359680.6269040.091*
C90.8528 (10)0.3310 (6)0.4527 (5)0.040 (2)
C101.0108 (9)0.3711 (6)0.5111 (5)0.0373 (19)
C111.1267 (10)0.4052 (5)0.4648 (6)0.040 (2)
C121.2709 (10)0.4470 (6)0.5203 (6)0.046 (2)
H121.3450650.4712520.4887420.055*
C131.3069 (10)0.4532 (6)0.6226 (6)0.052 (2)
H131.4047180.4809820.6598770.063*
C141.1940 (10)0.4174 (6)0.6681 (5)0.043 (2)
C151.0485 (9)0.3762 (5)0.6140 (5)0.0357 (18)
H150.9753100.3516820.6462020.043*
C161.1856 (12)0.4401 (7)0.3120 (6)0.069 (3)
H16A1.1414190.4283220.2423870.104*
H16B1.1856560.5038690.3235550.104*
H16C1.2980620.4175110.3350160.104*
N10.2911 (8)0.1797 (5)0.3208 (4)0.0370 (16)
N20.5978 (8)0.2714 (5)0.4364 (5)0.0424 (18)
N30.7457 (8)0.3049 (5)0.4962 (4)0.0393 (16)
O10.0146 (7)0.1088 (4)0.5621 (4)0.0494 (16)
O20.1325 (7)0.1613 (4)0.7107 (4)0.0548 (17)
O30.1809 (8)0.1260 (5)0.2817 (4)0.0612 (18)
O40.3693 (6)0.2228 (4)0.2728 (3)0.0544 (17)
O51.0838 (7)0.3963 (4)0.3644 (4)0.0545 (17)
BR11.24638 (13)0.41918 (8)0.80847 (6)0.0681 (5)
H2A0.576 (7)0.270 (4)0.375 (4)0.014 (16)*
H90.825 (7)0.329 (4)0.386 (4)0.012 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (4)0.050 (6)0.025 (3)0.001 (4)0.004 (4)0.002 (4)
C20.035 (4)0.046 (5)0.025 (3)0.004 (4)0.011 (3)0.004 (3)
C30.033 (4)0.040 (5)0.028 (3)0.005 (4)0.007 (3)0.004 (3)
C40.038 (4)0.040 (5)0.020 (3)0.002 (4)0.008 (3)0.003 (3)
C50.025 (4)0.039 (5)0.028 (3)0.001 (4)0.006 (3)0.003 (3)
C60.033 (4)0.056 (6)0.030 (3)0.003 (4)0.006 (4)0.005 (4)
C70.038 (4)0.041 (6)0.039 (4)0.008 (4)0.016 (4)0.004 (4)
C80.038 (5)0.091 (8)0.059 (5)0.003 (5)0.022 (4)0.007 (5)
C90.037 (5)0.051 (6)0.027 (4)0.002 (4)0.004 (4)0.001 (4)
C100.032 (4)0.044 (5)0.035 (4)0.007 (4)0.008 (4)0.003 (4)
C110.035 (4)0.040 (6)0.042 (4)0.006 (4)0.010 (4)0.004 (4)
C120.039 (5)0.042 (6)0.056 (5)0.008 (4)0.012 (4)0.001 (4)
C130.039 (5)0.055 (6)0.060 (5)0.000 (4)0.011 (5)0.003 (5)
C140.044 (5)0.042 (6)0.037 (4)0.003 (4)0.002 (4)0.001 (4)
C150.031 (4)0.037 (5)0.038 (4)0.006 (4)0.007 (4)0.003 (4)
C160.073 (6)0.095 (9)0.052 (5)0.006 (6)0.037 (5)0.010 (5)
N10.034 (4)0.053 (5)0.025 (3)0.001 (3)0.011 (3)0.003 (3)
N20.038 (4)0.064 (5)0.025 (3)0.002 (4)0.008 (3)0.004 (3)
N30.033 (4)0.053 (5)0.030 (3)0.009 (3)0.004 (3)0.003 (3)
O10.044 (3)0.070 (5)0.040 (3)0.005 (3)0.021 (3)0.000 (3)
O20.060 (4)0.079 (5)0.031 (3)0.002 (3)0.023 (3)0.000 (3)
O30.065 (4)0.081 (5)0.032 (3)0.035 (4)0.004 (3)0.012 (3)
O40.046 (3)0.090 (5)0.028 (3)0.012 (3)0.013 (3)0.001 (3)
O50.054 (4)0.075 (5)0.038 (3)0.008 (3)0.020 (3)0.005 (3)
BR10.0721 (8)0.0855 (9)0.0375 (5)0.0200 (6)0.0007 (5)0.0053 (5)
Geometric parameters (Å, º) top
C1—C61.369 (10)C9—H90.90 (5)
C1—C21.386 (10)C10—C151.394 (9)
C1—H10.9300C10—C111.404 (10)
C2—C31.383 (9)C11—O51.362 (9)
C2—C71.479 (10)C11—C121.379 (11)
C3—C41.385 (9)C12—C131.388 (11)
C3—H30.9300C12—H120.9300
C4—C51.399 (10)C13—C141.385 (11)
C4—N11.454 (8)C13—H130.9300
C5—N21.361 (9)C14—C151.377 (10)
C5—C61.411 (9)C14—BR11.899 (7)
C6—H60.9300C15—H150.9300
C7—O21.201 (8)C16—O51.428 (9)
C7—O11.346 (9)C16—H16A0.9600
C8—O11.437 (9)C16—H16B0.9600
C8—H8A0.9600C16—H16C0.9600
C8—H8B0.9600N1—O31.221 (8)
C8—H8C0.9600N1—O41.240 (7)
C9—N31.277 (9)N2—N31.371 (8)
C9—C101.464 (11)N2—H2A0.83 (6)
C6—C1—C2121.8 (6)C11—C10—C9120.8 (7)
C6—C1—H1119.1O5—C11—C12124.1 (7)
C2—C1—H1119.1O5—C11—C10115.8 (7)
C3—C2—C1118.1 (7)C12—C11—C10120.1 (7)
C3—C2—C7121.8 (7)C11—C12—C13120.9 (8)
C1—C2—C7120.0 (6)C11—C12—H12119.5
C2—C3—C4120.2 (7)C13—C12—H12119.5
C2—C3—H3119.9C14—C13—C12118.6 (8)
C4—C3—H3119.9C14—C13—H13120.7
C3—C4—C5122.8 (6)C12—C13—H13120.7
C3—C4—N1115.5 (7)C15—C14—C13121.5 (7)
C5—C4—N1121.7 (6)C15—C14—BR1119.1 (6)
N2—C5—C4124.8 (6)C13—C14—BR1119.4 (6)
N2—C5—C6119.6 (7)C14—C15—C10120.0 (7)
C4—C5—C6115.5 (6)C14—C15—H15120.0
C1—C6—C5121.6 (7)C10—C15—H15120.0
C1—C6—H6119.2O5—C16—H16A109.5
C5—C6—H6119.2O5—C16—H16B109.5
O2—C7—O1123.1 (7)H16A—C16—H16B109.5
O2—C7—C2125.0 (8)O5—C16—H16C109.5
O1—C7—C2111.9 (6)H16A—C16—H16C109.5
O1—C8—H8A109.5H16B—C16—H16C109.5
O1—C8—H8B109.5O3—N1—O4122.3 (6)
H8A—C8—H8B109.5O3—N1—C4119.6 (6)
O1—C8—H8C109.5O4—N1—C4118.0 (6)
H8A—C8—H8C109.5C5—N2—N3119.2 (6)
H8B—C8—H8C109.5C5—N2—H2A118 (4)
N3—C9—C10119.5 (7)N3—N2—H2A122 (4)
N3—C9—H9119 (4)C9—N3—N2116.3 (6)
C10—C9—H9121 (4)C7—O1—C8116.8 (6)
C15—C10—C11118.9 (7)C11—O5—C16118.2 (7)
C15—C10—C9120.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.832.032.635 (3)129
C3—H3···O10.932.392.712 (4)100
C6—H6···N30.932.402.731 (4)101
C6—H6···O4i0.932.593.444 (5)152
C15—H15···O4i0.932.463.358 (4)161
Symmetry code: (i) x1/2, y1/2, z1/2.
Summary of various contacts and their contributions to the Hirshfeld surface top
ContactsPercentage contribution
Br···C/ C···Br1.6
Br···H/ H···Br11.7
Br···N/ N···Br0.7
Br···O/ O···Br2.8
C···C8.1
C···H/ H···C12.5
C···O/ O···C2.7
H···H27.2
H···N/ N···H5.5
H···O/ O···H25.1
N···O/ O···N1.1
O···O1.0
 

Acknowledgements

Authors are thankful to the DST–FIST, New Delhi, for providing the Kappa APEXII single-crystal X-ray diffractometer facility at Department of Physics, Sardar Patel University, Vallabh vidyanagar, Gujarat, India. One of the authors (TJM) is thankful to LDRP–Institute of Technology & Research, Gandhinagar, for giving necessary permission.

References

First citationBanerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785–2793.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arch. Org. Chem. 1, 275–332.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, E. J. & Enders, D. (1976). Tetrahedron Lett. 17, 11–14.  CrossRef Google Scholar
First citationCortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 754–760.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDey, D. & Chopra, D. (2017). Acta Cryst. B73, 781–793.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGünes, B., Özbey, S. & Tezcan, H. (2003). Anal. Sci. 19, 1091–1092.  Google Scholar
First citationLevrand, B., Fiebera, W., Lehn, J.-M. & Herrmann, A. (2007). Helv. Chim. Acta, 90, 2281–2314.  Web of Science CrossRef Google Scholar
First citationLi, Y., Zhang, C. G., Cai, L. Y. & Wang, Z. X. (2013). J. Coord. Chem. 66, 3100–3112.  Web of Science CrossRef Google Scholar
First citationLi, L., Zhu, L., Chen, D., Hu, X. & Wang, R. (2011). Eur. J. Org. Chem. pp. 2692–2696.  Web of Science CrossRef Google Scholar
First citationLuo, Y. H. & Sun, B. W. (2014). Spectrochim. Acta Part A, 120, 381–388.  Web of Science CrossRef Google Scholar
First citationLuo, Y. H., Wu, G. G., Mao, S. L. & Sun, B. W. (2013). Inorg. Chim. Acta, 397, 1–9.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612.  Web of Science CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeth, S. K., Mandal, P. C., Kar, T. & Mukhopadhyay, S. (2011). J. Mol. Struct. 994, 109–116.  Web of Science CrossRef Google Scholar
First citationShad, H. A., Tahir, M. N., Tariq, M. I., Sarfraz, M. & Ahmad, S. (2010). Acta Cryst. E66, o1955.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToledano-Magaña, Y., García-Ramos, J. C., Navarro-Olivarria, M., Flores-Alamo, M., Manzanera-Estrada, M., Ortiz-Frade, L., Galindo-Murillo, R., Ruiz-Azuara, L., Meléndrez-Luevano, R. M. & Cabrera-Vivas, B. M. (2015). Molecules, 20, 9929–9948.  Google Scholar
First citationUppal, G., Bala, S., Kamboj, S. & Saini, M. (2011). Der. Pharma Chem. 3, 250–68.  Google Scholar
First citationVickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072–1075.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, A., Senter, M. & Peter, D. (2005). Nat. Biotechnol. 23, 1137–1146.  Web of Science CrossRef Google Scholar
First citationXavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986–990.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds