research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tebipenem pivoxil

CROSSMARK_Color_square_no_text.svg

aChina State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, People's Republic of China, and bUniversity of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, SC 29720, USA
*Correspondence e-mail: CAILI@mailbox.sc.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 29 June 2018; accepted 25 July 2018; online 10 August 2018)

The mol­ecular structure of the first orally active carbapenem anti­bacterial agent, tebipenem pivoxil (systematic name: (2,2-di­methyl­propano­yloxy)methyl (4R,5S,6S)-3-{[1-(4,5-di­hydro-1,3-thia­zol-2-yl)azetidin-3-yl]sulfanyl}-6-[(1R)-1-hy­droxy­eth­yl]-4-methyl-7-oxo-1-aza­bicyclo­[3.2.0]hept-2-ene-2-carboxyl­ate), C22H31N3O6S2, has been determined and the configurations of the four chiral centers validated. The title compound crystallizes in the triclinic space group P1 with one mol­ecule in the unit cell. Three out of the four rings adopt planar conformations while the thia­zolinyl ring adopts an enveloped conformation. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into chains along [1[\overline{1}]0].

1. Chemical context

Carbapenem anti­biotics, like all β-lactam anti­bacterials that bind to and inhibit the peptidoglycan cross-linking transpeptidases, have attracted increasing attention recently because of their broader spectrum activities and stronger bactericidal actions compared to cephalosporins and penicillins. Since the first carbapenem structure thienamycin, a natural product derived from Streptomyces cattleya, was isolated in 1976 (Johnston et al., 1978[Johnston, D. B. R., Schmitt, S. M., Bouffard, F. A. & Christensen, B. G. (1978). J. Am. Chem. Soc. 100, 313-315.]), a handful of subsequent parenteral carbapenem agents, such as imipenem, panipenem, meropenem, biapenem, have been developed based on this parent compound and used clinically for the treatment of severe bacterial infections.

[Scheme 1]

Tebipenem pivoxil (see scheme[link]), as a novel oral carbapenem agent, was approved by the Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on Apr 22, 2009. It was developed and marketed as Orapenem® by Meiji Seika in Japan (as of 05/16/2016, the only approved country/area for its usage was Japan for treating children, as these oral anti­biotics are often better tolerated than infusions) (Kijima et al., 2009[Kijima, K., Morita, J., Suzuki, K., Aoki, M., Kato, K., Hayashi, H., Shibasaki, S. & Kurosawa, T. (2009). Jpn. J. Antibiot. 62, 214-240.]). It is a prodrug that is quickly hydrolysed to the active anti­microbial agent LJC11,036 (5, reaction scheme[link]) because the absorption rate of the pivaloyloxymethyl ester is higher than that of other prodrug-type β-lactam anti­biotics (Kato et al., 2010[Kato, K., Shirasaka, Y., Kuraoka, E., Kikuchi, A., Iguchi, M., Suzuki, H., Shibasaki, S., Kurosawa, T. & Tamai, I. (2010). Mol. Pharm. 7, 1747-1756.]). The active metabolite 5 shows potent and well-balanced anti­bacterial activity and also shows higher stability to human renal de­hydro­peptidase-I than meropenem (Isoda et al., 2006a[Isoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. 59, 241-247.]; Kobayashi et al., 2005[Kobayashi, R., Konomi, M., Hasegawa, K., Morozumi, M., Sunakawa, K. & Ubukata, K. (2005). Antimicrob. Agents Chemother. 49, 889-894.]). Research has also revealed that the tebipenbem ac­yl–β-lactamase covalent complex remains very stable for longer than 90 min, partly explaining its resistance towards hydrolysis (Papp-Wallace et al., 2011[Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. (2011). Antimicrob. Agents Chemother. 55, 4943-4960.]).

[Scheme 2]

Tebipenem pivoxil has a complex structure with four chiral centers and a 1-(1,3-thia­zolin-2-yl)azetidin-3-yl­thio side chain at the C-2 position. We hope the structural elucidation will facilitate future mechanistic studies of this mol­ecule and of its inter­actions with enzymes that are responsible for bacterial resistance.

2. Structural commentary

Tebipenem pivoxil (Fig. 1[link]) crystallizes in the triclinic space group P1 with one mol­ecule in the unit cell. The present crystal structure dertermination allowed the configurations of the four chiral centers to be validated as: C2S, C3S, C4R, C7R. Rings I (N1/C1–C3), II (N1/C3–C6) and III (N2/C11–C13) adopt planar conformations (with r.m.s. deviations of 0.0251, 0.0838, and 0.0967 Å, respectively) while ring IV (N3/S2/C14–C16) adopts an envelope conformation with atom C16 as the flap. The dihedral angles between rings I and II, II and III, and III and IV are 46.7 (2), 85.7 (2), and 11.9 (4)°, respectively. Atoms C9 (meth­yl) and C7 are located above and below the planes of rings I and II because of steric hindrance.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 30% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, O—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into chains along [1[\overline{1}]0]. C—H⋯O hydrogen bonds are also observed. The packing viewed along the a axis is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N3i 0.82 2.01 2.816 (6) 169
C11—H11A⋯O2ii 0.98 2.43 3.366 (6) 160
Symmetry codes: (i) x-1, y+1, z; (ii) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing viewed along the crystallographic a axis showing the O—H⋯N hydrogen bonds (Table 1[link]) as dashed lines.

4. Database survey

The tebipenem pivoxil we obtained was well characterized spectroscopically and carefully compared with reference values (Isoda et al., 2006a[Isoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. 59, 241-247.]). To the best of our knowledge, including a search of the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), no single crystal structure determination has previously been reported for this drug.

5. Synthesis and crystallization

As shown in the reaction scheme[link] (also see Supporting Information), 3-mercapto-1-(1,3-thia­zolin-2-yl)-azetidine hydro­chloride (3) was first synthesized according to a method previously reported (Isoda et al., 2006b[Isoda, T., Yamamura, I., Tamai, S., Kumagai, T. & Nagao, Y. (2006b). Chem. Pharm. Bull. 54, 1408-1411.]) with minor optimizations. The side chain 3 was then coupled with the commercially available carbapenem core (2), followed by hydrogenation/deprotection and SN2 esterification to afford the desired tebipenem pivoxil 1 (Isoda et al., 2006a[Isoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. 59, 241-247.],b[Isoda, T., Yamamura, I., Tamai, S., Kumagai, T. & Nagao, Y. (2006b). Chem. Pharm. Bull. 54, 1408-1411.]). Instead of using column chromatography, we successfully obtained pure tebipenem pivoxil on a relatively large scale through recrystallization from ethyl acetate, yielding colourless block-shaped crystals. The HPLC spectrum of the final product showed a single peak with less than 0.1% of impurities. [α]D8 = +9.6°, m.p. = 407–409 K. Elemental analysis calculated for C22H31N3O6S2: C, 53.10; H, 6.28; N, 8.44; S, 12.89; Found: C, 53.13; H, 6.32; N, 8.45; S, 12.94. HRESI–MS calculated for C22H32N3O6S2 ([M + H]+): 498.1727, found: 498.1867. The structure has also been characterized with 1H NMR, 13C NMR, and IR spectroscopy. 1H NMR, 13C NMR, and IR spectra of tebipenem pivoxil 1 are included in the supporting information and compared with reference values, including the assignment of NMR chemical shifts and IR absorption bands (Isoda et al., 2006a[Isoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. 59, 241-247.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the refinement, all H atoms were positioned geometrically and refined as riding: C—H = 0.96–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C22H31N3O6S2
Mr 497.62
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 7.7292 (10), 7.9892 (9), 11.2035 (13)
α, β, γ (°) 108.300 (7), 92.553 (7), 101.499 (8)
V3) 639.36 (14)
Z 1
Radiation type Cu Kα
μ (mm−1) 2.23
Crystal size (mm) 0.17 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.703, 0.808
No. of measured, independent and observed [I > 2σ(I)] reflections 3454, 2483, 2389
Rint 0.019
(sin θ/λ)max−1) 0.592
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.04
No. of reflections 2483
No. of parameters 298
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21
Absolute structure Flack x determined using 531 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.140 (12)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXS2018/3 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2018/3 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

\ (2,2-Dimethylpropanoyloxy)methyl (4R,5S,6S)-3-{[1-(4,5-dihydro-1,3-thiazol-2-yl)azetidin-\ 3-yl]sulfanyl}-6-[(1R)-1-hydroxyethyl]-4-methyl-7-oxo-1-\ azabicyclo[3.2.0]hept-2-ene-2-carboxylate top
Crystal data top
C22H31N3O6S2Z = 1
Mr = 497.62F(000) = 264
Triclinic, P1Dx = 1.292 Mg m3
a = 7.7292 (10) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.9892 (9) ÅCell parameters from 2598 reflections
c = 11.2035 (13) Åθ = 4.2–65.6°
α = 108.300 (7)°µ = 2.23 mm1
β = 92.553 (7)°T = 296 K
γ = 101.499 (8)°Block, colorless
V = 639.36 (14) Å30.17 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2389 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 65.9°, θmin = 4.2°
Tmin = 0.703, Tmax = 0.808h = 79
3454 measured reflectionsk = 99
2483 independent reflectionsl = 1312
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.0878P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.015
S = 1.04Δρmax = 0.33 e Å3
2483 reflectionsΔρmin = 0.21 e Å3
298 parametersAbsolute structure: Flack x determined using 531 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.140 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33764 (12)0.37913 (11)0.01567 (9)0.0531 (3)
S20.6657 (3)0.6243 (2)0.50488 (14)0.0889 (5)
O10.0384 (5)0.8665 (5)0.1269 (3)0.0695 (9)
O20.0964 (4)1.0714 (4)0.1973 (3)0.0601 (8)
H2A0.1398071.1525530.2405660.090*
O30.4728 (4)0.6066 (5)0.1353 (3)0.0626 (8)
O40.3985 (4)0.8733 (4)0.1081 (3)0.0589 (8)
O50.4493 (5)1.0081 (6)0.2577 (4)0.0781 (11)
O60.2673 (7)0.7659 (6)0.3881 (6)0.1060 (16)
N10.1226 (4)0.7928 (4)0.0285 (3)0.0447 (7)
N20.5213 (7)0.3896 (6)0.2801 (4)0.0737 (12)
N30.7629 (6)0.3330 (6)0.3725 (4)0.0679 (11)
C10.0250 (6)0.8214 (6)0.0352 (4)0.0486 (9)
C20.1483 (5)0.7724 (5)0.0574 (4)0.0455 (8)
H2B0.2382650.6612010.0143280.055*
C30.0144 (5)0.7296 (5)0.1179 (4)0.0442 (8)
H3B0.0507880.8086060.2057720.053*
C40.0397 (6)0.5350 (6)0.0968 (4)0.0498 (9)
H4A0.0588780.5168300.1785160.060*
C50.2114 (5)0.5408 (5)0.0341 (4)0.0437 (8)
C60.2416 (5)0.6785 (5)0.0123 (4)0.0436 (8)
C70.2320 (5)0.9153 (5)0.1391 (4)0.0483 (9)
H7A0.3168880.9440120.0852090.058*
C80.3299 (7)0.8508 (7)0.2361 (5)0.0651 (12)
H8A0.4211470.7445670.1935710.098*
H8B0.2479300.8224820.2896740.098*
H8C0.3828090.9442590.2864730.098*
C90.1081 (6)0.3822 (7)0.0108 (7)0.0762 (16)
H9A0.2153960.3793780.0508150.114*
H9B0.1277530.4023220.0682870.114*
H9C0.0739700.2688300.0041650.114*
C100.3811 (5)0.7099 (6)0.0923 (4)0.0472 (9)
C110.2935 (6)0.3012 (6)0.1482 (5)0.0535 (10)
H11A0.1755640.2227690.1397340.064*
C120.4501 (6)0.2200 (5)0.1758 (5)0.0532 (10)
H12A0.4152440.1152920.2029180.064*
H12B0.5252360.1962470.1081460.064*
C130.3520 (6)0.4482 (6)0.2791 (5)0.0581 (11)
H13A0.3647170.5708570.2777520.070*
H13B0.2808490.4284260.3446630.070*
C140.6465 (6)0.4232 (6)0.3738 (4)0.0559 (11)
C150.8971 (11)0.4207 (12)0.4850 (8)0.116 (3)
H15A1.0043550.4820930.4610130.140*
H15B0.9271240.3290860.5168390.140*
C160.8293 (11)0.5528 (11)0.5860 (6)0.098 (2)
H16A0.9247350.6550120.6325170.118*
H16B0.7755730.4967380.6447190.118*
C170.5186 (7)0.9092 (9)0.1956 (6)0.0739 (14)
H17A0.6343180.9765450.1505430.089*
H17B0.5326120.7964820.2556470.089*
C180.3224 (8)0.9266 (8)0.3535 (5)0.0724 (14)
C190.2625 (11)1.0577 (9)0.4111 (5)0.0854 (18)
C200.406 (2)1.2163 (17)0.4024 (14)0.181 (6)
H20A0.4552411.2768020.3155840.271*
H20B0.4976951.1765720.4517230.271*
H20C0.3584951.2982850.4341030.271*
C210.179 (2)0.9556 (19)0.5419 (9)0.183 (6)
H21A0.0870400.8550320.5414450.274*
H21B0.1273951.0335710.5757740.274*
H21C0.2665960.9118580.5933940.274*
C220.1304 (18)1.1339 (17)0.3284 (9)0.142 (4)
H22A0.1882411.1993310.2442990.213*
H22B0.0825581.2141420.3618970.213*
H22C0.0359521.0369840.3262180.213*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0556 (6)0.0528 (5)0.0564 (6)0.0265 (4)0.0067 (4)0.0168 (4)
S20.1153 (13)0.0862 (10)0.0592 (7)0.0530 (9)0.0044 (7)0.0025 (7)
O10.078 (2)0.096 (3)0.0542 (19)0.0412 (19)0.0077 (16)0.0382 (18)
O20.0553 (17)0.0497 (16)0.070 (2)0.0134 (14)0.0171 (15)0.0107 (15)
O30.0572 (18)0.0701 (19)0.067 (2)0.0282 (17)0.0193 (15)0.0220 (16)
O40.0610 (18)0.0706 (18)0.0592 (18)0.0253 (15)0.0183 (14)0.0332 (16)
O50.081 (2)0.102 (3)0.0598 (19)0.014 (2)0.0054 (17)0.042 (2)
O60.099 (3)0.077 (3)0.126 (4)0.020 (2)0.015 (3)0.014 (3)
N10.0461 (17)0.0475 (17)0.0448 (17)0.0201 (14)0.0055 (14)0.0155 (14)
N20.072 (3)0.076 (3)0.068 (3)0.045 (2)0.005 (2)0.002 (2)
N30.064 (2)0.065 (2)0.064 (2)0.029 (2)0.0105 (19)0.001 (2)
C10.050 (2)0.052 (2)0.041 (2)0.0208 (18)0.0003 (16)0.0081 (18)
C20.0405 (19)0.048 (2)0.046 (2)0.0151 (16)0.0009 (16)0.0099 (17)
C30.043 (2)0.052 (2)0.0400 (18)0.0173 (16)0.0043 (15)0.0141 (17)
C40.044 (2)0.058 (2)0.058 (2)0.0244 (18)0.0084 (17)0.026 (2)
C50.0399 (18)0.0476 (19)0.0424 (19)0.0142 (16)0.0011 (15)0.0112 (17)
C60.0399 (19)0.047 (2)0.0416 (18)0.0131 (16)0.0002 (14)0.0097 (16)
C70.0414 (19)0.048 (2)0.058 (2)0.0179 (17)0.0050 (17)0.0158 (18)
C80.062 (3)0.061 (3)0.079 (3)0.019 (2)0.024 (2)0.026 (2)
C90.045 (2)0.053 (3)0.129 (5)0.008 (2)0.004 (3)0.031 (3)
C100.0422 (19)0.057 (2)0.043 (2)0.0152 (19)0.0019 (16)0.0155 (18)
C110.045 (2)0.051 (2)0.070 (3)0.0151 (18)0.0032 (19)0.026 (2)
C120.057 (2)0.043 (2)0.062 (2)0.0210 (18)0.001 (2)0.0162 (18)
C130.059 (3)0.066 (3)0.063 (3)0.035 (2)0.016 (2)0.026 (2)
C140.063 (3)0.057 (2)0.049 (2)0.025 (2)0.008 (2)0.013 (2)
C150.098 (5)0.119 (6)0.102 (5)0.055 (5)0.043 (5)0.016 (5)
C160.101 (5)0.115 (5)0.067 (4)0.036 (4)0.014 (3)0.010 (4)
C170.056 (3)0.113 (4)0.070 (3)0.024 (3)0.019 (2)0.051 (3)
C180.069 (3)0.072 (3)0.069 (3)0.012 (3)0.008 (3)0.016 (3)
C190.128 (5)0.087 (4)0.048 (3)0.037 (4)0.001 (3)0.025 (3)
C200.247 (16)0.137 (9)0.167 (11)0.007 (9)0.005 (11)0.089 (8)
C210.267 (18)0.196 (12)0.070 (5)0.079 (12)0.037 (7)0.014 (6)
C220.190 (11)0.185 (10)0.095 (6)0.122 (9)0.017 (6)0.057 (6)
Geometric parameters (Å, º) top
S1—C51.737 (4)C8—H8A0.9600
S1—C111.802 (4)C8—H8B0.9600
S2—C141.778 (5)C8—H8C0.9600
S2—C161.807 (7)C9—H9A0.9600
O1—C11.197 (5)C9—H9B0.9600
O2—C71.409 (5)C9—H9C0.9600
O2—H2A0.8200C11—C131.544 (7)
O3—C101.196 (5)C11—C121.546 (6)
O4—C101.354 (5)C11—H11A0.9800
O4—C171.433 (6)C12—H12A0.9700
O5—C181.323 (7)C12—H12B0.9700
O5—C171.370 (7)C13—H13A0.9700
O6—C181.198 (7)C13—H13B0.9700
N1—C11.413 (5)C15—C161.480 (11)
N1—C61.414 (6)C15—H15A0.9700
N1—C31.477 (5)C15—H15B0.9700
N2—C141.319 (6)C16—H16A0.9700
N2—C121.468 (6)C16—H16B0.9700
N2—C131.476 (6)C17—H17A0.9700
N3—C141.258 (6)C17—H17B0.9700
N3—C151.481 (7)C18—C191.523 (8)
C1—C21.527 (6)C19—C211.479 (10)
C2—C71.500 (6)C19—C201.483 (15)
C2—C31.549 (5)C19—C221.499 (13)
C2—H2B0.9800C20—H20A0.9600
C3—C41.551 (6)C20—H20B0.9600
C3—H3B0.9800C20—H20C0.9600
C4—C91.527 (7)C21—H21A0.9600
C4—C51.528 (6)C21—H21B0.9600
C4—H4A0.9800C21—H21C0.9600
C5—C61.342 (6)C22—H22A0.9600
C6—C101.466 (6)C22—H22B0.9600
C7—C81.512 (6)C22—H22C0.9600
C7—H7A0.9800
C5—S1—C11102.76 (19)C13—C11—H11A114.7
C14—S2—C1688.8 (3)C12—C11—H11A114.7
C7—O2—H2A109.5S1—C11—H11A114.7
C10—O4—C17116.1 (4)N2—C12—C1188.2 (3)
C18—O5—C17120.2 (5)N2—C12—H12A114.0
C1—N1—C6132.4 (3)C11—C12—H12A114.0
C1—N1—C393.1 (3)N2—C12—H12B114.0
C6—N1—C3108.6 (3)C11—C12—H12B114.0
C14—N2—C12128.7 (4)H12A—C12—H12B111.2
C14—N2—C13130.5 (5)N2—C13—C1188.0 (4)
C12—N2—C1392.8 (4)N2—C13—H13A114.0
C14—N3—C15111.1 (5)C11—C13—H13A114.0
O1—C1—N1131.4 (4)N2—C13—H13B114.0
O1—C1—C2136.6 (4)C11—C13—H13B114.0
N1—C1—C291.9 (3)H13A—C13—H13B111.2
C7—C2—C1118.6 (3)N3—C14—N2124.9 (5)
C7—C2—C3117.9 (3)N3—C14—S2117.5 (4)
C1—C2—C386.1 (3)N2—C14—S2117.3 (4)
C7—C2—H2B110.7N3—C15—C16111.0 (6)
C1—C2—H2B110.7N3—C15—H15A109.4
C3—C2—H2B110.7C16—C15—H15A109.4
N1—C3—C288.6 (3)N3—C15—H15B109.4
N1—C3—C4104.6 (3)C16—C15—H15B109.4
C2—C3—C4123.7 (3)H15A—C15—H15B108.0
N1—C3—H3B112.2C15—C16—S2105.3 (5)
C2—C3—H3B112.2C15—C16—H16A110.7
C4—C3—H3B112.2S2—C16—H16A110.7
C9—C4—C5109.9 (4)C15—C16—H16B110.7
C9—C4—C3115.8 (4)S2—C16—H16B110.7
C5—C4—C3100.8 (3)H16A—C16—H16B108.8
C9—C4—H4A110.0O5—C17—O4108.0 (4)
C5—C4—H4A110.0O5—C17—H17A110.1
C3—C4—H4A110.0O4—C17—H17A110.1
C6—C5—C4110.6 (4)O5—C17—H17B110.1
C6—C5—S1125.5 (3)O4—C17—H17B110.1
C4—C5—S1123.7 (3)H17A—C17—H17B108.4
C5—C6—N1110.9 (3)O6—C18—O5120.9 (6)
C5—C6—C10125.1 (4)O6—C18—C19126.3 (6)
N1—C6—C10124.0 (3)O5—C18—C19112.8 (5)
O2—C7—C2107.8 (3)C21—C19—C20113.4 (9)
O2—C7—C8111.5 (4)C21—C19—C22111.2 (10)
C2—C7—C8111.3 (4)C20—C19—C22105.0 (9)
O2—C7—H7A108.7C21—C19—C18108.6 (7)
C2—C7—H7A108.7C20—C19—C18113.3 (8)
C8—C7—H7A108.7C22—C19—C18105.0 (6)
C7—C8—H8A109.5C19—C20—H20A109.5
C7—C8—H8B109.5C19—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
C7—C8—H8C109.5C19—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C4—C9—H9A109.5C19—C21—H21A109.5
C4—C9—H9B109.5C19—C21—H21B109.5
H9A—C9—H9B109.5H21A—C21—H21B109.5
C4—C9—H9C109.5C19—C21—H21C109.5
H9A—C9—H9C109.5H21A—C21—H21C109.5
H9B—C9—H9C109.5H21B—C21—H21C109.5
O3—C10—O4123.8 (4)C19—C22—H22A109.5
O3—C10—C6124.3 (4)C19—C22—H22B109.5
O4—C10—C6111.9 (4)H22A—C22—H22B109.5
C13—C11—C1287.3 (3)C19—C22—H22C109.5
C13—C11—S1114.7 (3)H22A—C22—H22C109.5
C12—C11—S1107.7 (3)H22B—C22—H22C109.5
C6—N1—C1—O156.9 (7)C17—O4—C10—O38.5 (6)
C3—N1—C1—O1175.8 (5)C17—O4—C10—C6173.7 (4)
C6—N1—C1—C2122.9 (4)C5—C6—C10—O37.5 (6)
C3—N1—C1—C24.0 (3)N1—C6—C10—O3173.8 (4)
O1—C1—C2—C764.2 (7)C5—C6—C10—O4170.2 (4)
N1—C1—C2—C7116.0 (4)N1—C6—C10—O48.4 (5)
O1—C1—C2—C3176.0 (6)C5—S1—C11—C1361.7 (3)
N1—C1—C2—C33.8 (3)C5—S1—C11—C12156.9 (3)
C1—N1—C3—C23.9 (3)C14—N2—C12—C11165.7 (6)
C6—N1—C3—C2140.9 (3)C13—N2—C12—C1115.0 (4)
C1—N1—C3—C4120.6 (3)C13—C11—C12—N214.4 (4)
C6—N1—C3—C416.3 (4)S1—C11—C12—N2100.7 (4)
C7—C2—C3—N1116.8 (4)C14—N2—C13—C11164.9 (6)
C1—C2—C3—N13.7 (3)C12—N2—C13—C1115.1 (4)
C7—C2—C3—C4136.5 (4)C12—C11—C13—N214.3 (4)
C1—C2—C3—C4103.1 (4)S1—C11—C13—N293.9 (4)
N1—C3—C4—C998.4 (5)C15—N3—C14—N2172.4 (7)
C2—C3—C4—C90.1 (6)C15—N3—C14—S20.9 (7)
N1—C3—C4—C520.2 (4)C12—N2—C14—N321.4 (9)
C2—C3—C4—C5118.5 (4)C13—N2—C14—N3161.4 (5)
C9—C4—C5—C6104.1 (4)C12—N2—C14—S2165.3 (4)
C3—C4—C5—C618.6 (4)C13—N2—C14—S225.3 (8)
C9—C4—C5—S171.2 (5)C16—S2—C14—N312.7 (5)
C3—C4—C5—S1166.1 (3)C16—S2—C14—N2173.4 (5)
C11—S1—C5—C6156.3 (3)C14—N3—C15—C1618.3 (10)
C11—S1—C5—C429.1 (4)N3—C15—C16—S226.1 (10)
C4—C5—C6—N19.5 (4)C14—S2—C16—C1521.0 (7)
S1—C5—C6—N1175.3 (3)C18—O5—C17—O480.2 (6)
C4—C5—C6—C10171.7 (4)C10—O4—C17—O5143.8 (4)
S1—C5—C6—C103.5 (5)C17—O5—C18—O60.7 (9)
C1—N1—C6—C5108.0 (4)C17—O5—C18—C19179.7 (5)
C3—N1—C6—C54.8 (4)O6—C18—C19—C2121.0 (12)
C1—N1—C6—C1073.2 (5)O5—C18—C19—C21158.0 (9)
C3—N1—C6—C10174.1 (3)O6—C18—C19—C20148.0 (9)
C1—C2—C7—O250.0 (5)O5—C18—C19—C2031.0 (10)
C3—C2—C7—O251.5 (5)O6—C18—C19—C2298.0 (9)
C1—C2—C7—C8172.6 (4)O5—C18—C19—C2283.0 (8)
C3—C2—C7—C871.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.822.012.816 (6)169
C11—H11A···O2ii0.982.433.366 (6)160
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: Chem_sq@163.com.

Acknowledgements

The authors thank Dr Jialiang Zhong at the China State Institute of Pharmaceutical Industry for helpful discussion.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. 59, 241–247.  Web of Science CrossRef Google Scholar
First citationIsoda, T., Yamamura, I., Tamai, S., Kumagai, T. & Nagao, Y. (2006b). Chem. Pharm. Bull. 54, 1408–1411.  Web of Science CrossRef Google Scholar
First citationJohnston, D. B. R., Schmitt, S. M., Bouffard, F. A. & Christensen, B. G. (1978). J. Am. Chem. Soc. 100, 313–315.  CrossRef Web of Science Google Scholar
First citationKato, K., Shirasaka, Y., Kuraoka, E., Kikuchi, A., Iguchi, M., Suzuki, H., Shibasaki, S., Kurosawa, T. & Tamai, I. (2010). Mol. Pharm. 7, 1747–1756.  Web of Science CrossRef Google Scholar
First citationKijima, K., Morita, J., Suzuki, K., Aoki, M., Kato, K., Hayashi, H., Shibasaki, S. & Kurosawa, T. (2009). Jpn. J. Antibiot. 62, 214–240.  Google Scholar
First citationKobayashi, R., Konomi, M., Hasegawa, K., Morozumi, M., Sunakawa, K. & Ubukata, K. (2005). Antimicrob. Agents Chemother. 49, 889–894.  Web of Science CrossRef Google Scholar
First citationPapp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. (2011). Antimicrob. Agents Chemother. 55, 4943–4960.  Web of Science CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds