research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(pivaloyl­hydroxamato-κ2O,O′)copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 62, Kiev, 01601, Ukraine, bDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA, and cDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907-2084, USA
*Correspondence e-mail: annpavlis@ukr.net

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 8 August 2018; accepted 28 August 2018; online 31 August 2018)

Reaction of copper(II) nitrate with pivaloyl­hydroxamic acid yielded the title compound, [Cu(pivHA)2] (where pivHA is pivaloyl hydroxamate, C5H10NO2). The centrosymmetric mononuclear complex consists of a CuII ion, which is located on a center of inversion, with two coordinated pivaloyl hydroxamate monoanions. The CuII ion has a square-planar coordination environment consisting of four O atoms – two carbonyl O atoms and two hydroxamate O atoms from two hydroxamate pivHA ligands. The pivHA anions are coordinated to copper(II) in a trans-mode, forming two five-membered O,O′-chelate rings.

1. Chemical context

Numerous studies over the past decade of various hydroxamate complexes with 3d and 4f metal ions have been inspired by their potential applications in mol­ecular magnetism, luminescence, adsorption and catalysis (Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]; Pavlishchuk et al., 2015[Pavlishchuk, A. V., Satska, Y. A., Kolotilov, S. V. & Fritsky, I. O. (2015). Curr. Inorg. Chem. 5, 5-25.]). The ability of further functionalized hydroxamic acids to serve as bridging ligands and to form polynuclear species with different structural motifs has been comprehensively examined in recent years (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Pavlishchuk et al., 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. doi: 1002ejic.201800461.]; Odarich et al., 2016[Odarich, I. A., Pavlishchuk, A. V., Kalibabchuk, V. A. & Haukka, M. (2016). Acta Cryst. E72, 147-150.]; McDonald et al., 2014[McDonald, C., Sanz, S., Brechin, E. K., Singh, M. K., Rajaraman, G., Gaynor, D. & Jones, L. F. (2014). RSC Adv. 4, 38182-38191.], 2015[McDonald, C., Williams, D. W., Comar, P., Coles, S. J., Keene, T. D., Pitak, M. B., Brechin, E. K. & Jones, L. F. (2015). Dalton Trans. 44, 13359-13368.]; Gaynor et al., 2002[Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506-507.]). Studies of simple unsubstituted hydroxamic acids have been undertaken because of their possible application as mimics of mononuclear iron(III) siderophores (Marmion et al., 2004[Marmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. pp. 3003-3016.]). As a result of the potentially multiple coordination modes of unsubstituted hydroxamic acids, they can also lead to the formation of polynuclear assemblies (Tirfoin et al., 2014[Tirfoin, R., Chamoreau, L.-M., Li, Y., Fleury, B., Lisnard, L. & Journaux, Y. (2014). Dalton Trans. 43, 16805-16817.]). However, reactions of unsubstituted hydroxamic acids with transition metal ions lead mainly to the formation of octa­hedral 1:3 (Abu-Dari et al., 1979[Abu-Dari, K., Ekstrand, J. D., Freyberg, D. P. & Raymond, K. N. (1979). Inorg. Chem. 18, 108-112.]) or square-planar 1:2 (Baughman et al., 2000[Baughman, R. G., Brink, D. J., Butler, J. M. & New, P. R. (2000). Acta Cryst. C56, 528-531.]) complexes with the hydroxamate in an O,O′-coordination mode. The ability of pivalic acid itself to form polynuclear metallamacrocyclic complexes with various metal ions is well known (Vitórica-Yrezábal et al., 2017[Vitórica-Yrezábal, I. J., Sava, D. F., Timco, G. A., Brown, M. S., Savage, M., Godfrey, H. G. W., Moreau, F., Schröder, M., Siperstein, F., Brammer, L., Yang, S., Attfield, M. P., McDouall, J. J. W. & Winpenny, R. E. P. (2017). Angew. Chem. Int. Ed. 56, 5527-5530.]; Garlatti et al., 2018[Garlatti, El. T., Guidi, A., Chiesa, S., Ansbro, S., Baker, J., Ollivier, H., Mutka, H., Timco, D. I., Vitorica-Yrezabal, E., Pavarini, P., Santini, G., Amoretti, G., Winpenny, S. & Carretta, S. (2018). Chem. Sci. 9, 3555-3562.]). The aim of the current work was to investigate if a tert-butyl-substituted hydroxamic acid (i.e. the hydroxamate analogue of pivalic acid) could be used as a scaffold for the preparation of polynuclear copper(II) complexes.

2. Structural commentary

Crystals of the title compound 1 were obtained by reaction of copper(II) nitrate hexa­hydrate with pivaloyl­hydroxamic acid in methanol.

[Scheme 1]

Complex 1 crystallizes in the space group I41/a, with eight [Cu(pivHA)2] complex mol­ecules per unit cell. The [Cu(pivHA)2] mol­ecules are centrosymmetric, with the copper ion located on an inversion center. Each [Cu(pivHA)2] mol­ecule contains one copper(II) ion in a square-planar coordination environment generated by the coordination of two pivaloyl­hydroxamate monoanions, forming five-membered chelate rings through both the carbonyl and hydroxamate O atoms (Fig. 1[link]). The centrosymmetric nature of the complex forces the copper(II) ions to be exactly coplanar with the four donor O atoms, O1O2O1iO2i [symmetry code: (i) −x, 1 − y, −z], and the two pivHA monoanions in [Cu(pivHA)2] are necessarily mutually trans-coordinated. The axial positions of the copper(II) ions remain unoccupied. The Cu—Ocarbon­yl and Cu—Ohydroxamate bond lengths are typical for copper(II) hydroxamate or oximate complexes (Buvailo et al., 2012[Buvailo, A. I., Pavlishchuk, A. V., Penkova, L. V., Kotova, N. V. & Haukka, M. (2012). Acta Cryst. E68, m1480-m1481.]; Pavlishchuk et al., 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152-13165.],b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866-4878.]) (Table 1[link]). The hydroxamate N—H groups remain protonated and are not involved in metal coordination. Deprotonation of the N—H groups could possibly be achieved at higher pH without hydrolysis of hydroxamic acid, which might aid in the formation of polynuclear complexes.

Table 1
Selected geometric parameters (Å, °)

C1—O2 1.2821 (13) O1—Cu1 1.8899 (8)
C1—N1 1.3066 (14) O2—Cu1 1.9244 (8)
N1—O1 1.3764 (12)    
       
O1—Cu1—O1i 180 (5) O1—Cu1—O2i 95.16 (3)
O1—Cu1—O2 84.84 (3) O1i—Cu1—O2i 84.84 (3)
O1i—Cu1—O2 95.16 (3) O2—Cu1—O2i 180
Symmetry code: (i) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of complex 1 showing the neutral centrosymmetric fragment [Cu(pivHA)2], along with the atom labelling. Displacement ellipsoids are at the 50% probability level. Symmetry code: (') −x, 1 − y, −z.

3. Supra­molecular features

Adjacent [Cu(pivHA)2] complexes are connected to each other via N1–H1⋯O1ii hydrogen bonds between the hydroxamate N—H group of one complex mol­ecule and a deprotonated hydroxamate oxygen of an adjacent [Cu(pivHA)2] mol­ecule (Table 2[link], Fig. 2[link]). Four of these N—H⋯O hydrogen bonds connect mol­ecules into tetra­mers arranged around a fourfold rotoinversion center. The N—H group of the second hydroxamate ligand of each complex creates an equivalent tetra­mer trans across the copper ion, thus creating an infinite three-dimensional network of corner-connected tetra­mers (with the copper ions acting as the bridging element, Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1ii 0.88 1.90 2.7185 (13) 154
Symmetry code: (ii) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{1\over 4}}].
[Figure 2]
Figure 2
A fragment of the lattice of complex 1, showing the intra­molecular hydrogen-bonding connections (dashed lines) between the [Cu(pivHA)2] mol­ecules. The tert-butyl groups are omitted for clarity.
[Figure 3]
Figure 3
A fragment of the packing of complex 1, showing the formation of supra­molecular tetra­mers [Cu(pivHA)2]4 formed by hydrogen bonds. The tert-butyl groups are omitted for clarity.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.27, updated in August 2012; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains one report with structural information for pivaloyl­hydroxamic acid (CCDC 1155138; Due et al., 1987[Due, L., Rasmussen, H. & Larsen, I. K. (1987). Acta Cryst. C43, 582-585.]). Though the survey did not contain any information about complexes with pivaloyl­hydroxamic acid, there are two reports devoted to structural studies of Th4+ (1180613 and 1180614; Smith & Raymond, 1981[Smith, W. L. & Raymond, K. N. (1981). J. Am. Chem. Soc. 103, 3341-3349.]) and MoO22+ (763210–763214; Dzyuba et al., 2010[Dzyuba, V. I., Koval, L. I., Bon, V. V. & Pekhnyo, V. I. (2010). Polyhedron, 29, 2900-2906.]) complexes with structurally similar ligands (N-isopropyl-2,2-di­methyl­propane­hydroxamate, N-isopropyl-3,3-di­methyl­butane­hydroxamate and decano-, N-methyl-decano-, N-methyl-hexano-, N-methyl-1-adamantano- or N-tert-butyl-hexa­nohydroxamates, respectively). It should be mentioned that coordination of hydroxamate ligands in the O,O′-chelating mode is quite typical (Tedeschi et al., 2003[Tedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P. & Picard, C. (2003). Dalton Trans. pp. 1738-1745.]; Seitz et al., 2007a[Seitz, M., Oliver, A. G. & Raymond, K. N. (2007a). J. Am. Chem. Soc. 129, 11153-11160.],b[Seitz, M., Pluth, M. D. & Raymond, K. N. (2007b). Inorg. Chem. 46, 351-353.]; Brewer & Sinn, 1981[Brewer, G. A. & Sinn, E. (1981). Inorg. Chem. 20, 1823-1830.]) and the CSD contains many records with such binding in various mononuclear bis-hydroxamate complexes (e.g. Drovetskaia et al., 1996[Drovetskaia, T. V., Yashina, N. S., Leonova, T. V., Petrosyan, V. S., Lorberth, J., Wocadlo, S., Massa, W. & Pebler, J. (1996). J. Organomet. Chem. 507, 201-205.]; Li et al., 2004[Li, Q., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). Chem. Eur. J. 10, 1456-1462.]; Fisher et al., 1989[Fisher, D. C., Barclay-Peet, S. J., Balfe, C. A. & Raymond, K. N. (1989). Inorg. Chem. 28, 4399-4406.]; Harrison et al., 1976[Harrison, P. G., King, T. J. & Richards, J. A. (1976). J. Chem. Soc. Dalton Trans. pp. 1414-1418.]), which are usually coordinated in the trans- mode with respect to each other (Gaynor et al., 2001[Gaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578-1581.]; Lasri et al., 2012[Lasri, J., Gupta, S., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 18, 69-72.]; Casellato et al., 1984[Casellato, U., Vigato, P. A., Tamburini, S., Graziani, R. & Vidali, M. (1984). Inorg. Chim. Acta, 81, 47-54.]).

5. Synthesis and crystallization

A solution of pivaloyl­hydroxamic acid (23.4 mg, 0.20 mmol) in 5 mL of methanol was added to copper(II) nitrate hexa­hydrate (29.6 mg, 0.10 mmol) in 5 mL of methanol. The resulting blue solution was stirred for 30 min. at room temperature, filtered and left for slow evaporation. After a week, blue crystals suitable for single crystal X-ray analysis had formed. Yield: 23 mg (78%). Elemental analysis C:H:N Expected (calculated): 40.75 (40.60): 7.03 (6.81): 9.22 (9.47). IR in KBr pellets (cm−1): 3400 (νN–H); 3196–3040 (νO–H, likely due to the presence of N1—H1⋯O1ii hydrogen bonds); 1595 and 1503 (νamid I); 1330, 1220 and 1053 (νC–C and ν-C-N); 963 (νN–O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon and nitro­gen atoms were positioned geometrically and constrained to ride on their parent atoms: C—H =0.98 Å with Uiso(H) = 1.5Ueq(C) and N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C5H10NO2)2]
Mr 295.82
Crystal system, space group Tetragonal, I41/a
Temperature (K) 100
a, c (Å) 12.8059 (5), 17.7051 (8)
V3) 2903.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.35 × 0.35 × 0.29
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.656, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 24433, 2764, 2444
Rint 0.035
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.19
No. of reflections 2764
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.48
Computer programs: APEX2 and, SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(pivaloylhydroxamato-κ2O,O')copper(II) top
Crystal data top
[Cu(C5H10NO2)2]Dx = 1.353 Mg m3
Mr = 295.82Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9939 reflections
a = 12.8059 (5) Åθ = 3.2–33.2°
c = 17.7051 (8) ŵ = 1.51 mm1
V = 2903.5 (3) Å3T = 100 K
Z = 8Prism, blue
F(000) = 12400.35 × 0.35 × 0.29 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
2764 independent reflections
Radiation source: I-mu-S microsource X-ray tube2444 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.035
ω and phi scansθmax = 33.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.656, Tmax = 0.747k = 1919
24433 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0257P)2 + 3.2993P]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13160 (8)0.34258 (8)0.02113 (6)0.01465 (18)
C20.20901 (9)0.26772 (9)0.05643 (7)0.01747 (19)
C30.30109 (12)0.33273 (12)0.08492 (10)0.0327 (3)
H3A0.3498130.2875580.1123900.049*
H3B0.3370560.3646910.0418740.049*
H3C0.2754340.3875970.1187440.049*
C40.15406 (12)0.21475 (12)0.12341 (8)0.0284 (3)
H4A0.1302180.2680970.1591590.043*
H4B0.0939230.1748540.1050070.043*
H4C0.2030050.1675300.1487930.043*
C50.24745 (12)0.18527 (12)0.00063 (8)0.0274 (3)
H5A0.1879820.1442000.0175760.041*
H5B0.2815690.2196910.0422060.041*
H5C0.2974480.1390240.0258660.041*
N10.10376 (7)0.33335 (8)0.04955 (5)0.01550 (17)
H10.1288620.2829950.0780830.019*
O10.03387 (7)0.40497 (7)0.07791 (5)0.01837 (16)
O20.09269 (7)0.41676 (7)0.06079 (5)0.01830 (16)
Cu10.0000000.5000000.0000000.01360 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0150 (4)0.0146 (4)0.0143 (4)0.0005 (3)0.0017 (3)0.0009 (3)
C20.0180 (5)0.0179 (5)0.0166 (5)0.0020 (4)0.0038 (4)0.0011 (4)
C30.0242 (6)0.0314 (7)0.0424 (8)0.0013 (5)0.0165 (6)0.0028 (6)
C40.0311 (7)0.0303 (6)0.0238 (6)0.0075 (5)0.0015 (5)0.0098 (5)
C50.0321 (7)0.0275 (6)0.0227 (6)0.0144 (5)0.0056 (5)0.0046 (5)
N10.0168 (4)0.0156 (4)0.0142 (4)0.0034 (3)0.0031 (3)0.0026 (3)
O10.0227 (4)0.0186 (4)0.0138 (3)0.0077 (3)0.0063 (3)0.0033 (3)
O20.0241 (4)0.0172 (4)0.0136 (3)0.0045 (3)0.0037 (3)0.0035 (3)
Cu10.01670 (10)0.01244 (9)0.01165 (9)0.00085 (6)0.00182 (6)0.00171 (6)
Geometric parameters (Å, º) top
C1—O21.2821 (13)C4—H4B0.9800
C1—N11.3066 (14)C4—H4C0.9800
C1—C21.5141 (16)C5—H5A0.9800
C2—C51.5275 (18)C5—H5B0.9800
C2—C31.5290 (18)C5—H5C0.9800
C2—C41.5368 (18)N1—O11.3764 (12)
C3—H3A0.9800N1—H10.8800
C3—H3B0.9800O1—Cu11.8899 (8)
C3—H3C0.9800O2—Cu11.9244 (8)
C4—H4A0.9800
O2—C1—N1119.04 (10)H4A—C4—H4C109.5
O2—C1—C2119.84 (10)H4B—C4—H4C109.5
N1—C1—C2121.12 (10)C2—C5—H5A109.5
C1—C2—C5112.43 (10)C2—C5—H5B109.5
C1—C2—C3107.24 (10)H5A—C5—H5B109.5
C5—C2—C3109.95 (12)C2—C5—H5C109.5
C1—C2—C4107.35 (10)H5A—C5—H5C109.5
C5—C2—C4109.97 (11)H5B—C5—H5C109.5
C3—C2—C4109.81 (11)C1—N1—O1117.82 (9)
C2—C3—H3A109.5C1—N1—H1121.1
C2—C3—H3B109.5O1—N1—H1121.1
H3A—C3—H3B109.5N1—O1—Cu1108.18 (6)
C2—C3—H3C109.5C1—O2—Cu1110.11 (7)
H3A—C3—H3C109.5O1—Cu1—O1i180.00 (5)
H3B—C3—H3C109.5O1—Cu1—O284.84 (3)
C2—C4—H4A109.5O1i—Cu1—O295.16 (3)
C2—C4—H4B109.5O1—Cu1—O2i95.16 (3)
H4A—C4—H4B109.5O1i—Cu1—O2i84.84 (3)
C2—C4—H4C109.5O2—Cu1—O2i180.0
O2—C1—C2—C5179.56 (11)C2—C1—N1—O1179.33 (10)
N1—C1—C2—C50.14 (16)C1—N1—O1—Cu10.49 (12)
O2—C1—C2—C358.59 (15)N1—C1—O2—Cu11.02 (13)
N1—C1—C2—C3121.11 (13)C2—C1—O2—Cu1178.69 (8)
O2—C1—C2—C459.37 (14)N1—O1—Cu1—O20.79 (7)
N1—C1—C2—C4120.94 (12)N1—O1—Cu1—O2i179.21 (7)
O2—C1—N1—O10.37 (16)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.881.902.7185 (13)154
Symmetry code: (ii) y1/4, x+1/4, z+1/4.
 

Acknowledgements

AWA thanks Drexel University for support.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Materials Research (grant No. 1337296 to Matthias Zeller).

References

First citationAbu-Dari, K., Ekstrand, J. D., Freyberg, D. P. & Raymond, K. N. (1979). Inorg. Chem. 18, 108–112.  Google Scholar
First citationBaughman, R. G., Brink, D. J., Butler, J. M. & New, P. R. (2000). Acta Cryst. C56, 528–531.  CrossRef IUCr Journals Google Scholar
First citationBrewer, G. A. & Sinn, E. (1981). Inorg. Chem. 20, 1823–1830.  CrossRef Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvailo, A. I., Pavlishchuk, A. V., Penkova, L. V., Kotova, N. V. & Haukka, M. (2012). Acta Cryst. E68, m1480–m1481.  CSD CrossRef IUCr Journals Google Scholar
First citationCasellato, U., Vigato, P. A., Tamburini, S., Graziani, R. & Vidali, M. (1984). Inorg. Chim. Acta, 81, 47–54.  CrossRef Google Scholar
First citationDrovetskaia, T. V., Yashina, N. S., Leonova, T. V., Petrosyan, V. S., Lorberth, J., Wocadlo, S., Massa, W. & Pebler, J. (1996). J. Organomet. Chem. 507, 201–205.  CrossRef Google Scholar
First citationDue, L., Rasmussen, H. & Larsen, I. K. (1987). Acta Cryst. C43, 582–585.  CrossRef IUCr Journals Google Scholar
First citationDzyuba, V. I., Koval, L. I., Bon, V. V. & Pekhnyo, V. I. (2010). Polyhedron, 29, 2900–2906.  CrossRef Google Scholar
First citationFisher, D. C., Barclay-Peet, S. J., Balfe, C. A. & Raymond, K. N. (1989). Inorg. Chem. 28, 4399–4406.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarlatti, El. T., Guidi, A., Chiesa, S., Ansbro, S., Baker, J., Ollivier, H., Mutka, H., Timco, D. I., Vitorica-Yrezabal, E., Pavarini, P., Santini, G., Amoretti, G., Winpenny, S. & Carretta, S. (2018). Chem. Sci. 9, 3555–3562.  CrossRef Google Scholar
First citationGaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578–1581.  Web of Science CrossRef Google Scholar
First citationGaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, P. G., King, T. J. & Richards, J. A. (1976). J. Chem. Soc. Dalton Trans. pp. 1414–1418.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLasri, J., Gupta, S., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 18, 69–72.  CrossRef Google Scholar
First citationLi, Q., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). Chem. Eur. J. 10, 1456–1462.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. pp. 3003–3016.  Web of Science CrossRef Google Scholar
First citationMcDonald, C., Sanz, S., Brechin, E. K., Singh, M. K., Rajaraman, G., Gaynor, D. & Jones, L. F. (2014). RSC Adv. 4, 38182–38191.  CrossRef Google Scholar
First citationMcDonald, C., Williams, D. W., Comar, P., Coles, S. J., Keene, T. D., Pitak, M. B., Brechin, E. K. & Jones, L. F. (2015). Dalton Trans. 44, 13359–13368.  CrossRef Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOdarich, I. A., Pavlishchuk, A. V., Kalibabchuk, V. A. & Haukka, M. (2016). Acta Cryst. E72, 147–150.  CrossRef IUCr Journals Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. doi: 1002ejic.201800461.  Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866–4878.  CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152–13165.  CrossRef Google Scholar
First citationPavlishchuk, A. V., Satska, Y. A., Kolotilov, S. V. & Fritsky, I. O. (2015). Curr. Inorg. Chem. 5, 5–25.  CrossRef Google Scholar
First citationSeitz, M., Oliver, A. G. & Raymond, K. N. (2007a). J. Am. Chem. Soc. 129, 11153–11160.  CrossRef Google Scholar
First citationSeitz, M., Pluth, M. D. & Raymond, K. N. (2007b). Inorg. Chem. 46, 351–353.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, W. L. & Raymond, K. N. (1981). J. Am. Chem. Soc. 103, 3341–3349.  CrossRef Google Scholar
First citationTedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P. & Picard, C. (2003). Dalton Trans. pp. 1738–1745.  CrossRef Google Scholar
First citationTirfoin, R., Chamoreau, L.-M., Li, Y., Fleury, B., Lisnard, L. & Journaux, Y. (2014). Dalton Trans. 43, 16805–16817.  CrossRef Google Scholar
First citationVitórica-Yrezábal, I. J., Sava, D. F., Timco, G. A., Brown, M. S., Savage, M., Godfrey, H. G. W., Moreau, F., Schröder, M., Siperstein, F., Brammer, L., Yang, S., Attfield, M. P., McDouall, J. J. W. & Winpenny, R. E. P. (2017). Angew. Chem. Int. Ed. 56, 5527–5530.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds