research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of chiral 2-[bis­­(2-chloro­eth­yl)amino]-1,3,2-oxaza­phospho­lidin-2-one derivatives for the absolute configuration at phospho­rus

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA
*Correspondence e-mail: jajackson@ysu.edu

Edited by L. Fabian, University of East Anglia, England (Received 24 July 2018; accepted 8 August 2018; online 24 August 2018)

`Nitro­gen mustard' bis­(2-chloro­eth­yl)amine derivatives (2R,4S,5R)- and (2S,4S,5R)-2-[bis­(2-chloro­eth­yl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxaza­phos­pho­lidin-2-one (2a and 2b, respectively), C14H21Cl2N2O2P, and (2R,4R)- and (2S,4R)-2-[bis­(2-chloro­eth­yl)amino]-4-isobutyl-1,3,2-oxaza­phospho­lidin-2-one (3a and 3b, respectively), C10H21Cl2N2O2P, were synthesized as a mixture of diastereomers through a 1:1 reaction of enanti­omerically pure chiral amino alcohols with bis­(2-chloro­eth­yl)phospho­ramidic dichloride. Flash column chromatography yielded diastereomerically pure products, as supported by 31P NMR. The crystal structures of 2b and 3b were obtained to determine their absolute configuration at phospho­rus, and 31P NMR chemical shift trends are proposed based on the spatial relationship of the bis­(2-chloro­eth­yl)amine moiety and the chiral substituent of the amino alcohol. Oxaza­phospho­lidinones were observed to have a more downfield 31P NMR chemical shift when the aforementioned substituents are in a syn configuration and vice versa for when they are anti.

1. Chemical context

Bis(2-chloro­eth­yl)amine moieties, also known as a `nitro­gen mustard', are of inter­est due their ability to alkyl­ate DNA, which hinders the cellular growth and replication of cancer cells (Einhorn, 1985[Einhorn, J. (1985). Int. J. Radiat. Oncol. Biol. Phys. 11, 1375-1378.]). 2-[Bis(2-chloro­eth­yl)amino]-1,3λ2,2-oxaza­phosphinane 2-oxide, commercially sold as cyclo­phosphamide, features such a nitro­gen mustard moiety and is registered as an FDA-approved chemotherapeutic due to its cytotoxic ability. The bioactivation mechanism of cyclo­phosphamide is well known. Hy­droxy­lation occurs on the C-4 position through cytochrome P450 type enzymes and the cyclo­phosphamide β-eliminates into acrolein and an enanti­o­meric mixture of the cytotoxic phospho­ramide mustard (Takamizawa et al., 1975[Takamizawa, A., Matsumoto, S., Iwata, T., Tochino, Y., Katagiri, K., Yamaguchi, K. & Shirator, O. (1975). J. Med. Chem. 18, 376-383.]; Borch & Millard, 1987[Borch, R. F. & Millard, J. A. (1987). J. Med. Chem. 30, 427-431.]; Sladek, 1988[Sladek, N. E. (1988). Pharmacol. Ther. 37, 301-355.]). Studies support an enanti­oselective metabolism via the administration of enanti­omerically pure cyclo­phosphamide, as expected for an enzyme-catalyzed reaction (Cox et al., 1976[Cox, P. J., Farmer, P. B., Jarman, M., Jones, M., Stec, W. J. & Kinas, R. (1976). Biochem. Pharmacol. 25, 993-996.]; Fernandes et al., 2011[Fernandes, B. J. D., Silva, C. D. M., Andrade, J. M., Matthes, A. D. C. S., Coelho, E. B. & Lanchote, V. L. (2011). Cancer Chemother. Pharmacol. 68, 897-904.]; Castro et al., 2016[Castro, F. A., Scatena, G. D., Rocha, O. P., Marques, M. P., Cass, Q. B., Simoes, B. P. & Lanchote, V. L. (2016). J. Chromatogr. B, 1011, 53-61.]). Therefore, it is of pharmaceutical inter­est to be able to readily identify the absolute configuration at phospho­rus of cyclo­phosphamide and other related nitro­gen mustard derivatives.

Diastereomeric 2-[bis­(2-chloro­eth­yl)]-1,3,2-oxaza­phospho­lidin-2-ones, a five-membered ring derivative of cyclo­phosphamide, have been previously synthesized from L- and D-serine, but lacked X-ray diffraction data to determine the absolute configuration at the P atom (Foster, 1978[Foster, E. (1978). J. Pharm. Sci. 67, 709-710.]; Jackson et al., 1992[Jackson, J. A., Frick, J. A. & Thompson, C. M. (1992). Bioorg. Med. Chem. Lett. 2, 1547-1550.]). Instead, the spectroscopic trends and X-ray diffraction analysis of an L-serine-derived 2-meth­oxy-1,3,2-oxaza­phospho­lidin-2-one was applied and the absolute configuration was determined by analogy (Thompson et al., 1990[Thompson, C. M., Frick, J. A. & Green, D. L. C. (1990). J. Org. Chem. 55, 111-122.]). It was described that oxaza­phospho­lidinones with a downfield 31P NMR chemical shift had a syn configuration with respect to the exocyclic meth­oxy group and the chiral substituent of the amino alcohol, and vice versa for the anti configuration.

Herein we report the synthesis and absolute configuration at phospho­rus of chiral 2-[bis­(2-chloro­eth­yl)amino]-1,3,2-oxaza­phospho­lidin-2-ones in attempts to support these spectroscopic trends for the analysis of future potentially chemotherapeutic analogues. Bis(2-chloro­eth­yl)amine phos­pho­ramidic dichloride was synthesized following the experimental procedure described by Friedman & Seligman (1954[Friedman, O. M. & Seligman, A. M. (1954). J. Am. Chem. Soc. 76, 655-658.]). Enanti­omerically pure chiral amino alcohols were purchased and used to synthesize pairs of diastereomeric oxaza­phospho­lidinones, which allowed for easy separation via flash column chromatography.

2. Structural commentary

No single crystals of 3a of X-ray diffraction quality could be obtained, and compound 2a was isolated as an oil. Compounds 2b and 3b, however, have been analyzed by single-crystal diffraction (Figs. 1[link] and 2[link]). The mol­ecular structures of 2b and 3b are similar. The five-membered rings in both structures feature the expected envelope conformation, with the flap at the C atom connecting to the phenyl and isobutyl groups, respectively. An overlay of the two structures, guided by the position of the phenyl and isobuytl groups (Fig. 3[link]), indicates that the positions of the aza and oxo groups are swapped between 2b and 3b. Another slight difference between the conformations between the two rings is evident, caused by the close to planar configuration of the methyl­amine N atom of 2b (the sum of angles around N1 is 359.97°), giving 3b a slightly more `buckled' appearance than 2b. The chloro­ethyl moieties in 3b are extended all-trans. In 2b, one is also trans, while the other is gauche with an N2—C11—C12—Cl1 torsion angle of −65.89 (9)°.

[Scheme 1]
[Figure 1]
Figure 1
Displacement ellipsoid representation of a mol­ecule of 2b (50% probability level), with the atom-numbering scheme.
[Figure 2]
Figure 2
Displacement ellipsoid representation of a mol­ecule of 3b (50% probability level), with the atom-numbering scheme.
[Figure 3]
Figure 3
Overlay of mol­ecules 2b and 3b (50% displacement ellipsoid probability level). R.m.s. value based on atoms of the five-membered ring and oxygen is 0.111 Å. Color coding: P orange, O red, N blue, Cl green, and C light purple for 2b and light blue for 3b.

The conformation of both 2b and 3b appear at first sight to be stabilized by a number of weak intra­molecular hydrogen-bond-like inter­actions. In 2b, this involves C12—H12B⋯O1 and C11—H11B⋯N1, with atoms O1 and N1 being the O and N atoms of the oxaza­phospho­lidin-2-one five-membered ring (see Table 1[link]). In 3b, similar inter­actions are observed for C8—H8B⋯O1 and C7—H7A⋯N1. Bond lengths and angles for these inter­actions are, however, quite unfavorable (see Table 2[link]). In particular, atom N1 in 2b, being essentially planar and sp2-hybridized, appears to be an unlikely acceptor for an actual hydrogen bond. The observed close contacts are most likely not significantly contributing to the stability of the mol­ecular geometry realized in the solid state.

Table 1
Hydrogen-bond geometry (Å, °) for 2b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.99 2.38 3.3571 (11) 170
C14—H14B⋯O2i 0.99 2.41 3.3244 (12) 153
C9—H9⋯O2ii 0.95 2.65 3.3444 (13) 130
C11—H11B⋯N1 0.99 2.63 3.1322 (11) 111
C12—H12B⋯O1 0.99 2.64 3.3381 (11) 128
C13—H13A⋯Cl1 0.99 2.86 3.4970 (9) 123
C10—H10A⋯C5ii 0.98 2.84 3.7839 (15) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for 3b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (2) 2.05 (3) 2.863 (3) 158 (4)
C2—H2⋯O2ii 1.00 2.57 3.401 (4) 141
C1—H1B⋯N1iii 0.99 2.71 3.481 (4) 135
C8—H8A⋯Cl1iv 0.99 2.92 3.656 (4) 132
C8—H8B⋯O1 0.99 2.54 3.245 (4) 128
C7—H7A⋯N1 0.99 2.62 3.125 (4) 112
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z].

The absolute structure at phospho­rous has been established from the single-crystal data for both mol­ecules [Flack parameters = 0.000 (8) and 0.07 (4), respectively] to test whether their determination from 31P NMR chemical shift data based on the spatial relationship of the bis­(2-chloro­eth­yl)amine moiety and the chiral substituent of the amino alcohol does hold true (Thompson et al., 1990[Thompson, C. M., Frick, J. A. & Green, D. L. C. (1990). J. Org. Chem. 55, 111-122.]). The single-crystal X-ray structures of 2b and 3b tentatively support the literature trends based on their 31P NMR chemical shifts. The chiral center(s) of the amino alcohol are syn to the nitro­gen mustard moiety and the absolute configurations at phospho­rus were found to both be S for 2b and 3b [see Favre & Powell (2014[Favre, H. A. & Powell, W. H. (2014). In Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. Specification of Configuration and Conformation, pp. 1156-1292. Cambridge: Royal Society of Chemistry.]) for assignment of absolute structure for hypervalent atoms such as P or S in tetra­hedral geometry]. The 31P NMR data are shifted slightly downfield compared to their anti diastereomers 2a and 3a, thus confirming the trend proposed by Thompson et al. (1990[Thompson, C. M., Frick, J. A. & Green, D. L. C. (1990). J. Org. Chem. 55, 111-122.]). The absolute shift values are, however, rather small: 1.40 ppm for the pair of 3a and 3b, and nearly no shift is observed for the pair of 2a and 2b (0.33 ppm) (see Experimental section for all NMR data). Whether the assignment of absolute structure is reliable enough to be used for other related mol­ecules in the absence of structural data from X-ray diffraction is not clear based on the data at hand. For a more reliable estimate, data from a larger library of compounds are needed.

3. Supra­molecular features

Mol­ecule 2b does not feature any acidic H atoms and, as such, does not have any strong hydrogen bonds. The O atom of the phospho­lidinone unit does, however, act as an acceptor for several C—H⋯O hydrogen-bond-like inter­actions, originating from two methyl­ene and one aromatic C—H unit of neighboring mol­ecules (see Table 1[link] for metrical details and symmetry operators). The three C—H⋯O inter­actions surrounding O2 are about equally spread, thus giving the O atom of the P=O unit a pseudo-tetra­hedral environment made up of the P atom on one side, and the three C—H units on the other three. A C—H⋯π inter­action, involving C10—H10A towards the π density of the benzene ring at (x − [{1\over 2}], −y + [{1\over 2}], −z + 1), is also observed, but no significant C—H⋯Cl inter­actions and no ππ stacking are found. The combined C—H⋯O and C—H⋯π inter­actions connect mol­ecules into a three-dimensional lattice (Fig. 4[link]).

[Figure 4]
Figure 4
Packing arrangement and inter­molecular inter­actions of 2b (50% probability level). Inter­molecular contacts are shown as dashed lines (light blue for C—H⋯O and purple for C—H⋯π).

Compound 3b does, in contrast to 2b, have an acidic functional group, the amide N—H moiety, that is capable of forming a medium-to-strong hydrogen bond. Inter­molecular inter­actions in the structure of 3b are indeed dominated by an N—H⋯O hydrogen bond between the amide H atom and the phospho­lidinone O atom. The graph-set motif for a single inter­action is C(4), connecting individual mol­ecules into infinite chains that wrap around a twofold screw axis parallel to the b-axis direction (Fig. 5[link]). The spirals of mol­ecules thus formed are further stabilized by a C—H⋯O inter­action between C2 and phospho­lidinone atom O1, and by a weak C—H⋯N inter­action between atoms C1 and N1 down the chain direction (Fig. 5[link]). Neighboring spiral chains are connected through C—H⋯Cl inter­actions involving H8A of one of the methyl­ene groups and Cl1.

[Figure 5]
Figure 5
Packing arrangement and inter­molecular inter­actions of 3b (50% probability level). Hydrogen bonds are shown as dashed lines (blue for N—H⋯O, light blue for C—H⋯O, and red for C—H⋯Cl). Mol­ecules `wrap' around the twofold axis at [0, y, [1 \over 2]] (symbolized as green lines with half arrows).

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-[bis­(2-chloro­eth­yl)amino]-1,3,2-oxaza­phos­pho­l­idin-2-one fragment resulted in two entries, namely rac-(2R,5S)- and rac-(2R,5R)-2-[bis­(2-chloro­eth­yl)amino]-5-(1-napthoxymeth­yl)-1,3,2-oxaza­phospho­lidin-2-one (refcodes COKKIW and COKKES, respectively; Cates et al., 1984[Cates, L. A., Li, V., Powell, D. R. & Helm, D. V. (1984). J. Med. Chem. 27, 397-401.]). The single-crystal structures of COKKIW and COKKES exhibit syn and trans configurations, respectively, but unfortunately no 31P NMR chemical shifts have been reported to support spectroscopic trends.

5. Synthesis and crystallization

5.1. Bis(2-chloro­eth­yl)phospho­ramidic dichloride, 1

Bis(2-chloro­eth­yl)amine hydro­chloride (3.00 g, 16.77 mmol) was suspended in freshly distilled phosphoryl chloride (10 ml, 107 mmol) in a 50 ml round-bottomed flask and heated under reflux overnight. Once all the solids were completely dissolved, excess phosphoryl chloride was distilled off to leave a dark-brown oily residue. The residue was dissolved in an excess of a mixture of petroleum ether–acetone (1:1 v/v), while in a 323 K hot water bath. The hot solution was then filtered to remove any solids and the solvent was removed via rotary evaporation to yield an off-white solid. The solid was recrystallized using a 1:1 (v/v) solution of petroleum ether–acetone to afford phospho­ramide mustard 1 (4.04 g, 79.4%) as an off-white crystalline solid (m.p. 327–328 K). 31P NMR (162 MHz, CDCl3): δ 17.39. 13C NMR (100 MHz, CDCl3): δ 49.48 (d, J = 4.29 Hz), 40.82 (d, J = 2.89 Hz). 1H NMR (400 MHz, CDCl3): δ 3.77–3.62 (m, 8H).

5.2. (2R,4S,5R)- and (2S,4S,5R)-2[bis­(2-chloro­eth­yl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospho­lidin-2-one (2a and 2b)

Phospho­ramide mustard 1 (0.647 g, 2.50 mmol), (1R,2S)-(−)-ephedrine (0.375 g, 2.51 mmol), toluene (20 ml) and tri­ethyl­amine (0.75 ml, 5.38 mmol) were added to a 50 ml round-bottomed flask at 275 K under an argon atmosphere. The solution was then allowed to stir and warm to room temperature overnight. The reaction mixture was vacuum filtered through 2.0 cm of Celite packed onto a fritted glass funnel and was washed with an additional 60–80 ml of di­chloro­methane. The solvent was removed via rotary evaporation, which yielded a viscous yellow oil. The oil was purified by flash column chromatography (110 g silica, 100% ethyl acetate, RF = 0.50 and 0.33 in 100% ethyl acetate) and afforded oxaza­phospho­lidinones 2a and 2b (combined yield 0.54 g, 64.6%), based on their order of elution. Approximately 25 mg of oxaza­phospho­lidinone 2b was dissolved in 2 ml of ethyl acetate and allowed to slowly evaporate over several days at room temperature. This yielded colorless crystals for single-crystal X-ray diffraction.

Fast diastereomer (2a): 0.33 g (39.5%), clear yellow oil. RF = 0.50 in 100% ethyl acetate. [α]D20 = −28.1° (c = 0.039 g ml−1). 31P NMR (162 MHz, CDCl3): δ 24.30. 13C NMR (100 MHz, CDCl3): δ 136.15 (d, J = 6.49 Hz), 128.47, 128.24, 125.86, 81.57, 59.36 (d, J = 12.76 Hz), 49.65 (d, J = 4.64 Hz), 42.43, 28.46 (d, J = 5.05 Hz), 13.87. 1H NMR (400 MHz, CDCl3): δ 7.45–7.30 (m, 5H), 5.49 (dd, 1H, J = 6.16, 2.24 Hz), 3.78–3.38 (m, 10H), 2.70 (d, 3H, J = 10.28 Hz), 0.87 (d, 3H, J = 6.60 Hz).

Slow diastereomer (2b): 0.21 g (25.1%), white crystalline solid (m.p. 411 K). RF = 0.33 in 100% ethyl acetate. [α]D20 = −47.8 (c = 0.032 g ml−1). 31P NMR (162 MHz, CDCl3): δ 24.63. 13C NMR (100 MHz, CDCl3): δ 135.87 (d, J = 10.95 Hz), 128.55, 128.17, 125.43, 78.15 (d, J = 3.85 Hz), 59.46 (d, J = 11.89 Hz), 49.50 (d, J = 5.09 Hz), 42.42, 29.36 (d, J = 5.93 Hz), 14.78 (d, J = 1.78 Hz). 1H NMR (400 MHz, CDCl3): δ 7.45–7.22 (m, 5 H), 5.78 (d, J = 6.56 Hz), 3.78–3.65 (m, 5H), 3.63–3.40 (m, 4H), 2.74 (d, J = 9.60 Hz), 0.78 (d, J = 6.44 Hz).

5.3. (2S,4R)- and (2R,4R)-2-[bis­(2-chloro­eth­yl)amino]-4-iso­butyl-1,3,2-oxaza­phospho­lidin-2-one (3a and 3b)

Phospho­ramide mustard 1 (0.258 g, 0.99 mmol), (R)-(−)-2-amino-4-methyl-1-penta­nol (0.130 ml, 1.01 mmol), ethyl acetate (10 ml) and tri­ethyl­amine (0.5 ml, 3.59 mmol) were added to a 50 ml round-bottomed flask at 273 K under an argon atmosphere. The solution was then allowed to stir and warm to room temperature overnight. The reaction mixture was vacuum filtered through 2.0 cm of Celite packed on a fritted glass funnel and was washed with an additional 60–80 ml of ethyl acetate. The solvent was removed via rotary evaporation, which yielded a viscous yellow oil. The oil was purified by flash column chromatography (60 g silica treated with 1% tri­ethyl­amine, 100% ethyl acetate, RF = 0.29 and 0.17 in 100% ethyl acetate) to afford oxaza­phospho­lidinones 3a and 3b (combined yield 0.22 g, 72.8%), based on their order of elution. Approximately 25 mg of oxaza­phospho­lidinone 3b was dissolved in 2 ml of ethyl acetate and allowed to slowly evaporate over several days at room temperature. This yielded colorless crystals for single-crystal X-ray diffraction.

Fast diastereomer (3a): 0.11 g (36.4%), white crystalline solid (m.p. 371–373 °C). RF = 0.29 in 100% ethyl acetate. [α]D20 = −11.1° (c = 0.028 g ml−1). 31P NMR (162 MHz, CDCl3): δ 27.58. 13C NMR (100 MHz, CDCl3): δ 71.28 (d, J = 1.85 Hz), 53.35 (d, J = 8.61 Hz), 49.12 (d, J = 5.00 Hz), 44.36 (d, J = 4.77 Hz), 42.39, 25.31, 22.93, 22.15. 1H NMR (400 MHz, CDCl3): δ 4.21 (ddd, 1H, J = 17.42 Hz, 8.77 Hz, 6.83 Hz), 3.86 (ddd, 1H, J = 8.14 Hz, 8.14 Hz, 4.40 Hz), 3.73–3.62 (m, 1H), 3.62–3.50 (m, 4H), 3.44–3.24 (m, 4H), 2.70 (d, 1H, 14.57 Hz), 1.63–1.45 (m, 2H), 1.39–1.29 (m, 1H), 0.88 (d, 3H, J = 7.16 Hz), 0.86 (d, 3H, J = 7.16 Hz).

Slow diastereomer (3b): 0.11 g (36.4%), white crystalline solid (m.p. 352–353 °C). RF = 0.17 in 100% ethyl acetate. [α]D20 = +4.1° (c = 0.028 g ml−1). 31P NMR (162 MHz, CDCl3): δ 28.98. 13C NMR (100 MHz, CDCl3): δ 71.81, 51.30 (d, J = 9.47 Hz), 49.21 (d, J = 4.78 Hz), 44.74 (d, J = 8.80 Hz), 42.28, 25.25, 23.08, 22.04. 1H NMR (400 MHz, CDCl3): δ 4.45 (ddd, 1H, J = 11.84 Hz, 8.52 Hz, 7.09 Hz), 4.00–3.90 (m, 1H), 3.74 (ddd, 1H, J = 8.17 Hz, 8.17 Hz, 8.17 Hz), 3.71–3.59 (m, 4H), 3.56–3.35 (m, 4H), 2.75 (d, 1H, J = 10.92 Hz), 1.71–1.58 (m, 1H), 1.53–1.43 (m, 1H), 1.38–1.29 (m, 1H), 0.99 (d, 3H, J = 6.60 Hz), 0.95 (d, 3H, J = 6.56 Hz).

6. Refinement

H atoms attached to C and N atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond lengths were constrained to 0.95 Å for aromatic C—H groups. Aliphatic CH, CH2, and CH3 groups were constrained to C—H bond lengths of 1.00, 0.99, and 0.98 Å, respectively. The position of the amino H atom was refined and the N—H distance restrained to 0.88 (2) Å. Methyl H atoms were allowed to rotate, but not to tip, to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C), with 1.5 for CH3 and 1.2 for N—H, C—H, and CH2 units. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  2b 3b
Crystal data
Chemical formula C14H21Cl2N2O2P C10H21Cl2N2O2P
Mr 351.20 303.16
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 10.6894 (6), 11.1623 (6), 14.0025 (7) 12.1044 (17), 5.3162 (8), 12.8933 (17)
α, β, γ (°) 90, 90, 90 90, 115.409 (4), 90
V3) 1670.75 (15) 749.42 (18)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.49 0.53
Crystal size (mm) 0.45 × 0.45 × 0.26 0.22 × 0.02 × 0.02
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (APEX3; Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (APEX3; Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.647, 0.748 0.616, 0.725
No. of measured, independent and observed [I > 2σ(I)] reflections 54792, 10531, 9765 18357, 4294, 3325
Rint 0.033 0.080
(sin θ/λ)max−1) 0.910 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.07 0.048, 0.095, 1.02
No. of reflections 10531 4294
No. of parameters 193 159
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.34 0.38, −0.49
Absolute structure Flack x determined using 4150 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1199 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.000 (8) 0.07 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(2S,4S,5R)-2-[Bis(2-chloroethyl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one (2b) top
Crystal data top
C14H21Cl2N2O2PDx = 1.396 Mg m3
Mr = 351.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9357 reflections
a = 10.6894 (6) Åθ = 2.4–40.2°
b = 11.1623 (6) ŵ = 0.49 mm1
c = 14.0025 (7) ÅT = 100 K
V = 1670.75 (15) Å3Block, colourless
Z = 40.45 × 0.45 × 0.26 mm
F(000) = 736
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
10531 independent reflections
Radiation source: IµS microsource X-ray tube9765 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.033
ω and phi scansθmax = 40.3°, θmin = 2.3°
Absorption correction: multi-scan
(APEX3; Bruker, 2016)
h = 1918
Tmin = 0.647, Tmax = 0.748k = 1520
54792 measured reflectionsl = 2325
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1289P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.39 e Å3
10531 reflectionsΔρmin = 0.33 e Å3
193 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0137 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 4150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.000 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66219 (3)0.73317 (2)0.57271 (2)0.02053 (5)
Cl20.65512 (2)0.50227 (2)0.93609 (2)0.02110 (5)
P10.50144 (2)0.36754 (2)0.61478 (2)0.01080 (4)
O10.53487 (6)0.37759 (6)0.50302 (4)0.01294 (10)
O20.57173 (7)0.27440 (6)0.66701 (5)0.01656 (11)
N10.35118 (7)0.34892 (7)0.59734 (5)0.01437 (11)
N20.52864 (7)0.49876 (6)0.66359 (5)0.01273 (11)
C10.25115 (10)0.44596 (10)0.45684 (7)0.02017 (16)
H1A0.2254000.4308840.3907540.030*
H1B0.3089430.5140810.4585480.030*
H1C0.1772840.4641870.4956730.030*
C20.31606 (8)0.33532 (8)0.49651 (6)0.01417 (13)
H20.2597100.2643730.4893790.017*
C30.44360 (8)0.30792 (7)0.44925 (6)0.01272 (12)
H30.4625430.2209840.4586370.015*
C40.45200 (8)0.33538 (7)0.34439 (6)0.01301 (12)
C50.53407 (9)0.41996 (9)0.30689 (6)0.01709 (14)
H50.5868040.4647630.3482050.021*
C60.53872 (10)0.43884 (9)0.20819 (7)0.02021 (16)
H60.5950120.4964260.1827170.024*
C70.46181 (10)0.37419 (9)0.14708 (7)0.01941 (15)
H70.4660050.3869240.0800710.023*
C80.37859 (10)0.29068 (10)0.18454 (7)0.02021 (16)
H80.3250040.2469040.1431650.024*
C90.37388 (10)0.27126 (9)0.28280 (6)0.01847 (15)
H90.3171100.2139870.3081120.022*
C100.25759 (9)0.34159 (10)0.67220 (7)0.02082 (16)
H10A0.2151070.2639080.6687210.031*
H10B0.1962690.4060060.6638410.031*
H10C0.2981930.3498970.7346030.031*
C110.45791 (9)0.60577 (7)0.63576 (6)0.01520 (13)
H11A0.4565310.6622220.6902830.018*
H11B0.3704140.5821680.6222190.018*
C120.51026 (11)0.67006 (8)0.54911 (6)0.01917 (16)
H12A0.4521370.7348210.5300210.023*
H12B0.5166260.6129160.4952550.023*
C130.61622 (8)0.50952 (8)0.74403 (5)0.01305 (12)
H13A0.6593710.5879050.7409900.016*
H13B0.6802600.4456690.7398280.016*
C140.54620 (8)0.49888 (8)0.83801 (6)0.01539 (13)
H14A0.4985080.4228700.8393190.018*
H14B0.4860940.5659130.8442180.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02609 (11)0.01820 (9)0.01729 (8)0.00405 (8)0.00246 (7)0.00094 (6)
Cl20.02295 (10)0.02672 (10)0.01361 (7)0.00098 (8)0.00269 (7)0.00185 (7)
P10.00966 (8)0.00914 (7)0.01360 (7)0.00016 (6)0.00134 (6)0.00005 (5)
O10.0097 (2)0.0153 (2)0.0137 (2)0.00138 (19)0.00173 (18)0.00211 (19)
O20.0174 (3)0.0118 (2)0.0204 (3)0.0030 (2)0.0043 (2)0.0020 (2)
N10.0103 (3)0.0169 (3)0.0159 (2)0.0027 (2)0.0004 (2)0.0005 (2)
N20.0141 (3)0.0098 (2)0.0143 (2)0.0002 (2)0.00341 (19)0.0005 (2)
C10.0161 (4)0.0239 (4)0.0205 (3)0.0075 (3)0.0043 (3)0.0026 (3)
C20.0101 (3)0.0151 (3)0.0172 (3)0.0010 (2)0.0021 (2)0.0024 (2)
C30.0111 (3)0.0115 (3)0.0155 (3)0.0003 (2)0.0021 (2)0.0022 (2)
C40.0116 (3)0.0121 (3)0.0154 (3)0.0009 (2)0.0019 (2)0.0030 (2)
C50.0164 (3)0.0173 (3)0.0176 (3)0.0033 (3)0.0037 (3)0.0002 (3)
C60.0214 (4)0.0211 (4)0.0182 (3)0.0034 (3)0.0024 (3)0.0024 (3)
C70.0212 (4)0.0211 (4)0.0160 (3)0.0028 (3)0.0027 (3)0.0014 (3)
C80.0205 (4)0.0230 (4)0.0171 (3)0.0019 (3)0.0035 (3)0.0060 (3)
C90.0187 (4)0.0187 (4)0.0180 (3)0.0044 (3)0.0017 (3)0.0052 (3)
C100.0135 (4)0.0277 (4)0.0212 (4)0.0014 (3)0.0030 (3)0.0055 (3)
C110.0174 (4)0.0105 (3)0.0178 (3)0.0015 (3)0.0019 (3)0.0000 (2)
C120.0277 (5)0.0130 (3)0.0168 (3)0.0013 (3)0.0048 (3)0.0016 (2)
C130.0109 (3)0.0148 (3)0.0134 (2)0.0013 (2)0.0005 (2)0.0007 (2)
C140.0143 (3)0.0174 (3)0.0145 (3)0.0005 (3)0.0005 (2)0.0024 (3)
Geometric parameters (Å, º) top
Cl1—C121.8008 (11)C5—H50.9500
Cl2—C141.8008 (9)C6—C71.3888 (14)
P1—O21.4765 (7)C6—H60.9500
P1—O11.6092 (7)C7—C81.3912 (15)
P1—N11.6378 (8)C7—H70.9500
P1—N21.6423 (7)C8—C91.3938 (13)
O1—C31.4573 (10)C8—H80.9500
N1—C101.4514 (12)C9—H90.9500
N1—C21.4688 (11)C10—H10A0.9800
N2—C111.4664 (11)C10—H10B0.9800
N2—C131.4696 (10)C10—H10C0.9800
C1—C21.5216 (13)C11—C121.5167 (13)
C1—H1A0.9800C11—H11A0.9900
C1—H1B0.9800C11—H11B0.9900
C1—H1C0.9800C12—H12A0.9900
C2—C31.5460 (12)C12—H12B0.9900
C2—H21.0000C13—C141.5186 (11)
C3—C41.5026 (12)C13—H13A0.9900
C3—H31.0000C13—H13B0.9900
C4—C51.3917 (13)C14—H14A0.9900
C4—C91.3976 (12)C14—H14B0.9900
C5—C61.3989 (13)
O2—P1—O1114.69 (4)C6—C7—C8119.63 (9)
O2—P1—N1118.92 (4)C6—C7—H7120.2
O1—P1—N194.68 (4)C8—C7—H7120.2
O2—P1—N2109.38 (4)C7—C8—C9119.97 (9)
O1—P1—N2107.65 (4)C7—C8—H8120.0
N1—P1—N2110.42 (4)C9—C8—H8120.0
C3—O1—P1108.45 (5)C8—C9—C4120.52 (9)
C10—N1—C2120.82 (7)C8—C9—H9119.7
C10—N1—P1125.13 (6)C4—C9—H9119.7
C2—N1—P1114.02 (6)N1—C10—H10A109.5
C11—N2—C13117.75 (7)N1—C10—H10B109.5
C11—N2—P1121.64 (6)H10A—C10—H10B109.5
C13—N2—P1120.31 (6)N1—C10—H10C109.5
C2—C1—H1A109.5H10A—C10—H10C109.5
C2—C1—H1B109.5H10B—C10—H10C109.5
H1A—C1—H1B109.5N2—C11—C12114.06 (8)
C2—C1—H1C109.5N2—C11—H11A108.7
H1A—C1—H1C109.5C12—C11—H11A108.7
H1B—C1—H1C109.5N2—C11—H11B108.7
N1—C2—C1112.56 (7)C12—C11—H11B108.7
N1—C2—C3101.92 (7)H11A—C11—H11B107.6
C1—C2—C3113.98 (8)C11—C12—Cl1111.78 (6)
N1—C2—H2109.4C11—C12—H12A109.3
C1—C2—H2109.4Cl1—C12—H12A109.3
C3—C2—H2109.4C11—C12—H12B109.3
O1—C3—C4110.85 (7)Cl1—C12—H12B109.3
O1—C3—C2105.29 (6)H12A—C12—H12B107.9
C4—C3—C2115.51 (7)N2—C13—C14110.11 (7)
O1—C3—H3108.3N2—C13—H13A109.6
C4—C3—H3108.3C14—C13—H13A109.6
C2—C3—H3108.3N2—C13—H13B109.6
C5—C4—C9119.42 (8)C14—C13—H13B109.6
C5—C4—C3123.01 (7)H13A—C13—H13B108.2
C9—C4—C3117.56 (8)C13—C14—Cl2109.91 (6)
C4—C5—C6119.82 (8)C13—C14—H14A109.7
C4—C5—H5120.1Cl2—C14—H14A109.7
C6—C5—H5120.1C13—C14—H14B109.7
C7—C6—C5120.63 (9)Cl2—C14—H14B109.7
C7—C6—H6119.7H14A—C14—H14B108.2
C5—C6—H6119.7
O2—P1—O1—C395.90 (6)C1—C2—C3—O186.98 (8)
N1—P1—O1—C328.97 (6)N1—C2—C3—C4157.19 (7)
N2—P1—O1—C3142.13 (5)C1—C2—C3—C435.65 (10)
O2—P1—N1—C1063.01 (9)O1—C3—C4—C52.20 (12)
O1—P1—N1—C10175.38 (8)C2—C3—C4—C5117.42 (9)
N2—P1—N1—C1064.58 (9)O1—C3—C4—C9177.17 (8)
O2—P1—N1—C2114.89 (6)C2—C3—C4—C963.20 (10)
O1—P1—N1—C26.71 (7)C9—C4—C5—C60.81 (14)
N2—P1—N1—C2117.51 (6)C3—C4—C5—C6178.55 (9)
O2—P1—N2—C11171.12 (7)C4—C5—C6—C70.21 (16)
O1—P1—N2—C1163.67 (8)C5—C6—C7—C80.59 (16)
N1—P1—N2—C1138.44 (8)C6—C7—C8—C90.79 (16)
O2—P1—N2—C132.45 (8)C7—C8—C9—C40.19 (16)
O1—P1—N2—C13122.76 (6)C5—C4—C9—C80.62 (15)
N1—P1—N2—C13135.12 (6)C3—C4—C9—C8178.78 (9)
C10—N1—C2—C175.29 (11)C13—N2—C11—C12100.67 (9)
P1—N1—C2—C1106.71 (8)P1—N2—C11—C1285.61 (9)
C10—N1—C2—C3162.20 (8)N2—C11—C12—Cl165.89 (9)
P1—N1—C2—C315.81 (8)C11—N2—C13—C1481.68 (9)
P1—O1—C3—C4167.41 (6)P1—N2—C13—C1492.13 (8)
P1—O1—C3—C241.83 (7)N2—C13—C14—Cl2176.25 (6)
N1—C2—C3—O134.55 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.992.383.3571 (11)170
C14—H14B···O2i0.992.413.3244 (12)153
C9—H9···O2ii0.952.653.3444 (13)130
C11—H11B···N10.992.633.1322 (11)111
C12—H12B···O10.992.643.3381 (11)128
C13—H13A···Cl10.992.863.4970 (9)123
C10—H10A···C5ii0.982.843.7839 (15)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+1.
(2S,4R)-2-[Bis(2-chloroethyl)amino]-4-isobutyl-1,3,2-oxazaphospholidin-2-one (3b) top
Crystal data top
C10H21Cl2N2O2PF(000) = 320
Mr = 303.16Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.1044 (17) ÅCell parameters from 4852 reflections
b = 5.3162 (8) Åθ = 3.1–28.1°
c = 12.8933 (17) ŵ = 0.53 mm1
β = 115.409 (4)°T = 100 K
V = 749.42 (18) Å3Rod, colourless
Z = 20.22 × 0.02 × 0.02 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
4294 independent reflections
Radiation source: IµS microsource X-ray tube3325 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.080
ω and phi scansθmax = 30.6°, θmin = 3.1°
Absorption correction: multi-scan
(APEX3; Bruker, 2016)
h = 1717
Tmin = 0.616, Tmax = 0.725k = 77
18357 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.0175P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4294 reflectionsΔρmax = 0.38 e Å3
159 parametersΔρmin = 0.49 e Å3
2 restraintsAbsolute structure: Flack x determined using 1199 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The position of the amine H atoms was refined and the N-H bond distance was restrained to 0.88 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42213 (6)0.54753 (18)0.09135 (7)0.0229 (2)
Cl20.91388 (8)0.02057 (18)0.04717 (8)0.0286 (2)
P10.86712 (6)0.58725 (13)0.35572 (7)0.01086 (18)
O10.79674 (19)0.8438 (4)0.3538 (2)0.0143 (5)
O20.99383 (17)0.6243 (4)0.37047 (19)0.0155 (5)
N10.8406 (2)0.4528 (5)0.4568 (2)0.0135 (6)
H10.886 (3)0.329 (5)0.492 (3)0.016*
N20.7888 (2)0.4415 (5)0.2338 (2)0.0134 (6)
C10.7379 (3)0.8342 (6)0.4314 (3)0.0164 (7)
H1A0.6508450.7864910.3890010.020*
H1B0.7424591.0004260.4676170.020*
C20.8062 (3)0.6388 (6)0.5215 (3)0.0133 (7)
H20.8813480.7152730.5827360.016*
C30.7281 (3)0.5206 (7)0.5755 (3)0.0185 (7)
H3A0.7770410.3898060.6307530.022*
H3B0.6569710.4363640.5144030.022*
C40.6812 (3)0.7079 (7)0.6380 (3)0.0211 (8)
H40.6337470.8418940.5821930.025*
C50.5947 (4)0.5717 (11)0.6772 (4)0.0441 (12)
H5A0.5258380.5018480.6102910.066*
H5B0.5640770.6905890.7167890.066*
H5C0.6388210.4351270.7297610.066*
C60.7853 (3)0.8330 (8)0.7387 (3)0.0283 (9)
H6A0.8386430.9213930.7111370.042*
H6B0.8327010.7046140.7947160.042*
H6C0.7517960.9534680.7751850.042*
C70.6592 (3)0.3876 (6)0.1984 (3)0.0146 (7)
H7A0.6436800.3649280.2672100.018*
H7B0.6369660.2294540.1535710.018*
C80.5809 (3)0.6018 (8)0.1258 (3)0.0224 (8)
H8A0.5915950.6157520.0540770.027*
H8B0.6076310.7621410.1683690.027*
C90.8397 (3)0.3806 (7)0.1517 (3)0.0157 (7)
H9A0.9137080.4833750.1687990.019*
H9B0.7789560.4206110.0727620.019*
C100.8723 (3)0.1042 (7)0.1599 (3)0.0185 (7)
H10A0.8013880.0019900.1539120.022*
H10B0.9413230.0690860.2352480.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0133 (3)0.0329 (5)0.0192 (4)0.0036 (3)0.0037 (3)0.0007 (4)
Cl20.0319 (4)0.0341 (5)0.0260 (5)0.0030 (4)0.0185 (4)0.0116 (4)
P10.0099 (3)0.0098 (4)0.0117 (4)0.0005 (3)0.0035 (3)0.0001 (3)
O10.0175 (11)0.0140 (11)0.0137 (13)0.0020 (9)0.0089 (10)0.0022 (10)
O20.0116 (9)0.0205 (13)0.0139 (12)0.0027 (9)0.0050 (9)0.0040 (10)
N10.0134 (12)0.0132 (14)0.0121 (15)0.0038 (10)0.0038 (11)0.0013 (11)
N20.0100 (12)0.0171 (14)0.0135 (15)0.0027 (10)0.0055 (11)0.0046 (12)
C10.0158 (15)0.0175 (17)0.019 (2)0.0001 (13)0.0104 (14)0.0029 (15)
C20.0143 (14)0.0146 (17)0.0108 (17)0.0016 (12)0.0052 (12)0.0021 (13)
C30.0186 (14)0.0189 (17)0.0208 (18)0.0065 (14)0.0111 (13)0.0044 (15)
C40.0176 (16)0.029 (2)0.021 (2)0.0001 (14)0.0125 (15)0.0038 (16)
C50.039 (2)0.062 (3)0.049 (3)0.021 (3)0.036 (2)0.024 (3)
C60.0249 (19)0.041 (2)0.022 (2)0.0064 (16)0.0135 (16)0.0125 (19)
C70.0108 (14)0.0183 (17)0.0132 (18)0.0011 (12)0.0038 (13)0.0002 (13)
C80.0142 (14)0.0251 (19)0.0233 (19)0.0002 (15)0.0036 (13)0.0066 (17)
C90.0154 (15)0.0225 (18)0.0097 (17)0.0026 (13)0.0057 (13)0.0044 (14)
C100.0204 (15)0.0205 (18)0.0153 (17)0.0021 (15)0.0084 (13)0.0028 (16)
Geometric parameters (Å, º) top
Cl1—C81.801 (3)C4—C61.521 (5)
Cl2—C101.787 (3)C4—C51.526 (5)
P1—O21.475 (2)C4—H41.0000
P1—O11.603 (2)C5—H5A0.9800
P1—N11.634 (3)C5—H5B0.9800
P1—N21.641 (3)C5—H5C0.9800
O1—C11.456 (4)C6—H6A0.9800
N1—C21.465 (4)C6—H6B0.9800
N1—H10.85 (2)C6—H6C0.9800
N2—C71.462 (4)C7—C81.520 (5)
N2—C91.471 (4)C7—H7A0.9900
C1—C21.513 (5)C7—H7B0.9900
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C2—C31.529 (4)C9—C101.513 (5)
C2—H21.0000C9—H9A0.9900
C3—C41.534 (5)C9—H9B0.9900
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
O2—P1—O1113.87 (12)C4—C5—H5A109.5
O2—P1—N1120.29 (13)C4—C5—H5B109.5
O1—P1—N195.71 (12)H5A—C5—H5B109.5
O2—P1—N2109.14 (13)C4—C5—H5C109.5
O1—P1—N2107.61 (13)H5A—C5—H5C109.5
N1—P1—N2109.10 (14)H5B—C5—H5C109.5
C1—O1—P1111.9 (2)C4—C6—H6A109.5
C2—N1—P1111.1 (2)C4—C6—H6B109.5
C2—N1—H1119 (3)H6A—C6—H6B109.5
P1—N1—H1118 (2)C4—C6—H6C109.5
C7—N2—C9117.2 (3)H6A—C6—H6C109.5
C7—N2—P1119.5 (2)H6B—C6—H6C109.5
C9—N2—P1123.0 (2)N2—C7—C8110.3 (3)
O1—C1—C2106.6 (2)N2—C7—H7A109.6
O1—C1—H1A110.4C8—C7—H7A109.6
C2—C1—H1A110.4N2—C7—H7B109.6
O1—C1—H1B110.4C8—C7—H7B109.6
C2—C1—H1B110.4H7A—C7—H7B108.1
H1A—C1—H1B108.6C7—C8—Cl1110.5 (2)
N1—C2—C1102.7 (3)C7—C8—H8A109.6
N1—C2—C3111.4 (3)Cl1—C8—H8A109.6
C1—C2—C3113.1 (3)C7—C8—H8B109.6
N1—C2—H2109.8Cl1—C8—H8B109.6
C1—C2—H2109.8H8A—C8—H8B108.1
C3—C2—H2109.8N2—C9—C10109.9 (3)
C2—C3—C4114.4 (3)N2—C9—H9A109.7
C2—C3—H3A108.7C10—C9—H9A109.7
C4—C3—H3A108.7N2—C9—H9B109.7
C2—C3—H3B108.7C10—C9—H9B109.7
C4—C3—H3B108.7H9A—C9—H9B108.2
H3A—C3—H3B107.6C9—C10—Cl2109.9 (2)
C6—C4—C5111.0 (3)C9—C10—H10A109.7
C6—C4—C3112.0 (3)Cl2—C10—H10A109.7
C5—C4—C3109.1 (3)C9—C10—H10B109.7
C6—C4—H4108.2Cl2—C10—H10B109.7
C5—C4—H4108.2H10A—C10—H10B108.2
C3—C4—H4108.2
O2—P1—O1—C1130.6 (2)P1—N1—C2—C3154.3 (2)
N1—P1—O1—C13.9 (2)O1—C1—C2—N134.2 (3)
N2—P1—O1—C1108.2 (2)O1—C1—C2—C3154.4 (3)
O2—P1—N1—C2103.6 (2)N1—C2—C3—C4176.1 (3)
O1—P1—N1—C218.4 (2)C1—C2—C3—C461.0 (4)
N2—P1—N1—C2129.3 (2)C2—C3—C4—C662.3 (4)
O2—P1—N2—C7178.7 (2)C2—C3—C4—C5174.4 (3)
O1—P1—N2—C754.7 (3)C9—N2—C7—C883.5 (4)
N1—P1—N2—C748.1 (3)P1—N2—C7—C891.1 (3)
O2—P1—N2—C94.4 (3)N2—C7—C8—Cl1175.6 (2)
O1—P1—N2—C9119.6 (3)C7—N2—C9—C1082.3 (3)
N1—P1—N2—C9137.6 (3)P1—N2—C9—C10103.2 (3)
P1—O1—C1—C223.8 (3)N2—C9—C10—Cl2172.0 (2)
P1—N1—C2—C133.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (2)2.05 (3)2.863 (3)158 (4)
C2—H2···O2ii1.002.573.401 (4)141
C1—H1B···N1iii0.992.713.481 (4)135
C8—H8A···Cl1iv0.992.923.656 (4)132
C8—H8B···O10.992.543.245 (4)128
C7—H7A···N10.992.623.125 (4)112
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1, z; (iv) x+1, y+1/2, z.
 

Funding information

Funding for this research was provided by: National Science Foundation, Division of Materials Research (grant No. 1337296 to MZ, for X-ray diffractometers); Youngstown State University.

References

First citationBorch, R. F. & Millard, J. A. (1987). J. Med. Chem. 30, 427–431.  CrossRef Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, F. A., Scatena, G. D., Rocha, O. P., Marques, M. P., Cass, Q. B., Simoes, B. P. & Lanchote, V. L. (2016). J. Chromatogr. B, 1011, 53–61.  Google Scholar
First citationCates, L. A., Li, V., Powell, D. R. & Helm, D. V. (1984). J. Med. Chem. 27, 397–401.  CrossRef Google Scholar
First citationCox, P. J., Farmer, P. B., Jarman, M., Jones, M., Stec, W. J. & Kinas, R. (1976). Biochem. Pharmacol. 25, 993–996.  CrossRef Google Scholar
First citationEinhorn, J. (1985). Int. J. Radiat. Oncol. Biol. Phys. 11, 1375–1378.  CrossRef Google Scholar
First citationFavre, H. A. & Powell, W. H. (2014). In Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. Specification of Configuration and Conformation, pp. 1156–1292. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationFernandes, B. J. D., Silva, C. D. M., Andrade, J. M., Matthes, A. D. C. S., Coelho, E. B. & Lanchote, V. L. (2011). Cancer Chemother. Pharmacol. 68, 897–904.  CrossRef Google Scholar
First citationFoster, E. (1978). J. Pharm. Sci. 67, 709–710.  CrossRef Google Scholar
First citationFriedman, O. M. & Seligman, A. M. (1954). J. Am. Chem. Soc. 76, 655–658.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJackson, J. A., Frick, J. A. & Thompson, C. M. (1992). Bioorg. Med. Chem. Lett. 2, 1547–1550.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSladek, N. E. (1988). Pharmacol. Ther. 37, 301–355.  CrossRef Google Scholar
First citationTakamizawa, A., Matsumoto, S., Iwata, T., Tochino, Y., Katagiri, K., Yamaguchi, K. & Shirator, O. (1975). J. Med. Chem. 18, 376–383.  CrossRef Google Scholar
First citationThompson, C. M., Frick, J. A. & Green, D. L. C. (1990). J. Org. Chem. 55, 111–122.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds