research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and redox potentials of the tppz-bridged {RuCl(bpy)}+ dimer

CROSSMARK_Color_square_no_text.svg

aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: franrein@lanl.gov, rcrocha@lanl.gov

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 July 2018; accepted 7 August 2018; online 16 August 2018)

We report the structural and electrochemical characterization of the binuclear complex [μ-(C24H16N6){RuCl(C10H8N2)}2](PF6)2, which contains the bis-tridentate bridging ligand 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (tppz), the monodentate ligand Cl, and the bidentate ligand 2,2′-bi­pyridine (bpy) {systematic name: μ-2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine-bis­[(2,2′-bi­pyridine)­chlorido­ru­thenium(II)] bis­(hexa­fluorido­phosphate)}. The complete [(bpy)(Cl)Ru(tppz)Ru(Cl)(bpy)]2+ dication is generated by crystallographic twofold symmetry; the tppz bridging ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metal-coordinated chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} unit. The RuII ion exhibits a distorted octa­hedral geometry due to the restricted bite angle [160.6 (3)°] of the tppz ligand. For bpy, the bond lengths of the Ru—N bonds are 2.053 (8) and 2.090 (8) Å, with the shorter bond being opposite to Ru—Cl. For the tridentate tppz, the Ru—N distances involving the outer N atoms trans to each other are 2.069 (8) and 2.072 (9) Å, whereas the Ru—N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of the geometric constraints and stronger π-acceptor ability of the pyrazine-centered bridge. The Ru—Cl distance is 2.407 (3) Å and the intra­molecular distance between Ru centers is 6.579 (4) Å. In the crystal, weak C—H⋯Cl and C—H⋯F inter­actions consolidate the packing.

1. Chemical context

The design and synthesis of electrochemically and photochemically active ruthenium(II)–polypyridine complexes have been of continued inter­est in the development of homogeneous electrocatalysis and photocatalysis toward water-splitting schemes for renewable energy applications (Yamazaki et al., 2010[Yamazaki, H., Shouji, A., Kajita, M. & Yagi, M. (2010). Coord. Chem. Rev. 254, 2483-2491.]; Herrero et al., 2011[Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energy Environ. Sci. 4, 2353-2365.]; Jurss et al., 2012[Jurss, J. W., Concepcion, J. J., Butler, J. M., Omberg, K. M., Baraldo, L. M., Thompson, D. G., Lebeau, E. L., Hornstein, B., Schoonover, J. R., Jude, H., Thompson, J. D., Dattelbaum, D. M., Rocha, R. C., Templeton, J. L. & Meyer, T. J. (2012). Inorg. Chem. 51, 1345-1358.]). In our previous work, we introduced Ru dyads in which a light-harvesting Ru moiety (chromophore) and a multi-electron/multi-proton redox-active Ru moiety (catalyst) were linked by back-to-back terpyridine (tpy–tpy) or tetra­pyrid­ylpyrazine (tppz) ligands to give modular light-driven oxidation catalysts with a varying extent of charge delocalization between the Ru centers (Chen et al., 2009[Chen, W., Rein, F. N. & Rocha, R. C. (2011). Angew. Chem. Int. Ed. 48, 9672-9675.], 2013[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510-m511.]). In such catalysts containing the {(tpy/tppz)Ru(bpy)(L)} moiety (L = H2O or Cl), the aqua species is typically formed by ligand substitution from its chloro precursor in water (Davidson et al., 2015b[Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015b). Dalton Trans. 44, 11368-11379.]; Matias et al., 2016[Matias, T. A., Mangoni, A. P., Toma, S. H., Rein, F. N., Rocha, R. C., Toma, H. E. & Araki, K. (2016). Eur. J. Inorg. Chem. pp. 5547-5556.]). Therefore, the chloro complex reported here was initially prepared and isolated as an inter­mediate in the synthesis of binuclear precatalysts based on the {Ru(tppz)Ru} structural framework (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]). In addition to catalysis, the bis-tridentate tppz ligand finds relevance to the assembly of donor–acceptor metal complexes with electron/energy-transfer properties for potential applications in mol­ecular (opto)electronic devices (Davidson et al., 2015a[Davidson, R. J., Liang, J. H., Costa Milan, D., Mao, B. W., Nichols, R. J., Higgins, S. J., Yufit, D. S., Beeby, A. & Low, P. J. (2015a). Inorg. Chem. 54, 5487-5494.]; Fantacci et al., 2004[Fantacci, S., De Angelis, F., Wang, J., Bernhard, S. & Selloni, A. (2004). J. Am. Chem. Soc. 126, 9715-9723.]; Nagashima et al., 2014[Nagashima, T., Nakabayashi, T., Suzuki, T., Kanaizuka, K., Ozawa, H., Zhong, Y. W., Masaoka, S., Sakai, K. & Haga, M. A. (2014). Organometallics, 33, 4893-4904.], 2016[Nagashima, T., Ozawa, H., Suzuki, T., Nakabayashi, T., Kanaizuka, K. & Haga, M. A. (2016). Chem. Eur. J. 22, 1658-1667.]; Wadman et al., 2009[Wadman, S. H., Havenith, R. W., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.]).

[Scheme 1]

2. Structural commentary

The hexa­fluorido­phosphate salt of the binuclear complex [(bpy)(Cl)RuII(μ-tppz)RuII(Cl)(bpy)]2+ (I) crystallized from an aceto­nitrile solution in the monoclinic (C2/c) space group. Its crystal structure is shown in Fig. 1[link], and selected geometrical data are summarized in Table 1[link]. As shown in Fig. 2[link], the dicationic complex packs in alternating layers with the uncoordinated PF6 anions. The complete complex is generated by a crystallographic twofold axis bis­ecting the C6—C6i and C7—C7i [symmetry code: (i) −x + 1, y, −z + [{3\over 2}]] bonds of the central pyrazine ring, although it is close to being locally centrosymmetric. The complete tppz ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metal-coordinated chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} core. The two equivalent metal coordination spheres exhibit a distorted octa­hedral geometry at the RuII ion due to the restricted bite angle of the bis-tridendate tppz ligand; the N1—Ru—N3 angle of 160.6 (3)° is very similar to those of related tppz–RuII complexes (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]; Jude et al., 2013[Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81-m82.]), and significantly less than the ideal angle of 180°. The Ru atom is essentially in the equatorial mean plane formed by atoms N1, N2, N3, and N4, with a deviation of only 0.026 Å. The bidentate bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 78.4 (3)°, in agreement with those found in similar chlorido RuII–bpy complexes (Chen et al., 2013[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510-m511.]; Rein et al., 2015[Rein, F. N., Chen, W., Scott, B. L. & Rocha, R. C. (2015). Acta Cryst. E71, 1017-1021.]). The N5 atom of bpy is arranged trans to the chloride ligand in a nearly linear N—Ru—Cl fashion [172.6 (2)°]. The distances of the two Ru—N bonds for bpy are 2.053 (8) and 2.090 (8) Å, with the shorter bond opposite to Ru—Cl reflecting the increased RuII→Nbpy π-backbonding inter­action at the coordinating atom trans to the π-donor Cl ligand (Chen et al., 2013[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510-m511.]). The Ru—Cl bond length of 2.406 (3) Å and the intra­molecular Ru⋯Ru separation of 6.579 (4) Å are also similar to those observed for the most closely related Ru(tppz)Ru complexes (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]; Hartshorn et al., 1999[Hartshorn, C. M., Daire, N., Tondreau, V., Loeb, B., Meyer, T. J. & White, P. S. (1999). Inorg. Chem. 38, 3200-3206.]). For the tridentate tppz ligand, the Ru—N bond lengths involving the outer N atoms trans to each other are 2.069 (8) and 2.070 (9) Å, whereas the Ru—N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of both the geometric constraint imposed by such mer-arranged ligands and the stronger π-acceptor ability of the pyrazine-centered bridge (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]; Jude et al., 2013[Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81-m82.]). An intra­molecular C13—H13⋯Cl1 close contact of 2.74 Å is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen et al., 2013[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510-m511.]; Jude et al., 2008[Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695-7702.]; Rein et al., 2015[Rein, F. N., Chen, W., Scott, B. L. & Rocha, R. C. (2015). Acta Cryst. E71, 1017-1021.]), although this proximity appears to be partly a consequence of geometry rather than chemically significant bonding.

Table 1
Selected geometric parameters (Å, °)

Ru1—N2 1.939 (7) Ru1—N1 2.070 (9)
Ru1—N5 2.053 (8) Ru1—N4 2.090 (8)
Ru1—N3 2.069 (8) Ru1—Cl1 2.406 (3)
       
N2—Ru1—N5 98.1 (3) N3—Ru1—N4 99.3 (3)
N2—Ru1—N3 80.0 (3) N1—Ru1—N4 100.1 (3)
N5—Ru1—N3 88.5 (3) N2—Ru1—Cl1 89.2 (2)
N2—Ru1—N1 80.6 (3) N5—Ru1—Cl1 172.6 (2)
N5—Ru1—N1 95.4 (3) N3—Ru1—Cl1 91.7 (2)
N3—Ru1—N1 160.6 (3) N1—Ru1—Cl1 86.8 (2)
N2—Ru1—N4 176.4 (3) N4—Ru1—Cl1 94.3 (3)
N5—Ru1—N4 78.4 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms have been omitted for clarity, except for H13; its close contact with Cl1 is indicated by a red dotted line. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]
[Figure 2]
Figure 2
View along the b axis of a 1 × 2 × 2 crystal packing diagram of I. Displacement ellipsoids are drawn at the 40% probability level. Intra- and inter­molecular H⋯Cl inter­actions (those with separations shorter than the sum of van der Waals radii) are represented by the fine dotted lines.

3. Supra­molecular features

In the crystal, C—H⋯Cl and C—H⋯F inter­actions (Table 2[link]) with H⋯X distances that are shorter than the sum of van der Waals radii can be identified and appear to provide some further stabilization of the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cl1 0.93 2.74 3.362 (12) 125
C9—H9⋯Cl1i 0.93 2.71 3.390 (11) 131
C14—H14⋯F2ii 0.93 2.54 3.342 (17) 144
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) listed only four entries for the {RuCl(bpy)(tppz)} substructure. Of these, two are mononuclear complexes [one with the RuIII oxidation state (Daryanavard et al., 2009[Daryanavard, M., Hadadzadeh, H., Khalaji, A. D. & Weil, M. (2009). Transition Met. Chem. 34, 779-786.]) and another at the RuII state (Tondreau et al., 1996[Tondreau, V., Leiva, A. M., Loeb, B., Boys, D., Stultz, L. K. & Meyer, T. J. (1996). Polyhedron, 15, 2035-2040.])] and the other two are binuclear complexes [one with tpy instead of bpy and Cl (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]), and another with Me2bpy instead of bpy and the two Cl ligands in a cis configuration (Hartshorn et al., 1999[Hartshorn, C. M., Daire, N., Tondreau, V., Loeb, B., Meyer, T. J. & White, P. S. (1999). Inorg. Chem. 38, 3200-3206.])].

5. Electrochemical characterization

Cyclic voltammograms of I in aceto­nitrile (Fig. 3[link]; top) show two metal-based oxidation processes at +0.65 and +0.94 V versus Ag/Ag+ (10 mM AgNO3). These processes are clearly reversible and correspond to the redox couples RuII–RuII/RuII–RuIII and RuII–RuIII/RuIII–RuIII, respectively. The stability of the fully oxidized complex is also demonstrated by the voltammogram starting from the RuIII–RuIII species, obtained after application of +1.25 V for 100 s prior to the initial run in the cathodic direction (Fig. 3[link]; bottom). Two additional reversible processes are observed at −0.89 and −1.39 V, which are characteristic of the ligand-based reductions at the tppz bridge. The separation of 290 mV between the two RuII/RuIII redox potentials gives a comproportionation constant (Kc) of about 8.0 × 104, which reflects the stabilization of the mixed-valent state RuII–RuIII relative to its reduced and oxidized isovalent counterparts RuII–RuII and RuIII–RuIII (Richardson & Taube, 1984[Richardson, D. E. & Taube, H. (1984). Coord. Chem. Rev. 60, 107-129.]; Rocha & Toma, 2004[Rocha, R. C. & Toma, H. E. (2004). J. Coord. Chem. 57, 303-312.]). This Kc value suggests a significant communication between the Ru centers, although electrochemical properties alone cannot be taken as conclusive evidence for electronic coupling across the bridging ligand because of possible electrostatic effects (Jude et al., 2008[Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695-7702.]). By comparison with its precursor [Cl3RuII(tppz)RuIIICl3], which shows a separation greater than 700 mV between the two RuII/RuIII redox potentials and which has been well characterized as a borderline case of valence localization/delocalization (Concepcion et al., 2008[Concepcion, J. J., Dattelbaum, D. M., Meyer, T. J. & Rocha, R. C. (2008). Phil. Trans. R. Soc. A, 366, 163-175.]; Rocha et al., 2008[Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503-506.]), the electrochemical data are consistent with a charge-localized configuration in the mixed-valent species [(bpy)(Cl)RuII(tppz)RuIII(Cl)(bpy)]3+.

[Figure 3]
Figure 3
Cyclic voltammograms of 1.0 mM solutions of I in aceto­nitrile with 0.1 M Bu4NPF6 as electrolyte. The various redox states are represented by the potential regions as A: [(bpy)(Cl)RuII(tppz)RuII(Cl)(bpy)]2+, B: [(bpy)(Cl)RuII(tppz)RuIII(Cl)(bpy)]3+, C: [(bpy)(Cl)RuIII(tppz)RuIII(Cl)(bpy)]4+, D: [(bpy)(Cl)RuII(tppz)RuII(Cl)(bpy)]+, and E: [(bpy)(Cl)RuII(tppz2−)RuII(Cl)(bpy)].

6. Synthesis and crystallization

Compound I was prepared from the mixed-valent complex (nBu4N)[Cl3RuII(tppz)RuIIICl3] as starting material (Rocha et al., 2008[Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503-506.]). This precursor was treated by refluxing an ethano­lic solution with two equivalents of bpy in the presence of tri­ethyl­amine as a reductant and the final solid product was collected by filtration of the precipitate formed upon addition of a concentrated aqueous solution of NH4PF6 to the reaction mixture. Green blocks of I were grown by the slow diffusion of diethyl ether into aceto­nitrile solutions of the product in long thin tubes.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. Six disordered aceto­nitrile solvent mol­ecules were treated using PLATON/SQUEEZE (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and not included in the refinement model; the stated chemical formula, molar mass, etc., do not take account of these solvent mol­ecules. All H atoms (aromatic) were idealized and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ru2Cl2(C10H8N2)2(C24H16N6)](PF6)2
Mr 1311.77
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 36.04 (3), 11.517 (11), 14.406 (14)
β (°) 95.258 (13)
V3) 5954 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.20 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker D8 with APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.862, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 13828, 5306, 2167
Rint 0.121
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.221, 0.92
No. of reflections 5306
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.52
Computer programs: APEXII and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEXII (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

µ-2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2'-bipyridine)chloridoruthenium(II)] bis(hexafluoridophosphate) top
Crystal data top
[Ru2Cl2(C10H8N2)2(C24H16N6)](PF6)2F(000) = 2600
Mr = 1311.77Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 36.04 (3) ÅCell parameters from 792 reflections
b = 11.517 (11) Åθ = 2.3–15.6°
c = 14.406 (14) ŵ = 0.73 mm1
β = 95.258 (13)°T = 100 K
V = 5954 (10) Å3Block, green
Z = 40.20 × 0.14 × 0.06 mm
Data collection top
Bruker D8 with APEXII CCD
diffractometer
2167 reflections with I > 2σ(I)
ω scansRint = 0.121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
θmax = 25.3°, θmin = 1.9°
Tmin = 0.862, Tmax = 0.956h = 4341
13828 measured reflectionsk = 1312
5306 independent reflectionsl = 179
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.221 w = 1/[σ2(Fo2) + (0.1018P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
5306 reflectionsΔρmax = 0.89 e Å3
325 parametersΔρmin = 0.52 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.42533 (2)0.80820 (7)0.86533 (6)0.0515 (3)
P10.28591 (11)0.1287 (4)0.8171 (3)0.0899 (11)
Cl10.46532 (8)0.8343 (3)1.00695 (19)0.0738 (9)
N10.4391 (2)0.6338 (7)0.8747 (6)0.052 (2)
N20.46892 (19)0.8090 (7)0.7958 (5)0.0411 (18)
N30.4279 (2)0.9831 (7)0.8337 (5)0.054 (2)
N40.3763 (2)0.8077 (7)0.9324 (6)0.056 (2)
N50.3856 (2)0.7895 (6)0.7548 (6)0.050 (2)
F10.2644 (3)0.1831 (10)0.7306 (6)0.192 (5)
F20.3108 (2)0.0590 (8)0.7523 (6)0.145 (3)
F30.3087 (3)0.0751 (8)0.9044 (6)0.156 (3)
F40.2625 (2)0.1970 (8)0.8839 (6)0.146 (3)
F50.2599 (3)0.0239 (10)0.8153 (7)0.182 (4)
F60.3144 (3)0.2278 (8)0.8224 (8)0.178 (4)
C10.4250 (3)0.5509 (11)0.9278 (7)0.063 (3)
H10.4031640.5670770.9548660.076*
C20.4409 (3)0.4466 (11)0.9435 (8)0.071 (3)
H20.4296110.3904450.9779020.085*
C30.4743 (3)0.4249 (9)0.9073 (7)0.064 (3)
H30.4863370.3544410.9196080.077*
C40.4900 (3)0.5057 (9)0.8535 (7)0.053 (3)
H40.5128750.4920820.8306290.064*
C50.4710 (3)0.6078 (8)0.8339 (6)0.047 (3)
C60.4860 (2)0.7048 (9)0.7808 (6)0.044 (2)
C70.4829 (2)0.9123 (9)0.7690 (6)0.043 (2)
C80.4563 (3)1.0102 (9)0.7801 (6)0.045 (2)
C90.4566 (3)1.1141 (10)0.7356 (7)0.061 (3)
H90.4741451.1285300.6934470.073*
C100.4312 (3)1.1972 (10)0.7528 (8)0.066 (3)
H100.4326171.2706060.7264250.079*
C110.4039 (3)1.1725 (11)0.8086 (8)0.071 (3)
H110.3863991.2285490.8208730.085*
C120.4024 (3)1.0628 (11)0.8467 (7)0.063 (3)
H120.3829581.0444230.8824050.076*
C130.3731 (3)0.8161 (10)1.0246 (8)0.072 (3)
H130.3950010.8220361.0638950.086*
C140.3411 (4)0.8166 (11)1.0637 (10)0.090 (4)
H140.3407120.8266841.1276760.108*
C150.3084 (4)0.8020 (12)1.0072 (11)0.101 (5)
H150.2856600.7982441.0327860.121*
C160.3100 (3)0.7929 (10)0.9126 (10)0.082 (4)
H160.2882000.7835800.8734050.099*
C170.3444 (3)0.7977 (9)0.8752 (7)0.057 (3)
C180.3493 (3)0.7923 (9)0.7757 (7)0.058 (3)
C190.3204 (3)0.7896 (10)0.7048 (9)0.078 (4)
H190.2957780.7891110.7196500.093*
C200.3277 (3)0.7878 (11)0.6156 (10)0.086 (4)
H200.3082950.7875490.5683620.103*
C210.3638 (3)0.7864 (9)0.5938 (7)0.072 (3)
H210.3692450.7835040.5319220.086*
C220.3924 (3)0.7893 (8)0.6657 (7)0.059 (3)
H220.4169870.7910880.6508990.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0439 (5)0.0600 (6)0.0513 (6)0.0015 (5)0.0081 (4)0.0001 (5)
P10.074 (2)0.104 (3)0.093 (3)0.005 (3)0.011 (2)0.006 (2)
Cl10.0681 (18)0.091 (2)0.0614 (19)0.0025 (17)0.0022 (14)0.0059 (16)
N10.042 (5)0.063 (6)0.052 (6)0.009 (5)0.007 (4)0.006 (5)
N20.041 (4)0.038 (5)0.045 (5)0.008 (4)0.009 (4)0.003 (4)
N30.053 (5)0.052 (6)0.057 (6)0.007 (5)0.011 (4)0.001 (4)
N40.060 (5)0.061 (6)0.049 (6)0.007 (5)0.007 (5)0.002 (5)
N50.050 (5)0.057 (6)0.043 (5)0.002 (4)0.005 (4)0.003 (4)
F10.197 (10)0.263 (13)0.117 (7)0.127 (9)0.014 (7)0.058 (7)
F20.141 (7)0.162 (8)0.139 (7)0.053 (6)0.051 (6)0.020 (6)
F30.160 (8)0.189 (9)0.115 (7)0.034 (7)0.005 (6)0.006 (6)
F40.115 (6)0.194 (10)0.135 (7)0.052 (6)0.040 (6)0.038 (6)
F50.133 (8)0.219 (11)0.199 (10)0.073 (8)0.035 (7)0.039 (8)
F60.131 (8)0.122 (8)0.288 (13)0.019 (7)0.055 (8)0.008 (8)
C10.038 (6)0.087 (9)0.065 (8)0.015 (7)0.009 (5)0.006 (7)
C20.071 (9)0.065 (9)0.075 (9)0.006 (7)0.002 (7)0.021 (7)
C30.077 (8)0.049 (7)0.064 (8)0.001 (7)0.005 (6)0.003 (6)
C40.054 (6)0.048 (7)0.058 (7)0.002 (6)0.005 (5)0.004 (6)
C50.057 (7)0.036 (6)0.046 (7)0.005 (5)0.010 (5)0.002 (5)
C60.037 (5)0.050 (7)0.045 (6)0.004 (5)0.001 (4)0.000 (5)
C70.030 (5)0.062 (7)0.035 (6)0.001 (5)0.006 (4)0.001 (5)
C80.048 (6)0.048 (7)0.037 (6)0.005 (5)0.001 (5)0.004 (5)
C90.064 (7)0.070 (8)0.046 (7)0.014 (7)0.006 (5)0.001 (6)
C100.063 (7)0.060 (8)0.072 (8)0.005 (7)0.011 (6)0.003 (6)
C110.051 (7)0.062 (9)0.099 (10)0.020 (7)0.001 (7)0.002 (7)
C120.036 (6)0.080 (9)0.074 (8)0.010 (6)0.005 (5)0.016 (7)
C130.065 (8)0.082 (9)0.068 (8)0.001 (7)0.006 (7)0.003 (7)
C140.068 (9)0.112 (11)0.095 (10)0.004 (9)0.036 (8)0.004 (8)
C150.082 (10)0.127 (13)0.099 (12)0.011 (10)0.041 (9)0.006 (10)
C160.048 (7)0.087 (10)0.115 (12)0.009 (7)0.030 (7)0.004 (8)
C170.046 (6)0.078 (8)0.048 (7)0.000 (6)0.002 (5)0.001 (6)
C180.049 (6)0.073 (8)0.051 (7)0.005 (6)0.004 (5)0.001 (6)
C190.058 (7)0.106 (11)0.070 (9)0.001 (7)0.005 (7)0.003 (8)
C200.056 (8)0.124 (12)0.076 (10)0.014 (8)0.009 (7)0.008 (9)
C210.089 (9)0.082 (9)0.044 (7)0.002 (7)0.001 (7)0.002 (6)
C220.058 (7)0.067 (8)0.051 (7)0.004 (6)0.004 (6)0.007 (6)
Geometric parameters (Å, º) top
Ru1—N21.939 (7)C5—C61.484 (12)
Ru1—N52.053 (8)C6—C6i1.403 (17)
Ru1—N32.069 (8)C7—C7i1.396 (16)
Ru1—N12.070 (9)C7—C81.497 (12)
Ru1—N42.090 (8)C8—C91.358 (13)
Ru1—Cl12.406 (3)C9—C101.363 (13)
P1—F51.527 (10)C9—H90.9300
P1—F61.532 (10)C10—C111.358 (14)
P1—F11.539 (9)C10—H100.9300
P1—F41.552 (8)C11—C121.380 (14)
P1—F31.565 (9)C11—H110.9300
P1—F21.574 (8)C12—H120.9300
N1—C11.351 (12)C13—C141.331 (14)
N1—C51.370 (11)C13—H130.9300
N2—C71.361 (10)C14—C151.379 (17)
N2—C61.375 (10)C14—H140.9300
N3—C121.326 (11)C15—C161.374 (16)
N3—C81.374 (11)C15—H150.9300
N4—C131.347 (12)C16—C171.399 (14)
N4—C171.355 (12)C16—H160.9300
N5—C221.330 (11)C17—C181.462 (13)
N5—C181.367 (12)C18—C191.392 (14)
C1—C21.340 (14)C19—C201.337 (14)
C1—H10.9300C19—H190.9300
C2—C31.380 (13)C20—C211.367 (14)
C2—H20.9300C20—H200.9300
C3—C41.365 (13)C21—C221.392 (13)
C3—H30.9300C21—H210.9300
C4—C51.376 (12)C22—H220.9300
C4—H40.9300
N2—Ru1—N598.1 (3)C5—C4—H4120.8
N2—Ru1—N380.0 (3)N1—C5—C4121.3 (9)
N5—Ru1—N388.5 (3)N1—C5—C6114.6 (8)
N2—Ru1—N180.6 (3)C4—C5—C6123.4 (10)
N5—Ru1—N195.4 (3)N2—C6—C6i117.2 (5)
N3—Ru1—N1160.6 (3)N2—C6—C5112.7 (8)
N2—Ru1—N4176.4 (3)C6i—C6—C5130.1 (6)
N5—Ru1—N478.4 (3)N2—C7—C7i118.3 (5)
N3—Ru1—N499.3 (3)N2—C7—C8111.9 (7)
N1—Ru1—N4100.1 (3)C7i—C7—C8129.7 (6)
N2—Ru1—Cl189.2 (2)C9—C8—N3120.2 (9)
N5—Ru1—Cl1172.6 (2)C9—C8—C7125.5 (10)
N3—Ru1—Cl191.7 (2)N3—C8—C7113.9 (8)
N1—Ru1—Cl186.8 (2)C8—C9—C10119.9 (11)
N4—Ru1—Cl194.3 (3)C8—C9—H9120.0
F5—P1—F6175.7 (7)C10—C9—H9120.0
F5—P1—F192.6 (7)C11—C10—C9119.8 (11)
F6—P1—F191.2 (7)C11—C10—H10120.1
F5—P1—F492.5 (6)C9—C10—H10120.1
F6—P1—F489.5 (6)C10—C11—C12119.0 (11)
F1—P1—F491.9 (5)C10—C11—H11120.5
F5—P1—F388.8 (6)C12—C11—H11120.5
F6—P1—F387.4 (6)N3—C12—C11121.6 (10)
F1—P1—F3178.4 (7)N3—C12—H12119.2
F4—P1—F388.7 (5)C11—C12—H12119.2
F5—P1—F288.3 (6)C14—C13—N4125.0 (11)
F6—P1—F289.6 (6)C14—C13—H13117.5
F1—P1—F289.9 (5)N4—C13—H13117.5
F4—P1—F2178.0 (6)C13—C14—C15118.5 (13)
F3—P1—F289.4 (5)C13—C14—H14120.8
C1—N1—C5117.4 (9)C15—C14—H14120.8
C1—N1—Ru1128.5 (7)C16—C15—C14119.0 (12)
C5—N1—Ru1112.9 (7)C16—C15—H15120.5
C7—N2—C6122.4 (7)C14—C15—H15120.5
C7—N2—Ru1119.2 (6)C15—C16—C17119.8 (12)
C6—N2—Ru1118.2 (6)C15—C16—H16120.1
C12—N3—C8119.0 (9)C17—C16—H16120.1
C12—N3—Ru1126.7 (8)N4—C17—C16120.1 (10)
C8—N3—Ru1113.3 (6)N4—C17—C18115.3 (9)
C13—N4—C17117.5 (9)C16—C17—C18124.5 (10)
C13—N4—Ru1127.4 (7)N5—C18—C19120.4 (10)
C17—N4—Ru1115.1 (7)N5—C18—C17114.8 (8)
C22—N5—C18118.5 (8)C19—C18—C17124.8 (10)
C22—N5—Ru1124.8 (7)C20—C19—C18120.3 (11)
C18—N5—Ru1116.1 (6)C20—C19—H19119.9
C2—C1—N1123.6 (10)C18—C19—H19119.9
C2—C1—H1118.2C19—C20—C21119.9 (11)
N1—C1—H1118.2C19—C20—H20120.1
C1—C2—C3118.1 (11)C21—C20—H20120.1
C1—C2—H2120.9C20—C21—C22119.0 (11)
C3—C2—H2120.9C20—C21—H21120.5
C4—C3—C2120.8 (11)C22—C21—H21120.5
C4—C3—H3119.6N5—C22—C21121.9 (10)
C2—C3—H3119.6N5—C22—H22119.1
C3—C4—C5118.3 (10)C21—C22—H22119.1
C3—C4—H4120.8
C5—N1—C1—C21.1 (15)C7—C8—C9—C10179.0 (9)
Ru1—N1—C1—C2165.8 (8)C8—C9—C10—C115.3 (15)
N1—C1—C2—C33.3 (16)C9—C10—C11—C120.1 (16)
C1—C2—C3—C42.8 (16)C8—N3—C12—C110.7 (14)
C2—C3—C4—C52.0 (15)Ru1—N3—C12—C11168.5 (8)
C1—N1—C5—C46.2 (13)C10—C11—C12—N33.2 (16)
Ru1—N1—C5—C4162.7 (7)C17—N4—C13—C140.7 (17)
C1—N1—C5—C6176.9 (8)Ru1—N4—C13—C14179.2 (10)
Ru1—N1—C5—C68.0 (9)N4—C13—C14—C153 (2)
C3—C4—C5—N16.6 (14)C13—C14—C15—C163 (2)
C3—C4—C5—C6176.5 (9)C14—C15—C16—C170.5 (19)
C7—N2—C6—C6i13.6 (14)C13—N4—C17—C162.0 (15)
Ru1—N2—C6—C6i170.9 (8)Ru1—N4—C17—C16178.1 (8)
C7—N2—C6—C5167.0 (7)C13—N4—C17—C18178.2 (9)
Ru1—N2—C6—C58.6 (9)Ru1—N4—C17—C181.7 (11)
N1—C5—C6—N210.7 (11)C15—C16—C17—N42.0 (17)
C4—C5—C6—N2159.7 (8)C15—C16—C17—C18178.2 (11)
N1—C5—C6—C6i168.6 (11)C22—N5—C18—C192.9 (14)
C4—C5—C6—C6i20.9 (17)Ru1—N5—C18—C19174.9 (8)
C6—N2—C7—C7i4.5 (14)C22—N5—C18—C17177.3 (8)
Ru1—N2—C7—C7i171.0 (8)Ru1—N5—C18—C175.4 (11)
C6—N2—C7—C8171.4 (7)N4—C17—C18—N54.6 (13)
Ru1—N2—C7—C813.0 (9)C16—C17—C18—N5175.2 (10)
C12—N3—C8—C94.8 (13)N4—C17—C18—C19175.6 (10)
Ru1—N3—C8—C9164.6 (7)C16—C17—C18—C194.5 (18)
C12—N3—C8—C7178.7 (8)N5—C18—C19—C202.0 (17)
Ru1—N3—C8—C79.4 (9)C17—C18—C19—C20178.2 (11)
N2—C7—C8—C9159.3 (9)C18—C19—C20—C211.2 (19)
C7i—C7—C8—C916.1 (17)C19—C20—C21—C221.3 (18)
N2—C7—C8—N314.3 (10)C18—N5—C22—C213.0 (14)
C7i—C7—C8—N3170.3 (11)Ru1—N5—C22—C21174.3 (7)
N3—C8—C9—C107.8 (14)C20—C21—C22—N52.3 (16)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl10.932.743.362 (12)125
C9—H9···Cl1ii0.932.713.390 (11)131
C14—H14···F2iii0.932.543.342 (17)144
Symmetry codes: (ii) x, y+2, z1/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors thank the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory for financial support.

Funding information

Funding for this research was provided by: US Department of Energy, Laboratory Directed Research and Development.

References

First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Rein, F. N. & Rocha, R. C. (2011). Angew. Chem. Int. Ed. 48, 9672–9675.  Web of Science CrossRef Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510–m511.  CrossRef IUCr Journals Google Scholar
First citationConcepcion, J. J., Dattelbaum, D. M., Meyer, T. J. & Rocha, R. C. (2008). Phil. Trans. R. Soc. A, 366, 163–175.  Web of Science CrossRef Google Scholar
First citationDaryanavard, M., Hadadzadeh, H., Khalaji, A. D. & Weil, M. (2009). Transition Met. Chem. 34, 779–786.  Web of Science CrossRef Google Scholar
First citationDavidson, R. J., Liang, J. H., Costa Milan, D., Mao, B. W., Nichols, R. J., Higgins, S. J., Yufit, D. S., Beeby, A. & Low, P. J. (2015a). Inorg. Chem. 54, 5487–5494.  Web of Science CrossRef Google Scholar
First citationDavidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015b). Dalton Trans. 44, 11368–11379.  Web of Science CrossRef Google Scholar
First citationFantacci, S., De Angelis, F., Wang, J., Bernhard, S. & Selloni, A. (2004). J. Am. Chem. Soc. 126, 9715–9723.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartshorn, C. M., Daire, N., Tondreau, V., Loeb, B., Meyer, T. J. & White, P. S. (1999). Inorg. Chem. 38, 3200–3206.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energy Environ. Sci. 4, 2353–2365.  Web of Science CrossRef Google Scholar
First citationJude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJurss, J. W., Concepcion, J. J., Butler, J. M., Omberg, K. M., Baraldo, L. M., Thompson, D. G., Lebeau, E. L., Hornstein, B., Schoonover, J. R., Jude, H., Thompson, J. D., Dattelbaum, D. M., Rocha, R. C., Templeton, J. L. & Meyer, T. J. (2012). Inorg. Chem. 51, 1345–1358.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatias, T. A., Mangoni, A. P., Toma, S. H., Rein, F. N., Rocha, R. C., Toma, H. E. & Araki, K. (2016). Eur. J. Inorg. Chem. pp. 5547–5556.  Web of Science CrossRef Google Scholar
First citationNagashima, T., Nakabayashi, T., Suzuki, T., Kanaizuka, K., Ozawa, H., Zhong, Y. W., Masaoka, S., Sakai, K. & Haga, M. A. (2014). Organometallics, 33, 4893–4904.  Web of Science CrossRef Google Scholar
First citationNagashima, T., Ozawa, H., Suzuki, T., Nakabayashi, T., Kanaizuka, K. & Haga, M. A. (2016). Chem. Eur. J. 22, 1658–1667.  Web of Science CrossRef Google Scholar
First citationRein, F. N., Chen, W., Scott, B. L. & Rocha, R. C. (2015). Acta Cryst. E71, 1017–1021.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRichardson, D. E. & Taube, H. (1984). Coord. Chem. Rev. 60, 107–129.  CrossRef Web of Science Google Scholar
First citationRocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503–506.  Web of Science CSD CrossRef CAS Google Scholar
First citationRocha, R. C. & Toma, H. E. (2004). J. Coord. Chem. 57, 303–312.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTondreau, V., Leiva, A. M., Loeb, B., Boys, D., Stultz, L. K. & Meyer, T. J. (1996). Polyhedron, 15, 2035–2040.  CrossRef Web of Science Google Scholar
First citationWadman, S. H., Havenith, R. W., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. & van Koten, G. (2009). Inorg. Chem. 48, 5685–5696.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, H., Shouji, A., Kajita, M. & Yagi, M. (2010). Coord. Chem. Rev. 254, 2483–2491.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds