research communications
+ dimer
and redox potentials of the tppz-bridged {RuCl(bpy)}aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: franrein@lanl.gov, rcrocha@lanl.gov
We report the structural and electrochemical characterization of the binuclear complex [μ-(C24H16N6){RuCl(C10H8N2)}2](PF6)2, which contains the bis-tridentate bridging ligand 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine (tppz), the monodentate ligand Cl−, and the bidentate ligand 2,2′-bipyridine (bpy) {systematic name: μ-2,3,5,6-tetrakis(pyridin-2-yl)pyrazine-bis[(2,2′-bipyridine)chloridoruthenium(II)] bis(hexafluoridophosphate)}. The complete [(bpy)(Cl)Ru(tppz)Ru(Cl)(bpy)]2+ dication is generated by crystallographic twofold symmetry; the tppz bridging ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metal-coordinated chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} unit. The RuII ion exhibits a distorted octahedral geometry due to the restricted bite angle [160.6 (3)°] of the tppz ligand. For bpy, the bond lengths of the Ru—N bonds are 2.053 (8) and 2.090 (8) Å, with the shorter bond being opposite to Ru—Cl. For the tridentate tppz, the Ru—N distances involving the outer N atoms trans to each other are 2.069 (8) and 2.072 (9) Å, whereas the Ru—N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of the geometric constraints and stronger π-acceptor ability of the pyrazine-centered bridge. The Ru—Cl distance is 2.407 (3) Å and the intramolecular distance between Ru centers is 6.579 (4) Å. In the crystal, weak C—H⋯Cl and C—H⋯F interactions consolidate the packing.
Keywords: crystal structure; dinuclear complex; electrochemistry; tetra(pyridyl)pyrazine; ruthenium precatalyst.
CCDC reference: 1860573
1. Chemical context
The design and synthesis of electrochemically and photochemically active ruthenium(II)–polypyridine complexes have been of continued interest in the development of homogeneous electrocatalysis and et al., 2010; Herrero et al., 2011; Jurss et al., 2012). In our previous work, we introduced Ru dyads in which a light-harvesting Ru moiety (chromophore) and a multi-electron/multi-proton redox-active Ru moiety (catalyst) were linked by back-to-back terpyridine (tpy–tpy) or tetrapyridylpyrazine (tppz) ligands to give modular light-driven oxidation catalysts with a varying extent of charge delocalization between the Ru centers (Chen et al., 2009, 2013). In such catalysts containing the {(tpy/tppz)Ru(bpy)(L)} moiety (L = H2O or Cl−), the aqua species is typically formed by ligand substitution from its chloro precursor in water (Davidson et al., 2015b; Matias et al., 2016). Therefore, the chloro complex reported here was initially prepared and isolated as an intermediate in the synthesis of binuclear precatalysts based on the {Ru(tppz)Ru} structural framework (Chen et al., 2011). In addition to catalysis, the bis-tridentate tppz ligand finds relevance to the assembly of donor–acceptor metal complexes with electron/energy-transfer properties for potential applications in molecular (opto)electronic devices (Davidson et al., 2015a; Fantacci et al., 2004; Nagashima et al., 2014, 2016; Wadman et al., 2009).
toward water-splitting schemes for renewable energy applications (Yamazaki2. Structural commentary
The hexafluoridophosphate salt of the binuclear complex [(bpy)(Cl)RuII(μ-tppz)RuII(Cl)(bpy)]2+ (I) crystallized from an acetonitrile solution in the monoclinic (C2/c) Its is shown in Fig. 1, and selected geometrical data are summarized in Table 1. As shown in Fig. 2, the dicationic complex packs in alternating layers with the uncoordinated PF6− anions. The complete complex is generated by a crystallographic twofold axis bisecting the C6—C6i and C7—C7i [symmetry code: (i) −x + 1, y, −z + ] bonds of the central pyrazine ring, although it is close to being locally centrosymmetric. The complete tppz ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metal-coordinated chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} core. The two equivalent metal coordination spheres exhibit a distorted octahedral geometry at the RuII ion due to the restricted bite angle of the bis-tridendate tppz ligand; the N1—Ru—N3 angle of 160.6 (3)° is very similar to those of related tppz–RuII complexes (Chen et al., 2011; Jude et al., 2013), and significantly less than the ideal angle of 180°. The Ru atom is essentially in the equatorial mean plane formed by atoms N1, N2, N3, and N4, with a deviation of only 0.026 Å. The bidentate bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 78.4 (3)°, in agreement with those found in similar chlorido RuII–bpy complexes (Chen et al., 2013; Rein et al., 2015). The N5 atom of bpy is arranged trans to the chloride ligand in a nearly linear N—Ru—Cl fashion [172.6 (2)°]. The distances of the two Ru—N bonds for bpy are 2.053 (8) and 2.090 (8) Å, with the shorter bond opposite to Ru—Cl reflecting the increased RuII→Nbpy π-backbonding interaction at the coordinating atom trans to the π-donor Cl− ligand (Chen et al., 2013). The Ru—Cl bond length of 2.406 (3) Å and the intramolecular Ru⋯Ru separation of 6.579 (4) Å are also similar to those observed for the most closely related Ru(tppz)Ru complexes (Chen et al., 2011; Hartshorn et al., 1999). For the tridentate tppz ligand, the Ru—N bond lengths involving the outer N atoms trans to each other are 2.069 (8) and 2.070 (9) Å, whereas the Ru—N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of both the geometric constraint imposed by such mer-arranged ligands and the stronger π-acceptor ability of the pyrazine-centered bridge (Chen et al., 2011; Jude et al., 2013). An intramolecular C13—H13⋯Cl1 close contact of 2.74 Å is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen et al., 2013; Jude et al., 2008; Rein et al., 2015), although this proximity appears to be partly a consequence of geometry rather than chemically significant bonding.
|
3. Supramolecular features
In the crystal, C—H⋯Cl and C—H⋯F interactions (Table 2) with H⋯X distances that are shorter than the sum of van der Waals radii can be identified and appear to provide some further stabilization of the crystal packing.
4. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016) listed only four entries for the {RuCl(bpy)(tppz)} Of these, two are mononuclear complexes [one with the RuIII (Daryanavard et al., 2009) and another at the RuII state (Tondreau et al., 1996)] and the other two are binuclear complexes [one with tpy instead of bpy and Cl− (Chen et al., 2011), and another with Me2bpy instead of bpy and the two Cl− ligands in a cis configuration (Hartshorn et al., 1999)].
5. Electrochemical characterization
Cyclic voltammograms of I in acetonitrile (Fig. 3; top) show two metal-based oxidation processes at +0.65 and +0.94 V versus Ag/Ag+ (10 mM AgNO3). These processes are clearly reversible and correspond to the redox couples RuII–RuII/RuII–RuIII and RuII–RuIII/RuIII–RuIII, respectively. The stability of the fully oxidized complex is also demonstrated by the voltammogram starting from the RuIII–RuIII species, obtained after application of +1.25 V for 100 s prior to the initial run in the cathodic direction (Fig. 3; bottom). Two additional reversible processes are observed at −0.89 and −1.39 V, which are characteristic of the ligand-based reductions at the tppz bridge. The separation of 290 mV between the two RuII/RuIII redox potentials gives a comproportionation constant (Kc) of about 8.0 × 104, which reflects the stabilization of the mixed-valent state RuII–RuIII relative to its reduced and oxidized isovalent counterparts RuII–RuII and RuIII–RuIII (Richardson & Taube, 1984; Rocha & Toma, 2004). This Kc value suggests a significant communication between the Ru centers, although electrochemical properties alone cannot be taken as conclusive evidence for electronic coupling across the bridging ligand because of possible electrostatic effects (Jude et al., 2008). By comparison with its precursor [Cl3RuII(tppz)RuIIICl3]−, which shows a separation greater than 700 mV between the two RuII/RuIII redox potentials and which has been well characterized as a borderline case of valence localization/delocalization (Concepcion et al., 2008; Rocha et al., 2008), the electrochemical data are consistent with a charge-localized configuration in the mixed-valent species [(bpy)(Cl)RuII(tppz)RuIII(Cl)(bpy)]3+.
6. Synthesis and crystallization
Compound I was prepared from the mixed-valent complex (nBu4N)[Cl3RuII(tppz)RuIIICl3] as starting material (Rocha et al., 2008). This precursor was treated by refluxing an ethanolic solution with two equivalents of bpy in the presence of triethylamine as a reductant and the final solid product was collected by filtration of the precipitate formed upon addition of a concentrated aqueous solution of NH4PF6 to the reaction mixture. Green blocks of I were grown by the slow diffusion of diethyl ether into acetonitrile solutions of the product in long thin tubes.
7. Refinement
Crystal data, data collection, and structure . Six disordered acetonitrile solvent molecules were treated using PLATON/SQUEEZE (van der Sluis & Spek, 1990; Spek, 2015) and not included in the model; the stated chemical formula, molar mass, etc., do not take account of these solvent molecules. All H atoms (aromatic) were idealized and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1860573
https://doi.org/10.1107/S2056989018011258/hb7761sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011258/hb7761Isup2.hkl
Data collection: APEXII (Bruker, 2009); cell
SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ru2Cl2(C10H8N2)2(C24H16N6)](PF6)2 | F(000) = 2600 |
Mr = 1311.77 | Dx = 1.463 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 36.04 (3) Å | Cell parameters from 792 reflections |
b = 11.517 (11) Å | θ = 2.3–15.6° |
c = 14.406 (14) Å | µ = 0.73 mm−1 |
β = 95.258 (13)° | T = 100 K |
V = 5954 (10) Å3 | Block, green |
Z = 4 | 0.20 × 0.14 × 0.06 mm |
Bruker D8 with APEXII CCD diffractometer | 2167 reflections with I > 2σ(I) |
ω scans | Rint = 0.121 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | θmax = 25.3°, θmin = 1.9° |
Tmin = 0.862, Tmax = 0.956 | h = −43→41 |
13828 measured reflections | k = −13→12 |
5306 independent reflections | l = −17→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.078 | H-atom parameters constrained |
wR(F2) = 0.221 | w = 1/[σ2(Fo2) + (0.1018P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max = 0.001 |
5306 reflections | Δρmax = 0.89 e Å−3 |
325 parameters | Δρmin = −0.52 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.42533 (2) | 0.80820 (7) | 0.86533 (6) | 0.0515 (3) | |
P1 | 0.28591 (11) | 0.1287 (4) | 0.8171 (3) | 0.0899 (11) | |
Cl1 | 0.46532 (8) | 0.8343 (3) | 1.00695 (19) | 0.0738 (9) | |
N1 | 0.4391 (2) | 0.6338 (7) | 0.8747 (6) | 0.052 (2) | |
N2 | 0.46892 (19) | 0.8090 (7) | 0.7958 (5) | 0.0411 (18) | |
N3 | 0.4279 (2) | 0.9831 (7) | 0.8337 (5) | 0.054 (2) | |
N4 | 0.3763 (2) | 0.8077 (7) | 0.9324 (6) | 0.056 (2) | |
N5 | 0.3856 (2) | 0.7895 (6) | 0.7548 (6) | 0.050 (2) | |
F1 | 0.2644 (3) | 0.1831 (10) | 0.7306 (6) | 0.192 (5) | |
F2 | 0.3108 (2) | 0.0590 (8) | 0.7523 (6) | 0.145 (3) | |
F3 | 0.3087 (3) | 0.0751 (8) | 0.9044 (6) | 0.156 (3) | |
F4 | 0.2625 (2) | 0.1970 (8) | 0.8839 (6) | 0.146 (3) | |
F5 | 0.2599 (3) | 0.0239 (10) | 0.8153 (7) | 0.182 (4) | |
F6 | 0.3144 (3) | 0.2278 (8) | 0.8224 (8) | 0.178 (4) | |
C1 | 0.4250 (3) | 0.5509 (11) | 0.9278 (7) | 0.063 (3) | |
H1 | 0.403164 | 0.567077 | 0.954866 | 0.076* | |
C2 | 0.4409 (3) | 0.4466 (11) | 0.9435 (8) | 0.071 (3) | |
H2 | 0.429611 | 0.390445 | 0.977902 | 0.085* | |
C3 | 0.4743 (3) | 0.4249 (9) | 0.9073 (7) | 0.064 (3) | |
H3 | 0.486337 | 0.354441 | 0.919608 | 0.077* | |
C4 | 0.4900 (3) | 0.5057 (9) | 0.8535 (7) | 0.053 (3) | |
H4 | 0.512875 | 0.492082 | 0.830629 | 0.064* | |
C5 | 0.4710 (3) | 0.6078 (8) | 0.8339 (6) | 0.047 (3) | |
C6 | 0.4860 (2) | 0.7048 (9) | 0.7808 (6) | 0.044 (2) | |
C7 | 0.4829 (2) | 0.9123 (9) | 0.7690 (6) | 0.043 (2) | |
C8 | 0.4563 (3) | 1.0102 (9) | 0.7801 (6) | 0.045 (2) | |
C9 | 0.4566 (3) | 1.1141 (10) | 0.7356 (7) | 0.061 (3) | |
H9 | 0.474145 | 1.128530 | 0.693447 | 0.073* | |
C10 | 0.4312 (3) | 1.1972 (10) | 0.7528 (8) | 0.066 (3) | |
H10 | 0.432617 | 1.270606 | 0.726425 | 0.079* | |
C11 | 0.4039 (3) | 1.1725 (11) | 0.8086 (8) | 0.071 (3) | |
H11 | 0.386399 | 1.228549 | 0.820873 | 0.085* | |
C12 | 0.4024 (3) | 1.0628 (11) | 0.8467 (7) | 0.063 (3) | |
H12 | 0.382958 | 1.044423 | 0.882405 | 0.076* | |
C13 | 0.3731 (3) | 0.8161 (10) | 1.0246 (8) | 0.072 (3) | |
H13 | 0.395001 | 0.822036 | 1.063895 | 0.086* | |
C14 | 0.3411 (4) | 0.8166 (11) | 1.0637 (10) | 0.090 (4) | |
H14 | 0.340712 | 0.826684 | 1.127676 | 0.108* | |
C15 | 0.3084 (4) | 0.8020 (12) | 1.0072 (11) | 0.101 (5) | |
H15 | 0.285660 | 0.798244 | 1.032786 | 0.121* | |
C16 | 0.3100 (3) | 0.7929 (10) | 0.9126 (10) | 0.082 (4) | |
H16 | 0.288200 | 0.783580 | 0.873405 | 0.099* | |
C17 | 0.3444 (3) | 0.7977 (9) | 0.8752 (7) | 0.057 (3) | |
C18 | 0.3493 (3) | 0.7923 (9) | 0.7757 (7) | 0.058 (3) | |
C19 | 0.3204 (3) | 0.7896 (10) | 0.7048 (9) | 0.078 (4) | |
H19 | 0.295778 | 0.789111 | 0.719650 | 0.093* | |
C20 | 0.3277 (3) | 0.7878 (11) | 0.6156 (10) | 0.086 (4) | |
H20 | 0.308295 | 0.787549 | 0.568362 | 0.103* | |
C21 | 0.3638 (3) | 0.7864 (9) | 0.5938 (7) | 0.072 (3) | |
H21 | 0.369245 | 0.783504 | 0.531922 | 0.086* | |
C22 | 0.3924 (3) | 0.7893 (8) | 0.6657 (7) | 0.059 (3) | |
H22 | 0.416987 | 0.791088 | 0.650899 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0439 (5) | 0.0600 (6) | 0.0513 (6) | 0.0015 (5) | 0.0081 (4) | −0.0001 (5) |
P1 | 0.074 (2) | 0.104 (3) | 0.093 (3) | 0.005 (3) | 0.011 (2) | 0.006 (2) |
Cl1 | 0.0681 (18) | 0.091 (2) | 0.0614 (19) | −0.0025 (17) | 0.0022 (14) | −0.0059 (16) |
N1 | 0.042 (5) | 0.063 (6) | 0.052 (6) | 0.009 (5) | 0.007 (4) | 0.006 (5) |
N2 | 0.041 (4) | 0.038 (5) | 0.045 (5) | 0.008 (4) | 0.009 (4) | 0.003 (4) |
N3 | 0.053 (5) | 0.052 (6) | 0.057 (6) | 0.007 (5) | 0.011 (4) | −0.001 (4) |
N4 | 0.060 (5) | 0.061 (6) | 0.049 (6) | 0.007 (5) | 0.007 (5) | −0.002 (5) |
N5 | 0.050 (5) | 0.057 (6) | 0.043 (5) | −0.002 (4) | 0.005 (4) | −0.003 (4) |
F1 | 0.197 (10) | 0.263 (13) | 0.117 (7) | 0.127 (9) | 0.014 (7) | 0.058 (7) |
F2 | 0.141 (7) | 0.162 (8) | 0.139 (7) | 0.053 (6) | 0.051 (6) | −0.020 (6) |
F3 | 0.160 (8) | 0.189 (9) | 0.115 (7) | 0.034 (7) | −0.005 (6) | 0.006 (6) |
F4 | 0.115 (6) | 0.194 (10) | 0.135 (7) | 0.052 (6) | 0.040 (6) | −0.038 (6) |
F5 | 0.133 (8) | 0.219 (11) | 0.199 (10) | −0.073 (8) | 0.035 (7) | −0.039 (8) |
F6 | 0.131 (8) | 0.122 (8) | 0.288 (13) | −0.019 (7) | 0.055 (8) | −0.008 (8) |
C1 | 0.038 (6) | 0.087 (9) | 0.065 (8) | −0.015 (7) | 0.009 (5) | 0.006 (7) |
C2 | 0.071 (9) | 0.065 (9) | 0.075 (9) | −0.006 (7) | 0.002 (7) | 0.021 (7) |
C3 | 0.077 (8) | 0.049 (7) | 0.064 (8) | −0.001 (7) | −0.005 (6) | 0.003 (6) |
C4 | 0.054 (6) | 0.048 (7) | 0.058 (7) | −0.002 (6) | 0.005 (5) | 0.004 (6) |
C5 | 0.057 (7) | 0.036 (6) | 0.046 (7) | −0.005 (5) | −0.010 (5) | 0.002 (5) |
C6 | 0.037 (5) | 0.050 (7) | 0.045 (6) | −0.004 (5) | −0.001 (4) | 0.000 (5) |
C7 | 0.030 (5) | 0.062 (7) | 0.035 (6) | −0.001 (5) | −0.006 (4) | −0.001 (5) |
C8 | 0.048 (6) | 0.048 (7) | 0.037 (6) | 0.005 (5) | −0.001 (5) | −0.004 (5) |
C9 | 0.064 (7) | 0.070 (8) | 0.046 (7) | 0.014 (7) | −0.006 (5) | 0.001 (6) |
C10 | 0.063 (7) | 0.060 (8) | 0.072 (8) | 0.005 (7) | −0.011 (6) | 0.003 (6) |
C11 | 0.051 (7) | 0.062 (9) | 0.099 (10) | 0.020 (7) | −0.001 (7) | −0.002 (7) |
C12 | 0.036 (6) | 0.080 (9) | 0.074 (8) | 0.010 (6) | 0.005 (5) | −0.016 (7) |
C13 | 0.065 (8) | 0.082 (9) | 0.068 (8) | 0.001 (7) | 0.006 (7) | 0.003 (7) |
C14 | 0.068 (9) | 0.112 (11) | 0.095 (10) | −0.004 (9) | 0.036 (8) | −0.004 (8) |
C15 | 0.082 (10) | 0.127 (13) | 0.099 (12) | 0.011 (10) | 0.041 (9) | −0.006 (10) |
C16 | 0.048 (7) | 0.087 (10) | 0.115 (12) | 0.009 (7) | 0.030 (7) | 0.004 (8) |
C17 | 0.046 (6) | 0.078 (8) | 0.048 (7) | 0.000 (6) | 0.002 (5) | −0.001 (6) |
C18 | 0.049 (6) | 0.073 (8) | 0.051 (7) | −0.005 (6) | −0.004 (5) | 0.001 (6) |
C19 | 0.058 (7) | 0.106 (11) | 0.070 (9) | 0.001 (7) | 0.005 (7) | −0.003 (8) |
C20 | 0.056 (8) | 0.124 (12) | 0.076 (10) | 0.014 (8) | −0.009 (7) | 0.008 (9) |
C21 | 0.089 (9) | 0.082 (9) | 0.044 (7) | 0.002 (7) | 0.001 (7) | −0.002 (6) |
C22 | 0.058 (7) | 0.067 (8) | 0.051 (7) | −0.004 (6) | 0.004 (6) | −0.007 (6) |
Ru1—N2 | 1.939 (7) | C5—C6 | 1.484 (12) |
Ru1—N5 | 2.053 (8) | C6—C6i | 1.403 (17) |
Ru1—N3 | 2.069 (8) | C7—C7i | 1.396 (16) |
Ru1—N1 | 2.070 (9) | C7—C8 | 1.497 (12) |
Ru1—N4 | 2.090 (8) | C8—C9 | 1.358 (13) |
Ru1—Cl1 | 2.406 (3) | C9—C10 | 1.363 (13) |
P1—F5 | 1.527 (10) | C9—H9 | 0.9300 |
P1—F6 | 1.532 (10) | C10—C11 | 1.358 (14) |
P1—F1 | 1.539 (9) | C10—H10 | 0.9300 |
P1—F4 | 1.552 (8) | C11—C12 | 1.380 (14) |
P1—F3 | 1.565 (9) | C11—H11 | 0.9300 |
P1—F2 | 1.574 (8) | C12—H12 | 0.9300 |
N1—C1 | 1.351 (12) | C13—C14 | 1.331 (14) |
N1—C5 | 1.370 (11) | C13—H13 | 0.9300 |
N2—C7 | 1.361 (10) | C14—C15 | 1.379 (17) |
N2—C6 | 1.375 (10) | C14—H14 | 0.9300 |
N3—C12 | 1.326 (11) | C15—C16 | 1.374 (16) |
N3—C8 | 1.374 (11) | C15—H15 | 0.9300 |
N4—C13 | 1.347 (12) | C16—C17 | 1.399 (14) |
N4—C17 | 1.355 (12) | C16—H16 | 0.9300 |
N5—C22 | 1.330 (11) | C17—C18 | 1.462 (13) |
N5—C18 | 1.367 (12) | C18—C19 | 1.392 (14) |
C1—C2 | 1.340 (14) | C19—C20 | 1.337 (14) |
C1—H1 | 0.9300 | C19—H19 | 0.9300 |
C2—C3 | 1.380 (13) | C20—C21 | 1.367 (14) |
C2—H2 | 0.9300 | C20—H20 | 0.9300 |
C3—C4 | 1.365 (13) | C21—C22 | 1.392 (13) |
C3—H3 | 0.9300 | C21—H21 | 0.9300 |
C4—C5 | 1.376 (12) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | ||
N2—Ru1—N5 | 98.1 (3) | C5—C4—H4 | 120.8 |
N2—Ru1—N3 | 80.0 (3) | N1—C5—C4 | 121.3 (9) |
N5—Ru1—N3 | 88.5 (3) | N1—C5—C6 | 114.6 (8) |
N2—Ru1—N1 | 80.6 (3) | C4—C5—C6 | 123.4 (10) |
N5—Ru1—N1 | 95.4 (3) | N2—C6—C6i | 117.2 (5) |
N3—Ru1—N1 | 160.6 (3) | N2—C6—C5 | 112.7 (8) |
N2—Ru1—N4 | 176.4 (3) | C6i—C6—C5 | 130.1 (6) |
N5—Ru1—N4 | 78.4 (3) | N2—C7—C7i | 118.3 (5) |
N3—Ru1—N4 | 99.3 (3) | N2—C7—C8 | 111.9 (7) |
N1—Ru1—N4 | 100.1 (3) | C7i—C7—C8 | 129.7 (6) |
N2—Ru1—Cl1 | 89.2 (2) | C9—C8—N3 | 120.2 (9) |
N5—Ru1—Cl1 | 172.6 (2) | C9—C8—C7 | 125.5 (10) |
N3—Ru1—Cl1 | 91.7 (2) | N3—C8—C7 | 113.9 (8) |
N1—Ru1—Cl1 | 86.8 (2) | C8—C9—C10 | 119.9 (11) |
N4—Ru1—Cl1 | 94.3 (3) | C8—C9—H9 | 120.0 |
F5—P1—F6 | 175.7 (7) | C10—C9—H9 | 120.0 |
F5—P1—F1 | 92.6 (7) | C11—C10—C9 | 119.8 (11) |
F6—P1—F1 | 91.2 (7) | C11—C10—H10 | 120.1 |
F5—P1—F4 | 92.5 (6) | C9—C10—H10 | 120.1 |
F6—P1—F4 | 89.5 (6) | C10—C11—C12 | 119.0 (11) |
F1—P1—F4 | 91.9 (5) | C10—C11—H11 | 120.5 |
F5—P1—F3 | 88.8 (6) | C12—C11—H11 | 120.5 |
F6—P1—F3 | 87.4 (6) | N3—C12—C11 | 121.6 (10) |
F1—P1—F3 | 178.4 (7) | N3—C12—H12 | 119.2 |
F4—P1—F3 | 88.7 (5) | C11—C12—H12 | 119.2 |
F5—P1—F2 | 88.3 (6) | C14—C13—N4 | 125.0 (11) |
F6—P1—F2 | 89.6 (6) | C14—C13—H13 | 117.5 |
F1—P1—F2 | 89.9 (5) | N4—C13—H13 | 117.5 |
F4—P1—F2 | 178.0 (6) | C13—C14—C15 | 118.5 (13) |
F3—P1—F2 | 89.4 (5) | C13—C14—H14 | 120.8 |
C1—N1—C5 | 117.4 (9) | C15—C14—H14 | 120.8 |
C1—N1—Ru1 | 128.5 (7) | C16—C15—C14 | 119.0 (12) |
C5—N1—Ru1 | 112.9 (7) | C16—C15—H15 | 120.5 |
C7—N2—C6 | 122.4 (7) | C14—C15—H15 | 120.5 |
C7—N2—Ru1 | 119.2 (6) | C15—C16—C17 | 119.8 (12) |
C6—N2—Ru1 | 118.2 (6) | C15—C16—H16 | 120.1 |
C12—N3—C8 | 119.0 (9) | C17—C16—H16 | 120.1 |
C12—N3—Ru1 | 126.7 (8) | N4—C17—C16 | 120.1 (10) |
C8—N3—Ru1 | 113.3 (6) | N4—C17—C18 | 115.3 (9) |
C13—N4—C17 | 117.5 (9) | C16—C17—C18 | 124.5 (10) |
C13—N4—Ru1 | 127.4 (7) | N5—C18—C19 | 120.4 (10) |
C17—N4—Ru1 | 115.1 (7) | N5—C18—C17 | 114.8 (8) |
C22—N5—C18 | 118.5 (8) | C19—C18—C17 | 124.8 (10) |
C22—N5—Ru1 | 124.8 (7) | C20—C19—C18 | 120.3 (11) |
C18—N5—Ru1 | 116.1 (6) | C20—C19—H19 | 119.9 |
C2—C1—N1 | 123.6 (10) | C18—C19—H19 | 119.9 |
C2—C1—H1 | 118.2 | C19—C20—C21 | 119.9 (11) |
N1—C1—H1 | 118.2 | C19—C20—H20 | 120.1 |
C1—C2—C3 | 118.1 (11) | C21—C20—H20 | 120.1 |
C1—C2—H2 | 120.9 | C20—C21—C22 | 119.0 (11) |
C3—C2—H2 | 120.9 | C20—C21—H21 | 120.5 |
C4—C3—C2 | 120.8 (11) | C22—C21—H21 | 120.5 |
C4—C3—H3 | 119.6 | N5—C22—C21 | 121.9 (10) |
C2—C3—H3 | 119.6 | N5—C22—H22 | 119.1 |
C3—C4—C5 | 118.3 (10) | C21—C22—H22 | 119.1 |
C3—C4—H4 | 120.8 | ||
C5—N1—C1—C2 | 1.1 (15) | C7—C8—C9—C10 | −179.0 (9) |
Ru1—N1—C1—C2 | −165.8 (8) | C8—C9—C10—C11 | −5.3 (15) |
N1—C1—C2—C3 | 3.3 (16) | C9—C10—C11—C12 | −0.1 (16) |
C1—C2—C3—C4 | −2.8 (16) | C8—N3—C12—C11 | −0.7 (14) |
C2—C3—C4—C5 | −2.0 (15) | Ru1—N3—C12—C11 | −168.5 (8) |
C1—N1—C5—C4 | −6.2 (13) | C10—C11—C12—N3 | 3.2 (16) |
Ru1—N1—C5—C4 | 162.7 (7) | C17—N4—C13—C14 | −0.7 (17) |
C1—N1—C5—C6 | −176.9 (8) | Ru1—N4—C13—C14 | 179.2 (10) |
Ru1—N1—C5—C6 | −8.0 (9) | N4—C13—C14—C15 | 3 (2) |
C3—C4—C5—N1 | 6.6 (14) | C13—C14—C15—C16 | −3 (2) |
C3—C4—C5—C6 | 176.5 (9) | C14—C15—C16—C17 | 0.5 (19) |
C7—N2—C6—C6i | −13.6 (14) | C13—N4—C17—C16 | −2.0 (15) |
Ru1—N2—C6—C6i | 170.9 (8) | Ru1—N4—C17—C16 | 178.1 (8) |
C7—N2—C6—C5 | 167.0 (7) | C13—N4—C17—C18 | 178.2 (9) |
Ru1—N2—C6—C5 | −8.6 (9) | Ru1—N4—C17—C18 | −1.7 (11) |
N1—C5—C6—N2 | 10.7 (11) | C15—C16—C17—N4 | 2.0 (17) |
C4—C5—C6—N2 | −159.7 (8) | C15—C16—C17—C18 | −178.2 (11) |
N1—C5—C6—C6i | −168.6 (11) | C22—N5—C18—C19 | 2.9 (14) |
C4—C5—C6—C6i | 20.9 (17) | Ru1—N5—C18—C19 | 174.9 (8) |
C6—N2—C7—C7i | −4.5 (14) | C22—N5—C18—C17 | −177.3 (8) |
Ru1—N2—C7—C7i | 171.0 (8) | Ru1—N5—C18—C17 | −5.4 (11) |
C6—N2—C7—C8 | 171.4 (7) | N4—C17—C18—N5 | 4.6 (13) |
Ru1—N2—C7—C8 | −13.0 (9) | C16—C17—C18—N5 | −175.2 (10) |
C12—N3—C8—C9 | −4.8 (13) | N4—C17—C18—C19 | −175.6 (10) |
Ru1—N3—C8—C9 | 164.6 (7) | C16—C17—C18—C19 | 4.5 (18) |
C12—N3—C8—C7 | −178.7 (8) | N5—C18—C19—C20 | −2.0 (17) |
Ru1—N3—C8—C7 | −9.4 (9) | C17—C18—C19—C20 | 178.2 (11) |
N2—C7—C8—C9 | −159.3 (9) | C18—C19—C20—C21 | 1.2 (19) |
C7i—C7—C8—C9 | 16.1 (17) | C19—C20—C21—C22 | −1.3 (18) |
N2—C7—C8—N3 | 14.3 (10) | C18—N5—C22—C21 | −3.0 (14) |
C7i—C7—C8—N3 | −170.3 (11) | Ru1—N5—C22—C21 | −174.3 (7) |
N3—C8—C9—C10 | 7.8 (14) | C20—C21—C22—N5 | 2.3 (16) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cl1 | 0.93 | 2.74 | 3.362 (12) | 125 |
C9—H9···Cl1ii | 0.93 | 2.71 | 3.390 (11) | 131 |
C14—H14···F2iii | 0.93 | 2.54 | 3.342 (17) | 144 |
Symmetry codes: (ii) x, −y+2, z−1/2; (iii) x, −y+1, z+1/2. |
Acknowledgements
The authors thank the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory for financial support.
Funding information
Funding for this research was provided by: US Department of Energy, Laboratory Directed Research and Development.
References
Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W., Rein, F. N. & Rocha, R. C. (2011). Angew. Chem. Int. Ed. 48, 9672–9675. Web of Science CrossRef Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510–m511. CrossRef IUCr Journals Google Scholar
Concepcion, J. J., Dattelbaum, D. M., Meyer, T. J. & Rocha, R. C. (2008). Phil. Trans. R. Soc. A, 366, 163–175. Web of Science CrossRef Google Scholar
Daryanavard, M., Hadadzadeh, H., Khalaji, A. D. & Weil, M. (2009). Transition Met. Chem. 34, 779–786. Web of Science CrossRef Google Scholar
Davidson, R. J., Liang, J. H., Costa Milan, D., Mao, B. W., Nichols, R. J., Higgins, S. J., Yufit, D. S., Beeby, A. & Low, P. J. (2015a). Inorg. Chem. 54, 5487–5494. Web of Science CrossRef Google Scholar
Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015b). Dalton Trans. 44, 11368–11379. Web of Science CrossRef Google Scholar
Fantacci, S., De Angelis, F., Wang, J., Bernhard, S. & Selloni, A. (2004). J. Am. Chem. Soc. 126, 9715–9723. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hartshorn, C. M., Daire, N., Tondreau, V., Loeb, B., Meyer, T. J. & White, P. S. (1999). Inorg. Chem. 38, 3200–3206. Web of Science CSD CrossRef CAS Google Scholar
Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energy Environ. Sci. 4, 2353–2365. Web of Science CrossRef Google Scholar
Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82. CSD CrossRef CAS IUCr Journals Google Scholar
Jurss, J. W., Concepcion, J. J., Butler, J. M., Omberg, K. M., Baraldo, L. M., Thompson, D. G., Lebeau, E. L., Hornstein, B., Schoonover, J. R., Jude, H., Thompson, J. D., Dattelbaum, D. M., Rocha, R. C., Templeton, J. L. & Meyer, T. J. (2012). Inorg. Chem. 51, 1345–1358. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matias, T. A., Mangoni, A. P., Toma, S. H., Rein, F. N., Rocha, R. C., Toma, H. E. & Araki, K. (2016). Eur. J. Inorg. Chem. pp. 5547–5556. Web of Science CrossRef Google Scholar
Nagashima, T., Nakabayashi, T., Suzuki, T., Kanaizuka, K., Ozawa, H., Zhong, Y. W., Masaoka, S., Sakai, K. & Haga, M. A. (2014). Organometallics, 33, 4893–4904. Web of Science CrossRef Google Scholar
Nagashima, T., Ozawa, H., Suzuki, T., Nakabayashi, T., Kanaizuka, K. & Haga, M. A. (2016). Chem. Eur. J. 22, 1658–1667. Web of Science CrossRef Google Scholar
Rein, F. N., Chen, W., Scott, B. L. & Rocha, R. C. (2015). Acta Cryst. E71, 1017–1021. Web of Science CrossRef IUCr Journals Google Scholar
Richardson, D. E. & Taube, H. (1984). Coord. Chem. Rev. 60, 107–129. CrossRef Web of Science Google Scholar
Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503–506. Web of Science CSD CrossRef CAS Google Scholar
Rocha, R. C. & Toma, H. E. (2004). J. Coord. Chem. 57, 303–312. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Tondreau, V., Leiva, A. M., Loeb, B., Boys, D., Stultz, L. K. & Meyer, T. J. (1996). Polyhedron, 15, 2035–2040. CrossRef Web of Science Google Scholar
Wadman, S. H., Havenith, R. W., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. & van Koten, G. (2009). Inorg. Chem. 48, 5685–5696. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamazaki, H., Shouji, A., Kajita, M. & Yagi, M. (2010). Coord. Chem. Rev. 254, 2483–2491. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.