research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and luminescent properties of bis­­[2,6-di­methyl-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](2,2,6,6-tetra­methylhepta­ne-3,5-dionato-κ2O,O′)iridium(III) ethyl acetate monosolvate

CROSSMARK_Color_square_no_text.svg

aResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea, bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and cDivisionof Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 July 2018; accepted 3 August 2018; online 10 August 2018)

In the solvated title compound, [Ir(C12H11N2)2(C11H19O2)]·CH3CO2C2H5, the IrIII ion adopts a distorted octa­hedral coordination environment resulting from its coordination by two C,N-chelating 2,6-dimethyl-3-(pyridin-2-yl)pyridin-4-yl ligands and one O,O′-chelating 2,2,6,6-tetra­methylhepta­ne-3,5-dionate ligand. The C,N-chelating ligands are perpendicular to each other [dihedral angle between the least-squares planes = 87.86 (5)°] and are arranged in a cis-C,C′ and trans-N,N′ fashion. In the crystal, pairwise C—H⋯π inter­actions between inversion-related IrIII complexes are present, forming a dimeric structure. The title complex shows bright bluish–green emission with good quantum efficiency in solution at room temperature.

1. Chemical context

Bi­pyridine-based iridium(III) complexes have recently attracted much attention because of their applications in organic light-emitting diodes (OLEDs) (Kim et al., 2018a[Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018a). Bull. Korean Chem. Soc. 39, 703-706.]; Reddy et al., 2016[Reddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29-47.]). In particular, fluorinated- or alkoxo-functionalized bi­pyridine ligands have attracted increasing inter­est in materials research fields because of their large energy differences (T1S0) between the triplet (T1) excited states and singlet ground states (Kim et al., 2017[Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386-391.]). This large triplet energy makes them useful and effective ligands for the design of blue phospho­rescent metal complexes. Inter­estingly, IrIII complexes bearing either meth­oxy or isoprop­oxy substituents in C-coordinating pyridine show blue emission at room temperature, although these substituents act as electron-donating groups (Lee et al., 2014[Lee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040-6047.]; Kim et al., 2018b[Kim, M., Park, J., Oh, H., Ryu, Y. & Kang, Y. (2018b). Bull. Korean Chem. Soc. 39, 24-28.]). This could be due to their large triplet energy (T1 = 2.70–2.82 eV). Compared with alk­oxy substituents, the methyl group has been regarded as essentially the same substituent because of its electron-donating nature. However, an IrIII complex based on methyl-substituted bi­pyridine as a main ligand emits strong green phospho­rescence emission at room temperature (Kim et al., 2017[Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386-391.]). This fact prompted us to investigate the structure of a new IrIII compound possessing methyl-substituted bi­pyridine ligands because the emission of the IrIII complex is dependent on both the main ligand and the structural diversity of the metal complex. Herein, we describe the results of our investigation of the crystal structure, thermal and luminescent properties of the title solvated IrIII complex possessing methyl-substituted bi­pyridine, which was motivated by its potential application for OLEDs.

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit of the title compound consists an IrIII cation, two 2,6-dimethyl-3-(pyridin-2-yl)pyridin-4-yl ligands and a 2,2,6,6-tetra­methylhepta­ne-3,5-dionate ligand. The IrIII atom has a distorted octa­hedral coordination sphere defined by two C,N-chelating ligands and one O,O′-chelating ligand. The C,N-chelating ligands, which are almost perpendicular to each other [dihedral angle between the least-squares planes = 87.86 (5)°], are arranged in cis-C,C′ and trans-N,N′ fashions. These arrangements are similar to those in [Ir(ppy)2(acac)] (Adachi et al., 2001[Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048-5051.]) and [Ir(dfpypy)2(acac)] (Kang et al., 2013[Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441-450.]) where the ppy, dfpypy and acac ligands are 2-phenyl­pyridinate, 2′,6′-di­fluoro-2,3′-bipyridinate, and acetyl­acetonate, respectively. Within the bi­pyridine ligands, the pyridine rings are approximately co-planar, with the dihedral angles between the N1/C6–C10 and N2/C1–C5 rings being 12.49 (19)° and that between rings N3/C18–C22 and N4/C13–C17 being 4.82 (12)°, indicating that effective π conjugation of the two pyridine rings occurs in the ligands.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary radii. Yellow dashed lines represent intra­molecular C—H⋯O hydrogen bonds. The ethyl acetate solvent mol­ecule is not shown for clarity.

The Ir—N, Ir—C and Ir—O bond lengths (Table 1[link]) are typical for related octa­hedrally coordinated IrIII complexes, for example, bis­[2-tert-but­oxy-6-fluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′)iridium(III) (Park & Kang, 2014[Park, K.-M. & Kang, Y. (2014). Acta Cryst. E70, 427-429.]), bis­[2-(1,3-benzo­thia­zol-2-yl)phenyl-κ2C1,N][1,3-bis­(4-bromo­phen­yl)propane-1,3-dionato-κ2O,O′]iridium(III) (Kim et al., 2013[Kim, Y.-I., Yun, S.-J. & Kang, S. K. (2013). Acta Cryst. E69, m443.]) or (acetyl­acetonato-κ2O,O′)bis[3-(2-pyrid­yl)-2,6-di­fluoro-4-pyridyl-κ2C,N]iridium(III) (Kang et al., 2013[Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441-450.]). The average length [1.976 (3) Å] of the Ir—C bonds is slightly shorter than that [2.030 (2) Å] of the Ir—N bonds because of back bonding between the metal atom and an anionic C atom of the ligand. Weak intra­molecular C—H⋯O inter­actions between the 2,2,6,6-tetra­methylhepta­ne-3,5-dionate O atoms as acceptors and the C22—H22, C30—H30A and C35–H35A groups as donors (Table 2[link], dashed lines in Fig. 1[link]) contribute to the stabilization of the IrIII complex.

[Scheme 1]

Table 1
Selected bond lengths (Å)

Ir1—C1 1.974 (3) Ir1—N1 2.032 (2)
Ir1—C13 1.977 (3) Ir1—O1 2.132 (2)
Ir1—N3 2.028 (2) Ir1—O2 2.136 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C6–C10 and N4/C13–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1 0.95 2.56 3.166 (4) 122
C30—H30A⋯O1 0.98 2.42 2.767 (5) 100
C35—H35A⋯O2 0.98 2.44 2.782 (6) 100
C9—H9⋯Cg2i 0.95 2.65 3.542 (4) 156
C33—H33ACg1i 0.98 2.76 3.624 (5) 148
C38—H38ACg2 0.98 2.85 3.711 (5) 145
Symmetry code: (i) -x, -y+1, -z.

3. Supra­molecular features

In the extended structure, pairs of inversion-related IrIII complexes are linked by C—H⋯π inter­actions (Table 2[link], yellow dashed lines in Figs. 2[link] and 3[link]) between H9 with Cg2 and H33A with Cg1 (Cg1 and Cg2 are the centroids of the N1/C6–C10 and N4/C13–C17 rings, respectively), leading to the formation of a dimeric structure. The IrIII complex mol­ecules and the ethyl acetate solvent mol­ecules are also connected by a C—H⋯π inter­actions (Table 2[link], green dashed lines in Fig. 2[link]) between C38A and Cg2. No further inter­molecular inter­actions between the dimeric structures could be identified (Fig. 3[link]).

[Figure 2]
Figure 2
The dimeric structure of the title compound caused by C—H⋯π inter­actions between the IrIII complexes (yellow dashed lines). Green dashed lines represent C—H⋯π inter­actions between ethyl acetate solvent mol­ecules and the IrIII complex.
[Figure 3]
Figure 3
The crystal structure of the title compound: C—H⋯π inter­actions are shown as green and yellow dashed lines. The C atoms of ethyl acetate solvent mol­ecules represent are shown in green and H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Thermal and luminescence properties

As shown in Fig. 4[link], the title complex has a high thermal stability. The decomposition temperature, which is defined as a 5% loss of weight, of more than 573 K is high enough to allow deposition of mol­ecules under reduced pressure without any degradation (Lee et al., 2017[Lee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378-383.]). Thermogravimetric analysis of the title complex revealed that it was thermally stable up to 553 K. During the first stage, a significant weight loss (10%) occurred at approximately 423 K, a phenomenon that may be attributed to the loss of a subset of absorbed solvent mol­ecules as supported by crystal structure. Subsequently, a small weight loss of ca 5% was observed at approximately 593 K. This suggests that the complex possesses sufficient thermal stability to sublime under reduced pressure without degradation. However, it may be noted that the decomposition temperature of the title complex is lower than that of its heteroleptic analog (Lee et al. 2014[Lee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040-6047.]), bis­(2′,6′-dimeth­oxy-4-methyl-2,3′-bipyridinato-N,C4)Ir(acetyl­acetonate) (617 K). This may be due to the methyl substituents of the main bi­pyridine ligand.

[Figure 4]
Figure 4
TGA curve of the title compound.

The title compound displays bright bluish–green emission in solution at room temperature, as shown in Fig. 5[link]. Emission maxima were observed at 503 nm; this wavelength is blue-shifted by approximately 10 nm from the 511 nm emission peak of mer-tris­(2′,6′-dimethyl-2,3′-bipyridinato-κ2N,C4)iridium(III) (Kim et al., 2017[Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386-391.]). Moreover, a broad and featureless emission band at 298 K was observed, indicating that this emission can be ascribed to a metal-to-ligand charge transfer (MLCT) transition (Oh et al., 2014[Oh, S., Jung, N., Lee, J., Kim, J., Park, K.-M. & Kang, Y. (2014). Bull. Korean Chem. Soc. 35, 3590-3594.]). However, a structured emission band with λmax = 491 nm was observed at 77 K. This emission mainly originates from the ligand-centered (LC, 3ππ*) transition based on a previous report (Lee et al., 2015[Lee, J., Park, H., Park, K.-M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235-241.]). The triplet energy (ET) of the title complex was estimated to be 2.52 eV using the emission spectrum at 77 K. The quantum efficiency (ΦPL) of the title complex was estimated using FIrpic, bis­[2-(4,6-di­fluoro­phen­yl)pyridinato-C2,N](picolinato)iridium(III), as a standard (ΦPL = 0.6) to be 0.4. The high thermal stability and good quantum efficiency of the title complex makes it a potentially useful triplet emitter for applications in OLEDs.

[Figure 5]
Figure 5
Emission spectra of the title compound at 298 K and 77 K.

5. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Avance 400 MHz spectrometer. The thermogravimetric spectrum was recorded on a Perkin–Elmer TGA-7 under a nitro­gen environment at a heating rate of 10 K min−1 over a range of 298–973 K. The IrIII dimer, [(Me2pypy)2Ir(μ-Cl)]2, and the title compound were synthesized according to previous reports (Kang et al., 2013[Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441-450.]). The IrIII dimer, [(Me2pypy)2Ir(μ-Cl)]2, (0.15 g, 0.126 mmol), sodium carbonate (0.13 g, 1.26 mmol), and 2,2,6,6-tetra­methylhepta­ne-3,5-dione (0.066 ml, 0.32 mmol) were dissolved in THF/MeOH (1:1, 10 ml). The reaction mixture was stirred overnight at ambient temperature. All volatile components were removed under reduced pressure. The mixture was poured into EtOAc (50 ml), and then washed with water (3 × 50 ml) to remove excess sodium carbonate. Silica gel column purification with EtOAc and hexane gave a yellow powder in 60% yield. Yellow plates were recrystallized from ethyl acetate/hexane solution at low temperature. 1H NMR (400 MHz, CDCl3, δ): 8.41(d, J = 4.0 Hz, 2H), 8.08 (d, J = 4.0 Hz, 2H), 7.80 (t, J = 8.0 Hz, 2H), 7.12 (t, J = 7.9, 1 Hz, 2H), 6.02 (s, 2H), 5.47(s, 1H), 2.66 (s, 6H), 2.22 (s, 6H), 0.68 (s, 18H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, and 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl protons.

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C11H19N2O2)(C12H11N2)2]·C4H8O2
Mr 830.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 13.2757 (3), 10.6258 (2), 26.3070 (5)
β (°) 92.275 (1)
V3) 3708.07 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.65
Crystal size (mm) 0.36 × 0.21 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.518, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 34241, 9158, 7635
Rint 0.044
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.01
No. of reflections 9158
No. of parameters 435
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Bis[2,6-dimethyl-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](2,2,6,6-tetramethylheptane-3,5-dionato-κ2O,O')iridium(III) ethyl acetate monosolvate top
Crystal data top
[Ir(C11H19N2O2)(C12H11N2)2]·C4H8O2F(000) = 1680
Mr = 830.02Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.2757 (3) ÅCell parameters from 9912 reflections
b = 10.6258 (2) Åθ = 2.5–28.0°
c = 26.3070 (5) ŵ = 3.65 mm1
β = 92.275 (1)°T = 173 K
V = 3708.07 (13) Å3Plate, yellow
Z = 40.36 × 0.21 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
7635 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.518, Tmax = 0.746h = 1717
34241 measured reflectionsk = 1413
9158 independent reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0215P)2 + 3.0807P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
9158 reflectionsΔρmax = 0.91 e Å3
435 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.14722 (2)0.43974 (2)0.10988 (2)0.01967 (4)
O10.08631 (15)0.2839 (2)0.14947 (7)0.0269 (5)
O20.00018 (15)0.5213 (2)0.10965 (7)0.0257 (5)
N10.12440 (18)0.3244 (2)0.04888 (8)0.0216 (5)
N20.4655 (2)0.2303 (3)0.09802 (10)0.0315 (6)
N30.17102 (18)0.5519 (2)0.17158 (9)0.0217 (5)
N40.2631 (2)0.8238 (3)0.03719 (9)0.0317 (6)
C10.2812 (2)0.3593 (3)0.10869 (10)0.0222 (6)
C20.3658 (2)0.3823 (3)0.14065 (11)0.0269 (7)
H20.36320.44530.16620.032*
C30.4528 (2)0.3143 (3)0.13543 (12)0.0307 (7)
C40.3862 (2)0.2077 (3)0.06524 (11)0.0280 (7)
C50.2930 (2)0.2652 (3)0.07071 (10)0.0222 (6)
C60.2002 (2)0.2401 (3)0.04003 (10)0.0231 (6)
C70.1798 (2)0.1399 (3)0.00727 (11)0.0314 (7)
H70.23050.07890.00170.038*
C80.0859 (3)0.1285 (4)0.01730 (14)0.0422 (9)
H80.07150.05860.03890.051*
C90.0135 (3)0.2192 (4)0.01022 (13)0.0408 (9)
H90.04980.21580.02840.049*
C100.0351 (2)0.3143 (3)0.02358 (11)0.0311 (7)
H100.01520.37560.02940.037*
C110.5423 (3)0.3286 (4)0.17251 (15)0.0517 (11)
H11A0.52670.39130.19840.078*
H11B0.55700.24760.18900.078*
H11C0.60120.35620.15410.078*
C120.4120 (3)0.1192 (4)0.02290 (13)0.0394 (8)
H12A0.38460.15220.00960.059*
H12B0.38280.03620.02920.059*
H12C0.48540.11170.02150.059*
C130.2012 (2)0.5906 (3)0.07644 (10)0.0191 (6)
C140.2207 (2)0.6071 (3)0.02498 (10)0.0247 (6)
H140.21170.53860.00210.030*
C150.2529 (2)0.7220 (3)0.00719 (11)0.0277 (7)
C160.2461 (2)0.8110 (3)0.08704 (11)0.0296 (7)
C170.2183 (2)0.6962 (3)0.10817 (10)0.0229 (6)
C180.2029 (2)0.6714 (3)0.16275 (10)0.0240 (6)
C190.2196 (3)0.7524 (4)0.20390 (12)0.0418 (9)
H190.24560.83440.19860.050*
C200.1984 (3)0.7133 (4)0.25240 (12)0.0495 (11)
H200.21050.76830.28050.059*
C210.1599 (3)0.5955 (4)0.26008 (11)0.0373 (8)
H210.14120.56930.29290.045*
C220.1493 (2)0.5164 (3)0.21898 (11)0.0293 (7)
H220.12560.43320.22420.035*
C230.2756 (3)0.7427 (4)0.04770 (12)0.0415 (9)
H23A0.26620.66370.06650.062*
H23B0.22990.80680.06230.062*
H23C0.34550.77120.05010.062*
C240.2582 (5)0.9326 (4)0.11632 (15)0.0646 (15)
H24A0.20010.94460.13770.097*
H24B0.26221.00300.09240.097*
H24C0.32000.92920.13790.097*
C250.0311 (3)0.1427 (3)0.18262 (13)0.0373 (8)
C260.0038 (2)0.2754 (3)0.16426 (11)0.0274 (7)
C270.0740 (2)0.3723 (3)0.16390 (12)0.0317 (7)
H270.13310.35750.18220.038*
C280.0679 (2)0.4890 (3)0.13971 (11)0.0253 (6)
C290.1472 (2)0.5922 (3)0.14756 (12)0.0319 (7)
C300.0530 (4)0.0920 (4)0.21790 (16)0.0561 (12)
H30A0.11740.09820.20110.084*
H30B0.05630.14140.24940.084*
H30C0.03940.00370.22590.084*
C310.0357 (4)0.0615 (4)0.13371 (17)0.0585 (12)
H31A0.02920.06620.11720.088*
H31B0.04990.02610.14260.088*
H31C0.08920.09320.11040.088*
C320.1313 (4)0.1344 (4)0.2074 (2)0.0702 (15)
H32A0.18430.16740.18410.105*
H32B0.14580.04630.21530.105*
H32C0.12890.18400.23880.105*
C330.1998 (4)0.6203 (5)0.09674 (16)0.0679 (15)
H33A0.14970.64380.07210.102*
H33B0.23650.54540.08460.102*
H33C0.24730.68990.10060.102*
C340.2262 (4)0.5567 (5)0.1841 (2)0.089 (2)
H34A0.26270.48220.17140.134*
H34B0.19400.53790.21740.134*
H34C0.27360.62670.18740.134*
C350.0905 (4)0.7068 (5)0.1668 (2)0.091 (2)
H35A0.03910.72950.14270.136*
H35B0.13760.77710.17000.136*
H35C0.05810.68830.20010.136*
O30.4888 (5)0.8350 (6)0.17875 (19)0.143 (2)
O40.5575 (2)0.7781 (3)0.10749 (13)0.0626 (8)
C360.6151 (5)0.9681 (6)0.1430 (3)0.095 (2)
H36A0.65570.96070.11280.143*
H36B0.57391.04450.14040.143*
H36C0.65980.97280.17350.143*
C370.5479 (5)0.8554 (6)0.1465 (2)0.0797 (16)
C380.4976 (4)0.6650 (5)0.1056 (2)0.0765 (15)
H38A0.42560.68680.10900.092*
H38B0.51840.60930.13430.092*
C390.5104 (4)0.5992 (6)0.0575 (2)0.0815 (17)
H39A0.46930.52260.05660.122*
H39B0.48900.65420.02910.122*
H39C0.58150.57680.05440.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02112 (6)0.01750 (7)0.02056 (6)0.00037 (5)0.00316 (4)0.00117 (5)
O10.0271 (11)0.0224 (12)0.0316 (10)0.0005 (9)0.0066 (8)0.0018 (9)
O20.0246 (11)0.0238 (12)0.0291 (10)0.0032 (9)0.0053 (8)0.0019 (9)
N10.0232 (12)0.0193 (13)0.0224 (11)0.0016 (10)0.0021 (9)0.0022 (10)
N20.0262 (14)0.0265 (16)0.0417 (14)0.0043 (12)0.0020 (11)0.0018 (13)
N30.0237 (12)0.0198 (14)0.0217 (11)0.0040 (10)0.0016 (9)0.0010 (10)
N40.0421 (16)0.0253 (15)0.0281 (12)0.0068 (13)0.0046 (11)0.0038 (12)
C10.0265 (15)0.0152 (15)0.0247 (13)0.0009 (12)0.0007 (11)0.0012 (12)
C20.0284 (16)0.0256 (18)0.0266 (14)0.0002 (14)0.0003 (12)0.0032 (13)
C30.0271 (16)0.0301 (19)0.0346 (15)0.0034 (14)0.0031 (12)0.0005 (15)
C40.0312 (16)0.0184 (17)0.0347 (15)0.0026 (13)0.0053 (13)0.0014 (13)
C50.0262 (15)0.0182 (16)0.0224 (13)0.0015 (12)0.0031 (11)0.0014 (12)
C60.0258 (15)0.0190 (16)0.0248 (13)0.0015 (12)0.0047 (11)0.0004 (12)
C70.0339 (18)0.0269 (19)0.0333 (15)0.0018 (14)0.0015 (13)0.0105 (14)
C80.044 (2)0.036 (2)0.0453 (19)0.0050 (17)0.0053 (16)0.0207 (18)
C90.0332 (19)0.044 (2)0.0442 (18)0.0011 (17)0.0085 (15)0.0131 (17)
C100.0257 (16)0.032 (2)0.0349 (15)0.0018 (14)0.0016 (12)0.0068 (15)
C110.035 (2)0.057 (3)0.062 (2)0.0096 (19)0.0171 (18)0.016 (2)
C120.0342 (19)0.037 (2)0.0470 (19)0.0074 (16)0.0076 (15)0.0154 (17)
C130.0138 (13)0.0213 (16)0.0221 (12)0.0026 (11)0.0010 (10)0.0009 (11)
C140.0279 (16)0.0258 (17)0.0205 (13)0.0020 (13)0.0016 (11)0.0035 (12)
C150.0277 (16)0.0307 (19)0.0247 (13)0.0026 (14)0.0017 (12)0.0026 (13)
C160.0407 (18)0.0207 (17)0.0275 (14)0.0033 (15)0.0013 (13)0.0011 (14)
C170.0235 (14)0.0222 (17)0.0229 (12)0.0012 (12)0.0012 (11)0.0013 (12)
C180.0241 (15)0.0238 (17)0.0242 (13)0.0002 (13)0.0017 (11)0.0019 (13)
C190.068 (3)0.028 (2)0.0289 (16)0.0140 (19)0.0041 (16)0.0051 (15)
C200.086 (3)0.039 (2)0.0234 (15)0.008 (2)0.0026 (17)0.0125 (16)
C210.053 (2)0.038 (2)0.0205 (14)0.0046 (17)0.0035 (14)0.0006 (14)
C220.0349 (18)0.0289 (18)0.0242 (14)0.0035 (14)0.0005 (12)0.0041 (13)
C230.054 (2)0.043 (2)0.0272 (15)0.0132 (19)0.0055 (15)0.0030 (16)
C240.136 (5)0.024 (2)0.0346 (19)0.018 (3)0.012 (2)0.0032 (17)
C250.047 (2)0.027 (2)0.0385 (17)0.0080 (16)0.0078 (15)0.0058 (15)
C260.0340 (17)0.0257 (18)0.0228 (13)0.0059 (14)0.0034 (12)0.0001 (13)
C270.0283 (17)0.032 (2)0.0358 (16)0.0040 (15)0.0125 (13)0.0015 (15)
C280.0249 (15)0.0259 (17)0.0254 (14)0.0006 (13)0.0032 (11)0.0071 (13)
C290.0290 (17)0.032 (2)0.0356 (16)0.0057 (14)0.0086 (13)0.0058 (15)
C300.079 (3)0.041 (3)0.049 (2)0.006 (2)0.003 (2)0.018 (2)
C310.083 (3)0.034 (2)0.058 (2)0.016 (2)0.005 (2)0.007 (2)
C320.070 (3)0.042 (3)0.102 (4)0.015 (2)0.043 (3)0.014 (3)
C330.063 (3)0.090 (4)0.051 (2)0.047 (3)0.005 (2)0.003 (3)
C340.082 (4)0.071 (4)0.120 (5)0.037 (3)0.078 (4)0.033 (3)
C350.059 (3)0.051 (3)0.161 (6)0.016 (3)0.012 (3)0.064 (4)
O30.181 (6)0.148 (5)0.103 (3)0.029 (4)0.045 (4)0.011 (4)
O40.0454 (17)0.054 (2)0.089 (2)0.0014 (15)0.0076 (16)0.0046 (18)
C360.097 (5)0.067 (4)0.121 (5)0.008 (4)0.014 (4)0.008 (4)
C370.075 (4)0.082 (5)0.081 (4)0.007 (3)0.001 (3)0.016 (3)
C380.050 (3)0.067 (4)0.113 (4)0.007 (3)0.005 (3)0.019 (3)
C390.059 (3)0.074 (4)0.110 (5)0.017 (3)0.013 (3)0.009 (4)
Geometric parameters (Å, º) top
Ir1—C11.974 (3)C21—C221.373 (5)
Ir1—C131.977 (3)C21—H210.9500
Ir1—N32.028 (2)C22—H220.9500
Ir1—N12.032 (2)C23—H23A0.9800
Ir1—O12.132 (2)C23—H23B0.9800
Ir1—O22.136 (2)C23—H23C0.9800
O1—C261.276 (4)C24—H24A0.9800
O2—C281.271 (3)C24—H24B0.9800
N1—C101.340 (4)C24—H24C0.9800
N1—C61.374 (4)C25—C321.507 (5)
N2—C31.344 (4)C25—C301.521 (6)
N2—C41.355 (4)C25—C261.539 (5)
N3—C221.345 (4)C25—C311.548 (5)
N3—C181.362 (4)C26—C271.388 (5)
N4—C151.343 (4)C27—C281.398 (5)
N4—C161.346 (4)C27—H270.9500
C1—C21.398 (4)C28—C291.540 (4)
C1—C51.427 (4)C29—C341.499 (5)
C2—C31.373 (4)C29—C351.508 (6)
C2—H20.9500C29—C331.513 (5)
C3—C111.515 (4)C30—H30A0.9800
C4—C51.393 (4)C30—H30B0.9800
C4—C121.508 (4)C30—H30C0.9800
C5—C61.471 (4)C31—H31A0.9800
C6—C71.389 (4)C31—H31B0.9800
C7—C81.386 (5)C31—H31C0.9800
C7—H70.9500C32—H32A0.9800
C8—C91.379 (5)C32—H32B0.9800
C8—H80.9500C32—H32C0.9800
C9—C101.368 (5)C33—H33A0.9800
C9—H90.9500C33—H33B0.9800
C10—H100.9500C33—H33C0.9800
C11—H11A0.9800C34—H34A0.9800
C11—H11B0.9800C34—H34B0.9800
C11—H11C0.9800C34—H34C0.9800
C12—H12A0.9800C35—H35A0.9800
C12—H12B0.9800C35—H35B0.9800
C12—H12C0.9800C35—H35C0.9800
C13—C141.399 (4)O3—C371.199 (7)
C13—C171.412 (4)O4—C371.324 (7)
C14—C151.381 (4)O4—C381.441 (6)
C14—H140.9500C36—C371.498 (8)
C15—C231.503 (4)C36—H36A0.9800
C16—C171.396 (4)C36—H36B0.9800
C16—C241.509 (5)C36—H36C0.9800
C17—C181.482 (4)C38—C391.462 (7)
C18—C191.394 (4)C38—H38A0.9900
C19—C201.381 (5)C38—H38B0.9900
C19—H190.9500C39—H39A0.9800
C20—C211.370 (5)C39—H39B0.9800
C20—H200.9500C39—H39C0.9800
C1—Ir1—C1390.08 (12)N3—C22—C21122.6 (3)
C1—Ir1—N398.92 (11)N3—C22—H22118.7
C13—Ir1—N380.33 (11)C21—C22—H22118.7
C1—Ir1—N180.37 (11)C15—C23—H23A109.5
C13—Ir1—N1100.53 (10)C15—C23—H23B109.5
N3—Ir1—N1178.87 (10)H23A—C23—H23B109.5
C1—Ir1—O191.77 (10)C15—C23—H23C109.5
C13—Ir1—O1176.65 (10)H23A—C23—H23C109.5
N3—Ir1—O196.62 (9)H23B—C23—H23C109.5
N1—Ir1—O182.53 (9)C16—C24—H24A109.5
C1—Ir1—O2178.00 (10)C16—C24—H24B109.5
C13—Ir1—O290.96 (10)H24A—C24—H24B109.5
N3—Ir1—O282.94 (9)C16—C24—H24C109.5
N1—Ir1—O297.76 (9)H24A—C24—H24C109.5
O1—Ir1—O287.27 (8)H24B—C24—H24C109.5
C26—O1—Ir1125.6 (2)C32—C25—C30110.8 (3)
C28—O2—Ir1124.1 (2)C32—C25—C26114.3 (3)
C10—N1—C6120.1 (3)C30—C25—C26109.9 (3)
C10—N1—Ir1122.8 (2)C32—C25—C31108.7 (4)
C6—N1—Ir1116.10 (18)C30—C25—C31108.3 (3)
C3—N2—C4117.8 (3)C26—C25—C31104.6 (3)
C22—N3—C18119.9 (3)O1—C26—C27125.7 (3)
C22—N3—Ir1123.0 (2)O1—C26—C25113.3 (3)
C18—N3—Ir1116.82 (18)C27—C26—C25121.0 (3)
C15—N4—C16118.3 (3)C26—C27—C28127.5 (3)
C2—C1—C5115.8 (3)C26—C27—H27116.2
C2—C1—Ir1128.2 (2)C28—C27—H27116.2
C5—C1—Ir1116.0 (2)O2—C28—C27125.4 (3)
C3—C2—C1120.5 (3)O2—C28—C29113.4 (3)
C3—C2—H2119.8C27—C28—C29121.2 (3)
C1—C2—H2119.8C34—C29—C35109.9 (4)
N2—C3—C2123.5 (3)C34—C29—C33107.8 (4)
N2—C3—C11114.8 (3)C35—C29—C33110.1 (4)
C2—C3—C11121.6 (3)C34—C29—C28114.0 (3)
N2—C4—C5121.8 (3)C35—C29—C28106.6 (3)
N2—C4—C12112.8 (3)C33—C29—C28108.4 (3)
C5—C4—C12125.4 (3)C25—C30—H30A109.5
C4—C5—C1120.2 (3)C25—C30—H30B109.5
C4—C5—C6126.3 (3)H30A—C30—H30B109.5
C1—C5—C6113.5 (3)C25—C30—H30C109.5
N1—C6—C7118.6 (3)H30A—C30—H30C109.5
N1—C6—C5113.1 (3)H30B—C30—H30C109.5
C7—C6—C5128.2 (3)C25—C31—H31A109.5
C8—C7—C6120.4 (3)C25—C31—H31B109.5
C8—C7—H7119.8H31A—C31—H31B109.5
C6—C7—H7119.8C25—C31—H31C109.5
C9—C8—C7119.6 (3)H31A—C31—H31C109.5
C9—C8—H8120.2H31B—C31—H31C109.5
C7—C8—H8120.2C25—C32—H32A109.5
C10—C9—C8118.3 (3)C25—C32—H32B109.5
C10—C9—H9120.8H32A—C32—H32B109.5
C8—C9—H9120.8C25—C32—H32C109.5
N1—C10—C9122.7 (3)H32A—C32—H32C109.5
N1—C10—H10118.6H32B—C32—H32C109.5
C9—C10—H10118.6C29—C33—H33A109.5
C3—C11—H11A109.5C29—C33—H33B109.5
C3—C11—H11B109.5H33A—C33—H33B109.5
H11A—C11—H11B109.5C29—C33—H33C109.5
C3—C11—H11C109.5H33A—C33—H33C109.5
H11A—C11—H11C109.5H33B—C33—H33C109.5
H11B—C11—H11C109.5C29—C34—H34A109.5
C4—C12—H12A109.5C29—C34—H34B109.5
C4—C12—H12B109.5H34A—C34—H34B109.5
H12A—C12—H12B109.5C29—C34—H34C109.5
C4—C12—H12C109.5H34A—C34—H34C109.5
H12A—C12—H12C109.5H34B—C34—H34C109.5
H12B—C12—H12C109.5C29—C35—H35A109.5
C14—C13—C17116.2 (3)C29—C35—H35B109.5
C14—C13—Ir1128.1 (2)H35A—C35—H35B109.5
C17—C13—Ir1115.74 (19)C29—C35—H35C109.5
C15—C14—C13120.7 (3)H35A—C35—H35C109.5
C15—C14—H14119.7H35B—C35—H35C109.5
C13—C14—H14119.7C37—O4—C38118.3 (4)
N4—C15—C14122.6 (3)C37—C36—H36A109.5
N4—C15—C23115.3 (3)C37—C36—H36B109.5
C14—C15—C23122.1 (3)H36A—C36—H36B109.5
N4—C16—C17122.2 (3)C37—C36—H36C109.5
N4—C16—C24113.1 (3)H36A—C36—H36C109.5
C17—C16—C24124.7 (3)H36B—C36—H36C109.5
C16—C17—C13119.9 (2)O3—C37—O4121.5 (6)
C16—C17—C18126.2 (3)O3—C37—C36126.6 (7)
C13—C17—C18114.0 (3)O4—C37—C36111.9 (5)
N3—C18—C19119.0 (3)O4—C38—C39110.2 (4)
N3—C18—C17112.8 (3)O4—C38—H38A109.6
C19—C18—C17128.2 (3)C39—C38—H38A109.6
C20—C19—C18120.0 (3)O4—C38—H38B109.6
C20—C19—H19120.0C39—C38—H38B109.6
C18—C19—H19120.0H38A—C38—H38B108.1
C21—C20—C19120.1 (3)C38—C39—H39A109.5
C21—C20—H20119.9C38—C39—H39B109.5
C19—C20—H20119.9H39A—C39—H39B109.5
C20—C21—C22118.1 (3)C38—C39—H39C109.5
C20—C21—H21120.9H39A—C39—H39C109.5
C22—C21—H21120.9H39B—C39—H39C109.5
C5—C1—C2—C31.5 (5)C14—C13—C17—C164.4 (4)
Ir1—C1—C2—C3177.9 (2)Ir1—C13—C17—C16173.2 (2)
C4—N2—C3—C23.2 (5)C14—C13—C17—C18176.2 (3)
C4—N2—C3—C11176.3 (3)Ir1—C13—C17—C186.2 (3)
C1—C2—C3—N25.2 (5)C22—N3—C18—C194.7 (4)
C1—C2—C3—C11174.3 (3)Ir1—N3—C18—C19179.5 (2)
C3—N2—C4—C52.4 (5)C22—N3—C18—C17177.0 (3)
C3—N2—C4—C12175.8 (3)Ir1—N3—C18—C172.2 (3)
N2—C4—C5—C15.8 (5)C16—C17—C18—N3176.8 (3)
C12—C4—C5—C1172.1 (3)C13—C17—C18—N32.5 (4)
N2—C4—C5—C6174.8 (3)C16—C17—C18—C195.1 (5)
C12—C4—C5—C67.3 (5)C13—C17—C18—C19175.6 (3)
C2—C1—C5—C43.7 (4)N3—C18—C19—C203.7 (5)
Ir1—C1—C5—C4176.8 (2)C17—C18—C19—C20178.3 (4)
C2—C1—C5—C6176.8 (3)C18—C19—C20—C210.7 (6)
Ir1—C1—C5—C62.7 (3)C19—C20—C21—C223.8 (6)
C10—N1—C6—C74.5 (4)C18—N3—C22—C211.5 (5)
Ir1—N1—C6—C7164.7 (2)Ir1—N3—C22—C21176.0 (3)
C10—N1—C6—C5179.7 (3)C20—C21—C22—N32.9 (5)
Ir1—N1—C6—C511.2 (3)Ir1—O1—C26—C279.9 (4)
C4—C5—C6—N1170.5 (3)Ir1—O1—C26—C25169.11 (19)
C1—C5—C6—N18.9 (4)C32—C25—C26—O1171.5 (3)
C4—C5—C6—C714.1 (5)C30—C25—C26—O146.2 (4)
C1—C5—C6—C7166.4 (3)C31—C25—C26—O169.8 (4)
N1—C6—C7—C82.3 (5)C32—C25—C26—C279.5 (5)
C5—C6—C7—C8177.5 (3)C30—C25—C26—C27134.7 (3)
C6—C7—C8—C91.9 (6)C31—C25—C26—C27109.2 (4)
C7—C8—C9—C104.0 (6)O1—C26—C27—C2812.3 (5)
C6—N1—C10—C92.4 (5)C25—C26—C27—C28166.6 (3)
Ir1—N1—C10—C9166.0 (3)Ir1—O2—C28—C2724.2 (4)
C8—C9—C10—N11.9 (6)Ir1—O2—C28—C29156.3 (2)
C17—C13—C14—C151.2 (4)C26—C27—C28—O27.1 (6)
Ir1—C13—C14—C15176.0 (2)C26—C27—C28—C29173.5 (3)
C16—N4—C15—C143.5 (5)O2—C28—C29—C34178.3 (4)
C16—N4—C15—C23178.5 (3)C27—C28—C29—C342.2 (5)
C13—C14—C15—N42.8 (5)O2—C28—C29—C3556.9 (4)
C13—C14—C15—C23179.3 (3)C27—C28—C29—C35123.6 (4)
C15—N4—C16—C170.2 (5)O2—C28—C29—C3361.6 (4)
C15—N4—C16—C24179.0 (3)C27—C28—C29—C33117.9 (4)
N4—C16—C17—C133.9 (5)C38—O4—C37—O32.3 (8)
C24—C16—C17—C13174.8 (4)C38—O4—C37—C36179.9 (4)
N4—C16—C17—C18176.8 (3)C37—O4—C38—C39173.9 (4)
C24—C16—C17—C184.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C6–C10 and N4/C13–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C22—H22···O10.952.563.166 (4)122
C30—H30A···O10.982.422.767 (5)100
C35—H35A···O20.982.442.782 (6)100
C9—H9···Cg2i0.952.653.542 (4)156
C33—H33A···Cg1i0.982.763.624 (5)148
C38—H38A···Cg20.982.853.711 (5)145
Symmetry code: (i) x, y+1, z.
 

Funding information

This research was supported by a 2016 Research Grant from Kangwon National University (No. 520160312).

References

First citationAdachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048–5051.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, M., Kim, J., Park, K.-M. & Kang, Y. (2018a). Bull. Korean Chem. Soc. 39, 703–706.  Web of Science CrossRef Google Scholar
First citationKim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386–391.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, M., Park, J., Oh, H., Ryu, Y. & Kang, Y. (2018b). Bull. Korean Chem. Soc. 39, 24–28.  Web of Science CrossRef Google Scholar
First citationKim, Y.-I., Yun, S.-J. & Kang, S. K. (2013). Acta Cryst. E69, m443.  CrossRef IUCr Journals Google Scholar
First citationLee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.  Web of Science CrossRef Google Scholar
First citationLee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040–6047.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J., Park, H., Park, K.-M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235–241.  Web of Science CrossRef Google Scholar
First citationOh, S., Jung, N., Lee, J., Kim, J., Park, K.-M. & Kang, Y. (2014). Bull. Korean Chem. Soc. 35, 3590–3594.  Web of Science CrossRef Google Scholar
First citationPark, K.-M. & Kang, Y. (2014). Acta Cryst. E70, 427–429.  CrossRef IUCr Journals Google Scholar
First citationReddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29–47.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds