research communications
κN)pyridin-4-yl-κC4](2,2,6,6-tetramethylheptane-3,5-dionato-κ2O,O′)iridium(III) ethyl acetate monosolvate
and luminescent properties of bis[2,6-dimethyl-3-(pyridin-2-yl-aResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea, bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and cDivisionof Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr
In the solvated title compound, [Ir(C12H11N2)2(C11H19O2)]·CH3CO2C2H5, the IrIII ion adopts a distorted octahedral coordination environment resulting from its coordination by two C,N-chelating 2,6-dimethyl-3-(pyridin-2-yl)pyridin-4-yl ligands and one O,O′-chelating 2,2,6,6-tetramethylheptane-3,5-dionate ligand. The C,N-chelating ligands are perpendicular to each other [dihedral angle between the least-squares planes = 87.86 (5)°] and are arranged in a cis-C,C′ and trans-N,N′ fashion. In the crystal, pairwise C—H⋯π interactions between inversion-related IrIII complexes are present, forming a dimeric structure. The title complex shows bright bluish–green emission with good in solution at room temperature.
Keywords: crystal structure; iridium(III) complex; C,N-chelating ligand; C—H⋯π interactions; luminescence.
CCDC reference: 1859964
1. Chemical context
Bipyridine-based iridium(III) complexes have recently attracted much attention because of their applications in organic light-emitting diodes (OLEDs) (Kim et al., 2018a; Reddy et al., 2016). In particular, fluorinated- or alkoxo-functionalized bipyridine ligands have attracted increasing interest in materials research fields because of their large energy differences (T1→S0) between the triplet (T1) excited states and singlet ground states (Kim et al., 2017). This large triplet energy makes them useful and effective ligands for the design of blue phosphorescent metal complexes. Interestingly, IrIII complexes bearing either methoxy or isopropoxy substituents in C-coordinating pyridine show blue emission at room temperature, although these substituents act as electron-donating groups (Lee et al., 2014; Kim et al., 2018b). This could be due to their large triplet energy (T1 = 2.70–2.82 eV). Compared with alkoxy substituents, the methyl group has been regarded as essentially the same substituent because of its electron-donating nature. However, an IrIII complex based on methyl-substituted bipyridine as a main ligand emits strong green phosphorescence emission at room temperature (Kim et al., 2017). This fact prompted us to investigate the structure of a new IrIII compound possessing methyl-substituted bipyridine ligands because the emission of the IrIII complex is dependent on both the main ligand and the structural diversity of the metal complex. Herein, we describe the results of our investigation of the thermal and luminescent properties of the title solvated IrIII complex possessing methyl-substituted bipyridine, which was motivated by its potential application for OLEDs.
2. Structural commentary
As shown in Fig. 1, the of the title compound consists an IrIII cation, two 2,6-dimethyl-3-(pyridin-2-yl)pyridin-4-yl ligands and a 2,2,6,6-tetramethylheptane-3,5-dionate ligand. The IrIII atom has a distorted octahedral coordination sphere defined by two C,N-chelating ligands and one O,O′-chelating ligand. The C,N-chelating ligands, which are almost perpendicular to each other [dihedral angle between the least-squares planes = 87.86 (5)°], are arranged in cis-C,C′ and trans-N,N′ fashions. These arrangements are similar to those in [Ir(ppy)2(acac)] (Adachi et al., 2001) and [Ir(dfpypy)2(acac)] (Kang et al., 2013) where the ppy, dfpypy and acac ligands are 2-phenylpyridinate, 2′,6′-difluoro-2,3′-bipyridinate, and acetylacetonate, respectively. Within the bipyridine ligands, the pyridine rings are approximately co-planar, with the dihedral angles between the N1/C6–C10 and N2/C1–C5 rings being 12.49 (19)° and that between rings N3/C18–C22 and N4/C13–C17 being 4.82 (12)°, indicating that effective π conjugation of the two pyridine rings occurs in the ligands.
The Ir—N, Ir—C and Ir—O bond lengths (Table 1) are typical for related octahedrally coordinated IrIII complexes, for example, bis[2-tert-butoxy-6-fluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′)iridium(III) (Park & Kang, 2014), bis[2-(1,3-benzothiazol-2-yl)phenyl-κ2C1,N][1,3-bis(4-bromophenyl)propane-1,3-dionato-κ2O,O′]iridium(III) (Kim et al., 2013) or (acetylacetonato-κ2O,O′)bis[3-(2-pyridyl)-2,6-difluoro-4-pyridyl-κ2C,N]iridium(III) (Kang et al., 2013). The average length [1.976 (3) Å] of the Ir—C bonds is slightly shorter than that [2.030 (2) Å] of the Ir—N bonds because of back bonding between the metal atom and an anionic C atom of the ligand. Weak intramolecular C—H⋯O interactions between the 2,2,6,6-tetramethylheptane-3,5-dionate O atoms as acceptors and the C22—H22, C30—H30A and C35–H35A groups as donors (Table 2, dashed lines in Fig. 1) contribute to the stabilization of the IrIII complex.
|
3. Supramolecular features
In the extended structure, pairs of inversion-related IrIII complexes are linked by C—H⋯π interactions (Table 2, yellow dashed lines in Figs. 2 and 3) between H9 with Cg2 and H33A with Cg1 (Cg1 and Cg2 are the centroids of the N1/C6–C10 and N4/C13–C17 rings, respectively), leading to the formation of a dimeric structure. The IrIII complex molecules and the ethyl acetate solvent molecules are also connected by a C—H⋯π interactions (Table 2, green dashed lines in Fig. 2) between C38A and Cg2. No further intermolecular interactions between the dimeric structures could be identified (Fig. 3).
4. Thermal and luminescence properties
As shown in Fig. 4, the title complex has a high thermal stability. The decomposition temperature, which is defined as a 5% loss of weight, of more than 573 K is high enough to allow deposition of molecules under reduced pressure without any degradation (Lee et al., 2017). Thermogravimetric analysis of the title complex revealed that it was thermally stable up to 553 K. During the first stage, a significant weight loss (10%) occurred at approximately 423 K, a phenomenon that may be attributed to the loss of a subset of absorbed solvent molecules as supported by Subsequently, a small weight loss of ca 5% was observed at approximately 593 K. This suggests that the complex possesses sufficient thermal stability to sublime under reduced pressure without degradation. However, it may be noted that the decomposition temperature of the title complex is lower than that of its heteroleptic analog (Lee et al. 2014), bis(2′,6′-dimethoxy-4-methyl-2,3′-bipyridinato-N,C4)Ir(acetylacetonate) (617 K). This may be due to the methyl substituents of the main bipyridine ligand.
The title compound displays bright bluish–green emission in solution at room temperature, as shown in Fig. 5. Emission maxima were observed at 503 nm; this wavelength is blue-shifted by approximately 10 nm from the 511 nm emission peak of mer-tris(2′,6′-dimethyl-2,3′-bipyridinato-κ2N,C4)iridium(III) (Kim et al., 2017). Moreover, a broad and featureless emission band at 298 K was observed, indicating that this emission can be ascribed to a (MLCT) transition (Oh et al., 2014). However, a structured emission band with λmax = 491 nm was observed at 77 K. This emission mainly originates from the ligand-centered (LC, 3π–π*) transition based on a previous report (Lee et al., 2015). The triplet energy (ET) of the title complex was estimated to be 2.52 eV using the at 77 K. The (ΦPL) of the title complex was estimated using FIrpic, bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III), as a standard (ΦPL = 0.6) to be 0.4. The high thermal stability and good of the title complex makes it a potentially useful triplet emitter for applications in OLEDs.
5. Synthesis and crystallization
All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Avance 400 MHz spectrometer. The thermogravimetric spectrum was recorded on a Perkin–Elmer TGA-7 under a nitrogen environment at a heating rate of 10 K min−1 over a range of 298–973 K. The IrIII dimer, [(Me2pypy)2Ir(μ-Cl)]2, and the title compound were synthesized according to previous reports (Kang et al., 2013). The IrIII dimer, [(Me2pypy)2Ir(μ-Cl)]2, (0.15 g, 0.126 mmol), sodium carbonate (0.13 g, 1.26 mmol), and 2,2,6,6-tetramethylheptane-3,5-dione (0.066 ml, 0.32 mmol) were dissolved in THF/MeOH (1:1, 10 ml). The reaction mixture was stirred overnight at ambient temperature. All volatile components were removed under reduced pressure. The mixture was poured into EtOAc (50 ml), and then washed with water (3 × 50 ml) to remove excess sodium carbonate. Silica gel column purification with EtOAc and hexane gave a yellow powder in 60% yield. Yellow plates were recrystallized from ethyl acetate/hexane solution at low temperature. 1H NMR (400 MHz, CDCl3, δ): 8.41(d, J = 4.0 Hz, 2H), 8.08 (d, J = 4.0 Hz, 2H), 7.80 (t, J = 8.0 Hz, 2H), 7.12 (t, J = 7.9, 1 Hz, 2H), 6.02 (s, 2H), 5.47(s, 1H), 2.66 (s, 6H), 2.22 (s, 6H), 0.68 (s, 18H).
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, and 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl protons.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1859964
https://doi.org/10.1107/S2056989018011076/hb7762sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018011076/hb7762Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Ir(C11H19N2O2)(C12H11N2)2]·C4H8O2 | F(000) = 1680 |
Mr = 830.02 | Dx = 1.487 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.2757 (3) Å | Cell parameters from 9912 reflections |
b = 10.6258 (2) Å | θ = 2.5–28.0° |
c = 26.3070 (5) Å | µ = 3.65 mm−1 |
β = 92.275 (1)° | T = 173 K |
V = 3708.07 (13) Å3 | Plate, yellow |
Z = 4 | 0.36 × 0.21 × 0.05 mm |
Bruker APEXII CCD diffractometer | 7635 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.044 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 1.6° |
Tmin = 0.518, Tmax = 0.746 | h = −17→17 |
34241 measured reflections | k = −14→13 |
9158 independent reflections | l = −34→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0215P)2 + 3.0807P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
9158 reflections | Δρmax = 0.91 e Å−3 |
435 parameters | Δρmin = −0.65 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.14722 (2) | 0.43974 (2) | 0.10988 (2) | 0.01967 (4) | |
O1 | 0.08631 (15) | 0.2839 (2) | 0.14947 (7) | 0.0269 (5) | |
O2 | 0.00018 (15) | 0.5213 (2) | 0.10965 (7) | 0.0257 (5) | |
N1 | 0.12440 (18) | 0.3244 (2) | 0.04888 (8) | 0.0216 (5) | |
N2 | 0.4655 (2) | 0.2303 (3) | 0.09802 (10) | 0.0315 (6) | |
N3 | 0.17102 (18) | 0.5519 (2) | 0.17158 (9) | 0.0217 (5) | |
N4 | 0.2631 (2) | 0.8238 (3) | 0.03719 (9) | 0.0317 (6) | |
C1 | 0.2812 (2) | 0.3593 (3) | 0.10869 (10) | 0.0222 (6) | |
C2 | 0.3658 (2) | 0.3823 (3) | 0.14065 (11) | 0.0269 (7) | |
H2 | 0.3632 | 0.4453 | 0.1662 | 0.032* | |
C3 | 0.4528 (2) | 0.3143 (3) | 0.13543 (12) | 0.0307 (7) | |
C4 | 0.3862 (2) | 0.2077 (3) | 0.06524 (11) | 0.0280 (7) | |
C5 | 0.2930 (2) | 0.2652 (3) | 0.07071 (10) | 0.0222 (6) | |
C6 | 0.2002 (2) | 0.2401 (3) | 0.04003 (10) | 0.0231 (6) | |
C7 | 0.1798 (2) | 0.1399 (3) | 0.00727 (11) | 0.0314 (7) | |
H7 | 0.2305 | 0.0789 | 0.0017 | 0.038* | |
C8 | 0.0859 (3) | 0.1285 (4) | −0.01730 (14) | 0.0422 (9) | |
H8 | 0.0715 | 0.0586 | −0.0389 | 0.051* | |
C9 | 0.0135 (3) | 0.2192 (4) | −0.01022 (13) | 0.0408 (9) | |
H9 | −0.0498 | 0.2158 | −0.0284 | 0.049* | |
C10 | 0.0351 (2) | 0.3143 (3) | 0.02358 (11) | 0.0311 (7) | |
H10 | −0.0152 | 0.3756 | 0.0294 | 0.037* | |
C11 | 0.5423 (3) | 0.3286 (4) | 0.17251 (15) | 0.0517 (11) | |
H11A | 0.5267 | 0.3913 | 0.1984 | 0.078* | |
H11B | 0.5570 | 0.2476 | 0.1890 | 0.078* | |
H11C | 0.6012 | 0.3562 | 0.1541 | 0.078* | |
C12 | 0.4120 (3) | 0.1192 (4) | 0.02290 (13) | 0.0394 (8) | |
H12A | 0.3846 | 0.1522 | −0.0096 | 0.059* | |
H12B | 0.3828 | 0.0362 | 0.0292 | 0.059* | |
H12C | 0.4854 | 0.1117 | 0.0215 | 0.059* | |
C13 | 0.2012 (2) | 0.5906 (3) | 0.07644 (10) | 0.0191 (6) | |
C14 | 0.2207 (2) | 0.6071 (3) | 0.02498 (10) | 0.0247 (6) | |
H14 | 0.2117 | 0.5386 | 0.0021 | 0.030* | |
C15 | 0.2529 (2) | 0.7220 (3) | 0.00719 (11) | 0.0277 (7) | |
C16 | 0.2461 (2) | 0.8110 (3) | 0.08704 (11) | 0.0296 (7) | |
C17 | 0.2183 (2) | 0.6962 (3) | 0.10817 (10) | 0.0229 (6) | |
C18 | 0.2029 (2) | 0.6714 (3) | 0.16275 (10) | 0.0240 (6) | |
C19 | 0.2196 (3) | 0.7524 (4) | 0.20390 (12) | 0.0418 (9) | |
H19 | 0.2456 | 0.8344 | 0.1986 | 0.050* | |
C20 | 0.1984 (3) | 0.7133 (4) | 0.25240 (12) | 0.0495 (11) | |
H20 | 0.2105 | 0.7683 | 0.2805 | 0.059* | |
C21 | 0.1599 (3) | 0.5955 (4) | 0.26008 (11) | 0.0373 (8) | |
H21 | 0.1412 | 0.5693 | 0.2929 | 0.045* | |
C22 | 0.1493 (2) | 0.5164 (3) | 0.21898 (11) | 0.0293 (7) | |
H22 | 0.1256 | 0.4332 | 0.2242 | 0.035* | |
C23 | 0.2756 (3) | 0.7427 (4) | −0.04770 (12) | 0.0415 (9) | |
H23A | 0.2662 | 0.6637 | −0.0665 | 0.062* | |
H23B | 0.2299 | 0.8068 | −0.0623 | 0.062* | |
H23C | 0.3455 | 0.7712 | −0.0501 | 0.062* | |
C24 | 0.2582 (5) | 0.9326 (4) | 0.11632 (15) | 0.0646 (15) | |
H24A | 0.2001 | 0.9446 | 0.1377 | 0.097* | |
H24B | 0.2622 | 1.0030 | 0.0924 | 0.097* | |
H24C | 0.3200 | 0.9292 | 0.1379 | 0.097* | |
C25 | −0.0311 (3) | 0.1427 (3) | 0.18262 (13) | 0.0373 (8) | |
C26 | −0.0038 (2) | 0.2754 (3) | 0.16426 (11) | 0.0274 (7) | |
C27 | −0.0740 (2) | 0.3723 (3) | 0.16390 (12) | 0.0317 (7) | |
H27 | −0.1331 | 0.3575 | 0.1822 | 0.038* | |
C28 | −0.0679 (2) | 0.4890 (3) | 0.13971 (11) | 0.0253 (6) | |
C29 | −0.1472 (2) | 0.5922 (3) | 0.14756 (12) | 0.0319 (7) | |
C30 | 0.0530 (4) | 0.0920 (4) | 0.21790 (16) | 0.0561 (12) | |
H30A | 0.1174 | 0.0982 | 0.2011 | 0.084* | |
H30B | 0.0563 | 0.1414 | 0.2494 | 0.084* | |
H30C | 0.0394 | 0.0037 | 0.2259 | 0.084* | |
C31 | −0.0357 (4) | 0.0615 (4) | 0.13371 (17) | 0.0585 (12) | |
H31A | 0.0292 | 0.0662 | 0.1172 | 0.088* | |
H31B | −0.0499 | −0.0261 | 0.1426 | 0.088* | |
H31C | −0.0892 | 0.0932 | 0.1104 | 0.088* | |
C32 | −0.1313 (4) | 0.1344 (4) | 0.2074 (2) | 0.0702 (15) | |
H32A | −0.1843 | 0.1674 | 0.1841 | 0.105* | |
H32B | −0.1458 | 0.0463 | 0.2153 | 0.105* | |
H32C | −0.1289 | 0.1840 | 0.2388 | 0.105* | |
C33 | −0.1998 (4) | 0.6203 (5) | 0.09674 (16) | 0.0679 (15) | |
H33A | −0.1497 | 0.6438 | 0.0721 | 0.102* | |
H33B | −0.2365 | 0.5454 | 0.0846 | 0.102* | |
H33C | −0.2473 | 0.6899 | 0.1006 | 0.102* | |
C34 | −0.2262 (4) | 0.5567 (5) | 0.1841 (2) | 0.089 (2) | |
H34A | −0.2627 | 0.4822 | 0.1714 | 0.134* | |
H34B | −0.1940 | 0.5379 | 0.2174 | 0.134* | |
H34C | −0.2736 | 0.6267 | 0.1874 | 0.134* | |
C35 | −0.0905 (4) | 0.7068 (5) | 0.1668 (2) | 0.091 (2) | |
H35A | −0.0391 | 0.7295 | 0.1427 | 0.136* | |
H35B | −0.1376 | 0.7771 | 0.1700 | 0.136* | |
H35C | −0.0581 | 0.6883 | 0.2001 | 0.136* | |
O3 | 0.4888 (5) | 0.8350 (6) | 0.17875 (19) | 0.143 (2) | |
O4 | 0.5575 (2) | 0.7781 (3) | 0.10749 (13) | 0.0626 (8) | |
C36 | 0.6151 (5) | 0.9681 (6) | 0.1430 (3) | 0.095 (2) | |
H36A | 0.6557 | 0.9607 | 0.1128 | 0.143* | |
H36B | 0.5739 | 1.0445 | 0.1404 | 0.143* | |
H36C | 0.6598 | 0.9728 | 0.1735 | 0.143* | |
C37 | 0.5479 (5) | 0.8554 (6) | 0.1465 (2) | 0.0797 (16) | |
C38 | 0.4976 (4) | 0.6650 (5) | 0.1056 (2) | 0.0765 (15) | |
H38A | 0.4256 | 0.6868 | 0.1090 | 0.092* | |
H38B | 0.5184 | 0.6093 | 0.1343 | 0.092* | |
C39 | 0.5104 (4) | 0.5992 (6) | 0.0575 (2) | 0.0815 (17) | |
H39A | 0.4693 | 0.5226 | 0.0566 | 0.122* | |
H39B | 0.4890 | 0.6542 | 0.0291 | 0.122* | |
H39C | 0.5815 | 0.5768 | 0.0544 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.02112 (6) | 0.01750 (7) | 0.02056 (6) | 0.00037 (5) | 0.00316 (4) | −0.00117 (5) |
O1 | 0.0271 (11) | 0.0224 (12) | 0.0316 (10) | −0.0005 (9) | 0.0066 (8) | 0.0018 (9) |
O2 | 0.0246 (11) | 0.0238 (12) | 0.0291 (10) | 0.0032 (9) | 0.0053 (8) | 0.0019 (9) |
N1 | 0.0232 (12) | 0.0193 (13) | 0.0224 (11) | −0.0016 (10) | 0.0021 (9) | −0.0022 (10) |
N2 | 0.0262 (14) | 0.0265 (16) | 0.0417 (14) | 0.0043 (12) | 0.0020 (11) | −0.0018 (13) |
N3 | 0.0237 (12) | 0.0198 (14) | 0.0217 (11) | 0.0040 (10) | 0.0016 (9) | −0.0010 (10) |
N4 | 0.0421 (16) | 0.0253 (15) | 0.0281 (12) | −0.0068 (13) | 0.0046 (11) | 0.0038 (12) |
C1 | 0.0265 (15) | 0.0152 (15) | 0.0247 (13) | 0.0009 (12) | −0.0007 (11) | 0.0012 (12) |
C2 | 0.0284 (16) | 0.0256 (18) | 0.0266 (14) | −0.0002 (14) | 0.0003 (12) | −0.0032 (13) |
C3 | 0.0271 (16) | 0.0301 (19) | 0.0346 (15) | 0.0034 (14) | −0.0031 (12) | 0.0005 (15) |
C4 | 0.0312 (16) | 0.0184 (17) | 0.0347 (15) | 0.0026 (13) | 0.0053 (13) | −0.0014 (13) |
C5 | 0.0262 (15) | 0.0182 (16) | 0.0224 (13) | 0.0015 (12) | 0.0031 (11) | 0.0014 (12) |
C6 | 0.0258 (15) | 0.0190 (16) | 0.0248 (13) | −0.0015 (12) | 0.0047 (11) | −0.0004 (12) |
C7 | 0.0339 (18) | 0.0269 (19) | 0.0333 (15) | 0.0018 (14) | 0.0015 (13) | −0.0105 (14) |
C8 | 0.044 (2) | 0.036 (2) | 0.0453 (19) | −0.0050 (17) | −0.0053 (16) | −0.0207 (18) |
C9 | 0.0332 (19) | 0.044 (2) | 0.0442 (18) | −0.0011 (17) | −0.0085 (15) | −0.0131 (17) |
C10 | 0.0257 (16) | 0.032 (2) | 0.0349 (15) | 0.0018 (14) | −0.0016 (12) | −0.0068 (15) |
C11 | 0.035 (2) | 0.057 (3) | 0.062 (2) | 0.0096 (19) | −0.0171 (18) | −0.016 (2) |
C12 | 0.0342 (19) | 0.037 (2) | 0.0470 (19) | 0.0074 (16) | 0.0076 (15) | −0.0154 (17) |
C13 | 0.0138 (13) | 0.0213 (16) | 0.0221 (12) | 0.0026 (11) | 0.0010 (10) | 0.0009 (11) |
C14 | 0.0279 (16) | 0.0258 (17) | 0.0205 (13) | −0.0020 (13) | 0.0016 (11) | −0.0035 (12) |
C15 | 0.0277 (16) | 0.0307 (19) | 0.0247 (13) | −0.0026 (14) | 0.0017 (12) | 0.0026 (13) |
C16 | 0.0407 (18) | 0.0207 (17) | 0.0275 (14) | −0.0033 (15) | 0.0013 (13) | −0.0011 (14) |
C17 | 0.0235 (14) | 0.0222 (17) | 0.0229 (12) | 0.0012 (12) | 0.0012 (11) | −0.0013 (12) |
C18 | 0.0241 (15) | 0.0238 (17) | 0.0242 (13) | 0.0002 (13) | 0.0017 (11) | −0.0019 (13) |
C19 | 0.068 (3) | 0.028 (2) | 0.0289 (16) | −0.0140 (19) | 0.0041 (16) | −0.0051 (15) |
C20 | 0.086 (3) | 0.039 (2) | 0.0234 (15) | −0.008 (2) | 0.0026 (17) | −0.0125 (16) |
C21 | 0.053 (2) | 0.038 (2) | 0.0205 (14) | 0.0046 (17) | 0.0035 (14) | 0.0006 (14) |
C22 | 0.0349 (18) | 0.0289 (18) | 0.0242 (14) | 0.0035 (14) | 0.0005 (12) | 0.0041 (13) |
C23 | 0.054 (2) | 0.043 (2) | 0.0272 (15) | −0.0132 (19) | 0.0055 (15) | 0.0030 (16) |
C24 | 0.136 (5) | 0.024 (2) | 0.0346 (19) | −0.018 (3) | 0.012 (2) | −0.0032 (17) |
C25 | 0.047 (2) | 0.027 (2) | 0.0385 (17) | −0.0080 (16) | 0.0078 (15) | 0.0058 (15) |
C26 | 0.0340 (17) | 0.0257 (18) | 0.0228 (13) | −0.0059 (14) | 0.0034 (12) | −0.0001 (13) |
C27 | 0.0283 (17) | 0.032 (2) | 0.0358 (16) | −0.0040 (15) | 0.0125 (13) | 0.0015 (15) |
C28 | 0.0249 (15) | 0.0259 (17) | 0.0254 (14) | 0.0006 (13) | 0.0032 (11) | −0.0071 (13) |
C29 | 0.0290 (17) | 0.032 (2) | 0.0356 (16) | 0.0057 (14) | 0.0086 (13) | −0.0058 (15) |
C30 | 0.079 (3) | 0.041 (3) | 0.049 (2) | −0.006 (2) | 0.003 (2) | 0.018 (2) |
C31 | 0.083 (3) | 0.034 (2) | 0.058 (2) | −0.016 (2) | 0.005 (2) | −0.007 (2) |
C32 | 0.070 (3) | 0.042 (3) | 0.102 (4) | −0.015 (2) | 0.043 (3) | 0.014 (3) |
C33 | 0.063 (3) | 0.090 (4) | 0.051 (2) | 0.047 (3) | 0.005 (2) | 0.003 (3) |
C34 | 0.082 (4) | 0.071 (4) | 0.120 (5) | 0.037 (3) | 0.078 (4) | 0.033 (3) |
C35 | 0.059 (3) | 0.051 (3) | 0.161 (6) | 0.016 (3) | −0.012 (3) | −0.064 (4) |
O3 | 0.181 (6) | 0.148 (5) | 0.103 (3) | −0.029 (4) | 0.045 (4) | −0.011 (4) |
O4 | 0.0454 (17) | 0.054 (2) | 0.089 (2) | 0.0014 (15) | 0.0076 (16) | 0.0046 (18) |
C36 | 0.097 (5) | 0.067 (4) | 0.121 (5) | 0.008 (4) | −0.014 (4) | −0.008 (4) |
C37 | 0.075 (4) | 0.082 (5) | 0.081 (4) | 0.007 (3) | 0.001 (3) | 0.016 (3) |
C38 | 0.050 (3) | 0.067 (4) | 0.113 (4) | −0.007 (3) | 0.005 (3) | 0.019 (3) |
C39 | 0.059 (3) | 0.074 (4) | 0.110 (5) | −0.017 (3) | −0.013 (3) | 0.009 (4) |
Ir1—C1 | 1.974 (3) | C21—C22 | 1.373 (5) |
Ir1—C13 | 1.977 (3) | C21—H21 | 0.9500 |
Ir1—N3 | 2.028 (2) | C22—H22 | 0.9500 |
Ir1—N1 | 2.032 (2) | C23—H23A | 0.9800 |
Ir1—O1 | 2.132 (2) | C23—H23B | 0.9800 |
Ir1—O2 | 2.136 (2) | C23—H23C | 0.9800 |
O1—C26 | 1.276 (4) | C24—H24A | 0.9800 |
O2—C28 | 1.271 (3) | C24—H24B | 0.9800 |
N1—C10 | 1.340 (4) | C24—H24C | 0.9800 |
N1—C6 | 1.374 (4) | C25—C32 | 1.507 (5) |
N2—C3 | 1.344 (4) | C25—C30 | 1.521 (6) |
N2—C4 | 1.355 (4) | C25—C26 | 1.539 (5) |
N3—C22 | 1.345 (4) | C25—C31 | 1.548 (5) |
N3—C18 | 1.362 (4) | C26—C27 | 1.388 (5) |
N4—C15 | 1.343 (4) | C27—C28 | 1.398 (5) |
N4—C16 | 1.346 (4) | C27—H27 | 0.9500 |
C1—C2 | 1.398 (4) | C28—C29 | 1.540 (4) |
C1—C5 | 1.427 (4) | C29—C34 | 1.499 (5) |
C2—C3 | 1.373 (4) | C29—C35 | 1.508 (6) |
C2—H2 | 0.9500 | C29—C33 | 1.513 (5) |
C3—C11 | 1.515 (4) | C30—H30A | 0.9800 |
C4—C5 | 1.393 (4) | C30—H30B | 0.9800 |
C4—C12 | 1.508 (4) | C30—H30C | 0.9800 |
C5—C6 | 1.471 (4) | C31—H31A | 0.9800 |
C6—C7 | 1.389 (4) | C31—H31B | 0.9800 |
C7—C8 | 1.386 (5) | C31—H31C | 0.9800 |
C7—H7 | 0.9500 | C32—H32A | 0.9800 |
C8—C9 | 1.379 (5) | C32—H32B | 0.9800 |
C8—H8 | 0.9500 | C32—H32C | 0.9800 |
C9—C10 | 1.368 (5) | C33—H33A | 0.9800 |
C9—H9 | 0.9500 | C33—H33B | 0.9800 |
C10—H10 | 0.9500 | C33—H33C | 0.9800 |
C11—H11A | 0.9800 | C34—H34A | 0.9800 |
C11—H11B | 0.9800 | C34—H34B | 0.9800 |
C11—H11C | 0.9800 | C34—H34C | 0.9800 |
C12—H12A | 0.9800 | C35—H35A | 0.9800 |
C12—H12B | 0.9800 | C35—H35B | 0.9800 |
C12—H12C | 0.9800 | C35—H35C | 0.9800 |
C13—C14 | 1.399 (4) | O3—C37 | 1.199 (7) |
C13—C17 | 1.412 (4) | O4—C37 | 1.324 (7) |
C14—C15 | 1.381 (4) | O4—C38 | 1.441 (6) |
C14—H14 | 0.9500 | C36—C37 | 1.498 (8) |
C15—C23 | 1.503 (4) | C36—H36A | 0.9800 |
C16—C17 | 1.396 (4) | C36—H36B | 0.9800 |
C16—C24 | 1.509 (5) | C36—H36C | 0.9800 |
C17—C18 | 1.482 (4) | C38—C39 | 1.462 (7) |
C18—C19 | 1.394 (4) | C38—H38A | 0.9900 |
C19—C20 | 1.381 (5) | C38—H38B | 0.9900 |
C19—H19 | 0.9500 | C39—H39A | 0.9800 |
C20—C21 | 1.370 (5) | C39—H39B | 0.9800 |
C20—H20 | 0.9500 | C39—H39C | 0.9800 |
C1—Ir1—C13 | 90.08 (12) | N3—C22—C21 | 122.6 (3) |
C1—Ir1—N3 | 98.92 (11) | N3—C22—H22 | 118.7 |
C13—Ir1—N3 | 80.33 (11) | C21—C22—H22 | 118.7 |
C1—Ir1—N1 | 80.37 (11) | C15—C23—H23A | 109.5 |
C13—Ir1—N1 | 100.53 (10) | C15—C23—H23B | 109.5 |
N3—Ir1—N1 | 178.87 (10) | H23A—C23—H23B | 109.5 |
C1—Ir1—O1 | 91.77 (10) | C15—C23—H23C | 109.5 |
C13—Ir1—O1 | 176.65 (10) | H23A—C23—H23C | 109.5 |
N3—Ir1—O1 | 96.62 (9) | H23B—C23—H23C | 109.5 |
N1—Ir1—O1 | 82.53 (9) | C16—C24—H24A | 109.5 |
C1—Ir1—O2 | 178.00 (10) | C16—C24—H24B | 109.5 |
C13—Ir1—O2 | 90.96 (10) | H24A—C24—H24B | 109.5 |
N3—Ir1—O2 | 82.94 (9) | C16—C24—H24C | 109.5 |
N1—Ir1—O2 | 97.76 (9) | H24A—C24—H24C | 109.5 |
O1—Ir1—O2 | 87.27 (8) | H24B—C24—H24C | 109.5 |
C26—O1—Ir1 | 125.6 (2) | C32—C25—C30 | 110.8 (3) |
C28—O2—Ir1 | 124.1 (2) | C32—C25—C26 | 114.3 (3) |
C10—N1—C6 | 120.1 (3) | C30—C25—C26 | 109.9 (3) |
C10—N1—Ir1 | 122.8 (2) | C32—C25—C31 | 108.7 (4) |
C6—N1—Ir1 | 116.10 (18) | C30—C25—C31 | 108.3 (3) |
C3—N2—C4 | 117.8 (3) | C26—C25—C31 | 104.6 (3) |
C22—N3—C18 | 119.9 (3) | O1—C26—C27 | 125.7 (3) |
C22—N3—Ir1 | 123.0 (2) | O1—C26—C25 | 113.3 (3) |
C18—N3—Ir1 | 116.82 (18) | C27—C26—C25 | 121.0 (3) |
C15—N4—C16 | 118.3 (3) | C26—C27—C28 | 127.5 (3) |
C2—C1—C5 | 115.8 (3) | C26—C27—H27 | 116.2 |
C2—C1—Ir1 | 128.2 (2) | C28—C27—H27 | 116.2 |
C5—C1—Ir1 | 116.0 (2) | O2—C28—C27 | 125.4 (3) |
C3—C2—C1 | 120.5 (3) | O2—C28—C29 | 113.4 (3) |
C3—C2—H2 | 119.8 | C27—C28—C29 | 121.2 (3) |
C1—C2—H2 | 119.8 | C34—C29—C35 | 109.9 (4) |
N2—C3—C2 | 123.5 (3) | C34—C29—C33 | 107.8 (4) |
N2—C3—C11 | 114.8 (3) | C35—C29—C33 | 110.1 (4) |
C2—C3—C11 | 121.6 (3) | C34—C29—C28 | 114.0 (3) |
N2—C4—C5 | 121.8 (3) | C35—C29—C28 | 106.6 (3) |
N2—C4—C12 | 112.8 (3) | C33—C29—C28 | 108.4 (3) |
C5—C4—C12 | 125.4 (3) | C25—C30—H30A | 109.5 |
C4—C5—C1 | 120.2 (3) | C25—C30—H30B | 109.5 |
C4—C5—C6 | 126.3 (3) | H30A—C30—H30B | 109.5 |
C1—C5—C6 | 113.5 (3) | C25—C30—H30C | 109.5 |
N1—C6—C7 | 118.6 (3) | H30A—C30—H30C | 109.5 |
N1—C6—C5 | 113.1 (3) | H30B—C30—H30C | 109.5 |
C7—C6—C5 | 128.2 (3) | C25—C31—H31A | 109.5 |
C8—C7—C6 | 120.4 (3) | C25—C31—H31B | 109.5 |
C8—C7—H7 | 119.8 | H31A—C31—H31B | 109.5 |
C6—C7—H7 | 119.8 | C25—C31—H31C | 109.5 |
C9—C8—C7 | 119.6 (3) | H31A—C31—H31C | 109.5 |
C9—C8—H8 | 120.2 | H31B—C31—H31C | 109.5 |
C7—C8—H8 | 120.2 | C25—C32—H32A | 109.5 |
C10—C9—C8 | 118.3 (3) | C25—C32—H32B | 109.5 |
C10—C9—H9 | 120.8 | H32A—C32—H32B | 109.5 |
C8—C9—H9 | 120.8 | C25—C32—H32C | 109.5 |
N1—C10—C9 | 122.7 (3) | H32A—C32—H32C | 109.5 |
N1—C10—H10 | 118.6 | H32B—C32—H32C | 109.5 |
C9—C10—H10 | 118.6 | C29—C33—H33A | 109.5 |
C3—C11—H11A | 109.5 | C29—C33—H33B | 109.5 |
C3—C11—H11B | 109.5 | H33A—C33—H33B | 109.5 |
H11A—C11—H11B | 109.5 | C29—C33—H33C | 109.5 |
C3—C11—H11C | 109.5 | H33A—C33—H33C | 109.5 |
H11A—C11—H11C | 109.5 | H33B—C33—H33C | 109.5 |
H11B—C11—H11C | 109.5 | C29—C34—H34A | 109.5 |
C4—C12—H12A | 109.5 | C29—C34—H34B | 109.5 |
C4—C12—H12B | 109.5 | H34A—C34—H34B | 109.5 |
H12A—C12—H12B | 109.5 | C29—C34—H34C | 109.5 |
C4—C12—H12C | 109.5 | H34A—C34—H34C | 109.5 |
H12A—C12—H12C | 109.5 | H34B—C34—H34C | 109.5 |
H12B—C12—H12C | 109.5 | C29—C35—H35A | 109.5 |
C14—C13—C17 | 116.2 (3) | C29—C35—H35B | 109.5 |
C14—C13—Ir1 | 128.1 (2) | H35A—C35—H35B | 109.5 |
C17—C13—Ir1 | 115.74 (19) | C29—C35—H35C | 109.5 |
C15—C14—C13 | 120.7 (3) | H35A—C35—H35C | 109.5 |
C15—C14—H14 | 119.7 | H35B—C35—H35C | 109.5 |
C13—C14—H14 | 119.7 | C37—O4—C38 | 118.3 (4) |
N4—C15—C14 | 122.6 (3) | C37—C36—H36A | 109.5 |
N4—C15—C23 | 115.3 (3) | C37—C36—H36B | 109.5 |
C14—C15—C23 | 122.1 (3) | H36A—C36—H36B | 109.5 |
N4—C16—C17 | 122.2 (3) | C37—C36—H36C | 109.5 |
N4—C16—C24 | 113.1 (3) | H36A—C36—H36C | 109.5 |
C17—C16—C24 | 124.7 (3) | H36B—C36—H36C | 109.5 |
C16—C17—C13 | 119.9 (2) | O3—C37—O4 | 121.5 (6) |
C16—C17—C18 | 126.2 (3) | O3—C37—C36 | 126.6 (7) |
C13—C17—C18 | 114.0 (3) | O4—C37—C36 | 111.9 (5) |
N3—C18—C19 | 119.0 (3) | O4—C38—C39 | 110.2 (4) |
N3—C18—C17 | 112.8 (3) | O4—C38—H38A | 109.6 |
C19—C18—C17 | 128.2 (3) | C39—C38—H38A | 109.6 |
C20—C19—C18 | 120.0 (3) | O4—C38—H38B | 109.6 |
C20—C19—H19 | 120.0 | C39—C38—H38B | 109.6 |
C18—C19—H19 | 120.0 | H38A—C38—H38B | 108.1 |
C21—C20—C19 | 120.1 (3) | C38—C39—H39A | 109.5 |
C21—C20—H20 | 119.9 | C38—C39—H39B | 109.5 |
C19—C20—H20 | 119.9 | H39A—C39—H39B | 109.5 |
C20—C21—C22 | 118.1 (3) | C38—C39—H39C | 109.5 |
C20—C21—H21 | 120.9 | H39A—C39—H39C | 109.5 |
C22—C21—H21 | 120.9 | H39B—C39—H39C | 109.5 |
C5—C1—C2—C3 | −1.5 (5) | C14—C13—C17—C16 | 4.4 (4) |
Ir1—C1—C2—C3 | 177.9 (2) | Ir1—C13—C17—C16 | −173.2 (2) |
C4—N2—C3—C2 | −3.2 (5) | C14—C13—C17—C18 | −176.2 (3) |
C4—N2—C3—C11 | 176.3 (3) | Ir1—C13—C17—C18 | 6.2 (3) |
C1—C2—C3—N2 | 5.2 (5) | C22—N3—C18—C19 | 4.7 (4) |
C1—C2—C3—C11 | −174.3 (3) | Ir1—N3—C18—C19 | 179.5 (2) |
C3—N2—C4—C5 | −2.4 (5) | C22—N3—C18—C17 | −177.0 (3) |
C3—N2—C4—C12 | 175.8 (3) | Ir1—N3—C18—C17 | −2.2 (3) |
N2—C4—C5—C1 | 5.8 (5) | C16—C17—C18—N3 | 176.8 (3) |
C12—C4—C5—C1 | −172.1 (3) | C13—C17—C18—N3 | −2.5 (4) |
N2—C4—C5—C6 | −174.8 (3) | C16—C17—C18—C19 | −5.1 (5) |
C12—C4—C5—C6 | 7.3 (5) | C13—C17—C18—C19 | 175.6 (3) |
C2—C1—C5—C4 | −3.7 (4) | N3—C18—C19—C20 | −3.7 (5) |
Ir1—C1—C5—C4 | 176.8 (2) | C17—C18—C19—C20 | 178.3 (4) |
C2—C1—C5—C6 | 176.8 (3) | C18—C19—C20—C21 | −0.7 (6) |
Ir1—C1—C5—C6 | −2.7 (3) | C19—C20—C21—C22 | 3.8 (6) |
C10—N1—C6—C7 | −4.5 (4) | C18—N3—C22—C21 | −1.5 (5) |
Ir1—N1—C6—C7 | 164.7 (2) | Ir1—N3—C22—C21 | −176.0 (3) |
C10—N1—C6—C5 | 179.7 (3) | C20—C21—C22—N3 | −2.9 (5) |
Ir1—N1—C6—C5 | −11.2 (3) | Ir1—O1—C26—C27 | −9.9 (4) |
C4—C5—C6—N1 | −170.5 (3) | Ir1—O1—C26—C25 | 169.11 (19) |
C1—C5—C6—N1 | 8.9 (4) | C32—C25—C26—O1 | 171.5 (3) |
C4—C5—C6—C7 | 14.1 (5) | C30—C25—C26—O1 | 46.2 (4) |
C1—C5—C6—C7 | −166.4 (3) | C31—C25—C26—O1 | −69.8 (4) |
N1—C6—C7—C8 | 2.3 (5) | C32—C25—C26—C27 | −9.5 (5) |
C5—C6—C7—C8 | 177.5 (3) | C30—C25—C26—C27 | −134.7 (3) |
C6—C7—C8—C9 | 1.9 (6) | C31—C25—C26—C27 | 109.2 (4) |
C7—C8—C9—C10 | −4.0 (6) | O1—C26—C27—C28 | 12.3 (5) |
C6—N1—C10—C9 | 2.4 (5) | C25—C26—C27—C28 | −166.6 (3) |
Ir1—N1—C10—C9 | −166.0 (3) | Ir1—O2—C28—C27 | −24.2 (4) |
C8—C9—C10—N1 | 1.9 (6) | Ir1—O2—C28—C29 | 156.3 (2) |
C17—C13—C14—C15 | −1.2 (4) | C26—C27—C28—O2 | 7.1 (6) |
Ir1—C13—C14—C15 | 176.0 (2) | C26—C27—C28—C29 | −173.5 (3) |
C16—N4—C15—C14 | 3.5 (5) | O2—C28—C29—C34 | −178.3 (4) |
C16—N4—C15—C23 | −178.5 (3) | C27—C28—C29—C34 | 2.2 (5) |
C13—C14—C15—N4 | −2.8 (5) | O2—C28—C29—C35 | −56.9 (4) |
C13—C14—C15—C23 | 179.3 (3) | C27—C28—C29—C35 | 123.6 (4) |
C15—N4—C16—C17 | −0.2 (5) | O2—C28—C29—C33 | 61.6 (4) |
C15—N4—C16—C24 | −179.0 (3) | C27—C28—C29—C33 | −117.9 (4) |
N4—C16—C17—C13 | −3.9 (5) | C38—O4—C37—O3 | −2.3 (8) |
C24—C16—C17—C13 | 174.8 (4) | C38—O4—C37—C36 | 179.9 (4) |
N4—C16—C17—C18 | 176.8 (3) | C37—O4—C38—C39 | 173.9 (4) |
C24—C16—C17—C18 | −4.5 (6) |
Cg1 and Cg2 are the centroids of the N1/C6–C10 and N4/C13–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O1 | 0.95 | 2.56 | 3.166 (4) | 122 |
C30—H30A···O1 | 0.98 | 2.42 | 2.767 (5) | 100 |
C35—H35A···O2 | 0.98 | 2.44 | 2.782 (6) | 100 |
C9—H9···Cg2i | 0.95 | 2.65 | 3.542 (4) | 156 |
C33—H33A···Cg1i | 0.98 | 2.76 | 3.624 (5) | 148 |
C38—H38A···Cg2 | 0.98 | 2.85 | 3.711 (5) | 145 |
Symmetry code: (i) −x, −y+1, −z. |
Funding information
This research was supported by a 2016 Research Grant from Kangwon National University (No. 520160312).
References
Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048–5051. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441–450. Web of Science CSD CrossRef CAS Google Scholar
Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018a). Bull. Korean Chem. Soc. 39, 703–706. Web of Science CrossRef Google Scholar
Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386–391. Web of Science CSD CrossRef CAS Google Scholar
Kim, M., Park, J., Oh, H., Ryu, Y. & Kang, Y. (2018b). Bull. Korean Chem. Soc. 39, 24–28. Web of Science CrossRef Google Scholar
Kim, Y.-I., Yun, S.-J. & Kang, S. K. (2013). Acta Cryst. E69, m443. CrossRef IUCr Journals Google Scholar
Lee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383. Web of Science CrossRef Google Scholar
Lee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040–6047. Web of Science CSD CrossRef CAS Google Scholar
Lee, J., Park, H., Park, K.-M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235–241. Web of Science CrossRef Google Scholar
Oh, S., Jung, N., Lee, J., Kim, J., Park, K.-M. & Kang, Y. (2014). Bull. Korean Chem. Soc. 35, 3590–3594. Web of Science CrossRef Google Scholar
Park, K.-M. & Kang, Y. (2014). Acta Cryst. E70, 427–429. CrossRef IUCr Journals Google Scholar
Reddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29–47. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.