research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzo­nitrile: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2018; accepted 29 July 2018; online 10 August 2018)

The title compound, C12H10N4O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyano­phenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3)° with the five-membered ring, indicating a twisted mol­ecule. In the crystal, the three-dimensional architecture is sustained by carbonyl-C=O⋯π(triazo­yl), cyano-C≡N⋯π(triazo­yl) (these inter­actions are shown to be attractive based on non-covalent inter­action plots) and ππ stacking inter­actions [inter­centroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by H⋯H (35.9%) and N⋯H (26.2%) contacts to the overall surface, as well as notable contributions by O⋯H (9.9%), C⋯H (8.7%), C⋯C (7.3%) and C⋯N (7.2%) contacts.

1. Chemical context

The 1,2,3-triazoles comprise an inter­esting class of heterocyclic compounds, with diverse applications in biological and material chemistry (Struthers et al., 2010[Struthers, H., Mindt, T. L. & Schibli, R. (2010). Dalton Trans. 39, 675-696.]; Bonandi et al., 2017[Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). Drug Discov. Today, 22, 1572-1581.]; Dheer et al., 2017[Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30-54.]). In particular, 1,2,3-triazoles containing a carbonyl or carboxyl group in their structures have received considerable attention as they are found in a great number of biologically and pharmaceutically active mol­ecules that exhibit a broad spectrum of properties (Shu et al., 2009[Shu, H., Izenwasser, S., Wade, D., Stevens, E. D. & Trudell, M. L. (2009). Bioorg. Med. Chem. Lett. 19, 891-893.]; Morzherin et al., 2011[Morzherin, Y., Prokhorova, P. E., Musikhin, D. A., Glukhareva, T. V. & Fan, Z. (2011). Pure Appl. Chem. 83, 715-722.]; Cheng et al., 2012[Cheng, H., Wan, J., Lin, M.-I., Liu, Y., Lu, X., Liu, J., Xu, Y., Chen, J., Tu, Z., Cheng, Y.-S. E. & Ding, K. (2012). J. Med. Chem. 55, 2144-2153.]; Gilchrist et al., 2014[Gilchrist, J., Dutton, S., Diaz-Bustamante, M., McPherson, A., Olivares, N., Kalia, J., Escayg, A. & Bosmans, F. (2014). Chem. Biol. 9, 1204-1212.]). In this context, the organocatalytic cyclo­addition reaction of organic azides with β-ketoesters, β-keto­amides, enones and allyl ketones has proven to be a powerful strategy for the synthesis of such class of compounds (John et al., 2015[John, J., Thomas, J. & Dehaen, W. (2015). Chem. Commun. 51, 10797-10806.]; Lima et al., 2015[Lima, C. G. S., Ali, A., van Berkel, S. S., Westermann, B. & Paixão, M. W. (2015). Chem. Commun. 51, 10784-10796.]). Although much progress has been achieved, most of the available methodologies usually employ a homogenous catalyst, which can be difficult to recover. In view of environmental concerns, very recently, we reported for the first time, a heterogeneous strategy for the synthesis of 1,4,5-tris-substituted-1,2,3-triazoles through the 1,3-dipolar cyclo­addition between aryl azides and active methyl­ene compounds using CuO nanoparticles as catalyst in DMSO under microwave irradiation (Dias et al., 2018[Dias, C. da S., Lima, T. de M., Lima, C. G. S., Zukerman-Schpector, J. & Schwab, R. S. (2018). ChemistrySelect, 3, 6195-6202.]). The title compound, (I)[link], was prepared in this study and despite having been prepared by another route in a different study (Kamalraj et al., 2008[Kamalraj, V. R., Senthil, S. & Kannan, P. (2008). J. Mol. Struct. 892, 210-215.]), no crystal structure is available. The availability of crystals in the latter study prompted the present structural analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises an essentially planar 1,2,3-triazolyl ring with a r.m.s. deviation of the fitted atoms of 0.0030 Å; the maximum deviation of 0.0037 (9) Å is found for the N2 atom. A 4-cyano­phenyl residue is connected to the 1,2,3-triazolyl ring at the N1-position and forms a dihedral angle of 54.64 (5)° with it, indicating a significant twist between the rings. By contrast, the acetyl group connected at the C2-position is approximately co-planar with the central ring, forming a dihedral angle of 6.8 (3)°. The dihedral angle between the phenyl and acetyl groups is 60.82 (13)°, indicating a dis-rotatory relationship. The acetyl-carbonyl group occupies a position approximately syn to the ring-bound methyl substituent with the C1—C2—C3—O1 and C4—C1—C2—C3 torsion angles being 6.2 (3) and −1.5 (3)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features inter­actions involving both the five- and six-membered rings. Centrosymmetrically related mol­ecules are connected via carbonyl-C=O⋯π(triazo­yl) inter­actions, Table 1[link]. Further connections between mol­ecules are of the type cyano-C≡N⋯π(triazo­yl) to the opposite face of the five-membered ring (Fig. 2[link], Table 1[link]), which together lead to a supra­molecular layer parallel to ([\overline{1}]01). The O⋯π or N⋯π separations for these inter­actions are significantly longer that the van der Waals' separations for these species (3.32 and 3.35 Å, respectively) but the non-covalent inter­actions plots (see below) indicate that they are weakly attractive in nature. Connections between the layers giving rise to a three-dimensional architecture are weak ππ stacking inter­actions between centrosymmetrically related phenyl rings, with the inter-centroid separation being 3.9242 (9) Å; symmetry operation (i): 2 − x, 2 − y, 1 − z. A view of the unit cell contents is shown in Fig. 2[link]. The specified and other weak inter­molecular inter­actions are discussed in more detail below in Hirshfeld surface analysis.

Table 1
π(Triazol­yl) inter­action geometry (Å, °)

Cg1 is the centroid of the N1–N3/C1/C2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—O1⋯Cg1i 1.21 (1) 3.69 (1) 3.7359 (17) 83 (1)
C12—N4⋯Cg1ii 1.14 (1) 3.68 (1) 3.8468 (19) 90 (1)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the unit-cell contents shown in projection down the b axis. The C= O⋯π(triazo­yl), C≡N⋯π(triazo­yl) and π(tol­yl)–π(tol­yl) contacts are shown as orange, blue and purple dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed in accord with related studies (Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]) and provide information on the influence of other weak inter­molecular inter­actions instrumental in the mol­ecular packing. In addition to the presence of carbonyl-C=O⋯π(triazol­yl) and cyano-C≡N⋯π(triazol­yl) inter­actions (Table 1[link]) in the formation of three-dimensional architecture as discussed above, the mol­ecular packing also features weak C—H⋯N inter­actions. On the Hirshfeld surface mapped over dnorm in Fig. 3[link], these inter­actions are characterized as the bright-red spots near the triazolyl-N3, cyano-N4 (Fig. 3[link]a), phenyl-H8 and H10 atoms (Fig. 3[link]b), and the diminutive-red spots near cyano-N4 (Fig. 3[link]b) and phenyl-H7 (Fig. 3[link]a) atoms. The influence of short inter­atomic C⋯O/O⋯C contacts involving methyl-C4 and carbonyl-O1 atoms (Table 2[link]) is also observed as the faint-red spots near these atoms in Fig. 3[link]b. The donors and acceptors of inter­molecular C—H⋯N inter­actions are also evident as the blue and red regions corresponding to positive and negative electrostatic potentials, respectively, on the Hirshfeld surface mapped over electrostatic potential shown in Fig. 4[link]. Views of the immediate environment about a reference mol­ecule within the Hirshfeld surface mapped over the shape-index property, highlighting inter­molecular C=O⋯π, C≡N⋯π and ππ stacking inter­actions, are illustrated in Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H4C⋯H4C 2.39 1 − x, 1 − y, 1 − z
H10⋯N3 2.48 [{1\over 2}] + x, [{5\over 2}] − y, [{1\over 2}] + z
H7⋯N4 2.58 [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z
H8⋯N4 2.53 [{5\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
C4⋯O1 3.208 (2) 1 − x, 1 − y, 1 − z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.065 to +1.215 a.u.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over the electrostatic potential in the range −0.092 to +0.055 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Views of the Hirshfeld surface mapped the shape-index property showing (a) ππ and C≡N⋯π inter­actions with black and sky-blue dotted lines, respectively and (b) C=O⋯π contacts with red-dotted lines.

The overall two-dimensional fingerprint plot for (I)[link] (Fig. 6[link]a) and those delineated into H⋯H, N⋯H/H⋯N, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C, C⋯N/N⋯C and N⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bi, respectively; the percentage contributions from identified inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. The short inter­atomic H⋯H contact involving symmetry-related methyl-H4C atoms (Table 2[link]) is viewed as the cone-shaped tip at de + di ∼ 2.3 Å in the fingerprint plot delineated into H⋯H contacts (Fig. 6[link]b). The second largest contribution to the Hirshfeld surface, i.e. 26.2%, is from N⋯H/H⋯N contacts (Fig. 6[link]c) and arise from the inter­molecular C—H⋯N contacts involving cyano-N4 and triazolyl-N3 atoms (Table 2[link]) and are viewed as the pair of overlapping green and blue spikes with their tips at de + di ∼2.5 Å. Although the carbonyl-O1 atom makes a significant contribution of 9.9% to the overall surface owing to inter­atomic O⋯H/H⋯O contacts, it is evident from the respective delineated fingerprint plot (Fig. 6[link]d) that these are beyond van der Waals separations. The relatively small contribution from C⋯H/H⋯C contacts to the Hirshfeld surface (Table 3[link]) is indicative of the absence of C—H⋯π contacts in the mol­ecular packing, Fig. 6[link]e. The weak ππ stacking inter­actions between symmetry related phenyl-(C6–C11) rings are evident from the fingerprint delineated into C⋯C contacts (Fig. 6[link]f) as the rocket-like tip at de + di ∼ 3.6 Å. The involvement of the triazolyl ring in inter­molecular triazolyl-C≡N⋯π and carbonyl C=O⋯π contacts in the crystal is reflected from the percentage contributions due to C⋯N/N⋯C, C⋯O/O⋯C, N⋯N and N⋯O/O⋯N contacts to the Hirshfeld surface (Table 3[link]). These inter­molecular inter­actions are also evident from the fingerprint plots delineated into C⋯N/N⋯C, C⋯O/O⋯C and N⋯N contacts in Fig. 6[link]fh, respectively.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 35.9
N⋯H/H⋯N 26.2
O⋯H/H⋯O 9.9
C⋯H/H⋯C 8.7
C⋯C 7.3
C⋯N/N⋯C 7.2
N⋯N 2.1
C⋯O/O⋯C 1.4
N⋯O/O⋯N 1.4
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)-(h) those delineated into H⋯H, N⋯H/H⋯N, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C, C⋯N/N⋯C and N⋯N contacts, respectively.

5. Non-covalent inter­action plots

Non-covalent inter­action (NCI) plots are a convenient means by which the nature of an inter­action between residues may be assessed in terms of being attractive or otherwise (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]; Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]). In NCI plots, a weakly attractive inter­action will appear green on the isosurface, whereas attractive and repulsive inter­actions will result in blue and red isosurfaces, respectively. The NCI plots for the inter­acting entities of the carbonyl-C=O⋯π(triazol­yl) and cyano-C≡N⋯π(triazol­yl) inter­actions are shown in Fig. 7[link]a,b, indicating the weakly attractive nature of these inter­actions. The arrows in Fig. 7[link]b, highlight a weak phenyl-C—H⋯N(cyano) inter­action (Table 2[link]).

[Figure 7]
Figure 7
Non-covalent inter­action plots for the (a) carbonyl-C= O⋯π(triazol­yl) and (b) cyano-C≡N⋯π(triazol­yl) inter­actions. The arrows in (b) indicate attractive phenyl-C—H⋯N(cyano) inter­actions (see text).

6. Database survey

There are four closely related compounds in the literature whereby the cyano group of (I)[link] is replaced by chloride and bromide, which are isostructural (Zeghada et al., 2011[Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295-4305.]), methyl (El-Hiti et al., 2017[El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2017). IUCrData, x171782.]) and nitro (Vinutha et al. (2013[Vinutha, N., Madan Kumar, S., Nithinchandra, Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1724.]); two independent mol­ecules comprise the asymmetric unit of the nitro compound. Key dihedral angle data are included in Table 4[link]. This shows that the greatest variations in dihedral angles between the phenyl and acetyl residues is found for the two independent mol­ecules of the nitro compound. The different relative conformations in the aforementioned mol­ecules is highlighted in the overlay diagram of Fig. 8[link].

Table 4
Dihedral angle data (°) for (I)[link] and 4-X-phenyl derivatives

X triazol­yl/phen­yl triazol­yl/acet­yl phen­yl/acet­yl Ref.
Me 50.11 (7) 6.12 (18) 50.14 (12) El-Hiti et al. (2017[El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2017). IUCrData, x171782.])
Cl 45.60 (4) 6.97 (9) 45.19 (6) Zeghada et al. (2011[Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295-4305.])
Br 47.03 (5) 7.08 (12) 46.5 (7) Zeghada et al. (2011[Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295-4305.])
NO2a 38.26 (15) 13.4 (4) 27.9 (3) Vinutha et al. (2013[Vinutha, N., Madan Kumar, S., Nithinchandra, Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1724.])
  87.11 (18) 15.2 (3) 74.4 (2)  
C≡N 54.64 (5) 6.8 (3) 60.82 (13) This work
Note: (a) Two independent mol­ecules comprise the asymmetric unit.
[Figure 8]
Figure 8
Overlay diagram for (I)[link] and 4-X-phenyl derivatives: (I)[link] (red image), X = Cl (green), X = Br (blue), X = Me (pink), X = NO2 (first independent mol­ecule; aqua) and X = NO2 (second mol­ecule; yellow). The mol­ecules have been overlapped so that the triazolyl rings are coincident.

7. Synthesis and crystallization

Compound (I)[link] was prepared as described in the literature (Dias et al., 2018[Dias, C. da S., Lima, T. de M., Lima, C. G. S., Zukerman-Schpector, J. & Schwab, R. S. (2018). ChemistrySelect, 3, 6195-6202.]) and crystals were obtained by the slow evaporation from its ethyl acetate/hexane (v/v) solution. M.p. 426–428 K. 1H NMR (400 MHz, CDCl3) δ = 7.91 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 2.76 (s, 3H), 2.66 (s, 3H). 13C NMR (100 MHz,CDCl3) δ = 194.30, 144.20, 138.89, 137.42, 133.85, 125.84, 117.51, 114.23, 28.10, 10.43 ppm.

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C12H10N4O
Mr 226.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.8533 (5), 6.8299 (3), 14.7329 (6)
β (°) 107.477 (1)
V3) 1137.67 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.44 × 0.27 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.726, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 30812, 2333, 2083
Rint 0.023
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.10
No. of reflections 2333
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzonitrile top
Crystal data top
C12H10N4OF(000) = 472
Mr = 226.24Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8533 (5) ÅCell parameters from 9978 reflections
b = 6.8299 (3) Åθ = 2.6–26.3°
c = 14.7329 (6) ŵ = 0.09 mm1
β = 107.477 (1)°T = 293 K
V = 1137.67 (8) Å3Irregular, colourless
Z = 40.44 × 0.27 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2083 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.4°, θmin = 1.9°
Tmin = 0.726, Tmax = 0.745h = 1414
30812 measured reflectionsk = 88
2333 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.3916P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.21 e Å3
156 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39515 (11)0.7197 (2)0.36712 (11)0.0785 (5)
N10.73587 (10)0.95924 (17)0.48424 (8)0.0357 (3)
N20.70535 (11)1.13354 (19)0.43684 (10)0.0476 (3)
N30.59641 (11)1.11608 (19)0.38456 (10)0.0462 (3)
N41.27442 (13)0.8725 (3)0.80947 (11)0.0623 (4)
C10.64418 (11)0.8326 (2)0.46207 (10)0.0364 (3)
C20.55549 (12)0.9350 (2)0.39775 (10)0.0364 (3)
C30.43345 (13)0.8728 (2)0.34833 (11)0.0451 (4)
C40.64687 (15)0.6346 (3)0.50374 (14)0.0614 (5)
H4A0.71680.62100.55700.092*
H4B0.64730.53780.45660.092*
H4C0.57820.61680.52460.092*
C50.35961 (15)1.0069 (3)0.27426 (14)0.0668 (6)
H5A0.39021.01080.22090.100*
H5B0.36151.13610.30040.100*
H5C0.27950.96020.25380.100*
C60.85161 (11)0.9389 (2)0.55064 (9)0.0354 (3)
C70.92321 (13)0.7849 (2)0.54291 (11)0.0454 (4)
H70.89760.69440.49380.054*
C81.03376 (14)0.7662 (2)0.60904 (11)0.0482 (4)
H81.08270.66220.60500.058*
C91.07120 (12)0.9032 (2)0.68124 (10)0.0403 (3)
C100.99970 (13)1.0600 (3)0.68695 (11)0.0494 (4)
H101.02611.15320.73470.059*
C110.88901 (13)1.0776 (2)0.62138 (11)0.0472 (4)
H110.84011.18200.62490.057*
C121.18561 (13)0.8846 (3)0.75178 (11)0.0470 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0477 (7)0.0734 (9)0.0927 (10)0.0232 (7)0.0117 (7)0.0290 (8)
N10.0288 (6)0.0351 (6)0.0380 (6)0.0012 (4)0.0023 (5)0.0037 (5)
N20.0366 (6)0.0393 (7)0.0589 (8)0.0023 (5)0.0022 (6)0.0124 (6)
N30.0334 (6)0.0443 (7)0.0534 (7)0.0003 (5)0.0020 (5)0.0125 (6)
N40.0443 (8)0.0714 (11)0.0552 (9)0.0006 (7)0.0094 (7)0.0012 (7)
C10.0307 (6)0.0376 (7)0.0364 (7)0.0032 (5)0.0036 (5)0.0021 (6)
C20.0302 (7)0.0401 (7)0.0361 (7)0.0003 (5)0.0054 (5)0.0049 (6)
C30.0317 (7)0.0553 (9)0.0424 (8)0.0039 (6)0.0024 (6)0.0068 (7)
C40.0469 (9)0.0476 (10)0.0732 (12)0.0105 (7)0.0071 (8)0.0224 (8)
C50.0377 (8)0.0836 (14)0.0641 (11)0.0017 (9)0.0074 (8)0.0234 (10)
C60.0273 (6)0.0391 (7)0.0358 (7)0.0026 (5)0.0033 (5)0.0015 (6)
C70.0376 (8)0.0462 (8)0.0436 (8)0.0026 (6)0.0009 (6)0.0114 (6)
C80.0383 (8)0.0475 (9)0.0512 (9)0.0077 (6)0.0019 (7)0.0067 (7)
C90.0301 (7)0.0493 (8)0.0365 (7)0.0029 (6)0.0025 (5)0.0008 (6)
C100.0388 (8)0.0544 (9)0.0477 (8)0.0026 (7)0.0018 (7)0.0157 (7)
C110.0356 (8)0.0460 (8)0.0538 (9)0.0032 (6)0.0038 (7)0.0120 (7)
C120.0385 (8)0.0526 (9)0.0434 (8)0.0017 (7)0.0025 (7)0.0012 (7)
Geometric parameters (Å, º) top
O1—C31.205 (2)C5—H5A0.9600
N1—C11.3500 (17)C5—H5B0.9600
N1—N21.3726 (17)C5—H5C0.9600
N1—C61.4326 (16)C6—C71.378 (2)
N2—N31.2952 (17)C6—C111.379 (2)
N3—C21.3634 (19)C7—C81.384 (2)
N4—C121.140 (2)C7—H70.9300
C1—C21.3762 (19)C8—C91.385 (2)
C1—C41.482 (2)C8—H80.9300
C2—C31.4734 (19)C9—C101.384 (2)
C3—C51.491 (2)C9—C121.4452 (19)
C4—H4A0.9600C10—C111.381 (2)
C4—H4B0.9600C10—H100.9300
C4—H4C0.9600C11—H110.9300
C1—N1—N2111.26 (11)C3—C5—H5C109.5
C1—N1—C6129.75 (12)H5A—C5—H5C109.5
N2—N1—C6118.91 (11)H5B—C5—H5C109.5
N3—N2—N1106.62 (11)C7—C6—C11121.37 (13)
N2—N3—C2109.42 (12)C7—C6—N1120.33 (12)
N1—C1—C2103.53 (12)C11—C6—N1118.29 (13)
N1—C1—C4124.68 (12)C6—C7—C8119.25 (14)
C2—C1—C4131.77 (13)C6—C7—H7120.4
N3—C2—C1109.16 (12)C8—C7—H7120.4
N3—C2—C3121.99 (13)C7—C8—C9119.71 (14)
C1—C2—C3128.84 (14)C7—C8—H8120.1
O1—C3—C2121.25 (14)C9—C8—H8120.1
O1—C3—C5121.51 (15)C10—C9—C8120.56 (13)
C2—C3—C5117.25 (14)C10—C9—C12118.92 (14)
C1—C4—H4A109.5C8—C9—C12120.52 (14)
C1—C4—H4B109.5C11—C10—C9119.66 (14)
H4A—C4—H4B109.5C11—C10—H10120.2
C1—C4—H4C109.5C9—C10—H10120.2
H4A—C4—H4C109.5C6—C11—C10119.42 (14)
H4B—C4—H4C109.5C6—C11—H11120.3
C3—C5—H5A109.5C10—C11—H11120.3
C3—C5—H5B109.5N4—C12—C9177.85 (18)
H5A—C5—H5B109.5
C1—N1—N2—N30.81 (17)C1—C2—C3—C5173.75 (16)
C6—N1—N2—N3177.77 (12)C1—N1—C6—C757.1 (2)
N1—N2—N3—C20.54 (17)N2—N1—C6—C7126.64 (15)
N2—N1—C1—C20.72 (16)C1—N1—C6—C11123.36 (17)
C6—N1—C1—C2177.26 (13)N2—N1—C6—C1152.95 (19)
N2—N1—C1—C4177.72 (16)C11—C6—C7—C81.7 (2)
C6—N1—C1—C41.2 (2)N1—C6—C7—C8178.73 (14)
N2—N3—C2—C10.10 (18)C6—C7—C8—C90.6 (3)
N2—N3—C2—C3179.34 (14)C7—C8—C9—C101.0 (3)
N1—C1—C2—N30.38 (16)C7—C8—C9—C12179.08 (15)
C4—C1—C2—N3177.90 (17)C8—C9—C10—C111.5 (3)
N1—C1—C2—C3179.78 (14)C12—C9—C10—C11178.55 (15)
C4—C1—C2—C31.5 (3)C7—C6—C11—C101.2 (2)
N3—C2—C3—O1173.09 (17)N1—C6—C11—C10179.25 (14)
C1—C2—C3—O16.2 (3)C9—C10—C11—C60.4 (3)
N3—C2—C3—C56.9 (2)
Hydrogen-bond geometry (Å, º) top
π(Triazolyl) interaction geometry (Å, °) for (I). Cg1 is the centroid of the N1–N3/C1/C2 ring.
D—H···AD—HH···AD···AD—H···A
C3—O1···Cg1i1.21 (1)3.69 (1)3.7359 (17)83 (1)
C12—N4···Cg1ii1.14 (1)3.68 (1)3.8468 (19)90 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H4C···H4C2.391 - x, 1 - y, 1 - z
H10···N32.481/2 + x, 5/2 - y, 1/2 + z
H7···N42.58-1/2 + x, 3/2 - y, -1/2 + z
H8···N42.535/2 - x, -1/2 + y, 3/2 - z
C4···O13.208 (2)1 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H35.9
N···H/H···N26.2
O···H/H···O9.9
C···H/H···C8.7
C···C7.3
C···N/N···C7.2
N···N2.1
C···O/O···C1.4
N···O/O···N1.4
Dihedral angle data (°) for (I) and 4-X-phenyl derivatives top
Xtriazolyl/phenyltriazolyl/acetylphenyl/acetylRef.
Me50.11 (7)6.12 (18)50.14 (12)El-Hiti et al. (2017)
Cl45.60 (4)6.97 (9)45.19 (6)Zeghada et al. (2011)
Br47.03 (5)7.08 (12)46.5 (7)Zeghada et al. (2011)
NO2a38.26 (15)13.4 (4)27.9 (3)Vinutha et al. (2013)
87.11 (18)15.2 (3)74.4 (2)
CN54.64 (5)6.8 (3)60.82 (13)This work
Note: (a) Two independent molecules comprise the asymmetric unit.
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (303207/2017–5) are acknowledged for support. Funding for this research was provided by the National Council for Scientific and Technological Development, CNPq, (awards No. 303207/2017–5; 475203/2013–5), São Paulo Research Foundation-FAPESP (2013/06558–3) and GlaxoSmithKline-FAPESP (2014/50249–8). We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.

Funding information

Funding for this research was provided by: National Council for Scientific and Technological Development, CNPq (grant No. 303207/2017–5); National Council for Scientific and Technological Development, CNPq (grant No. 475203/2013–5); São Paulo Research Foundation-FAPESP (grant No. 2013/06558-3); GlaxoSmithKline-FAPESP (grant No. 2014/50249-8).

References

First citationBonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). Drug Discov. Today, 22, 1572–1581.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703–708.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationCheng, H., Wan, J., Lin, M.-I., Liu, Y., Lu, X., Liu, J., Xu, Y., Chen, J., Tu, Z., Cheng, Y.-S. E. & Ding, K. (2012). J. Med. Chem. 55, 2144–2153.  Web of Science CrossRef Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationDheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDias, C. da S., Lima, T. de M., Lima, C. G. S., Zukerman-Schpector, J. & Schwab, R. S. (2018). ChemistrySelect, 3, 6195–6202.  Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2017). IUCrData, x171782.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilchrist, J., Dutton, S., Diaz-Bustamante, M., McPherson, A., Olivares, N., Kalia, J., Escayg, A. & Bosmans, F. (2014). Chem. Biol. 9, 1204–1212.  Google Scholar
First citationJohn, J., Thomas, J. & Dehaen, W. (2015). Chem. Commun. 51, 10797–10806.  Web of Science CrossRef Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKamalraj, V. R., Senthil, S. & Kannan, P. (2008). J. Mol. Struct. 892, 210–215.  Web of Science CrossRef Google Scholar
First citationLima, C. G. S., Ali, A., van Berkel, S. S., Westermann, B. & Paixão, M. W. (2015). Chem. Commun. 51, 10784–10796.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorzherin, Y., Prokhorova, P. E., Musikhin, D. A., Glukhareva, T. V. & Fan, Z. (2011). Pure Appl. Chem. 83, 715–722.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, H., Izenwasser, S., Wade, D., Stevens, E. D. & Trudell, M. L. (2009). Bioorg. Med. Chem. Lett. 19, 891–893.  Web of Science CrossRef Google Scholar
First citationStruthers, H., Mindt, T. L. & Schibli, R. (2010). Dalton Trans. 39, 675–696.  Web of Science CrossRef Google Scholar
First citationVinutha, N., Madan Kumar, S., Nithinchandra, Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1724.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295–4305.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds