research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(6-Meth­­oxy­pyridin-2-yl)-1-(pyridin-2-ylmeth­yl)-1H-pyrazole-3-carboxamide: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 38009, India, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2018; accepted 12 August 2018; online 16 August 2018)

The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl­ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra­molecular amide-N—H⋯N(pyrazol­yl) and pyridyl-C—H⋯O(amide) inter­actions are evident and these preclude the participation of the amide-N—H and O atoms in inter­molecular inter­actions. The most notable feature of the mol­ecular packing is the formation of linear supra­molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol­yl) inter­actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.

1. Chemical context

Amide bond formation involving acid–amine coupling is an important synthetic tool for the manufacture of pharmaceuticals and fine chemicals (Schuele et al., 2008[Schuele, G., Barnett, S., Bapst, B., Cavaliero, T., Luempert, L., Strehlau, G., Young, D. R., Moran, C. & Junquera, P. (2008). Vet. Parasitol. 154, 311-317.]). The use of a variety of acid–amine coupling agents, most commonly carbodi­imides and onium salts such as phospho­nium as well as ammonium salts, for amide bond synthesis has been reviewed (Al-Warhi et al. 2012[Al-Warhi, T. I., Al-Hazimi, H. M. A. & El-Faham, A. (2012). J. Saudi Chem. Soc. 16, 97-116.]; Urich et al., 2014[Urich, R., Grimaldi, R., Luksch, T., Frearson, J. A., Brenk, R. & Wyatt, P. G. (2014). J. Med. Chem. 57, 7536-7549.]). In this context, n-propane­phospho­nic acid anhydride (T3P) has proved to be an excellent reagent for amide or peptide bond formation. The synthesis of amide bonds utilizing T3P offers high yields, low epimerization and avoids the use of haza­rdous additives such as explosive hy­droxy­benzotriazole (HOBt). Further, reactions occur with high yields and lead to the easy removal of the by-products with a simple work-up, overall resulting in the formation of high-quality product. In addition, it is noted that the T3P reagent is non-toxic and non-allergenic (Joullie & Lassen, 2010[Joullie, M. M. & Lassen, K. M. (2010). Arkivoc, 8, 189-250.]; Fennie & Roth, 2016[Fennie, M. W. & Roth, J. M. (2016). J. Chem. Educ. 93, 1788-1793.]). Moreover, amine bond formation between pyrazole and pyrimidine ring systems can lead to the formation of biologically accepted ingredients such as AM251 (Xi et al., 2006[Xi, Z.-X., Gilbert, J. G., Peng, X. Q., Pak, A. C., Li, X. & Gardner, E. L. (2006). J. Neurosci. 26, 8531-8536.]), as a CB1 cannabinoid receptor antagonist, and Meclinertant (SR48692; Liu et al., 2017[Liu, J., Agopiantz, M., Poupon, J., Wu, Z., Just, P.-A., Borghese, B., Ségal-Bendirdjian, E., Gauchotte, G., Gompel, A. & Forgez, P. (2017). Clin. Cancer Res. 23, 6516-6528.]), a neurotensinreceptor (NTS) antagonist. The combination of such moieties can also lead to mol­ecules with anti-tuberculosis, anti-cancer, anti-bacterial and anti-fungal activities (Fustero et al., 2009[Fustero, S., Simón-Fuentes, A. & Sanz-Cervera, J. F. (2009). Org. Prep. Proced. Int. 41, 253-290.]; Pal et al., 2012[Pal, D., Saha, S. & Singh, S. (2012). Int. J. Pharm. Pharm. Sci. 4, 98-104.]; Dar & Shamsuzzaman, 2015[Dar, A. M. & Shamsuzzaman (2015). J. Nucl. Med. Radiat. Ther, 6, art. no. 250 (5 pages). DOI: 10.4172/2155-9619.1000250]; Sapra et al., 2016[Sapra, S., Sharma, K., Bhalla, Y. & Dhar, K. L. (2016). Chem. Sci. J. 7 art. no. 1000129 (8 pages). DOI: 10.4172/2150-3494.1000129.]). As part of our studies in this area, acid–amine coupling between heterocycles such as pyrazole and pyridine using efficient coupling reagents such as T3P was performed; herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of its calculated Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises an almost planar bi-substituted pyrazolyl ring with the r.m.s. deviation of the fitted atoms being 0.0023 Å. Connected to the ring at the N2 position is a methyl-2-pyridyl residue with the dihedral angle between the five- and six-membered rings being 77.68 (5)°, indicating an almost orthogonal relationship. A substituted amide (C10/N4/O1) group is connected at the C3-position, which is approximately co-planar with the pyrazolyl ring, forming a dihedral angle of 3.5 (3)°. The dihedral angle between the amide atoms and the appended N5-pyridyl ring is 4.4 (3)°, indicating a co-planar relationship. The dihedral angle between the pyridyl rings in (I)[link] of 78.37 (5)° indicates that the mol­ecule has an approximate L-shape. The amide-N4—H4N atom is flanked on either side by the pyrazolyl-N1 and pyridyl-N5 atoms and in the same way, the amide-O1 atom accepts a weak intra­molecular inter­action from the C15—H15 grouping; see Table 1[link] for geometric data characterizing these inter­actions. Finally, the meth­oxy group is approximately co-planar with the pyridyl ring to which it is attached, as seen in the C16—O2—C12—N5 torsion angle of 4.2 (3)°.

Table 1
Intra- and intermolecular interactions (Å, °) for (I)

Cg1 is the centroid of the N1/N2/C1–C3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N1 0.86 (1) 2.24 (2) 2.6939 (18) 113 (1)
C15—H15⋯O1 0.93 2.33 2.909 (2) 120
C10—O1⋯Cg1i 1.22 (1) 3.42 (1) 3.5486 (16) 86 (1)
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] is largely devoid of structure-directing inter­actions as the key amide atoms are involved in intra­molecular contacts. The only identified directional inter­action less than van der Waals separations (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) is a carbonyl-C10=O2⋯π(triazol­yl) contact, Table 1[link]. As illus­trated in Fig. 2[link]a, these lead to linear supra­molecular chains aligned along the b-axis direction. The supra­molecular chains pack without specific inter­actions between them, Fig. 2[link]b.

[Figure 2]
Figure 2
Supra­molecular association in the crystal of (I)[link]: (a) a view of the supra­molecular chain along the b-axis direction sustained by carbonyl-C—O⋯π(triazol­yl) inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents shown in projection down the b axis.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] were performed in accord with recent studies (Jotani et al., 2016[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247-255.]) and provide additional information on the influence of short inter­atomic contacts influential in the mol­ecular packing. On the Hirshfeld surfaces mapped over dnorm in Fig. 3[link], the presence of diminutive red spots near the pyrazole-N1, methyl-H16B, pyridyl-N3 and pyridyl-H5 atoms are indicative of short inter­atomic N⋯H/H⋯N contacts (Table 2[link]). In addition, the presence of diminutive red spots near the carbonyl-O1 and pyridyl-H6 atoms on the surface connect the mol­ecules through short inter­atomic O⋯H/H⋯O contacts (Table 2[link]) are highlighted through black dashed lines in Fig. 3[link]a. The faint-red spots appearing near the pyridyl-C5, C6 and C8 atoms and the pyrazolyl-H1 atom in Fig. 3[link]b represent the short inter­atomic C⋯C and C⋯H/H⋯C contacts (Table 3[link]) between these atoms. The inter­molecular C=O⋯π contacts connecting the mol­ecules along the b-axis direction are illustrated in Fig. 3[link]c. The weak inter­molecular inter­actions described above are also viewed as the blue and red regions near the respective atoms on the Hirshfeld surfaces mapped over the calculated electrostatic potential shown in Fig. 4[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
O1⋯H6 2.47 x, [{3\over 2}] − y, [{1\over 2}] + z
N1⋯H16B 2.58 x, 1 − y, −z
N3⋯H5 2.54 1 − x, 1 − y, −z
C6⋯H1 2.72 1 − x, − y, z
C5⋯C8 3.380 (3) x, 1 + y, z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 46.4
O⋯H/H⋯O 11.9
N⋯H/H⋯N 11.1
C⋯H/H⋯C 22.4
C⋯N/N⋯C 3.5
C⋯O/O⋯C 1.9
N⋯N 1.3
C⋯C 1.2
N⋯O/O⋯N 0.4
[Figure 3]
Figure 3
Three views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.093 to +1.418 a.u. highlighting (a) short inter­atomic O⋯H/H⋯O (yellow dashed lines) and N⋯H/H⋯N (black) contacts dashed lines, (b) C⋯C (red) and C⋯H/H⋯C (sky-blue) contacts and (c) C=O⋯π contacts (black dotted lines).
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over the electrostatic potential in the range −0.080 to +0.044 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plot for (I)[link], Fig. 5[link]a, and those delineated into H⋯H, N⋯H/H⋯N, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bf, respectively, and the percentage contributions from the different inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. The greatest, i.e. 46.4%, contribution to the Hirshfeld surfaces are from H⋯H contacts and indicates the significance of dispersive forces on the mol­ecular packing as the inter­atomic distances involving these contacts are greater than the sum of van der Waals radii. The short inter­atomic O⋯H/H⋯O and C⋯H/H⋯C contacts in the crystal structure of (I)[link] are characterized as the pair of thin needle-like and forceps-like tips at de + di ∼ 2.5 Å and 2.7 Å, respectively, in the corresponding delineated fingerprint plots Fig. 5[link]c and e. The pair of spikes with the tips at de + di ∼ 2.6 Å and the regions of green points aligned in the fingerprint plot delineated into N⋯H/H⋯N contacts, Fig. 5[link]d, are indicative of short N⋯H inter­atomic contacts (Table 2[link]). In the fingerprint plot delineated into C⋯C contacts, Fig. 5[link]f, the presence of points at de + di < 3.4 Å, i.e. less than the sum of van der Waals radii, are due to short inter­atomic C5⋯C8 contacts involving pyridyl-carbon atoms (Fig. 3[link]b) although the contribution from these contacts is relatively small. The notable percentage contributions from O⋯N/N⋯O and C⋯O/O⋯C contacts to the Hirshfeld surfaces (Table 2[link]) in the crystal arise from the presence of the inter­molecular C=O⋯π contacts. The inter­atomic N⋯N contacts show no significant contribution to the packing of (I)[link].

[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)-(f) those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N, C⋯H/H⋯C and C⋯C, contacts, respectively.

5. Database survey

The 1,3 N—C and C—C(=O)N(H)—C substitution pattern observed in (I)[link], with hydrogen atoms at the C1 and C2 positions, is unprecedented in structural chemistry according to a search of the Cambridge Structural Database (CSD Version 5.39, May update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). There are considerably more examples of structures with substituents at one of and at both the C1 and C2 positions but none of these are substituents are pyridyl groups.

6. Synthesis and crystallization

1H-Pyrazole-4-carb­oxy­lic acid (0.0446 mol) was treated with diiso­propyl­ethyl amine (0.0669 mol) and 1-propane phospho­nic acid (T3P) (0.0669 mol) in dimethyl formamide (10 ml) at 273 K for 15 min. Then, 6-meth­oxy­pyridin-2-amine (0.0490 mol) was added at 273 K. The reaction mixture was heated at 353 K for 3 h. After completion of the reaction, the product was extracted with ethyl acetate and the excess solvent was removed under vacuum. The product was recrystallized using methanol as solvent to yield 1-(6-meth­oxy­pyridin-2-ylmeth­yl)-1H-pyrazole-4-carb­oxy­lic acid. This product (0.0246 mol) and 2-(chloro­meth­yl)pyridine (0.0295 mol) were dissolved in acetone (10 ml), potassium carbonate (0.0369) was added and the reaction mixture was heated at 329 K for 5 h. After completion of the reaction, the product was extracted with ethyl acetate twice (5 ml) and the extract was concentrated under vacuum. The product was washed with diethyl ether (3 ml) and recrystallized from methanol solution to obtain the title compound, (I)[link], as colourless blocks in 88% yield. M.p. 414-415 K. CHN analysis: calculated. C, 62.13; H, 4.89; N, 22.64%; observed: C, 62.06; H, 4.81; N, 22.84%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H atoms was refined with a distance restraint of 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula C16H15N5O2
Mr 309.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.8867 (15), 4.6473 (4), 21.6740 (19)
β (°) 108.623 (3)
V3) 1516.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.47 × 0.43 × 0.28
 
Data collection
Diffractometer Rigaku SCX mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.808, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 14205, 3458, 2354
Rint 0.031
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.02
No. of reflections 3458
No. of parameters 212
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.17
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

N-(6-Methoxypyridin-2-yl)-1-(pyridin-2-ylmethyl)-1H-pyrazole-3-carboxamide top
Crystal data top
C16H15N5O2F(000) = 648
Mr = 309.33Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.8867 (15) ÅCell parameters from 11059 reflections
b = 4.6473 (4) Åθ = 3.2–27.7°
c = 21.6740 (19) ŵ = 0.09 mm1
β = 108.623 (3)°T = 293 K
V = 1516.4 (2) Å3Block, colourless
Z = 40.47 × 0.43 × 0.28 mm
Data collection top
Rigaku SCX mini
diffractometer
2354 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.031
ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1920
Tmin = 0.808, Tmax = 0.974k = 66
14205 measured reflectionsl = 2828
3458 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.1998P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3458 reflectionsΔρmax = 0.13 e Å3
212 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33267 (7)0.7478 (2)0.23734 (5)0.0605 (3)
O20.08095 (9)0.9148 (4)0.07466 (8)0.1027 (5)
N10.30289 (8)0.2514 (2)0.10788 (5)0.0434 (3)
N20.36665 (8)0.0898 (2)0.09706 (5)0.0457 (3)
N30.40561 (8)0.2467 (3)0.01587 (6)0.0511 (3)
N40.20890 (8)0.6321 (3)0.15313 (6)0.0516 (3)
H4N0.1920 (10)0.521 (3)0.1198 (6)0.062*
N50.06549 (9)0.7801 (3)0.11608 (7)0.0577 (4)
C10.44689 (10)0.1427 (3)0.14031 (7)0.0517 (4)
H10.50010.05580.14150.062*
C20.43609 (10)0.3459 (3)0.18194 (7)0.0483 (4)
H20.47950.42660.21720.058*
C30.34578 (9)0.4073 (3)0.16025 (6)0.0408 (3)
C40.34470 (12)0.1001 (3)0.04122 (7)0.0548 (4)
H4A0.28660.18330.03500.066*
H4B0.38740.25630.05020.066*
C50.34405 (10)0.0471 (3)0.02091 (6)0.0438 (3)
C60.40938 (11)0.3653 (4)0.07088 (7)0.0567 (4)
H60.45160.50760.06790.068*
C70.35489 (12)0.2904 (4)0.13146 (8)0.0615 (5)
H70.36090.37600.16860.074*
C80.29151 (12)0.0865 (4)0.13579 (8)0.0663 (5)
H80.25300.03100.17620.080*
C90.28514 (11)0.0364 (4)0.07958 (7)0.0573 (4)
H90.24170.17330.08140.069*
C100.29654 (9)0.6120 (3)0.18811 (6)0.0442 (3)
C110.14308 (10)0.8033 (3)0.16395 (7)0.0488 (4)
C120.00155 (11)0.9321 (4)0.12181 (9)0.0682 (5)
C130.00381 (13)1.1138 (4)0.17359 (11)0.0755 (5)
H130.04511.21860.17550.091*
C140.08339 (13)1.1327 (4)0.22134 (10)0.0722 (5)
H140.08951.25200.25700.087*
C150.15550 (12)0.9762 (4)0.21746 (8)0.0611 (4)
H150.21040.98750.24990.073*
C160.08995 (15)0.7152 (6)0.02254 (13)0.1148 (9)
H16A0.04950.76650.00050.172*
H16B0.14970.72070.00680.172*
H16C0.07660.52450.04000.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0609 (7)0.0742 (7)0.0434 (6)0.0007 (6)0.0123 (5)0.0163 (5)
O20.0550 (8)0.1215 (13)0.1194 (12)0.0237 (8)0.0108 (8)0.0180 (11)
N10.0491 (7)0.0441 (6)0.0367 (6)0.0006 (5)0.0130 (5)0.0019 (5)
N20.0561 (7)0.0435 (6)0.0385 (6)0.0048 (6)0.0166 (5)0.0020 (5)
N30.0564 (8)0.0524 (7)0.0433 (7)0.0002 (6)0.0142 (6)0.0009 (6)
N40.0473 (7)0.0551 (8)0.0505 (7)0.0009 (6)0.0129 (6)0.0120 (6)
N50.0477 (7)0.0609 (8)0.0643 (8)0.0031 (6)0.0175 (6)0.0004 (7)
C10.0482 (8)0.0594 (9)0.0465 (8)0.0102 (7)0.0139 (7)0.0080 (7)
C20.0463 (8)0.0567 (9)0.0374 (7)0.0026 (7)0.0073 (6)0.0039 (7)
C30.0462 (8)0.0439 (7)0.0312 (6)0.0011 (6)0.0109 (6)0.0050 (6)
C40.0765 (11)0.0416 (8)0.0490 (8)0.0004 (8)0.0240 (8)0.0025 (7)
C50.0505 (8)0.0399 (7)0.0428 (7)0.0091 (6)0.0175 (6)0.0028 (6)
C60.0583 (9)0.0605 (10)0.0550 (9)0.0030 (8)0.0235 (8)0.0070 (8)
C70.0692 (11)0.0741 (11)0.0438 (8)0.0168 (9)0.0215 (8)0.0106 (8)
C80.0682 (11)0.0806 (12)0.0412 (8)0.0107 (10)0.0050 (8)0.0063 (8)
C90.0570 (9)0.0597 (10)0.0525 (9)0.0012 (8)0.0138 (7)0.0064 (8)
C100.0492 (8)0.0478 (8)0.0360 (7)0.0035 (7)0.0141 (6)0.0024 (6)
C110.0493 (8)0.0467 (8)0.0545 (9)0.0021 (7)0.0222 (7)0.0018 (7)
C120.0516 (10)0.0708 (11)0.0842 (13)0.0081 (9)0.0245 (9)0.0051 (10)
C130.0673 (12)0.0695 (12)0.1041 (15)0.0109 (10)0.0478 (12)0.0003 (11)
C140.0789 (13)0.0668 (11)0.0847 (13)0.0001 (10)0.0455 (11)0.0141 (10)
C150.0621 (10)0.0615 (10)0.0648 (10)0.0035 (8)0.0274 (8)0.0103 (8)
C160.0657 (13)0.134 (2)0.1161 (19)0.0129 (14)0.0116 (13)0.0294 (18)
Geometric parameters (Å, º) top
O1—C101.2147 (16)C4—H4A0.9700
O2—C121.349 (2)C4—H4B0.9700
O2—C161.433 (3)C5—C91.372 (2)
N1—C31.3354 (17)C6—C71.367 (2)
N1—N21.3404 (16)C6—H60.9300
N2—C11.3421 (18)C7—C81.364 (3)
N2—C41.4476 (18)C7—H70.9300
N3—C51.3271 (18)C8—C91.378 (2)
N3—C61.3321 (19)C8—H80.9300
N4—C101.3593 (18)C9—H90.9300
N4—C111.3920 (19)C11—C151.372 (2)
N4—H4N0.859 (9)C12—C131.385 (3)
N5—C121.317 (2)C13—C141.357 (3)
N5—C111.338 (2)C13—H130.9300
C1—C21.355 (2)C14—C151.382 (2)
C1—H10.9300C14—H140.9300
C2—C31.3893 (19)C15—H150.9300
C2—H20.9300C16—H16A0.9600
C3—C101.477 (2)C16—H16B0.9600
C4—C51.508 (2)C16—H16C0.9600
C12—O2—C16118.00 (16)C8—C7—H7121.0
C3—N1—N2104.11 (11)C6—C7—H7121.0
N1—N2—C1112.18 (12)C7—C8—C9119.21 (15)
N1—N2—C4119.62 (12)C7—C8—H8120.4
C1—N2—C4128.10 (13)C9—C8—H8120.4
C5—N3—C6117.26 (13)C5—C9—C8118.76 (16)
C10—N4—C11129.51 (13)C5—C9—H9120.6
C10—N4—H4N114.6 (11)C8—C9—H9120.6
C11—N4—H4N115.8 (11)O1—C10—N4124.52 (14)
C12—N5—C11117.15 (15)O1—C10—C3122.02 (13)
N2—C1—C2107.38 (13)N4—C10—C3113.46 (12)
N2—C1—H1126.3N5—C11—C15123.41 (15)
C2—C1—H1126.3N5—C11—N4112.27 (13)
C1—C2—C3104.75 (13)C15—C11—N4124.32 (15)
C1—C2—H2127.6N5—C12—O2119.06 (18)
C3—C2—H2127.6N5—C12—C13124.14 (17)
N1—C3—C2111.57 (13)O2—C12—C13116.80 (17)
N1—C3—C10120.24 (12)C14—C13—C12117.31 (17)
C2—C3—C10128.18 (13)C14—C13—H13121.3
N2—C4—C5113.65 (12)C12—C13—H13121.3
N2—C4—H4A108.8C13—C14—C15120.52 (17)
C5—C4—H4A108.8C13—C14—H14119.7
N2—C4—H4B108.8C15—C14—H14119.7
C5—C4—H4B108.8C11—C15—C14117.47 (17)
H4A—C4—H4B107.7C11—C15—H15121.3
N3—C5—C9122.73 (14)C14—C15—H15121.3
N3—C5—C4116.68 (13)O2—C16—H16A109.5
C9—C5—C4120.50 (14)O2—C16—H16B109.5
N3—C6—C7123.98 (16)H16A—C16—H16B109.5
N3—C6—H6118.0O2—C16—H16C109.5
C7—C6—H6118.0H16A—C16—H16C109.5
C8—C7—C6118.04 (15)H16B—C16—H16C109.5
C3—N1—N2—C10.62 (14)C11—N4—C10—O10.4 (2)
C3—N1—N2—C4177.19 (11)C11—N4—C10—C3179.08 (14)
N1—N2—C1—C20.51 (16)N1—C3—C10—O1176.69 (13)
C4—N2—C1—C2176.71 (13)C2—C3—C10—O12.7 (2)
N2—C1—C2—C30.17 (16)N1—C3—C10—N43.79 (18)
N2—N1—C3—C20.50 (14)C2—C3—C10—N4176.79 (14)
N2—N1—C3—C10179.01 (11)C12—N5—C11—C150.3 (2)
C1—C2—C3—N10.21 (16)C12—N5—C11—N4179.54 (14)
C1—C2—C3—C10179.25 (13)C10—N4—C11—N5175.29 (14)
N1—N2—C4—C583.78 (16)C10—N4—C11—C154.9 (3)
C1—N2—C4—C592.17 (18)C11—N5—C12—O2179.95 (16)
C6—N3—C5—C90.7 (2)C11—N5—C12—C130.5 (3)
C6—N3—C5—C4175.81 (13)C16—O2—C12—N54.2 (3)
N2—C4—C5—N337.45 (19)C16—O2—C12—C13176.20 (19)
N2—C4—C5—C9145.99 (14)N5—C12—C13—C140.5 (3)
C5—N3—C6—C71.0 (2)O2—C12—C13—C14179.96 (18)
N3—C6—C7—C81.5 (3)C12—C13—C14—C150.2 (3)
C6—C7—C8—C90.4 (3)N5—C11—C15—C140.1 (2)
N3—C5—C9—C81.7 (2)N4—C11—C15—C14179.76 (15)
C4—C5—C9—C8174.61 (14)C13—C14—C15—C110.0 (3)
C7—C8—C9—C51.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C3 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4N···N10.86 (1)2.24 (2)2.6939 (18)113 (1)
C15—H15···O10.932.332.909 (2)120
C10—O1···Cg1i1.22 (1)3.42 (1)3.5486 (16)86 (1)
Symmetry code: (i) x, y+1, z.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
O1···H62.47x, 3/2 - y, 1/2 + z
N1···H16B2.58-x, 1 - y, -z
N3···H52.541 - x, 1 - y, -z
C6···H12.721 - x, - y, z
C5···C83.380 (3)x, 1 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H46.4
O···H/H···O11.9
N···H/H···N11.1
C···H/H···C22.4
C···N/N···C3.5
C···O/O···C1.9
N···N1.3
C···C1.2
N···O/O···N0.4
 

Footnotes

Additional correspondence author, e-mail: drrdshah@yahoo.co.in.

Acknowledgements

The authors are thankful to the M. G. Science Institute for access to laboratory facilities and to the Centre for Excellence, National Facility for Drug Discovery, Saurashtra University, Rajkot, Gujarat, for the X-ray data collection.

References

First citationAl-Warhi, T. I., Al-Hazimi, H. M. A. & El-Faham, A. (2012). J. Saudi Chem. Soc. 16, 97–116.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDar, A. M. & Shamsuzzaman (2015). J. Nucl. Med. Radiat. Ther, 6, art. no. 250 (5 pages). DOI: 10.4172/2155-9619.1000250  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFennie, M. W. & Roth, J. M. (2016). J. Chem. Educ. 93, 1788–1793.  Web of Science CrossRef Google Scholar
First citationFustero, S., Simón-Fuentes, A. & Sanz-Cervera, J. F. (2009). Org. Prep. Proced. Int. 41, 253–290.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247–255.  CAS Google Scholar
First citationJoullie, M. M. & Lassen, K. M. (2010). Arkivoc, 8, 189–250.  Google Scholar
First citationLiu, J., Agopiantz, M., Poupon, J., Wu, Z., Just, P.-A., Borghese, B., Ségal-Bendirdjian, E., Gauchotte, G., Gompel, A. & Forgez, P. (2017). Clin. Cancer Res. 23, 6516–6528.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPal, D., Saha, S. & Singh, S. (2012). Int. J. Pharm. Pharm. Sci. 4, 98–104.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSapra, S., Sharma, K., Bhalla, Y. & Dhar, K. L. (2016). Chem. Sci. J. 7 art. no. 1000129 (8 pages). DOI: 10.4172/2150-3494.1000129.  Google Scholar
First citationSchuele, G., Barnett, S., Bapst, B., Cavaliero, T., Luempert, L., Strehlau, G., Young, D. R., Moran, C. & Junquera, P. (2008). Vet. Parasitol. 154, 311–317.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrich, R., Grimaldi, R., Luksch, T., Frearson, J. A., Brenk, R. & Wyatt, P. G. (2014). J. Med. Chem. 57, 7536–7549.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, Z.-X., Gilbert, J. G., Peng, X. Q., Pak, A. C., Li, X. & Gardner, E. L. (2006). J. Neurosci. 26, 8531–8536.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds