research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of sodium (1S)-D-mannit-1-yl­sulfonate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
*Correspondence e-mail: a.haines@uea.ac.uk, d.l.hughes@uea.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 August 2018; accepted 15 August 2018; online 24 August 2018)

The title salt, Na+·C6H13O9S [systematic name: sodium (1S,2S,3S,4R,5R)-1,2,3,4,5,6-hexa­hydroxy­hexane-1-sulfonate], is formed by reaction of D-mannose with sodium bis­ulfite (sodium hydrogen sulfite) in water. The anion has an open-chain structure with the S atom and the C atoms of the carbohydrate chain forming an essentially planar zigzag chain in which the absolute values of the torsion angles lie between 173.6 (2) and 179.9 (3)°. The sodium cations are penta-­coordinated by O atoms, with one link to a carbohydrate O atom and four to O atoms of sulfonate residues in separate anions, thus creating a three-dimensional network. The carbohydrate anions are arranged in a head (–SO3) to head (–SO3) arrangement, thereby forming two parallel sheets linked through coordination to sodium ions, with each sheet containing inter­molecular hydrogen bonds between the anionic residues. Unusually, the double sheets are not connected to neighbouring sets of double sheets, either by ion coordination or inter­molecular hydrogen bonding.

1. Chemical context

Adducts formed by the reaction of aldehydes and bis­ulfite anions have long been used for aldehyde purification since they are often crystalline, whereas the parent aldehydes are often liquids with varying stabilities on storage. The addition reaction is reversible, which makes the bis­ulfite compounds useful inter­mediates in the synthesis of other adducts from aldehydes, such as cyano­hydrins. Further, bis­ulfite adducts are useful since they are soluble in water, which can be important if the compounds need to be compatible with aqueous, biological systems, for example to aid delivery of medicinal drugs insoluble in water. Such considerations are important since aldehydes are involved in many synthetic processes for the production of commercially relevant compounds, including pharmaceuticals, and the relative advantages of using different counter-ions (e.g. stability, hygroscopicity, ease of filtration of the adduct) are of inter­est (Kissane et al., 2013[Kissane, M. G., Frank, S. A., Rener, G. A., Ley, C. P., Alt, C. A., Stroud, P. A., Vaid, R. K., Boini, S. K., McKee, L. A., Vicenzi, J. T. & Stephenson, G. A. (2013). Tetrahedron Lett. 54, 6587-6591.]).

The bis­ulfite addition products of aldoses are unusual in that they are acyclic compounds despite the fact that the parent carbohydrates exist predominantly in the cyclic, hemi-acetal form. Although such adducts were synthesised many years ago, unequivocal proof of their acyclic nature awaited X-ray structure determination, firstly on the potassium adducts of D-glucose and D-mannose (Cole et al., 2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]), of D-galactose (Haines & Hughes, 2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.]), D-ribose (Haines & Hughes, 2014[Haines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406-409.]), D-lyxose (Haines & Hughes, 2015[Haines, A. H. & Hughes, D. L. (2015). Acta Cryst. E71, 993-996.]), and of the sodium adducts of D-glucose (Haines & Hughes, 2012[Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.]) and D-lyxose (Haines & Hughes, 2016[Haines, A. H. & Hughes, D. L. (2016). Acta Cryst. E72, 628-631.]).

We now report the preparation, properties, and crystal structure of the sodium bis­ulfite adduct of D-mannose, and comment on its significant structural difference from that of the corresponding potassium adduct.

[Scheme 1]

Mixing concentrated, equimolar solutions of D-mannose and sodium bis­ulfite (sodium hydrogen sulfite formed by the in situ hydrolysis of sodium metabisulfite) in water led to immediate precipitation of the adduct in high yield; this was purified by recrystallization from water, giving material stable in air but which melted over a large temperature range (413–444 K) with extended and continual decomposition.

Obtaining suitable crystals for X-ray analysis was challeng­ing since there was a tendency for formation of thin, rough, multiple crystals, but slow crystallization at approximately 283–286 K and careful selection from the crop so-produced afforded the crystal for examination. The newly formed chiral centre at C1 had the S-configuration and in solution in water:acetic acid (9:1) the adduct gave a positive rotation which remained stable over an extended period, suggesting that hydrolysis to its component parts was hindered under the acidic conditions.

2. Structural commentary

The newly formed chiral centre at C1 has the S-configuration (as shown in Fig. 1[link]) and the systematic name for the salt is sodium (1S,2S,3S,4R,5R)-1,2,3,4,5,6-hexa­hydroxy­hexane-1-sulfonate. The anion has an open-chain structure in which the S atom and the C atoms of the sugar chain form an essentially planar zigzag (all-trans) chain with the corresponding torsion angles lying between the absolute values of 173.6 (2) and 179.9 (3)°. The hydrogen atoms of the hydroxyl groups on C1 to C6 of the carbon chain form hydrogen bonds with oxygen atoms O2, O13, O5, O3, O6 and O4, respectively, of neighbouring chains (Fig. 1[link] and Table 1[link]) and all the hydroxyl O atoms except O1 are acceptors of hydrogen bonds; O1 is bonded to a sodium ion. We note that all the hydrogen bonds are arranged in cyclic systems, some comprising four O—H⋯O bonds, others with two O—H⋯O bonds plus two Na—O coordination bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2ii 0.81 (3) 1.92 (4) 2.693 (4) 160 (8)
O2—H2O⋯O1 0.81 (3) 2.36 (5) 2.828 (3) 118 (5)
O2—H2O⋯O13i 0.81 (3) 2.08 (4) 2.745 (4) 140 (5)
O3—H3O⋯O4 0.81 (3) 2.32 (7) 2.838 (3) 123 (7)
O3—H3O⋯O5v 0.81 (3) 2.11 (6) 2.743 (4) 136 (7)
O4—H4O⋯O3vi 0.82 (3) 1.87 (3) 2.692 (3) 179 (8)
O5—H5O⋯O6ii 0.80 (3) 1.91 (3) 2.704 (4) 169 (6)
O6—H6O⋯O4i 0.81 (3) 2.00 (4) 2.753 (4) 154 (6)
O6—H6O⋯O5 0.81 (3) 2.45 (6) 2.853 (4) 112 (5)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (v) x, y+1, z; (vi) x+1, y, z.
[Figure 1]
Figure 1
View of the D-mannose–NaHSO3 adduct, indicating the atom-numbering scheme. All sodium coordination contacts and hydrogen bonds involving the atoms of the sugar adduct are indicated. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (1) 1 − x, y − [{1\over 2}], 2 − z; (2) 1 + x, y − 1, z; (3) x, y − 1, z; (4) x − 1, y − 1, z; (5) 1 + x, y, z; (6) x − 1, y, z; (7) 1 − x, [{1\over 2}] + y, 2 − z; (8) 1 + x, 1 + y, z; (9) x, 1 + y, z; (10) x − 1, 1 + y, z.

Unusually, the sodium atom has a coordination sphere of five rather than six oxygen atoms, hexa-coordination having been observed in related adducts from D-glucose (Haines & Hughes, 2012[Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.]) and D-lyxose (Haines & Hughes, 2016[Haines, A. H. & Hughes, D. L. (2016). Acta Cryst. E72, 628-631.]). Further, coordination of a sodium ion by O1 of the carbohydrate chain and oxygen atoms O11, O12 and O13 of four different sulfonate groups leads to a sheet of Na ions coord­inated to the `heads' of the anions, Fig. 2[link].

[Figure 2]
Figure 2
View down the a axis of the crystal packing.

The Na—O bonds have lengths in the range 2.293 (3) to 2.421 (3) Å (Table 2[link]) and form a distorted square pyramidal shape with O1 in the apical site. The next shortest Na–O contact distance is 2.757 Å to O12iii, which would provide a rather distorted octa­hedral coordination. Twofold screw axes of symmetry (parallel to the b axis) relate the sodium ions in the sheet close to the ab plane at z = 0 and 1, and the zigzag C6 chains lie approximately normal to this plane and nearly parallel to the c axis. The `tails' of these chains, around the C6,O6 groups, lie close to the z = [{1\over 2}] plane where the screw axes relate them to the tails of adjacent mol­ecules. But, whereas the heads are linked through the sodium atoms across the z = 0 plane, there are no short inter­molecular contacts across the z = [{1\over 2}] plane; the shortest contacts here are H61⋯H6211 = 2.57 Å, H61⋯O612 = 2.70 Å, H62⋯H513 = 2.60 Å and H62⋯C613 = 2.95 Å, i.e. at normal van der Waals' distances; symmetry codes: (11) 1 − x, y + [{1\over 2}], 1 − z; (12) 2 − x, y + [{1\over 2}], 1 − z; (13) 1 − x, y − [{1\over 2}], 1 − z.

Table 2
Selected bond lengths (Å)

Na—O11i 2.293 (3) Na—O1 2.386 (3)
Na—O12ii 2.328 (3) Na—O13iv 2.421 (3)
Na—O11iii 2.370 (3) Na—O12iii 2.757 (3)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) x-1, y-1, z.

The neighbours of the zigzag C6 chains are related only by translation parallel to the a and b axes, Fig. 3[link]; all the cations here are aligned in the same direction. Anions related across the Na coordination plane and about the z = [{1\over 2}] plane have the opposite alignment. Here, we observe a major difference between this sodium complex and the corresponding potassium D-mannose complex (Cole et al., 2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]) where each C6 chain is surrounded by four chains pointing in the opposite direction, as shown in Fig. 4[link]. Hence the distances between the coordination planes are quite different, viz 21.08 Å in the sodium complex, but 11.55 Å for the potassium compound.

[Figure 3]
Figure 3
View looking along the all-trans sugar chain and neighbouring chains, all pointing in the same direction. Displacement ellipsoids are shown at the 30% probability level. Symmetry codes are defined as for Fig. 1[link].
[Figure 4]
Figure 4
View looking along the all-trans sugar chain and neighbouring chains in the D-mannose–potassium bis­ulfite adduct; adjacent chains point in opposing directions. Atom coordinates were taken from the CCDC deposition, code 172060 (Cole et al., 2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]). Atoms are represented by small spheres of arbitrary radii. Symmetry codes: (2) 1 − x, [{1\over 2}] + y, −z; (4) 1 + x, y, z; (5) 1 − x, y − [{1\over 2}], −z; (7) x, y, z − 1; (8) 1 − x, [{1\over 2}] + y, 1 − z; (9) −x, [{1\over 2}] + y, −z; (11) 1 − x, y − [{1\over 2}], 1 − z; (12) −x, y − [{1\over 2}], −z.

3. Supra­molecular features

A three-dimensional bonding network exists in the crystal structure through (i) penta-coordination of a sodium cation with oxygens from five different mannose bis­ulfite residues, and (ii) inter­molecular hydrogen bonds from each of the six hydroxyl groups to acceptor oxygen atoms in four different residues.

4. Spectroscopic results

High resolution mass spectrometry in negative ion mode showed, as the base peak in the spectrum, a peak for ([C6H13O9S1]) at m/z 261.0287 and a significant peak was observed at m/z 243.0182 ([C6H13O9S1–H2O]). A minor peak observed at m/z 359.1194 ([C12H23O12]) was assigned to a dimer ion ([2M − H]) produced by association of a D-mannose mol­ecule (M = C6H12O6) with the mono-anion of D-mannose ([C6H11O6]) under the electrospray ionization conditions of the mass spectrometric measurement.

The 1H NMR spectrum of the adduct in D2O indicated the presence of the α- and β-pyran­ose forms of D-mannose and the major and minor forms of the acyclic sulfonate in the % ratios 25.24:13.14:55.00:6.62, respectively. Clearly, the R-stereo­isomer at C1 is present in solution but only the S-isomer crystallizes. Further, some hydrolysis of the adduct to afford the parent sugar occurs during the NMR measurement.

The 13C NMR spectrum showed signals for C1 nuclei at δC 94.70, 94.31, 84.43 and 82.34 arising, respectively, from the α- and β-pyran­ose forms of D-mannose, the minor adduct and the major adduct, in the % ratios of 32.73:15.00:3.64:48.63.

5. Synthesis and crystallization

D-Mannose (0.9 g) was dissolved in water (2 ml), sodium metabisulfite (0.475 g) was added, and the solution was then warmed to achieve complete solution. On cooling to room temperature, precipitation occurred within 3 min (see scheme[link]). The product was collected by filtration, and dried to give the adduct (1.42 g, 84%), a portion of which was recrystallized to afford the analytical sample, m.p. 413–444 K (with extended and continual decomposition); [α]D20 +8.2 (15 min.) (c, 0.79 in 9:1 H2O: HOAc). 1H NMR (D2O, 400 MHz, reference Me3COH at δH 1.24): δH 5.17 (d, J1,2 = 1.5 Hz, H-1 of α-pyran­ose), 4.89 (d, J1,2 = 0.8 Hz, H-1 of β-pyran­ose); signals for the major acyclic sulfonate: δH 4.64 (s, H-1), 4.20 (d, J2,3 = 9.5 Hz, H-2); for the minor acyclic sulfonate: δH 4.64 (d, J1,2 = 5.2 Hz, H-1), 4.07 (d, J2,3 = 7.8 Hz, H-2); ratio of major to minor sulfonate = 8.3:1. 13C NMR (D2O, 100 MHz, reference Me3COH at δC 30.29): δC 94.70 (C1, α-pyran­ose), 94.31 (C1, β-pyran­ose); signals for the major acyclic sulfonate: δC 82.34 (C1), 71.48, 69.46, 69.18*, 68.91* (C2, C3, C4, C5), 63.96 (C6); the minor acyclic sulfonate showed a peak at δC 84.43 (C1). Each of the signals marked with * is the average value of two closely spaced singlets of equal intensity separated by 4 Hz. The reasons for these small separations in the proton decoupled 13C spectrum are not clear.

Integration of the various signals for H-1 in the 1H NMR spectrum indicated that the species α-pyran­ose, β-pyran­ose, major acyclic sulfonate and minor acyclic sulfonate were present in the % ratios of 25.24: 13.14: 55.00: 6.62, respectively. In the 13C NMR spectrum, based on peak heights, the corresponding ratios were: 32.73: 15.00: 48.63: 3.64.

HRESMS (negative ion mode, measured in an H2O/MeOH, solution) gave a base peak at m/z 261.0287 ([C6H13O9S1]), and a significant peak at 243.0182 ([C6H13O9S1–H2O]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the hydrogen atoms were located in difference maps and were refined with isotropic thermal parameters; the hydroxyl hydrogen atoms were refined with constrained O—H distances.

Table 3
Experimental details

Crystal data
Chemical formula Na+·C6H13NaO9S
Mr 284.21
Crystal system, space group Monoclinic, P21
Temperature (K) 140
a, b, c (Å) 4.8744 (2), 5.0042 (2), 21.0759 (10)
β (°) 93.867 (4)
V3) 512.92 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.52 × 0.20 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.618, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9424, 2972, 2926
Rint 0.030
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.16
No. of reflections 2972
No. of parameters 206
No. of restraints 7
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.49, −0.45
Absolute structure Flack x determined using 1240 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (4)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b) and WinGX (Farrugia, 2012).

Sodium (1S,2S,3S,4R,5R)-1,2,3,4,5,6-\ hexahydroxyhexane-1-sulfonate top
Crystal data top
Na+·C6H13NaO9SF(000) = 296
Mr = 284.21Dx = 1.840 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.8744 (2) ÅCell parameters from 4715 reflections
b = 5.0042 (2) Åθ = 3.9–32.5°
c = 21.0759 (10) ŵ = 0.40 mm1
β = 93.867 (4)°T = 140 K
V = 512.92 (4) Å3Plate, colourless
Z = 20.52 × 0.20 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
2972 independent reflections
Radiation source: Enhance (Mo) X-ray Source2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0050 pixels mm-1θmax = 30.0°, θmin = 3.9°
Thin slice φ and ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 77
Tmin = 0.618, Tmax = 1.000l = 2929
9424 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.694P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.49 e Å3
2972 reflectionsΔρmin = 0.44 e Å3
206 parametersAbsolute structure: Flack x determined using 1240 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraintsAbsolute structure parameter: 0.04 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5658 (7)0.4844 (7)0.83763 (16)0.0099 (6)
O10.4257 (5)0.2507 (5)0.85501 (12)0.0124 (5)
C20.7379 (7)0.4250 (7)0.78081 (16)0.0092 (6)
O20.9236 (5)0.2083 (5)0.79422 (12)0.0112 (5)
C30.5507 (7)0.3570 (7)0.72169 (16)0.0103 (6)
O30.3628 (5)0.5738 (6)0.70848 (11)0.0124 (5)
C40.7176 (7)0.2973 (7)0.66432 (16)0.0106 (6)
O40.8619 (5)0.5330 (5)0.64719 (12)0.0132 (5)
C50.5343 (7)0.2160 (7)0.60581 (16)0.0121 (6)
O50.3884 (5)0.0177 (5)0.62226 (13)0.0149 (5)
C60.6989 (8)0.1565 (7)0.54832 (17)0.0142 (7)
O60.8875 (5)0.0609 (5)0.55969 (13)0.0150 (5)
S10.77100 (15)0.60171 (15)0.90636 (4)0.00914 (16)
O110.5782 (5)0.7211 (6)0.94817 (12)0.0139 (5)
O120.9110 (5)0.3741 (5)0.93700 (12)0.0142 (5)
O130.9575 (5)0.7966 (5)0.88046 (12)0.0125 (5)
Na0.2652 (3)0.0627 (3)0.94976 (6)0.0129 (3)
H10.436 (10)0.615 (13)0.825 (2)0.024 (13)*
H20.832 (11)0.605 (16)0.776 (3)0.037 (15)*
H30.412 (9)0.198 (9)0.732 (2)0.007 (10)*
H40.839 (8)0.167 (8)0.6749 (19)0.002 (9)*
H50.377 (10)0.363 (11)0.595 (2)0.020 (13)*
H610.800 (9)0.326 (9)0.5382 (19)0.004 (10)*
H620.588 (9)0.122 (11)0.511 (2)0.015 (11)*
H1O0.281 (8)0.275 (15)0.834 (3)0.045 (18)*
H2O0.857 (10)0.118 (11)0.821 (2)0.025 (13)*
H3O0.458 (14)0.672 (14)0.689 (3)0.08 (3)*
H4O1.016 (7)0.543 (16)0.666 (3)0.05 (2)*
H5O0.246 (8)0.013 (12)0.601 (2)0.037 (17)*
H6O0.829 (11)0.166 (10)0.585 (2)0.033 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0066 (14)0.0104 (15)0.0125 (15)0.0002 (11)0.0005 (11)0.0021 (11)
O10.0092 (11)0.0132 (12)0.0146 (12)0.0038 (9)0.0000 (9)0.0016 (9)
C20.0068 (13)0.0078 (14)0.0130 (14)0.0009 (11)0.0001 (11)0.0005 (11)
O20.0077 (11)0.0113 (11)0.0145 (11)0.0026 (9)0.0005 (9)0.0014 (9)
C30.0094 (14)0.0106 (15)0.0108 (14)0.0007 (11)0.0013 (11)0.0001 (11)
O30.0094 (10)0.0124 (12)0.0152 (11)0.0009 (10)0.0010 (8)0.0033 (10)
C40.0090 (14)0.0105 (15)0.0122 (14)0.0013 (12)0.0005 (11)0.0017 (11)
O40.0086 (11)0.0134 (12)0.0173 (12)0.0033 (9)0.0019 (9)0.0022 (9)
C50.0120 (15)0.0113 (15)0.0129 (15)0.0011 (12)0.0006 (12)0.0012 (12)
O50.0117 (12)0.0154 (13)0.0171 (12)0.0043 (10)0.0023 (9)0.0032 (10)
C60.0164 (16)0.0139 (18)0.0118 (14)0.0017 (12)0.0016 (12)0.0001 (11)
O60.0133 (12)0.0151 (14)0.0167 (13)0.0004 (10)0.0024 (9)0.0002 (10)
S10.0081 (3)0.0080 (3)0.0112 (3)0.0010 (3)0.0003 (2)0.0002 (3)
O110.0138 (12)0.0150 (12)0.0128 (11)0.0059 (10)0.0007 (9)0.0018 (10)
O120.0150 (12)0.0093 (11)0.0176 (12)0.0038 (9)0.0033 (9)0.0012 (9)
O130.0104 (11)0.0100 (11)0.0171 (12)0.0031 (9)0.0002 (9)0.0000 (9)
Na0.0122 (6)0.0123 (7)0.0138 (6)0.0036 (5)0.0006 (5)0.0009 (5)
Geometric parameters (Å, º) top
Na—O11i2.293 (3)O4—H4O0.82 (3)
Na—O12ii2.328 (3)C5—O51.424 (4)
Na—O11iii2.370 (3)C5—C61.527 (5)
Na—O12.386 (3)C5—H51.08 (5)
Na—O13iv2.421 (3)O5—H5O0.80 (3)
Na—O12iii2.757 (3)C6—O61.434 (4)
C1—O11.415 (4)C6—H611.01 (4)
C1—C21.537 (5)C6—H620.94 (4)
C1—S11.802 (3)O6—H6O0.81 (3)
C1—H10.94 (6)S1—O121.456 (3)
O1—Na2.386 (3)S1—O111.459 (3)
O1—H1O0.81 (3)S1—O131.464 (3)
C2—O21.429 (4)S1—Nav3.0557 (16)
C2—C31.532 (4)O11—Navi2.293 (3)
C2—H21.02 (8)O11—Nav2.370 (3)
O2—H2O0.81 (3)O12—Navii2.328 (3)
C3—O31.435 (4)O12—Nav2.757 (3)
C3—C41.532 (5)O13—Naviii2.421 (3)
C3—H31.08 (4)Na—S1iii3.0557 (16)
O3—H3O0.81 (3)Na—Nav3.915 (2)
C4—O41.432 (4)Na—Naiii3.915 (2)
C4—C51.529 (5)Na—H1O2.66 (6)
C4—H40.90 (4)
O1—C1—C2109.9 (3)C1—S1—Nav135.30 (11)
O1—C1—S1108.2 (2)S1—O11—Navi140.39 (16)
C2—C1—S1112.8 (2)S1—O11—Nav103.31 (14)
O1—C1—H1109 (3)Navi—O11—Nav114.20 (11)
C2—C1—H1109 (3)S1—O12—Navii153.71 (18)
S1—C1—H1109 (3)S1—O12—Nav87.25 (12)
C1—O1—Na137.2 (2)Navii—O12—Nav113.65 (10)
C1—O1—H1O99 (5)S1—O13—Naviii121.11 (15)
Na—O1—H1O101 (5)O11i—Na—O12ii170.53 (12)
O2—C2—C3109.1 (3)O11i—Na—O11iii95.09 (8)
O2—C2—C1111.4 (3)O12ii—Na—O11iii94.13 (11)
C3—C2—C1110.5 (3)O11i—Na—O191.47 (10)
O2—C2—H2114 (3)O12ii—Na—O185.52 (10)
C3—C2—H2111 (3)O11iii—Na—O1121.61 (11)
C1—C2—H2101 (3)O11i—Na—O13iv88.09 (10)
C2—O2—H2O106 (4)O12ii—Na—O13iv82.76 (10)
O3—C3—C4111.1 (3)O11iii—Na—O13iv151.65 (11)
O3—C3—C2109.1 (3)O1—Na—O13iv86.37 (10)
C4—C3—C2111.5 (3)O11i—Na—O12iii90.22 (10)
O3—C3—H3101 (2)O12ii—Na—O12iii93.28 (8)
C4—C3—H3113 (2)O11iii—Na—O12iii55.17 (9)
C2—C3—H3111 (2)O1—Na—O12iii176.51 (11)
C3—O3—H3O100 (6)O13iv—Na—O12iii96.74 (10)
O4—C4—C5106.6 (3)O11i—Na—S1iii98.35 (8)
O4—C4—C3109.5 (3)O12ii—Na—S1iii88.84 (8)
C5—C4—C3112.1 (3)O11iii—Na—S1iii27.68 (7)
O4—C4—H4109 (3)O1—Na—S1iii148.15 (9)
C5—C4—H4110 (3)O13iv—Na—S1iii123.98 (8)
C3—C4—H4109 (3)O12iii—Na—S1iii28.43 (6)
C4—O4—H4O112 (5)O11i—Na—Nav96.85 (9)
O5—C5—C6109.3 (3)O12ii—Na—Nav92.10 (7)
O5—C5—C4107.3 (3)O11iii—Na—Nav32.29 (7)
C6—C5—C4112.5 (3)O1—Na—Nav89.32 (8)
O5—C5—H5105 (3)O13iv—Na—Nav173.53 (8)
C6—C5—H5112 (3)O12iii—Na—Nav87.45 (8)
C4—C5—H5111 (3)S1iii—Na—Nav59.55 (4)
C5—O5—H5O105 (4)O11i—Na—Naiii33.52 (6)
O6—C6—C5112.4 (3)O12ii—Na—Naiii153.15 (10)
O6—C6—H61111 (2)O11iii—Na—Naiii65.29 (9)
C5—C6—H61107 (2)O1—Na—Naiii119.46 (9)
O6—C6—H62109 (3)O13iv—Na—Naiii106.89 (7)
C5—C6—H62114 (3)O12iii—Na—Naiii61.18 (7)
H61—C6—H62104 (4)S1iii—Na—Naiii64.84 (4)
C6—O6—H6O111 (4)Nav—Na—Naiii79.45 (5)
O12—S1—O11110.74 (16)O11i—Na—H1O102.9 (13)
O12—S1—O13113.71 (16)O12ii—Na—H1O72.2 (12)
O11—S1—O13113.22 (16)O11iii—Na—H1O132.0 (16)
O12—S1—C1108.65 (16)O1—Na—H1O17.4 (8)
O11—S1—C1105.88 (16)O13iv—Na—H1O74.0 (14)
O13—S1—C1104.03 (15)O12iii—Na—H1O163.4 (9)
O12—S1—Nav64.32 (11)S1iii—Na—H1O152.7 (17)
O11—S1—Nav49.00 (11)Nav—Na—H1O100.8 (14)
O13—S1—Nav119.44 (11)Naiii—Na—H1O134.2 (11)
C2—C1—O1—Na150.0 (2)C2—C1—S1—O11163.8 (2)
S1—C1—O1—Na26.4 (4)O1—C1—S1—O13166.0 (2)
O1—C1—C2—O255.8 (3)C2—C1—S1—O1344.2 (3)
S1—C1—C2—O265.0 (3)O1—C1—S1—Nav27.4 (3)
O1—C1—C2—C365.6 (3)C2—C1—S1—Nav149.19 (18)
S1—C1—C2—C3173.6 (2)O12—S1—O11—Navi179.4 (2)
O2—C2—C3—O3179.6 (3)O13—S1—O11—Navi51.6 (3)
C1—C2—C3—O356.8 (3)C1—S1—O11—Navi61.8 (3)
O2—C2—C3—C457.3 (3)Nav—S1—O11—Navi161.2 (3)
C1—C2—C3—C4179.9 (3)O12—S1—O11—Nav19.44 (19)
O3—C3—C4—O457.3 (3)O13—S1—O11—Nav109.62 (15)
C2—C3—C4—O464.6 (3)C1—S1—O11—Nav137.03 (14)
O3—C3—C4—C560.8 (4)O11—S1—O12—Navii160.2 (4)
C2—C3—C4—C5177.2 (3)O13—S1—O12—Navii31.4 (4)
O4—C4—C5—O5179.7 (3)C1—S1—O12—Navii83.9 (4)
C3—C4—C5—O559.9 (4)Nav—S1—O12—Navii144.0 (4)
O4—C4—C5—C660.0 (4)O11—S1—O12—Nav16.19 (16)
C3—C4—C5—C6179.9 (3)O13—S1—O12—Nav112.62 (14)
O5—C5—C6—O657.8 (4)C1—S1—O12—Nav132.07 (12)
C4—C5—C6—O661.2 (4)O12—S1—O13—Naviii67.7 (2)
O1—C1—S1—O1244.6 (3)O11—S1—O13—Naviii59.9 (2)
C2—C1—S1—O1277.2 (3)C1—S1—O13—Naviii174.31 (16)
O1—C1—S1—O1174.4 (3)Nav—S1—O13—Naviii5.1 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+2; (iv) x1, y1, z; (v) x+1, y+1/2, z+2; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2ii0.81 (3)1.92 (4)2.693 (4)160 (8)
O2—H2O···O10.81 (3)2.36 (5)2.828 (3)118 (5)
O2—H2O···O13i0.81 (3)2.08 (4)2.745 (4)140 (5)
O3—H3O···O40.81 (3)2.32 (7)2.838 (3)123 (7)
O3—H3O···O5vi0.81 (3)2.11 (6)2.743 (4)136 (7)
O4—H4O···O3vii0.82 (3)1.87 (3)2.692 (3)179 (8)
O5—H5O···O6ii0.80 (3)1.91 (3)2.704 (4)169 (6)
O6—H6O···O4i0.81 (3)2.00 (4)2.753 (4)154 (6)
O6—H6O···O50.81 (3)2.45 (6)2.853 (4)112 (5)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (vi) x, y+1, z; (vii) x+1, y, z.
 

Acknowledgements

We thank the EPSRC UK National Mass Spectrometry Facility (NMSF) at Swansea University for determination of the low and high resolution mass spectra, Dr Sergey Nepogodiev of the John Innes Centre, Norwich and Dr Ryan Tinson of the University of East Anglia for measurement of the NMR spectra, and Dr James Orton of the UK National Crystallographic Service for preliminary measurements.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1–10.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705–2708.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377–m378.  CSD CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406–409.  CSD CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2015). Acta Cryst. E71, 993–996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2016). Acta Cryst. E72, 628–631.  CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKissane, M. G., Frank, S. A., Rener, G. A., Ley, C. P., Alt, C. A., Stroud, P. A., Vaid, R. K., Boini, S. K., McKee, L. A., Vicenzi, J. T. & Stephenson, G. A. (2013). Tetrahedron Lett. 54, 6587–6591.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds