research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(μ2-(E)-2,4-di­bromo-6-{[2-(pyridin-2-yl)eth­yl]imino­meth­yl}phen­olato)trizinc bis­­(perchlorate) aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by J. Jasinsk, Keene State College, USA (Received 20 August 2018; accepted 26 August 2018; online 31 August 2018)

The title compound, [Zn3(C14H11Br2N2O)4](ClO4)2·2CH3CN, crystallizes as a symmetrical trinuclear cation with all three metal atoms being located on a twofold rotation axis. It contains a tetra­hedral ZnII atom that bridges two six-coordinate ZnII atoms. The complex contains N- and O-donor atoms of four tridentate 2,4-di­bromo-6-{[2-(pyridin-2-yl)eth­yl]imino­meth­yl}phenolate ligands. The ratio of ZnII atoms to ligands is 3:4. The two terminal ZnII cations adopt distorted octa­hedral geometries and the central ZnII cation adopts a distorted tetra­hedral geometry. In the cation there are ππ inter­actions between the di­bromo­phenyl rings, as well as halogen-bonding inter­actions between the di­bromo­phenyl rings in the cation, which stabilize its conformation. In addition, there are C—H⋯O inter­actions between the anions and both the cations and solvent mol­ecules as well as C—H⋯N inter­actions between the cation and solvent mol­ecules. These inter­species inter­actions link the cations, anions and solvent mol­ecules into a complex three-dimensional array

1. Chemical context

Zinc(II)-derived metalloenzymes are among the most common found in biology. Some enzymes containing zinc(II) include carbonic anhydrase, carb­oxy­peptidase, and phosphatase (Bertini et al., 1994[Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mill Valley, CA: University Science Books.]; McCall et al., 2000[McCall, K. A., Huang, C. & Fierke, C. A. (2000). J. Nutr. 130, 1437S-1446S.]). It is of inter­est to study zinc(II) complexes derived from tridentate Schiff base ligands because of the possibility of forming stable complex structures. Zinc(II) plays a structural role not only in enzymes but much progress has been made to incorporate it into metal–organic frameworks for drug storage and release, luminescence studies, and hydrogen-storage applications (An et al., 2009[An, J., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8376-8377.]; Bauer et al., 2007[Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136-7144.]; Rosi et al., 2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]).

[Scheme 1]

Related complexes have been studied for their photoluminescent properties (Kundu et al., 2015[Kundu, P., Chakraborty, P., Adhikary, J., Chattopadhyay, T., Fischer, R. C., Mautner, F. A. & Das, D. (2015). Polyhedron, 85, 320-328.]; Chakraborty et al., 2013[Chakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12-18.]), drug therapeutic activity in DNA cleavage (Kumar et al., 2011[Kumar, P., Baidya, B., Chaturvedi, S. K., Khan, R. H., Manna, D. & Mondal, B. (2011). Inorg. Chim. Acta, 376, 264-270.]), and phosphatase mimetic activity (Kumar et al., 2011[Kumar, P., Baidya, B., Chaturvedi, S. K., Khan, R. H., Manna, D. & Mondal, B. (2011). Inorg. Chim. Acta, 376, 264-270.]; Gultneh et al., 1999[Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.]). The coordination environment of the title compound, illustrated in Fig. 1, has been observed in zinc(II) complexes with tridentate N,N,O ligands (Hens & Rajak, 2015[Hens, A. & Rajak, K. K. (2015). RSC Adv. 5, 4219-4232.]; Kim et al., 2015[Kim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908-911.]). Transition metal complexes of the related tridentate ligand, 1,3(2-pyridyl­imino­meth­yl)phenyl­enedi­amine, have been shown to form a variety of inter­esting complex structures (Kundu et al., 2015[Kundu, P., Chakraborty, P., Adhikary, J., Chattopadhyay, T., Fischer, R. C., Mautner, F. A. & Das, D. (2015). Polyhedron, 85, 320-328.]; Kumar et al., 2011[Kumar, P., Baidya, B., Chaturvedi, S. K., Khan, R. H., Manna, D. & Mondal, B. (2011). Inorg. Chim. Acta, 376, 264-270.]; Bluhm et al., 2003[Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878-8885.]; Souza et al., 2011[Souza, E. T., Maia, P. J. S., Azevedo, É. M., Kaiser, C. R., Resende, J. A. L. C., Pinheiro, C. B., Heinrich, T. A., da Silva, R. S. & Scarpellini, M. (2011). J. Inorg. Biochem. 105, 1767-1773.]; Sanyal et al., 2014[Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85-96.]; Okeke et al., 2017a[Okeke, U., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1568-1571.],b[Okeke, U., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1708-1711.]; Okeke et al., 2018[Okeke, U., Otchere, R., Gultneh, Y. & Butcher, R. J. (2018). Acta Cryst. E74, 1121-1125.]). The presence of a substituent on the aromatic group may change the geometry, coordination number, and consequently the reactivity of the resulting complexes especially because of its location on the aromatic ring that coordinates to the metal ion through the phenoxide oxygen atom.

In a continuation of our model studies of zinc complexes as Lewis acid center in zinc-containing hydrolytic enzymes (Gultneh et al., 1996[Gultneh, Y., Allwar, Ahvazi, B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31-38.]; Gultneh et al., 1999[Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.]; Okeke et al., 2017a[Okeke, U., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1568-1571.],b[Okeke, U., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1708-1711.]) we report the structure of the title compound. This trinuclear zinc(II) complex has a 3:4 metal ion-to-ligand ratio. Since the title compound lies on a crystallographic twofold axis, the three zinc(II) ions form an angle of 180o and thus are strictly linear. The central zinc atom is four coordinate and may serve as a suitable complex for various reactions because the ZnII Lewis acid metal center contains vacant coordination sites for coordination to a nucleophile.

2. Structural commentary

The crystal structure of the title compound, [Zn3(C14H11Br2N2O)4](ClO4)2·2CH3CN, 1, contains a complex cation as well as perchlorate anions and aceto­nitrile solvent mol­ecules and thus has an overall stoichiometry of [Zn3(L)4](ClO4)2.2CH3CN where L is 2,4-di­bromo-6-{[(2-(pyridin-2-yl)eth­yl]imino­meth­yl}phenolate. The compound crystallizes in the monoclinic space group C2/c and the cation consists of the four equivalent L ligands, uniformly coordin­ated to three ZnII cations.

The trinuclear complex cation, [Zn3(L)4]2+, lies on a crystallographic twofold axis (Fig. 1[link]). The zinc(II) ions contain varying coordination spheres. Zn1 and Zn3 adopt O2N4 coordination spheres while the central zinc atom Zn2 adopts an O4 coordination sphere with a distorted tetra­hedral geometry with O—Zn—O bond angles ranging from 88.95 (11) to 120.11 (8)° and Zn—O bond lengths of 1.9512 (19) and 1.9602 (19) Å. For the six-coordinate terminal zinc atoms, as is usual for complexes containing both Schiff base imine and pyridine N donors, the former form shorter bonds [Zn1—N1 = 2.122 (2) Å and Zn3—-N3 = 2.067 (2) Å] while the latter form longer bonds [Zn1—N2 = 2.148 (2) Å and Zn3—N4 = 2.177 (2) Å] to zinc. The metrical parameters involving the bridging phenolate O donors are significantly different. The bonds to the central Zn2 are considerably shorter than those to the terminal Zn1 and Zn3 [O1—Zn1 = 2.194 (2) Å; O2—Zn3 = 2.266 (2) Å; O1—Zn2 = 1.960 (2) Å; O2—Zn2 = 1.951 (2) Å] and the bridging angles are Zn1—O1—Zn2 = 96.78 (8)° and Zn2—O2—Zn3 = 93.73 (8)°. The distortion from an octa­hedral geometry can be seen from the cis and trans angles which range from 77.49 (10) to 98.19 (9)° and 160.47 (13) to 173.41 (12)°, respectively. Since all three Zn atoms lie on the twofold axis, the Zn1—Zn2—Zn3 bond angle is exactly 180°. These metrical parameters are similar to those found in the most closely similar complex (Kim et al., 2015[Kim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908-911.]) where Zn—O distances for the terminal Zn atoms range from 2.126 (3) to 2.155 (4) Å while those for the central Zn atom range from 1.945 (3) to 1.965 (4) Å with Zn—O—Zn bridging angles ranging from 97.3 (1) to 98.7 (1)°. The Zn—Nimine and Zn—Npy bond lengths range from 2.077 (4) to 2.117 (4) Å and 2.140 (4) to 2.176 (4) Å, respectively. In this complex there is no crystallographically imposed symmetry; however, the Zn—Zn—Zn bond angle is still close to 180 at 172.51 (3)°.

[Figure 1]
Figure 1
Diagram of the cation, tetra­kis­(μ2-(E)-2,4-di­bromo-6-({[2-(pyridin-2-yl)eth­yl]imino­meth­yl}phenolato)trizinc, showing the parallel di­bromo­phenyl rings. Atomic displacement parameters are at the 30% probability level.

3. Supra­molecular features

In the cation there are ππ inter­actions between the di­bromo­phenyl rings [centroid–centroid distance = 3.602 (2) Å; CgI⋯perp = 3.344 (1) Å; slippage = 1.319 (2) Å] as well as halogen-bonding inter­actions [Br⋯Br 3.6123 (5) Å; C—Br⋯Br, 129.08 (9)°] between the di­bromo­phenyl rings in the cation, which stabilize its conformation. In addition there C–H⋯O inter­actions between the anions and both the cations and solvent mol­ecules as well as C—H⋯N inter­actions between the cation and solvent mol­ecules (Table 1[link]). These inter­species inter­actions link the cations, anions and solvent mol­ecules into a complex three-dimensional array as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Br1i 0.99 2.92 3.854 (3) 157
C9—H9A⋯O1i 0.99 2.60 3.317 (4) 129
C21—H21A⋯O14 0.95 2.57 3.080 (4) 114
C22—H22A⋯O14 0.99 2.58 3.099 (4) 113
C22—H22B⋯Br4ii 0.99 2.96 3.664 (3) 129
C23—H23A⋯O12iii 0.99 2.58 3.427 (4) 144
C28—H28A⋯N3i 0.95 2.60 3.236 (4) 125
C2S—H2S1⋯O11 0.98 2.60 3.556 (4) 165
C2S—H2S2⋯Br2 0.98 3.02 3.935 (4) 157
C2S—H2S2⋯Br4 0.98 3.04 3.561 (3) 115
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 2]
Figure 2
Packing diagram viewed along the b axis showing the extensive C—H⋯O, C—H⋯N, and C—H⋯Br inter­actions (shown as dashed lines) linking the cations, anions, and solvent mol­ecules into a complex three-dimensional array.

4. Database survey

A search of the Cambridge Structural Database for complexes of zinc coordinated to (E)-2-({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenolato type ligands gave 26 hits of which only one was similar to the title compound in that it contained a trinuclear Zn complex where this ligand was acting as a bridging group to the central Zn atom (Diop et al., 2014[Diop, M., Aly-Gaye, P., Bouyagui-Tamboura, F., Gaye, M., Pérez-Lourido, P., Valencia, L. & Castro, G. (2014). Z. Anorg. Allg. Chem. 640, 1392-1396.]) . However, in this case each terminal Zn complex only provided one bridging O atom and the coordination sphere of the central Zn was hexa­coordinate with six O-atom donors in contrast to the title compound where the central Zn is four–coordinate with the terminal Zn complexes provided two bridging atoms through their phenolic O atoms. A search for structures containing three zinc atoms with the central zinc atom in an μ2-O4 environment and with the terminal zinc atoms coordinated to Schiff base derivatives gave four hits [MAYVEQ, Quilter et al., 2017[Quilter, H. C., Drewitt, R. H., Mahon, M. F., Kociok-Köhn, G. & Jones, M. D. (2017). J. Organomet. Chem. 848, 325-331.]; GOWGUW, Hens & Rajak, 2015[Hens, A. & Rajak, K. K. (2015). RSC Adv. 5, 4219-4232.]; HUQVUL, Akine et al., 2009[Akine, S., Morita, Y., Utsuno, F. & Nabeshima, T. (2009). Inorg. Chem. 48, 10670-10678.]; KURPAL, Kim et al., 2015[Kim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908-911.]] of which that using the ligand, 2-methyl-6-{[(pyridin-2-ylmeth­yl)imino]­meth­yl}phenol in the presence of NH4PF6 resulted in a closely related trinuclear zinc complex with the central Zn atom four-coordinate with only O-atom donors from the bridging phenolate ligands (Kim et al., 2015[Kim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908-911.]). The major differences between this complex and 1 is a –CH2– link between the imine N and pyridine ring in the former instead of a –CH2-CH2– link in the latter, and different substituents on the phenyl ring.

5. Synthesis and crystallization

2-(2-Pyrid­yl)ethyl­amine (0.3023 g, 2.474 mmol) was dissolved in 50 mL of methanol. 3,5-Di­bromo­salicyl­aldehyde (0.6927 g, 2.474 mmol) was added to the solution and the mixture was refluxed for 5 h. The zinc(II) complex was prepared by reacting the ligand in 50 ml of methanol with Zn(ClO4)2·6H2O (1.3821 g, 3.712 mmol) with no added base. The mixture was stirred at room temperature overnight. The methanol was removed by rotary evaporation. The product was crystallized by slow evaporation of a solution in acetonitrile giving pale-yellow to colorless crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were refined using a riding model with C—H distances of 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3).

Table 2
Experimental details

Crystal data
Chemical formula [Zn3(C14H11Br2N2O)4](ClO4)2·2C2H3N
Mr 2009.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 30.797 (3), 13.8527 (12), 21.135 (3)
β (°) 132.857 (1)
V3) 6609.6 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.07
Crystal size (mm) 0.35 × 0.31 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.585, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23422, 7310, 5978
Rint 0.042
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.01
No. of reflections 7310
No. of parameters 431
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.56
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tetrakis(µ2-(E)-2,4-dibromo-6-{[2-(pyridin-2-yl)ethyl]iminomethyl}phenolato)trizinc bis(perchlorate) acetonitrile disolvate top
Crystal data top
[Zn3(C14H11Br2N2O)4](ClO4)2·2C2H3NF(000) = 3920
Mr = 2009.39Dx = 2.019 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.797 (3) ÅCell parameters from 6020 reflections
b = 13.8527 (12) Åθ = 2.5–27.1°
c = 21.135 (3) ŵ = 6.07 mm1
β = 132.857 (1)°T = 100 K
V = 6609.6 (13) Å3Chunk, colorless
Z = 40.35 × 0.31 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
5978 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 27.2°, θmin = 1.7°
Tmin = 0.585, Tmax = 0.746h = 3739
23422 measured reflectionsk = 1717
7310 independent reflectionsl = 2725
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7310 reflectionsΔρmax = 0.52 e Å3
431 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.14227 (3)0.2500000.01098 (11)
Zn20.5000000.36678 (3)0.2500000.00984 (10)
Zn30.5000000.58950 (3)0.2500000.00943 (10)
Br10.32810 (2)0.35929 (2)0.03320 (2)0.01421 (7)
Br20.23309 (2)0.24841 (2)0.17654 (2)0.01768 (8)
Br30.57097 (2)0.36780 (2)0.49927 (2)0.01481 (7)
Br40.34475 (2)0.39606 (2)0.38605 (2)0.01633 (8)
O10.43973 (8)0.26581 (13)0.19910 (12)0.0116 (4)
O20.50660 (8)0.46259 (13)0.32385 (12)0.0105 (4)
N10.49899 (10)0.15108 (16)0.34924 (15)0.0120 (5)
N20.57350 (10)0.04396 (16)0.32655 (16)0.0128 (5)
N30.41056 (10)0.56419 (16)0.17387 (14)0.0100 (5)
N40.48785 (10)0.69446 (17)0.16238 (15)0.0120 (5)
C10.39443 (13)0.26316 (19)0.19470 (18)0.0115 (6)
C20.33828 (12)0.3003 (2)0.12332 (18)0.0125 (6)
C30.29034 (12)0.2968 (2)0.11669 (18)0.0125 (6)
H3A0.2528830.3214210.0669280.015*
C40.29783 (13)0.2567 (2)0.18389 (19)0.0134 (6)
C50.35244 (12)0.2226 (2)0.25680 (19)0.0133 (6)
H5A0.3577430.1986810.3038030.016*
C60.40025 (13)0.2231 (2)0.26161 (19)0.0125 (6)
C70.45614 (12)0.1826 (2)0.34060 (19)0.0130 (6)
H7A0.4609540.1795630.3899860.016*
C80.54796 (13)0.1062 (2)0.43393 (19)0.0165 (7)
H8A0.5392440.0368270.4315090.020*
H8B0.5503950.1367910.4786080.020*
C90.60749 (13)0.1166 (2)0.45962 (19)0.0161 (7)
H9A0.6113670.1836900.4479450.019*
H9B0.6394250.1055140.5225450.019*
C100.61651 (13)0.0488 (2)0.41373 (19)0.0146 (6)
C110.66718 (13)0.0086 (2)0.45956 (19)0.0172 (7)
H11A0.6965290.0053300.5207940.021*
C120.67487 (14)0.0699 (2)0.4164 (2)0.0200 (7)
H12A0.7096310.1081590.4472570.024*
C130.63092 (14)0.0745 (2)0.3273 (2)0.0191 (7)
H13A0.6349650.1158950.2957560.023*
C140.58105 (13)0.0179 (2)0.2852 (2)0.0176 (7)
H14A0.5505410.0225840.2242010.021*
C150.47154 (12)0.45477 (19)0.33930 (18)0.0104 (6)
C160.49187 (12)0.4129 (2)0.41645 (18)0.0112 (6)
C170.45533 (12)0.3990 (2)0.43196 (18)0.0131 (6)
H17A0.4704510.3705160.4845200.016*
C180.39659 (13)0.4268 (2)0.37030 (19)0.0123 (6)
C190.37482 (13)0.4694 (2)0.29449 (18)0.0130 (6)
H19A0.3344110.4883620.2525380.016*
C200.41171 (12)0.4850 (2)0.27879 (18)0.0111 (6)
C210.38403 (12)0.52587 (19)0.19498 (18)0.0098 (6)
H21A0.3420050.5238610.1515610.012*
C220.37350 (12)0.6000 (2)0.08515 (18)0.0124 (6)
H22A0.3313590.5868060.0530590.015*
H22B0.3837660.5650700.0559520.015*
C230.38206 (13)0.7089 (2)0.08335 (19)0.0145 (6)
H23A0.3463500.7345220.0266040.017*
H23B0.3847610.7404180.1279540.017*
C240.43538 (13)0.7373 (2)0.09813 (19)0.0129 (6)
C250.42998 (13)0.8065 (2)0.04501 (19)0.0148 (6)
H25A0.3926890.8357590.0000330.018*
C260.47876 (13)0.8322 (2)0.05796 (19)0.0153 (6)
H26A0.4756200.8799280.0227290.018*
C270.53280 (13)0.7871 (2)0.12365 (19)0.0156 (6)
H27A0.5670760.8024900.1335650.019*
C280.53512 (13)0.7196 (2)0.17379 (19)0.0145 (6)
H28A0.5719710.6891640.2188060.017*
Cl10.27556 (3)0.71818 (5)0.15347 (5)0.01814 (16)
O110.23291 (11)0.65110 (17)0.13573 (16)0.0326 (6)
O120.25024 (10)0.81314 (16)0.12595 (16)0.0285 (6)
O130.32715 (10)0.7195 (2)0.24425 (15)0.0384 (7)
O140.29229 (12)0.69039 (18)0.10698 (18)0.0383 (7)
N1S0.08476 (12)0.49951 (19)0.11043 (17)0.0250 (7)
C1S0.13487 (15)0.4960 (2)0.1626 (2)0.0208 (7)
C2S0.19918 (14)0.4933 (3)0.2300 (2)0.0327 (9)
H2S10.2159550.5380850.2155270.049*
H2S20.2131040.4277310.2348930.049*
H2S30.2118120.5123950.2851140.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0127 (2)0.0081 (2)0.0110 (2)0.0000.0076 (2)0.000
Zn20.0117 (2)0.0072 (2)0.0126 (2)0.0000.0091 (2)0.000
Zn30.0097 (2)0.0082 (2)0.0103 (2)0.0000.0068 (2)0.000
Br10.01578 (15)0.01304 (15)0.01356 (14)0.00108 (12)0.00988 (13)0.00087 (12)
Br20.01496 (15)0.02397 (17)0.01785 (15)0.00013 (12)0.01263 (14)0.00039 (13)
Br30.01271 (14)0.01568 (15)0.01417 (15)0.00158 (12)0.00840 (13)0.00163 (12)
Br40.01600 (15)0.02204 (16)0.01645 (15)0.00221 (12)0.01321 (13)0.00029 (13)
O10.0112 (10)0.0095 (10)0.0142 (10)0.0017 (8)0.0087 (9)0.0025 (8)
O20.0122 (10)0.0106 (10)0.0126 (10)0.0008 (8)0.0100 (9)0.0022 (8)
N10.0125 (12)0.0092 (12)0.0115 (12)0.0006 (10)0.0070 (11)0.0016 (10)
N20.0160 (12)0.0068 (12)0.0155 (12)0.0018 (10)0.0107 (11)0.0007 (10)
N30.0119 (12)0.0090 (12)0.0100 (11)0.0011 (10)0.0079 (10)0.0010 (10)
N40.0135 (12)0.0096 (12)0.0134 (12)0.0011 (10)0.0093 (11)0.0005 (10)
C10.0139 (14)0.0057 (13)0.0140 (14)0.0007 (11)0.0092 (13)0.0025 (11)
C20.0162 (15)0.0079 (14)0.0133 (14)0.0048 (12)0.0099 (13)0.0029 (12)
C30.0129 (14)0.0083 (14)0.0144 (14)0.0008 (11)0.0086 (13)0.0003 (12)
C40.0135 (14)0.0126 (15)0.0174 (15)0.0033 (12)0.0118 (13)0.0028 (12)
C50.0151 (15)0.0103 (14)0.0148 (15)0.0023 (12)0.0104 (13)0.0018 (12)
C60.0151 (15)0.0059 (13)0.0157 (15)0.0012 (11)0.0102 (13)0.0020 (12)
C70.0167 (15)0.0074 (14)0.0145 (14)0.0052 (12)0.0104 (13)0.0035 (12)
C80.0195 (16)0.0128 (15)0.0157 (15)0.0013 (13)0.0113 (14)0.0029 (13)
C90.0156 (15)0.0131 (15)0.0122 (14)0.0005 (12)0.0066 (13)0.0007 (12)
C100.0164 (15)0.0113 (15)0.0148 (15)0.0024 (12)0.0100 (13)0.0008 (12)
C110.0128 (15)0.0170 (16)0.0136 (15)0.0003 (12)0.0057 (13)0.0023 (13)
C120.0181 (16)0.0130 (15)0.0246 (17)0.0033 (13)0.0127 (15)0.0041 (14)
C130.0238 (17)0.0125 (15)0.0221 (17)0.0014 (13)0.0160 (15)0.0009 (13)
C140.0192 (16)0.0120 (15)0.0152 (15)0.0014 (13)0.0092 (14)0.0006 (13)
C150.0143 (14)0.0046 (13)0.0163 (14)0.0018 (11)0.0120 (13)0.0037 (11)
C160.0096 (14)0.0110 (14)0.0113 (14)0.0008 (11)0.0065 (12)0.0020 (12)
C170.0175 (15)0.0096 (14)0.0119 (14)0.0025 (12)0.0099 (13)0.0015 (12)
C180.0137 (14)0.0132 (15)0.0168 (15)0.0026 (12)0.0130 (13)0.0030 (12)
C190.0137 (14)0.0136 (15)0.0110 (14)0.0001 (12)0.0082 (12)0.0038 (12)
C200.0128 (14)0.0082 (14)0.0132 (14)0.0014 (11)0.0092 (12)0.0014 (12)
C210.0080 (13)0.0091 (14)0.0114 (13)0.0008 (11)0.0062 (12)0.0020 (11)
C220.0109 (14)0.0154 (15)0.0110 (14)0.0017 (12)0.0074 (12)0.0013 (12)
C230.0154 (15)0.0120 (15)0.0146 (15)0.0041 (12)0.0096 (13)0.0054 (12)
C240.0170 (15)0.0085 (14)0.0142 (14)0.0024 (12)0.0110 (13)0.0033 (12)
C250.0168 (15)0.0101 (14)0.0154 (15)0.0027 (12)0.0102 (13)0.0034 (12)
C260.0242 (16)0.0113 (14)0.0147 (15)0.0012 (13)0.0150 (14)0.0003 (12)
C270.0181 (15)0.0147 (15)0.0171 (15)0.0045 (13)0.0133 (14)0.0016 (13)
C280.0147 (15)0.0129 (15)0.0150 (15)0.0011 (12)0.0097 (13)0.0002 (12)
Cl10.0169 (4)0.0209 (4)0.0201 (4)0.0014 (3)0.0140 (3)0.0002 (3)
O110.0386 (15)0.0322 (14)0.0322 (14)0.0188 (12)0.0262 (13)0.0101 (12)
O120.0306 (13)0.0187 (12)0.0425 (15)0.0058 (10)0.0273 (13)0.0003 (11)
O130.0182 (13)0.0659 (19)0.0193 (13)0.0026 (13)0.0080 (11)0.0072 (13)
O140.0582 (17)0.0329 (15)0.0568 (18)0.0171 (13)0.0521 (16)0.0089 (13)
N1S0.0239 (16)0.0186 (15)0.0221 (15)0.0001 (12)0.0115 (14)0.0009 (12)
C1S0.0312 (19)0.0096 (15)0.0246 (18)0.0020 (14)0.0202 (17)0.0011 (13)
C2S0.0239 (19)0.0217 (18)0.042 (2)0.0014 (15)0.0182 (18)0.0031 (17)
Geometric parameters (Å, º) top
Zn1—N1i2.122 (2)C9—C101.505 (4)
Zn1—N12.122 (2)C9—H9A0.9900
Zn1—N2i2.148 (2)C9—H9B0.9900
Zn1—N22.148 (2)C10—C111.396 (4)
Zn1—O1i2.1943 (19)C11—C121.379 (4)
Zn1—O12.1943 (19)C11—H11A0.9500
Zn1—Zn23.1100 (7)C12—C131.384 (4)
Zn2—O21.9512 (19)C12—H12A0.9500
Zn2—O2i1.9512 (19)C13—C141.381 (4)
Zn2—O11.9602 (19)C13—H13A0.9500
Zn2—O1i1.9602 (19)C14—H14A0.9500
Zn2—Zn33.0852 (7)C15—C161.414 (4)
Zn3—N32.067 (2)C15—C201.415 (4)
Zn3—N3i2.067 (2)C16—C171.383 (4)
Zn3—N4i2.177 (2)C17—C181.383 (4)
Zn3—N42.177 (2)C17—H17A0.9500
Zn3—O22.2664 (19)C18—C191.380 (4)
Zn3—O2i2.2664 (19)C19—C201.400 (4)
Br1—C21.892 (3)C19—H19A0.9500
Br2—C41.895 (3)C20—C211.460 (4)
Br3—C161.894 (3)C21—H21A0.9500
Br4—C181.888 (3)C22—C231.536 (4)
O1—C11.334 (3)C22—H22A0.9900
O2—C151.328 (3)C22—H22B0.9900
N1—C71.280 (4)C23—C241.500 (4)
N1—C81.481 (4)C23—H23A0.9900
N2—C141.351 (4)C23—H23B0.9900
N2—C101.354 (4)C24—C251.398 (4)
N3—C211.282 (4)C25—C261.378 (4)
N3—C221.467 (3)C25—H25A0.9500
N4—C281.350 (4)C26—C271.395 (4)
N4—C241.350 (4)C26—H26A0.9500
C1—C21.408 (4)C27—C281.378 (4)
C1—C61.412 (4)C27—H27A0.9500
C2—C31.386 (4)C28—H28A0.9500
C3—C41.390 (4)Cl1—O131.435 (2)
C3—H3A0.9500Cl1—O111.435 (2)
C4—C51.379 (4)Cl1—O121.435 (2)
C5—C61.405 (4)Cl1—O141.438 (2)
C5—H5A0.9500N1S—C1S1.134 (4)
C6—C71.468 (4)C1S—C2S1.454 (5)
C7—H7A0.9500C2S—H2S10.9800
C8—C91.524 (4)C2S—H2S20.9800
C8—H8A0.9900C2S—H2S30.9800
C8—H8B0.9900
N1i—Zn1—N1173.41 (12)C1—C6—C7122.7 (3)
N1i—Zn1—N2i90.48 (9)N1—C7—C6126.2 (3)
N1—Zn1—N2i93.70 (9)N1—C7—H7A116.9
N1i—Zn1—N293.70 (9)C6—C7—H7A116.9
N1—Zn1—N290.48 (9)N1—C8—C9112.4 (2)
N2i—Zn1—N2101.31 (12)N1—C8—H8A109.1
N1i—Zn1—O1i82.16 (8)C9—C8—H8A109.1
N1—Zn1—O1i92.68 (8)N1—C8—H8B109.1
N2i—Zn1—O1i166.02 (8)C9—C8—H8B109.1
N2—Zn1—O1i91.06 (8)H8A—C8—H8B107.9
N1i—Zn1—O192.68 (8)C10—C9—C8114.6 (2)
N1—Zn1—O182.16 (8)C10—C9—H9A108.6
N2i—Zn1—O191.06 (8)C8—C9—H9A108.6
N2—Zn1—O1166.02 (8)C10—C9—H9B108.6
O1i—Zn1—O177.49 (10)C8—C9—H9B108.6
N1i—Zn1—Zn286.70 (6)H9A—C9—H9B107.6
N1—Zn1—Zn286.70 (6)N2—C10—C11120.9 (3)
N2i—Zn1—Zn2129.35 (6)N2—C10—C9118.0 (3)
N2—Zn1—Zn2129.34 (6)C11—C10—C9121.1 (3)
O1i—Zn1—Zn238.75 (5)C12—C11—C10120.4 (3)
O1—Zn1—Zn238.75 (5)C12—C11—H11A119.8
O2—Zn2—O2i94.29 (11)C10—C11—H11A119.8
O2—Zn2—O1117.97 (8)C11—C12—C13118.6 (3)
O2i—Zn2—O1120.11 (8)C11—C12—H12A120.7
O2—Zn2—O1i120.11 (8)C13—C12—H12A120.7
O2i—Zn2—O1i117.96 (8)C14—C13—C12118.7 (3)
O1—Zn2—O1i88.95 (11)C14—C13—H13A120.7
O2—Zn2—Zn347.14 (6)C12—C13—H13A120.7
O2i—Zn2—Zn347.14 (6)N2—C14—C13123.3 (3)
O1—Zn2—Zn3135.52 (6)N2—C14—H14A118.4
O1i—Zn2—Zn3135.52 (6)C13—C14—H14A118.4
O2—Zn2—Zn1132.86 (6)O2—C15—C16121.4 (2)
O2i—Zn2—Zn1132.86 (6)O2—C15—C20122.1 (3)
O1—Zn2—Zn144.48 (6)C16—C15—C20116.5 (3)
O1i—Zn2—Zn144.48 (6)C17—C16—C15122.5 (3)
Zn3—Zn2—Zn1180.0C17—C16—Br3118.5 (2)
N3—Zn3—N3i160.47 (13)C15—C16—Br3118.9 (2)
N3—Zn3—N4i98.19 (9)C16—C17—C18119.4 (3)
N3i—Zn3—N4i94.83 (9)C16—C17—H17A120.3
N3—Zn3—N494.83 (9)C18—C17—H17A120.3
N3i—Zn3—N498.19 (9)C19—C18—C17120.3 (3)
N4i—Zn3—N496.20 (13)C19—C18—Br4120.0 (2)
N3—Zn3—O281.50 (8)C17—C18—Br4119.5 (2)
N3i—Zn3—O283.37 (8)C18—C19—C20120.6 (3)
N4i—Zn3—O292.83 (8)C18—C19—H19A119.7
N4—Zn3—O2170.67 (8)C20—C19—H19A119.7
N3—Zn3—O2i83.37 (8)C19—C20—C15120.6 (3)
N3i—Zn3—O2i81.50 (8)C19—C20—C21116.7 (3)
N4i—Zn3—O2i170.67 (8)C15—C20—C21122.6 (3)
N4—Zn3—O2i92.83 (8)N3—C21—C20126.8 (3)
O2—Zn3—O2i78.27 (10)N3—C21—H21A116.6
N3—Zn3—Zn280.23 (6)C20—C21—H21A116.6
N3i—Zn3—Zn280.23 (6)N3—C22—C23111.5 (2)
N4i—Zn3—Zn2131.90 (6)N3—C22—H22A109.3
N4—Zn3—Zn2131.90 (6)C23—C22—H22A109.3
O2—Zn3—Zn239.13 (5)N3—C22—H22B109.3
O2i—Zn3—Zn239.13 (5)C23—C22—H22B109.3
C1—O1—Zn2127.79 (17)H22A—C22—H22B108.0
C1—O1—Zn1120.56 (17)C24—C23—C22115.8 (2)
Zn2—O1—Zn196.78 (8)C24—C23—H23A108.3
C15—O2—Zn2118.78 (16)C22—C23—H23A108.3
C15—O2—Zn3121.70 (16)C24—C23—H23B108.3
Zn2—O2—Zn393.73 (8)C22—C23—H23B108.3
C7—N1—C8114.8 (3)H23A—C23—H23B107.4
C7—N1—Zn1125.8 (2)N4—C24—C25121.1 (3)
C8—N1—Zn1118.89 (19)N4—C24—C23119.1 (3)
C14—N2—C10118.1 (3)C25—C24—C23119.8 (3)
C14—N2—Zn1118.13 (19)C26—C25—C24120.0 (3)
C10—N2—Zn1123.2 (2)C26—C25—H25A120.0
C21—N3—C22117.3 (2)C24—C25—H25A120.0
C21—N3—Zn3128.81 (19)C25—C26—C27118.9 (3)
C22—N3—Zn3113.82 (17)C25—C26—H26A120.5
C28—N4—C24118.3 (3)C27—C26—H26A120.5
C28—N4—Zn3118.68 (19)C28—C27—C26118.2 (3)
C24—N4—Zn3123.00 (19)C28—C27—H27A120.9
O1—C1—C2121.9 (3)C26—C27—H27A120.9
O1—C1—C6121.8 (3)N4—C28—C27123.5 (3)
C2—C1—C6116.3 (3)N4—C28—H28A118.2
C3—C2—C1122.9 (3)C27—C28—H28A118.2
C3—C2—Br1118.5 (2)O13—Cl1—O11110.02 (15)
C1—C2—Br1118.6 (2)O13—Cl1—O12109.40 (16)
C2—C3—C4119.1 (3)O11—Cl1—O12109.83 (15)
C2—C3—H3A120.5O13—Cl1—O14109.36 (16)
C4—C3—H3A120.5O11—Cl1—O14109.75 (16)
C5—C4—C3120.5 (3)O12—Cl1—O14108.47 (15)
C5—C4—Br2119.1 (2)N1S—C1S—C2S178.9 (4)
C3—C4—Br2120.4 (2)C1S—C2S—H2S1109.5
C4—C5—C6120.0 (3)C1S—C2S—H2S2109.5
C4—C5—H5A120.0H2S1—C2S—H2S2109.5
C6—C5—H5A120.0C1S—C2S—H2S3109.5
C5—C6—C1121.1 (3)H2S1—C2S—H2S3109.5
C5—C6—C7116.1 (3)H2S2—C2S—H2S3109.5
Zn2—O1—C1—C291.5 (3)Zn2—O2—C15—C1698.9 (3)
Zn1—O1—C1—C2139.4 (2)Zn3—O2—C15—C16145.8 (2)
Zn2—O1—C1—C688.3 (3)Zn2—O2—C15—C2079.1 (3)
Zn1—O1—C1—C640.8 (3)Zn3—O2—C15—C2036.1 (3)
O1—C1—C2—C3178.8 (3)O2—C15—C16—C17176.3 (3)
C6—C1—C2—C31.4 (4)C20—C15—C16—C171.9 (4)
O1—C1—C2—Br12.1 (4)O2—C15—C16—Br30.3 (4)
C6—C1—C2—Br1177.7 (2)C20—C15—C16—Br3178.48 (19)
C1—C2—C3—C41.4 (4)C15—C16—C17—C180.1 (4)
Br1—C2—C3—C4177.8 (2)Br3—C16—C17—C18176.7 (2)
C2—C3—C4—C51.2 (4)C16—C17—C18—C190.9 (4)
C2—C3—C4—Br2178.9 (2)C16—C17—C18—Br4173.6 (2)
C3—C4—C5—C63.6 (4)C17—C18—C19—C200.0 (4)
Br2—C4—C5—C6176.5 (2)Br4—C18—C19—C20174.4 (2)
C4—C5—C6—C13.5 (4)C18—C19—C20—C151.9 (4)
C4—C5—C6—C7178.2 (3)C18—C19—C20—C21176.9 (3)
O1—C1—C6—C5178.7 (3)O2—C15—C20—C19175.4 (2)
C2—C1—C6—C51.1 (4)C16—C15—C20—C192.7 (4)
O1—C1—C6—C70.6 (4)O2—C15—C20—C210.7 (4)
C2—C1—C6—C7179.2 (3)C16—C15—C20—C21177.5 (3)
C8—N1—C7—C6174.9 (3)C22—N3—C21—C20179.5 (3)
Zn1—N1—C7—C63.0 (4)Zn3—N3—C21—C203.8 (4)
C5—C6—C7—N1159.0 (3)C19—C20—C21—N3164.3 (3)
C1—C6—C7—N122.8 (4)C15—C20—C21—N320.7 (4)
C7—N1—C8—C9150.8 (3)C21—N3—C22—C23119.6 (3)
Zn1—N1—C8—C936.7 (3)Zn3—N3—C22—C2357.7 (3)
N1—C8—C9—C1076.7 (3)N3—C22—C23—C2481.3 (3)
C14—N2—C10—C110.0 (4)C28—N4—C24—C250.5 (4)
Zn1—N2—C10—C11171.6 (2)Zn3—N4—C24—C25178.0 (2)
C14—N2—C10—C9179.0 (3)C28—N4—C24—C23178.8 (3)
Zn1—N2—C10—C99.4 (4)Zn3—N4—C24—C232.6 (4)
C8—C9—C10—N250.5 (4)C22—C23—C24—N444.7 (4)
C8—C9—C10—C11128.5 (3)C22—C23—C24—C25134.6 (3)
N2—C10—C11—C121.4 (5)N4—C24—C25—C260.2 (4)
C9—C10—C11—C12179.6 (3)C23—C24—C25—C26179.5 (3)
C10—C11—C12—C131.2 (5)C24—C25—C26—C271.0 (4)
C11—C12—C13—C140.2 (5)C25—C26—C27—C281.1 (4)
C10—N2—C14—C131.5 (4)C24—N4—C28—C270.4 (4)
Zn1—N2—C14—C13170.5 (2)Zn3—N4—C28—C27178.2 (2)
C12—C13—C14—N21.6 (5)C26—C27—C28—N40.4 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Br1i0.992.923.854 (3)157
C9—H9A···O1i0.992.603.317 (4)129
C21—H21A···O140.952.573.080 (4)114
C22—H22A···O140.992.583.099 (4)113
C22—H22B···Br4ii0.992.963.664 (3)129
C23—H23A···O12iii0.992.583.427 (4)144
C28—H28A···N3i0.952.603.236 (4)125
C2S—H2S1···O110.982.603.556 (4)165
C2S—H2S2···Br20.983.023.935 (4)157
C2S—H2S2···Br40.983.043.561 (3)115
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z.
 

Acknowledgements

UO and RO wish to acknowledge the College of Arts & Sciences at Howard University for a Teaching Assistantship.

Funding information

RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitro­gen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray.

References

First citationAkine, S., Morita, Y., Utsuno, F. & Nabeshima, T. (2009). Inorg. Chem. 48, 10670–10678.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAn, J., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8376–8377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136–7144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mill Valley, CA: University Science Books.  Google Scholar
First citationBluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878–8885.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiop, M., Aly-Gaye, P., Bouyagui-Tamboura, F., Gaye, M., Pérez-Lourido, P., Valencia, L. & Castro, G. (2014). Z. Anorg. Allg. Chem. 640, 1392–1396.  CrossRef Google Scholar
First citationGultneh, Y., Allwar, Ahvazi, B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31–38.  CrossRef CAS Web of Science Google Scholar
First citationGultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationHens, A. & Rajak, K. K. (2015). RSC Adv. 5, 4219–4232.  CrossRef Google Scholar
First citationKim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908–911.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, P., Baidya, B., Chaturvedi, S. K., Khan, R. H., Manna, D. & Mondal, B. (2011). Inorg. Chim. Acta, 376, 264–270.  CrossRef Google Scholar
First citationKundu, P., Chakraborty, P., Adhikary, J., Chattopadhyay, T., Fischer, R. C., Mautner, F. A. & Das, D. (2015). Polyhedron, 85, 320–328.  CrossRef Google Scholar
First citationMcCall, K. A., Huang, C. & Fierke, C. A. (2000). J. Nutr. 130, 1437S–1446S.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkeke, U., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1568–1571.  CrossRef IUCr Journals Google Scholar
First citationOkeke, U., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1708–1711.  CrossRef IUCr Journals Google Scholar
First citationOkeke, U., Otchere, R., Gultneh, Y. & Butcher, R. J. (2018). Acta Cryst. E74, 1121–1125.  CrossRef IUCr Journals Google Scholar
First citationQuilter, H. C., Drewitt, R. H., Mahon, M. F., Kociok-Köhn, G. & Jones, M. D. (2017). J. Organomet. Chem. 848, 325–331.  CrossRef Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85–96.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouza, E. T., Maia, P. J. S., Azevedo, É. M., Kaiser, C. R., Resende, J. A. L. C., Pinheiro, C. B., Heinrich, T. A., da Silva, R. S. & Scarpellini, M. (2011). J. Inorg. Biochem. 105, 1767–1773.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds