research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and theoretical studies of two π-conjugated fused-ring chalcones: (E)-1-(anthra­cen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by A. J. Lough, University of Toronto, Canada (Received 23 July 2018; accepted 4 August 2018; online 21 August 2018)

The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen–Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, ππ inter­ations and weak C—H⋯O and C—H⋯π inter­actions are observed. The effect of these inter­molecular inter­actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV–Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol­ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that these are the most important contribution to the crystal packing.

1. Chemical context

Chalcones satisfy the criteria of three features essential for high nonlinear activity in an organic compound, which are: a strong electron donor, a highly polarizable π-conjugated bridge and a strong π-electron acceptor. A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the terminal aromatic rings. Polyaromatic hydro­carbons or π-conjugated materials such as anthracenyl chalcone provide the significant property for conductivity that led to tremendous advances in the field of organic electronics (Li et al., 2016[Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574-10587.]). These conjugated materials modifications on the anthracenyl chalcone decrease the HOMO–LUMO energy gap (HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied mol­ecular orbital), enhancing the nonlinear responses of such mol­ecular systems. In this work, we report the synthesis and combined experimental and theoretical studies of the anthracene chalcones (E)-1-(anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one, I, and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one, II. Additionally, the UV–vis absorption and Hirshfeld surface analyses are discussed.

2. Structural commentary

The mol­ecular structures and optimized geometries of compounds I and II are shown in Fig. 1[link]. The optimization of the mol­ecular geometries leading to energy minima was achieved using DFT with a 6-311++G(d,p) basis set, as implemented in the GAUSSIAN09 program package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Revision A.1. Gaussian Inc., Wallingford, CT, USA.]). The calculated geometric parameters, such as bond lengths, bond angles and torsion angles, compared to the experimental data are presented in Table S1 in the supporting information and exhibit normal ranges. The theoretical bond lengths, bond angles and torsion angles correlate well with the experimental data.

[Scheme 1]
[Figure 1]
Figure 1
(a) The mol­ecular structures of compounds I and II. (b) The optimized structures of compounds I and II at DFT/B3LYP 6-311++G(d,p).

Both I and II comprise a chalcone with an anthracene ring with 9-ethyl-9H-carbazole and 9-phenyl-9H-carbazole substituents, respectively. The asymmetric unit of II contains two crystallographically independent mol­ecules, A and B (Fig. 1[link]a). The C—C distances in the central ring of the anthracene units show a little variations compared to the other rings (C2—C3, C4—C5, C9—C10 and C11—C12), which are much shorter. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.]).

Both theoretical and experimental structures (Fig. 1[link]) exist in an s-trans configuration with respect to the enone moiety, with bond lengths C15=O1 [Exp = 1.220 (2) Å and DFT = 1.22 Å in I; Exp = 1.213 (3) (A) and 1.218 (3) Å (B), and DFT = 1.22 Å in II] and C16=C17 [Exp = 1.329 (2) Å and DFT = 1.35 Å in I; Exp = 1.319 (3) (A) and 1.320 (4) Å (B), and DFT = 1.35 Å in II]. Both I and II (A and B) are twisted at the C14—C15 bond, with C1—C14—C15—C16 torsion angles of −92.6 (2) (in I), 84.8 (3) (in IIA) and 106.3 (3)° (in IIB). The corresponding torsion angles for DFT are −85.84 and 85.63°, respectively. Additionally, in compound II, rings Y and Z (A) and rings Y′ and Z′ (B) are also twisted at the C21—N1 bond, with C20—C21—N1—C24 torsion angles of Exp = 64.1 (4)° (A) and 46.2 (4)° (B), and DFT = 55.03°. The large twist angles are due to the bulkiness of the strong electron-donor anthracene ring system and substituent ring system (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.],c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.]). Meanwhile, compounds I and II are found to be slightly twisted at the C17—C18 bond, with C16—C17—C18—C19 torsion angles of Exp = −16.4 (3)° and DFT = −1.38 for compound I, and Exp = −171.2 (3)° (A) and 11.4 (5)° (B), and DFT = −1.70° for compound II. The slight differences in the torsion angles between the experimental and DFT results in both compounds are due to the formation of inter­molecular C—H⋯O and C—H⋯π inter­actions involving all the fused-ring systems, which are not taken into consideration during the optimization process (Arshad et al., 2018[Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218-240.]).

The enone moiety in I [O1/C15–C17, maximum deviation = 0.0308 (19) Å at atom C16] makes dihedral angles of 86.93 (19) and 21.21 (19)° with the anthracene ring [maximum deviation = 0.0117 (19) Å at C9] and ring X [maximum deviation = 0.0363 (18) Å at C29], respectively. In compound II, the enone moiety [O1/C15–C17, maximum deviation = 0.017 (3) Å at C15A] for mol­ecule A forms dihedral angles of 84.76 (17), 87.61 (17) and 72.35 (17)° with the anthracene ring [maximum deviation = 0.029 (3) Å at C14A], ring Y [maximum deviation = 0.008 (3) Å at C19A] and ring Z [maximum deviation = 0.043 (3) Å at C34A], respectively. The anthracene ring forms dihedral angles of 89.63 (11) and 62.11 (7)° with rings Y and Z, respectively, and the dihedral angle between rings Y and Z is 61.73 (10)°. In addition, for mol­ecule B, the enone moiety [O1/C15–C17, maximum deviation = 0.036 (3) Å at C16B] forms dihedral angles of 72.2 (3), 13.5 (3) and 87.2 (3)° with the anthracene ring [maximum deviation = 0.018 (4) Å at C10B], ring Y′ [maximum deviation = 0.010 (3) Å at C20B] and ring Z′ [maximum deviation = 1.441 (2) Å at N1B], respectively. The anthracene ring forms dihedral angles of 61.46 (11) and 54.80 (7)° with rings Y′ and Z′, respectively, and the dihedral angle between rings Y′ and Z′ is 48.92 (11)°.

3. Supra­molecular features

The crystal packing of I shows weak ππ inter­actions (Fig. 2[link]a) involving Cg1⋯Cg5 = 3.7267 (11) Å (symmetry code: 1 − x, 1 − y, 1 − z), Cg2⋯Cg4 = 3.6669 (12) Å (symmetry code: 2 − x, 2 − y, 1 − z), Cg3⋯Cg3 = 3.6585 (11) Å (symmetry code: 2 − x, 2 − y, 1 − z) and Cg4⋯Cg4 = 3.6790 (12) Å (symmetry code: 1 − x, 2 − y, 1 − z), where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of rings N1/C20/C21/C26/C27, C1–C6, C1/C6–C8/C13/C14, C8–C13, C18–C20/C27-C29, respectively. The packing is further linked into an infinite three-dimensional supra­molecular network.

[Figure 2]
Figure 2
The crystal packing showing (a) weak ππ inter­actions in compound I and (b) weak C—H⋯O and C—H⋯π inter­actions of compound II.

Lists of weak hydrogen-bond inter­molecular inter­actions are shown in Table 1[link]. The crystal packing of II (Fig. 1[link]b) shows weak C12B—H12B⋯O1 inter­molecular hydrogen bonds connecting the mol­ecules into an infinite one-dimensional chain along the c axis. In addition, weak inter­molecular C5B—H5BACg6, C27B—H27BCg7, C28B—H28BCg8, C11A—H11ACg9 and C7B—H7BCg10 inter­actions are also observed in the crystal packing and further stabilize the crystal structure, where Cg6, Cg7, Cg8, Cg9 and Cg10 are the centroids of rings N1A/C24A/C29A/C30A/C35A, C1A–C6A, C1A/C6A–C8A/C13A/C14A, C18A–C23A and C24A–C29A, respectively. These weak inter­molecular C—H⋯O and C—H⋯π inter­actions bridge the mol­ecules into an infinite one-dimensional column along the c axis.

Table 1
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12B—H12B⋯O1Bi 0.93 2.51 3.266 (4) 138
C5B—H5BACg6ii 0.93 2.79 3.585 (4) 144
C27B—H27BCg7 0.93 2.85 3.577 (4) 136
C28B—H28BCg8 0.93 2.70 3.382 (4) 130
C11A—H11ACg9iii 0.93 2.85 3.742 (4) 161
C7B—H7BACg10ii 0.93 2.90 3.704 (3) 145
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) x, y, z+1.

4. UV–Vis absorption analysis

The electronic absorption spectra of I and II have been calculated using time-dependent DFT at the B3LYP/6-311++G(d,p) level in the gas phase and give values of 396 (I) and 383 nm (II). The absorption characteristics of I and II are observed in the UV region at 393 and 388 nm, as shown in Fig. 3[link]. The theoretical wavelengths are shifted to higher values and are due to the fact that the calculations are confined to the gaseous medium, whereas the observations are from the solution state, using DMSO as solvent (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armakoviće, S. J., Panicker, Y. & Alsenoy, C. V. (2017). J. Mol. Struct. 1128, 520-533.]).

[Figure 3]
Figure 3
The UV–Vis absorption spectra of compounds I and II.

According to an investigation on the frontier mol­ecular orbital (FMO) energy levels of the title compounds, the corresponding electronic transfer are found to happen between the HOMO and LUMO orbitals, as shown in Fig. 4[link]. The positive phase is red and the negative is green. In Fig. 4[link], the charge densities in the ground state (HOMO) are mainly delocalized over the anthracenyl donor ring, while in the excited state (LUMO), the charge densities were accumulated on the π-conjugated enone bridge and the terminal electron acceptor group. The values of the energy separations between the HOMO and LUMO are 2.98 and 3.12 eV for compounds I and II, respectively. Through an extrapolation of the linear trend observed in the optical spectra, the experimental energy band gaps in I and II are 2.86 and 2.96 eV, respectively. These optical band-gap values indicate the suitability of this compound for optoelectronic applications, as was also reported previously for a chalcone structure by Tejkiran et al. (2016[Tejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochem. Photobiol. A, 324, 233-239.]). In addition, Konkol et al. (2016[Konkol, K. L., Schwiderski, R. L. & Rasmussen, S. C. (2016). Materials, 9, 404-420.]) studied the structural and optical properties of fused rings where the results showed that fused rings have a lower energy band gap.

[Figure 4]
Figure 4
The electron distribution of the HOMO and LUMO energy levels of compounds I and II.

5. Hirshfeld surface (HS) analysis

The program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.]) was used to analyse the inter­actions in the crystal. Fig. 5[link](a) show the HS mapped over dnorm, where the red spots indicate the regions of donor–acceptor inter­actions. The C—H⋯O contacts are only present in compound II. In addition, the presence of C—H⋯π inter­actions only occurs in compound II, indicated through a combination of pale-orange bright-red spots which are present on the HS mapped over shape index surface, identified with black arrows (Fig. 5[link]b). The large flat region delineated by a blue outline refers to the ππ stacking inter­actions. The curved nature of the compound reveals that ππ stacking inter­actions are present in compound I. Meanwhile, these inter­actions are absent in compound II.

[Figure 5]
Figure 5
View of the Hirshfeld surfaces for the title compounds, showing (a) dnorm with the red spots showing the involvement of the C—H⋯O inter­actions in II, (b) mapped over de with the pale-orange spots within the black arrows indicating the C—H⋯π inter­actions in II and (c) mapped over curvedness with the black arrows indicating the ππ inter­actions in I.

The fingerprint plot shown in Fig. 6[link] indicates the H⋯H, H⋯O, C⋯H and C⋯C inter­actions with their relative percentage contributions. The H⋯H contacts have the largest overall contribution to the HS, and these inter­actions dominate in the crystal structure. The contribution from H⋯O/O⋯H contacts to the HS showing two narrow spikes provides evidence for the presence of inter­molecular C—H⋯O inter­actions in Fig. 6[link] for compound II. Meanwhile, there is no spike in the fingerprint of compound I. The 7.5% O⋯H contribution shown in compound I is the average percentage interaction from the total interactions presence in I. In compound I, there are no interactions other than the ππ interactions, which makes the percentage of the O⋯H contribution is slightly higher. Hence, a discussion on the percentage difference between I. and II. is invalid. The significant C—H⋯π inter­actions for compound II are indicated by the wings de + di ∼ 2.6 Å.

[Figure 6]
Figure 6
Fingerprint plots of the H⋯H, H⋯O, C⋯H and C⋯C inter­actions showing the relative contributions to the total Hirshfeld surface.

6. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed several fused-ring-substituted chalcones similar to I and II. There are four compounds which have an anthrancene ketone subtituent on the chalcone, including 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) reported by Harlow et al. (1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]). (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one was reported by Girisha et al. (2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one was reported by Abdullah et al. (2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.]) reported both anthrancene substituents on chalcone (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]), 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Ladato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]), (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one (Zainuri et al., 2018b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.],c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.]).

7. Synthesis and crystallization

A mixture of 9-acetyl­anthrancene (0.5 mmol) and 9-ethylcarbazole-3-carbaldehyde (0.5 mmol) and 4-(9H-carbazol-9-yl)benzaldehyde (0.5 mmol) for compounds I and II, respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise under vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone to give the corresponding chalcones (Scheme 1). Single crystals of I and II suitable for X-ray diffraction were obtained by slow evaporation from acetone solutions.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å in I, and 0.93 Å in II) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group in I.

Table 2
Experimental details

  I II
Crystal data
Chemical formula C31H23NO C35H23NO
Mr 425.50 473.54
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.3038 (11), 15.0166 (18), 16.1170 (19) 18.019 (3), 29.214 (4), 9.5503 (13)
β (°) 99.286 (2) 97.637 (2)
V3) 2222.2 (5) 4982.9 (12)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.63 × 0.38 × 0.29 0.50 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 44210, 5653, 3479 80460, 12643, 5265
Rint 0.047 0.108
(sin θ/λ)max−1) 0.673 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.03 0.084, 0.169, 1.02
No. of reflections 5653 12643
No. of parameters 298 667
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18 0.15, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) top
Crystal data top
C31H23NOF(000) = 896
Mr = 425.50Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3038 (11) ÅCell parameters from 5727 reflections
b = 15.0166 (18) Åθ = 2.2–22.9°
c = 16.1170 (19) ŵ = 0.08 mm1
β = 99.286 (2)°T = 296 K
V = 2222.2 (5) Å3Block, yellow
Z = 40.63 × 0.38 × 0.29 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
φ and ω scansθmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
k = 2020
44210 measured reflectionsl = 2121
5653 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.047P)2 + 0.6503P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5653 reflectionsΔρmax = 0.20 e Å3
298 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30258 (17)0.43671 (10)0.60520 (10)0.0541 (4)
O11.00894 (17)0.82396 (12)0.67889 (10)0.0940 (6)
C10.92274 (19)0.86663 (11)0.48174 (11)0.0484 (4)
C21.0196 (2)0.79632 (13)0.46961 (14)0.0628 (5)
H2A1.04450.75440.51190.075*
C31.0762 (2)0.78928 (16)0.39769 (16)0.0734 (6)
H3A1.13830.74230.39090.088*
C41.0418 (3)0.85254 (18)0.33286 (14)0.0760 (7)
H4A1.08120.84690.28360.091*
C50.9521 (2)0.92119 (15)0.34183 (12)0.0661 (6)
H5A0.93150.96290.29890.079*
C60.8883 (2)0.93085 (12)0.41595 (11)0.0509 (4)
C70.7968 (2)1.00127 (12)0.42694 (11)0.0527 (5)
H7A0.77631.04350.38450.063*
C80.73470 (19)1.01073 (11)0.49924 (11)0.0476 (4)
C90.6398 (2)1.08243 (12)0.51020 (13)0.0578 (5)
H9A0.61921.12500.46800.069*
C100.5788 (2)1.09027 (14)0.58016 (14)0.0659 (5)
H10A0.51731.13790.58590.079*
C110.6082 (2)1.02632 (15)0.64463 (13)0.0664 (5)
H11A0.56541.03200.69270.080*
C120.6979 (2)0.95678 (14)0.63762 (12)0.0578 (5)
H12A0.71530.91510.68080.069*
C130.76632 (18)0.94624 (11)0.56498 (10)0.0464 (4)
C140.86110 (18)0.87608 (11)0.55531 (10)0.0474 (4)
C150.9024 (2)0.81029 (13)0.62560 (12)0.0572 (5)
C160.8125 (2)0.73143 (12)0.62919 (12)0.0567 (5)
H16A0.84410.68880.66990.068*
C170.6880 (2)0.71662 (11)0.57782 (11)0.0511 (4)
H17A0.66180.75810.53520.061*
C180.5880 (2)0.64229 (11)0.58115 (11)0.0484 (4)
C190.6285 (2)0.56538 (11)0.62652 (11)0.0494 (4)
H19A0.72400.55850.65360.059*
C200.52804 (19)0.49902 (11)0.63166 (10)0.0458 (4)
C210.5346 (2)0.41144 (11)0.67115 (11)0.0496 (4)
C220.6445 (2)0.36261 (13)0.71850 (12)0.0609 (5)
H22A0.73860.38520.73060.073*
C230.6120 (3)0.28028 (14)0.74725 (14)0.0720 (6)
H23A0.68490.24710.77960.086*
C240.4721 (3)0.24555 (14)0.72885 (14)0.0764 (7)
H24A0.45360.18940.74910.092*
C250.3595 (3)0.29223 (13)0.68122 (13)0.0644 (5)
H25A0.26610.26860.66860.077*
C260.3929 (2)0.37631 (11)0.65312 (11)0.0504 (4)
C270.38240 (19)0.51092 (11)0.59169 (11)0.0481 (4)
C280.3391 (2)0.58737 (12)0.54582 (12)0.0565 (5)
H28A0.24310.59510.51990.068*
C290.4432 (2)0.65129 (12)0.54014 (11)0.0555 (5)
H29A0.41700.70200.50820.067*
C300.1472 (2)0.42573 (14)0.57684 (13)0.0654 (5)
H30A0.12560.36280.56930.079*
H30B0.12090.45460.52270.079*
C310.0561 (3)0.4638 (2)0.63703 (16)0.0956 (8)
H31A0.04510.45470.61530.143*
H31B0.07990.43450.69050.143*
H31C0.07520.52640.64390.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0529 (9)0.0477 (8)0.0619 (9)0.0090 (7)0.0099 (7)0.0009 (7)
O10.0803 (11)0.0948 (12)0.0924 (11)0.0320 (9)0.0302 (9)0.0327 (9)
C10.0446 (10)0.0435 (9)0.0558 (10)0.0163 (8)0.0040 (8)0.0043 (8)
C20.0587 (12)0.0521 (11)0.0777 (14)0.0129 (9)0.0110 (10)0.0071 (10)
C30.0608 (13)0.0662 (14)0.0950 (17)0.0117 (11)0.0176 (12)0.0257 (13)
C40.0717 (15)0.0934 (18)0.0668 (13)0.0241 (13)0.0226 (11)0.0256 (13)
C50.0686 (14)0.0778 (15)0.0533 (11)0.0207 (12)0.0139 (10)0.0083 (10)
C60.0512 (11)0.0537 (11)0.0473 (9)0.0191 (9)0.0062 (8)0.0035 (8)
C70.0568 (11)0.0516 (11)0.0477 (10)0.0154 (9)0.0024 (8)0.0071 (8)
C80.0474 (10)0.0439 (9)0.0498 (9)0.0146 (8)0.0028 (8)0.0021 (7)
C90.0583 (12)0.0476 (10)0.0651 (12)0.0085 (9)0.0028 (9)0.0028 (9)
C100.0599 (13)0.0615 (13)0.0763 (14)0.0026 (10)0.0110 (11)0.0084 (11)
C110.0655 (13)0.0744 (14)0.0618 (12)0.0089 (11)0.0179 (10)0.0092 (11)
C120.0590 (12)0.0634 (12)0.0512 (10)0.0144 (10)0.0095 (9)0.0046 (9)
C130.0432 (10)0.0470 (10)0.0476 (9)0.0157 (8)0.0034 (7)0.0011 (8)
C140.0454 (10)0.0460 (9)0.0488 (9)0.0169 (8)0.0010 (7)0.0036 (7)
C150.0531 (11)0.0562 (11)0.0595 (11)0.0106 (9)0.0006 (9)0.0092 (9)
C160.0616 (12)0.0474 (10)0.0588 (11)0.0067 (9)0.0027 (9)0.0122 (8)
C170.0599 (11)0.0419 (9)0.0523 (10)0.0042 (8)0.0121 (8)0.0030 (8)
C180.0539 (11)0.0438 (9)0.0484 (9)0.0072 (8)0.0108 (8)0.0023 (8)
C190.0507 (10)0.0461 (10)0.0519 (10)0.0002 (8)0.0102 (8)0.0037 (8)
C200.0524 (10)0.0406 (9)0.0461 (9)0.0039 (8)0.0134 (8)0.0059 (7)
C210.0612 (12)0.0428 (9)0.0474 (9)0.0001 (8)0.0164 (8)0.0041 (8)
C220.0721 (13)0.0532 (11)0.0591 (11)0.0054 (10)0.0154 (10)0.0005 (9)
C230.0931 (17)0.0574 (13)0.0679 (13)0.0149 (12)0.0200 (12)0.0102 (10)
C240.121 (2)0.0447 (11)0.0717 (14)0.0014 (13)0.0411 (14)0.0078 (10)
C250.0860 (15)0.0480 (11)0.0656 (12)0.0126 (11)0.0313 (11)0.0029 (10)
C260.0640 (12)0.0420 (9)0.0486 (9)0.0047 (9)0.0188 (8)0.0045 (8)
C270.0526 (11)0.0425 (9)0.0494 (9)0.0056 (8)0.0090 (8)0.0042 (8)
C280.0537 (11)0.0521 (11)0.0602 (11)0.0056 (9)0.0015 (9)0.0002 (9)
C290.0676 (12)0.0415 (9)0.0551 (10)0.0030 (9)0.0026 (9)0.0036 (8)
C300.0596 (13)0.0633 (13)0.0716 (13)0.0168 (10)0.0052 (10)0.0008 (10)
C310.0596 (15)0.146 (3)0.0823 (16)0.0084 (15)0.0128 (12)0.0006 (17)
Geometric parameters (Å, º) top
N1—C271.376 (2)C16—C171.329 (2)
N1—C261.384 (2)C16—H16A0.9300
N1—C301.454 (2)C17—C181.459 (2)
O1—C151.220 (2)C17—H17A0.9300
C1—C141.405 (2)C18—C191.386 (2)
C1—C21.422 (3)C18—C291.409 (3)
C1—C61.431 (2)C19—C201.378 (2)
C2—C31.352 (3)C19—H19A0.9300
C2—H2A0.9300C20—C271.415 (2)
C3—C41.410 (3)C20—C211.458 (2)
C3—H3A0.9300C21—C221.383 (3)
C4—C51.349 (3)C21—C261.406 (3)
C4—H4A0.9300C22—C231.371 (3)
C5—C61.424 (3)C22—H22A0.9300
C5—H5A0.9300C23—C241.389 (3)
C6—C71.387 (3)C23—H23A0.9300
C7—C81.389 (2)C24—C251.385 (3)
C7—H7A0.9300C24—H24A0.9300
C8—C91.422 (3)C25—C261.393 (2)
C8—C131.431 (2)C25—H25A0.9300
C9—C101.347 (3)C27—C281.390 (2)
C9—H9A0.9300C28—C291.377 (3)
C10—C111.409 (3)C28—H28A0.9300
C10—H10A0.9300C29—H29A0.9300
C11—C121.353 (3)C30—C311.500 (3)
C11—H11A0.9300C30—H30A0.9700
C12—C131.429 (2)C30—H30B0.9700
C12—H12A0.9300C31—H31A0.9600
C13—C141.399 (2)C31—H31B0.9600
C14—C151.505 (2)C31—H31C0.9600
C15—C161.457 (3)
C27—N1—C26108.92 (15)C16—C17—C18126.96 (17)
C27—N1—C30125.24 (16)C16—C17—H17A116.5
C26—N1—C30125.78 (15)C18—C17—H17A116.5
C14—C1—C2123.03 (17)C19—C18—C29119.05 (16)
C14—C1—C6118.96 (17)C19—C18—C17122.42 (17)
C2—C1—C6118.02 (17)C29—C18—C17118.45 (16)
C3—C2—C1121.3 (2)C20—C19—C18120.33 (17)
C3—C2—H2A119.4C20—C19—H19A119.8
C1—C2—H2A119.4C18—C19—H19A119.8
C2—C3—C4120.6 (2)C19—C20—C27119.38 (16)
C2—C3—H3A119.7C19—C20—C21134.24 (17)
C4—C3—H3A119.7C27—C20—C21106.38 (15)
C5—C4—C3120.4 (2)C22—C21—C26120.01 (17)
C5—C4—H4A119.8C22—C21—C20133.93 (18)
C3—C4—H4A119.8C26—C21—C20106.06 (16)
C4—C5—C6121.1 (2)C23—C22—C21118.7 (2)
C4—C5—H5A119.5C23—C22—H22A120.6
C6—C5—H5A119.5C21—C22—H22A120.6
C7—C6—C5122.16 (18)C22—C23—C24121.1 (2)
C7—C6—C1119.20 (16)C22—C23—H23A119.5
C5—C6—C1118.62 (19)C24—C23—H23A119.5
C6—C7—C8122.16 (17)C25—C24—C23121.8 (2)
C6—C7—H7A118.9C25—C24—H24A119.1
C8—C7—H7A118.9C23—C24—H24A119.1
C7—C8—C9122.18 (17)C24—C25—C26116.7 (2)
C7—C8—C13119.25 (17)C24—C25—H25A121.6
C9—C8—C13118.58 (17)C26—C25—H25A121.6
C10—C9—C8121.62 (19)N1—C26—C25128.88 (19)
C10—C9—H9A119.2N1—C26—C21109.52 (15)
C8—C9—H9A119.2C25—C26—C21121.60 (19)
C9—C10—C11120.0 (2)N1—C27—C28129.47 (17)
C9—C10—H10A120.0N1—C27—C20109.11 (15)
C11—C10—H10A120.0C28—C27—C20121.40 (16)
C12—C11—C10120.90 (19)C29—C28—C27117.68 (17)
C12—C11—H11A119.6C29—C28—H28A121.2
C10—C11—H11A119.5C27—C28—H28A121.2
C11—C12—C13121.09 (18)C28—C29—C18122.13 (17)
C11—C12—H12A119.5C28—C29—H29A118.9
C13—C12—H12A119.5C18—C29—H29A118.9
C14—C13—C12123.17 (16)N1—C30—C31112.98 (17)
C14—C13—C8119.04 (16)N1—C30—H30A109.0
C12—C13—C8117.79 (17)C31—C30—H30A109.0
C13—C14—C1121.38 (16)N1—C30—H30B109.0
C13—C14—C15119.96 (16)C31—C30—H30B109.0
C1—C14—C15118.64 (17)H30A—C30—H30B107.8
O1—C15—C16121.04 (18)C30—C31—H31A109.5
O1—C15—C14119.96 (17)C30—C31—H31B109.5
C16—C15—C14119.00 (16)H31A—C31—H31B109.5
C17—C16—C15124.03 (17)C30—C31—H31C109.5
C17—C16—H16A118.0H31A—C31—H31C109.5
C15—C16—H16A118.0H31B—C31—H31C109.5
C14—C1—C2—C3179.71 (17)C16—C17—C18—C1916.4 (3)
C6—C1—C2—C30.9 (3)C16—C17—C18—C29160.28 (19)
C1—C2—C3—C40.8 (3)C29—C18—C19—C200.3 (3)
C2—C3—C4—C50.2 (3)C17—C18—C19—C20176.35 (16)
C3—C4—C5—C61.0 (3)C18—C19—C20—C271.3 (2)
C4—C5—C6—C7179.43 (18)C18—C19—C20—C21178.28 (17)
C4—C5—C6—C10.8 (3)C19—C20—C21—C220.3 (3)
C14—C1—C6—C70.9 (2)C27—C20—C21—C22179.94 (19)
C2—C1—C6—C7178.54 (16)C19—C20—C21—C26179.98 (18)
C14—C1—C6—C5179.53 (15)C27—C20—C21—C260.37 (18)
C2—C1—C6—C50.1 (2)C26—C21—C22—C230.2 (3)
C5—C6—C7—C8179.93 (16)C20—C21—C22—C23179.44 (18)
C1—C6—C7—C81.3 (3)C21—C22—C23—C240.6 (3)
C6—C7—C8—C9179.38 (16)C22—C23—C24—C250.2 (3)
C6—C7—C8—C130.3 (2)C23—C24—C25—C260.5 (3)
C7—C8—C9—C10179.15 (18)C27—N1—C26—C25179.43 (17)
C13—C8—C9—C100.6 (3)C30—N1—C26—C253.2 (3)
C8—C9—C10—C110.2 (3)C27—N1—C26—C210.17 (19)
C9—C10—C11—C120.3 (3)C30—N1—C26—C21177.55 (16)
C10—C11—C12—C130.4 (3)C24—C25—C26—N1179.86 (18)
C11—C12—C13—C14179.25 (17)C24—C25—C26—C211.0 (3)
C11—C12—C13—C81.2 (3)C22—C21—C26—N1179.92 (16)
C7—C8—C13—C141.1 (2)C20—C21—C26—N10.33 (18)
C9—C8—C13—C14179.17 (15)C22—C21—C26—C250.6 (3)
C7—C8—C13—C12178.51 (15)C20—C21—C26—C25179.66 (16)
C9—C8—C13—C121.2 (2)C26—N1—C27—C28178.40 (18)
C12—C13—C14—C1178.05 (16)C30—N1—C27—C284.2 (3)
C8—C13—C14—C11.5 (2)C26—N1—C27—C200.08 (19)
C12—C13—C14—C153.8 (2)C30—N1—C27—C20177.32 (16)
C8—C13—C14—C15176.65 (15)C19—C20—C27—N1180.00 (15)
C2—C1—C14—C13179.93 (16)C21—C20—C27—N10.28 (18)
C6—C1—C14—C130.6 (2)C19—C20—C27—C281.4 (3)
C2—C1—C14—C151.7 (2)C21—C20—C27—C28178.35 (16)
C6—C1—C14—C15177.65 (15)N1—C27—C28—C29178.00 (17)
C13—C14—C15—O190.0 (2)C20—C27—C28—C290.3 (3)
C1—C14—C15—O188.2 (2)C27—C28—C29—C182.1 (3)
C13—C14—C15—C1689.2 (2)C19—C18—C29—C282.1 (3)
C1—C14—C15—C1692.6 (2)C17—C18—C29—C28174.70 (17)
O1—C15—C16—C17173.6 (2)C27—N1—C30—C3185.7 (2)
C14—C15—C16—C175.6 (3)C26—N1—C30—C3191.2 (2)
C15—C16—C17—C18175.80 (18)
(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) top
Crystal data top
C35H23NOF(000) = 1984
Mr = 473.54Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.019 (3) ÅCell parameters from 3880 reflections
b = 29.214 (4) Åθ = 2.3–20.0°
c = 9.5503 (13) ŵ = 0.08 mm1
β = 97.637 (2)°T = 296 K
V = 4982.9 (12) Å3Plate, yellow
Z = 80.50 × 0.19 × 0.13 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.108
φ and ω scansθmax = 28.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
k = 3939
80460 measured reflectionsl = 1212
12643 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.1214P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
12643 reflectionsΔρmax = 0.15 e Å3
667 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.70771 (12)0.46409 (8)0.2628 (2)0.0562 (6)
O1A1.07380 (14)0.46983 (8)0.9167 (3)0.1060 (9)
C1A1.11780 (15)0.36157 (10)0.9308 (3)0.0550 (7)
C2A1.14020 (18)0.36671 (12)0.7943 (4)0.0746 (9)
H2AA1.12280.39140.73780.090*
C3A1.1869 (2)0.33565 (16)0.7463 (4)0.0971 (12)
H3AA1.20030.33900.65610.117*
C4A1.2152 (2)0.29859 (16)0.8298 (5)0.0997 (13)
H4AA1.24830.27830.79580.120*
C5A1.19497 (19)0.29218 (12)0.9589 (5)0.0857 (11)
H5AA1.21390.26721.01280.103*
C6A1.14504 (16)0.32293 (10)1.0144 (3)0.0630 (8)
C7A1.12271 (18)0.31728 (11)1.1474 (3)0.0716 (9)
H7AA1.14080.29231.20210.086*
C8A1.07435 (17)0.34759 (10)1.2011 (3)0.0618 (8)
C9A1.0514 (2)0.34237 (12)1.3384 (3)0.0852 (11)
H9AA1.06950.31791.39520.102*
C10A1.0038 (2)0.37244 (14)1.3864 (4)0.0945 (12)
H10A0.98970.36851.47590.113*
C11A0.9754 (2)0.40949 (12)1.3031 (4)0.0855 (11)
H11A0.94170.42951.33690.103*
C12A0.99626 (18)0.41645 (10)1.1742 (3)0.0669 (8)
H12A0.97720.44151.12100.080*
C13A1.04704 (15)0.38610 (9)1.1177 (3)0.0531 (7)
C14A1.06970 (14)0.39254 (9)0.9843 (3)0.0490 (7)
C15A1.04172 (16)0.43341 (10)0.8980 (3)0.0575 (7)
C16A0.97565 (15)0.42839 (10)0.7923 (3)0.0572 (7)
H16A0.95040.40050.78550.069*
C17A0.95048 (14)0.46190 (9)0.7064 (3)0.0517 (7)
H17A0.97750.48910.71760.062*
C18A0.88611 (14)0.46221 (9)0.5960 (2)0.0461 (6)
C19A0.87537 (15)0.49921 (9)0.5044 (3)0.0582 (8)
H19A0.90820.52390.51700.070*
C20A0.81701 (16)0.50011 (10)0.3950 (3)0.0629 (8)
H20A0.81130.52500.33370.075*
C21A0.76707 (14)0.46405 (9)0.3766 (3)0.0486 (7)
C22A0.77644 (15)0.42742 (9)0.4683 (3)0.0524 (7)
H22A0.74280.40310.45710.063*
C23A0.83510 (15)0.42646 (9)0.5763 (3)0.0522 (7)
H23A0.84070.40150.63700.063*
C24A0.71655 (16)0.46292 (9)0.1192 (3)0.0527 (7)
C25A0.78105 (17)0.46512 (10)0.0569 (3)0.0629 (8)
H25A0.82780.46730.11100.075*
C26A0.7740 (2)0.46406 (11)0.0876 (3)0.0766 (9)
H26A0.81690.46560.13200.092*
C27A0.7054 (2)0.46071 (11)0.1686 (3)0.0818 (10)
H27A0.70280.46050.26650.098*
C28A0.6409 (2)0.45763 (10)0.1087 (3)0.0736 (9)
H28A0.59470.45490.16450.088*
C29A0.64597 (16)0.45865 (9)0.0391 (3)0.0562 (7)
C30A0.59190 (16)0.45608 (9)0.1376 (3)0.0596 (8)
C31A0.51464 (19)0.45214 (11)0.1233 (4)0.0817 (10)
H31A0.48710.44940.03410.098*
C32A0.4791 (2)0.45237 (11)0.2415 (5)0.0918 (12)
H32A0.42740.44900.23180.110*
C33A0.5186 (2)0.45750 (11)0.3751 (5)0.0856 (11)
H33A0.49290.45810.45320.103*
C34A0.59657 (18)0.46183 (10)0.3946 (4)0.0707 (9)
H34A0.62350.46580.48380.085*
C35A0.63152 (16)0.45997 (9)0.2741 (3)0.0573 (7)
N1B0.75504 (13)0.31672 (7)0.7498 (2)0.0545 (6)
O1B0.39724 (14)0.25060 (8)0.0493 (3)0.1037 (9)
C1B0.38794 (16)0.35263 (10)0.0405 (3)0.0588 (8)
C2B0.4305 (2)0.33541 (13)0.1434 (4)0.0877 (11)
H2BA0.45660.30810.12660.105*
C3B0.4336 (3)0.35821 (17)0.2660 (4)0.1139 (14)
H3BA0.46060.34590.33340.137*
C4B0.3965 (3)0.40018 (16)0.2928 (4)0.1061 (13)
H4BA0.40030.41580.37630.127*
C5B0.3555 (2)0.41782 (12)0.1987 (4)0.0840 (10)
H5BA0.33110.44560.21810.101*
C6B0.34842 (17)0.39491 (10)0.0695 (3)0.0614 (8)
C7B0.30545 (17)0.41207 (10)0.0289 (3)0.0661 (8)
H7BA0.27970.43940.00950.079*
C8B0.29961 (16)0.38992 (10)0.1545 (3)0.0600 (8)
C9B0.25652 (18)0.40812 (12)0.2558 (4)0.0821 (10)
H9BA0.23060.43550.23730.099*
C10B0.2529 (2)0.38588 (15)0.3791 (4)0.0962 (12)
H10B0.22530.39840.44520.115*
C11B0.2903 (2)0.34412 (14)0.4084 (4)0.0887 (11)
H11B0.28700.32930.49350.106*
C12B0.33094 (17)0.32540 (11)0.3147 (3)0.0686 (8)
H12B0.35450.29740.33520.082*
C13B0.33845 (15)0.34761 (9)0.1845 (3)0.0533 (7)
C14B0.38207 (15)0.32977 (9)0.0867 (3)0.0530 (7)
C15B0.42182 (17)0.28463 (10)0.1130 (3)0.0627 (8)
C16B0.48985 (16)0.28167 (10)0.2149 (3)0.0619 (8)
H16B0.51640.25430.22080.074*
C17B0.51593 (15)0.31550 (10)0.2990 (3)0.0565 (7)
H17B0.49130.34340.28390.068*
C18B0.57872 (15)0.31449 (9)0.4128 (3)0.0525 (7)
C19B0.62943 (16)0.27845 (10)0.4343 (3)0.0636 (8)
H19B0.62500.25370.37240.076*
C20B0.68616 (16)0.27895 (9)0.5463 (3)0.0609 (8)
H20B0.71890.25430.56060.073*
C21B0.69482 (15)0.31594 (9)0.6380 (3)0.0513 (7)
C22B0.64470 (16)0.35165 (9)0.6181 (3)0.0586 (8)
H22B0.64950.37650.67960.070*
C23B0.58778 (15)0.35067 (9)0.5079 (3)0.0586 (8)
H23B0.55420.37500.49630.070*
C24B0.82957 (16)0.30586 (9)0.7360 (3)0.0538 (7)
C25B0.86218 (18)0.29651 (10)0.6159 (3)0.0651 (8)
H25B0.83380.29600.52710.078*
C26B0.93814 (19)0.28801 (10)0.6323 (4)0.0746 (9)
H26B0.96110.28130.55300.089*
C27B0.98123 (19)0.28918 (10)0.7642 (4)0.0788 (10)
H27B1.03220.28290.77220.095*
C28B0.94911 (19)0.29957 (10)0.8828 (4)0.0728 (9)
H28B0.97810.30080.97080.087*
C29B0.87234 (17)0.30820 (9)0.8695 (3)0.0584 (8)
C30B0.82245 (18)0.32079 (9)0.9691 (3)0.0606 (8)
C31B0.8318 (2)0.32666 (11)1.1151 (3)0.0823 (10)
H31B0.87860.32311.16790.099*
C32B0.7706 (3)0.33779 (12)1.1797 (4)0.0923 (12)
H32B0.77650.34151.27730.111*
C33B0.7005 (2)0.34362 (11)1.1031 (4)0.0844 (11)
H33B0.66030.35161.15000.101*
C34B0.68903 (19)0.33782 (9)0.9578 (3)0.0667 (8)
H34B0.64190.34160.90600.080*
C35B0.75101 (17)0.32615 (9)0.8929 (3)0.0559 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0463 (14)0.0716 (16)0.0486 (14)0.0026 (12)0.0021 (11)0.0073 (12)
O1A0.1001 (19)0.0713 (16)0.130 (2)0.0338 (14)0.0479 (15)0.0325 (14)
C1A0.0367 (16)0.0623 (19)0.0628 (19)0.0078 (14)0.0048 (14)0.0074 (15)
C2A0.058 (2)0.088 (3)0.079 (2)0.0115 (18)0.0133 (18)0.0093 (19)
C3A0.073 (3)0.121 (4)0.102 (3)0.020 (3)0.031 (2)0.029 (3)
C4A0.054 (2)0.107 (3)0.138 (4)0.000 (2)0.013 (3)0.043 (3)
C5A0.056 (2)0.079 (3)0.116 (3)0.0077 (19)0.015 (2)0.016 (2)
C6A0.0424 (18)0.060 (2)0.080 (2)0.0045 (15)0.0160 (16)0.0102 (17)
C7A0.072 (2)0.060 (2)0.074 (2)0.0050 (17)0.0213 (18)0.0111 (17)
C8A0.068 (2)0.0567 (19)0.0560 (19)0.0047 (16)0.0090 (15)0.0053 (15)
C9A0.118 (3)0.073 (2)0.061 (2)0.010 (2)0.002 (2)0.0162 (18)
C10A0.129 (4)0.091 (3)0.067 (2)0.017 (3)0.025 (2)0.005 (2)
C11A0.108 (3)0.075 (2)0.079 (2)0.007 (2)0.031 (2)0.012 (2)
C12A0.076 (2)0.058 (2)0.066 (2)0.0043 (17)0.0100 (17)0.0042 (16)
C13A0.0508 (18)0.0528 (18)0.0524 (17)0.0060 (14)0.0055 (14)0.0015 (14)
C14A0.0402 (16)0.0515 (17)0.0515 (17)0.0037 (13)0.0076 (13)0.0024 (13)
C15A0.0518 (18)0.0578 (19)0.0601 (18)0.0069 (15)0.0035 (14)0.0063 (15)
C16A0.0577 (19)0.0539 (18)0.0558 (17)0.0051 (14)0.0077 (14)0.0059 (14)
C17A0.0538 (17)0.0520 (17)0.0475 (16)0.0033 (14)0.0003 (13)0.0027 (13)
C18A0.0504 (16)0.0469 (16)0.0397 (14)0.0011 (13)0.0019 (12)0.0006 (12)
C19A0.0564 (18)0.0504 (17)0.0632 (18)0.0088 (14)0.0093 (15)0.0103 (14)
C20A0.061 (2)0.0593 (19)0.0646 (19)0.0017 (16)0.0059 (15)0.0182 (15)
C21A0.0454 (16)0.0554 (17)0.0433 (15)0.0017 (14)0.0006 (12)0.0038 (13)
C22A0.0547 (18)0.0533 (18)0.0478 (16)0.0077 (13)0.0017 (14)0.0024 (13)
C23A0.0621 (19)0.0489 (17)0.0438 (15)0.0030 (14)0.0004 (14)0.0059 (12)
C24A0.0521 (18)0.0509 (17)0.0523 (17)0.0012 (14)0.0039 (14)0.0026 (13)
C25A0.057 (2)0.072 (2)0.0572 (19)0.0008 (16)0.0004 (15)0.0037 (15)
C26A0.090 (3)0.080 (2)0.060 (2)0.0094 (19)0.0113 (19)0.0016 (17)
C27A0.110 (3)0.077 (2)0.056 (2)0.013 (2)0.002 (2)0.0061 (17)
C28A0.086 (3)0.058 (2)0.067 (2)0.0068 (18)0.0259 (19)0.0079 (16)
C29A0.0574 (19)0.0443 (17)0.0625 (19)0.0033 (14)0.0083 (15)0.0012 (14)
C30A0.0451 (18)0.0448 (17)0.083 (2)0.0002 (13)0.0147 (16)0.0057 (15)
C31A0.060 (2)0.060 (2)0.119 (3)0.0025 (17)0.013 (2)0.008 (2)
C32A0.049 (2)0.067 (2)0.157 (4)0.0054 (18)0.002 (3)0.020 (3)
C33A0.067 (2)0.066 (2)0.129 (3)0.0064 (19)0.032 (2)0.024 (2)
C34A0.058 (2)0.073 (2)0.082 (2)0.0024 (17)0.0120 (18)0.0180 (17)
C35A0.0462 (18)0.0521 (18)0.072 (2)0.0016 (14)0.0019 (16)0.0111 (15)
N1B0.0536 (16)0.0558 (14)0.0519 (14)0.0008 (12)0.0010 (12)0.0017 (11)
O1B0.126 (2)0.0615 (15)0.1070 (19)0.0105 (14)0.0459 (16)0.0209 (14)
C1B0.0581 (19)0.0586 (19)0.0557 (18)0.0037 (15)0.0066 (15)0.0021 (15)
C2B0.097 (3)0.092 (3)0.076 (2)0.011 (2)0.019 (2)0.004 (2)
C3B0.137 (4)0.124 (4)0.087 (3)0.010 (3)0.039 (3)0.009 (3)
C4B0.135 (4)0.111 (4)0.073 (3)0.015 (3)0.015 (3)0.022 (2)
C5B0.096 (3)0.073 (2)0.078 (2)0.011 (2)0.007 (2)0.017 (2)
C6B0.061 (2)0.0554 (19)0.0617 (19)0.0103 (16)0.0148 (16)0.0044 (16)
C7B0.059 (2)0.0495 (18)0.083 (2)0.0007 (15)0.0130 (18)0.0011 (17)
C8B0.0497 (18)0.0560 (19)0.071 (2)0.0037 (15)0.0048 (15)0.0027 (16)
C9B0.064 (2)0.074 (2)0.108 (3)0.0090 (18)0.011 (2)0.006 (2)
C10B0.089 (3)0.107 (3)0.098 (3)0.008 (2)0.032 (2)0.008 (3)
C11B0.089 (3)0.104 (3)0.077 (2)0.002 (2)0.022 (2)0.007 (2)
C12B0.063 (2)0.072 (2)0.068 (2)0.0015 (17)0.0006 (17)0.0072 (18)
C13B0.0456 (17)0.0513 (17)0.0591 (18)0.0038 (14)0.0082 (14)0.0009 (14)
C14B0.0460 (17)0.0538 (17)0.0547 (17)0.0010 (14)0.0105 (14)0.0036 (14)
C15B0.067 (2)0.0548 (19)0.0621 (19)0.0009 (16)0.0084 (16)0.0054 (15)
C16B0.062 (2)0.0519 (18)0.067 (2)0.0092 (15)0.0061 (16)0.0007 (15)
C17B0.0528 (18)0.0500 (17)0.0644 (19)0.0072 (14)0.0001 (14)0.0056 (14)
C18B0.0479 (17)0.0489 (17)0.0580 (17)0.0019 (14)0.0030 (14)0.0044 (14)
C19B0.066 (2)0.0551 (18)0.0646 (19)0.0102 (15)0.0100 (16)0.0102 (15)
C20B0.061 (2)0.0496 (18)0.0676 (19)0.0130 (14)0.0081 (16)0.0032 (15)
C21B0.0539 (18)0.0463 (17)0.0516 (16)0.0017 (14)0.0002 (14)0.0035 (13)
C22B0.062 (2)0.0451 (17)0.0659 (19)0.0014 (15)0.0013 (16)0.0038 (14)
C23B0.0524 (18)0.0447 (17)0.076 (2)0.0069 (13)0.0035 (15)0.0026 (15)
C24B0.0533 (19)0.0454 (16)0.0606 (19)0.0061 (14)0.0002 (15)0.0042 (14)
C25B0.066 (2)0.0599 (19)0.068 (2)0.0054 (16)0.0038 (17)0.0018 (15)
C26B0.068 (2)0.064 (2)0.094 (3)0.0066 (18)0.020 (2)0.0039 (18)
C27B0.059 (2)0.061 (2)0.113 (3)0.0075 (17)0.001 (2)0.003 (2)
C28B0.065 (2)0.058 (2)0.087 (2)0.0115 (17)0.0179 (19)0.0019 (18)
C29B0.060 (2)0.0478 (17)0.064 (2)0.0098 (15)0.0036 (16)0.0001 (14)
C30B0.073 (2)0.0443 (17)0.0590 (19)0.0113 (15)0.0111 (17)0.0030 (14)
C31B0.107 (3)0.071 (2)0.062 (2)0.007 (2)0.015 (2)0.0104 (18)
C32B0.146 (4)0.073 (2)0.057 (2)0.006 (2)0.010 (3)0.0099 (18)
C33B0.124 (3)0.060 (2)0.074 (3)0.011 (2)0.032 (2)0.0011 (18)
C34B0.082 (2)0.0485 (18)0.071 (2)0.0028 (16)0.0127 (18)0.0013 (15)
C35B0.072 (2)0.0416 (16)0.0535 (18)0.0052 (15)0.0054 (16)0.0008 (13)
Geometric parameters (Å, º) top
N1A—C35A1.397 (3)N1B—C24B1.403 (3)
N1A—C24A1.402 (3)N1B—C35B1.405 (3)
N1A—C21A1.420 (3)N1B—C21B1.418 (3)
O1A—C15A1.213 (3)O1B—C15B1.218 (3)
C1A—C14A1.396 (4)C1B—C14B1.402 (4)
C1A—C2A1.423 (4)C1B—C2B1.416 (4)
C1A—C6A1.431 (4)C1B—C6B1.434 (4)
C2A—C3A1.358 (5)C2B—C3B1.355 (5)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.401 (5)C3B—C4B1.404 (5)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.344 (5)C4B—C5B1.340 (5)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.423 (4)C5B—C6B1.424 (4)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.392 (4)C6B—C7B1.388 (4)
C7A—C8A1.388 (4)C7B—C8B1.379 (4)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C13A1.428 (4)C8B—C9B1.422 (4)
C8A—C9A1.435 (4)C8B—C13B1.431 (4)
C9A—C10A1.350 (5)C9B—C10B1.354 (5)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.400 (5)C10B—C11B1.404 (5)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.350 (4)C11B—C12B1.345 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.430 (4)C12B—C13B1.424 (4)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.401 (4)C13B—C14B1.399 (4)
C14A—C15A1.500 (4)C14B—C15B1.506 (4)
C15A—C16A1.462 (4)C15B—C16B1.463 (4)
C16A—C17A1.319 (3)C16B—C17B1.320 (4)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.460 (3)C17B—C18B1.461 (4)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C23A1.387 (3)C18B—C23B1.389 (4)
C18A—C19A1.388 (3)C18B—C19B1.391 (4)
C19A—C20A1.381 (4)C19B—C20B1.378 (4)
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.381 (4)C20B—C21B1.386 (4)
C20A—H20A0.9300C20B—H20B0.9300
C21A—C22A1.379 (3)C21B—C22B1.376 (4)
C22A—C23A1.375 (3)C22B—C23B1.369 (4)
C22A—H22A0.9300C22B—H22B0.9300
C23A—H23A0.9300C23B—H23B0.9300
C24A—C25A1.376 (4)C24B—C25B1.383 (4)
C24A—C29A1.400 (4)C24B—C29B1.401 (4)
C25A—C26A1.369 (4)C25B—C26B1.379 (4)
C25A—H25A0.9300C25B—H25B0.9300
C26A—C27A1.371 (4)C26B—C27B1.390 (4)
C26A—H26A0.9300C26B—H26B0.9300
C27A—C28A1.366 (4)C27B—C28B1.372 (4)
C27A—H27A0.9300C27B—H27B0.9300
C28A—C29A1.403 (4)C28B—C29B1.395 (4)
C28A—H28A0.9300C28B—H28B0.9300
C29A—C30A1.443 (4)C29B—C30B1.441 (4)
C30A—C31A1.386 (4)C30B—C31B1.392 (4)
C30A—C35A1.405 (4)C30B—C35B1.401 (4)
C31A—C32A1.370 (5)C31B—C32B1.371 (5)
C31A—H31A0.9300C31B—H31B0.9300
C32A—C33A1.384 (5)C32B—C33B1.384 (5)
C32A—H32A0.9300C32B—H32B0.9300
C33A—C34A1.398 (4)C33B—C34B1.386 (4)
C33A—H33A0.9300C33B—H33B0.9300
C34A—C35A1.385 (4)C34B—C35B1.390 (4)
C34A—H34A0.9300C34B—H34B0.9300
C35A—N1A—C24A108.3 (2)C24B—N1B—C35B108.0 (2)
C35A—N1A—C21A126.1 (2)C24B—N1B—C21B124.9 (2)
C24A—N1A—C21A125.2 (2)C35B—N1B—C21B127.0 (2)
C14A—C1A—C2A122.2 (3)C14B—C1B—C2B122.8 (3)
C14A—C1A—C6A119.4 (3)C14B—C1B—C6B119.0 (3)
C2A—C1A—C6A118.5 (3)C2B—C1B—C6B118.2 (3)
C3A—C2A—C1A120.2 (4)C3B—C2B—C1B120.9 (4)
C3A—C2A—H2AA119.9C3B—C2B—H2BA119.6
C1A—C2A—H2AA119.9C1B—C2B—H2BA119.6
C2A—C3A—C4A121.3 (4)C2B—C3B—C4B120.9 (4)
C2A—C3A—H3AA119.3C2B—C3B—H3BA119.5
C4A—C3A—H3AA119.3C4B—C3B—H3BA119.5
C5A—C4A—C3A120.5 (4)C5B—C4B—C3B120.3 (4)
C5A—C4A—H4AA119.8C5B—C4B—H4BA119.8
C3A—C4A—H4AA119.8C3B—C4B—H4BA119.8
C4A—C5A—C6A121.1 (4)C4B—C5B—C6B121.4 (4)
C4A—C5A—H5AA119.5C4B—C5B—H5BA119.3
C6A—C5A—H5AA119.5C6B—C5B—H5BA119.3
C7A—C6A—C5A122.6 (3)C7B—C6B—C5B122.6 (3)
C7A—C6A—C1A118.9 (3)C7B—C6B—C1B119.2 (3)
C5A—C6A—C1A118.5 (3)C5B—C6B—C1B118.2 (3)
C8A—C7A—C6A122.2 (3)C8B—C7B—C6B122.2 (3)
C8A—C7A—H7AA118.9C8B—C7B—H7BA118.9
C6A—C7A—H7AA118.9C6B—C7B—H7BA118.9
C7A—C8A—C13A118.9 (3)C7B—C8B—C9B121.9 (3)
C7A—C8A—C9A122.8 (3)C7B—C8B—C13B119.2 (3)
C13A—C8A—C9A118.3 (3)C9B—C8B—C13B118.9 (3)
C10A—C9A—C8A121.0 (3)C10B—C9B—C8B120.4 (3)
C10A—C9A—H9AA119.5C10B—C9B—H9BA119.8
C8A—C9A—H9AA119.5C8B—C9B—H9BA119.8
C9A—C10A—C11A120.7 (3)C9B—C10B—C11B120.9 (4)
C9A—C10A—H10A119.6C9B—C10B—H10B119.5
C11A—C10A—H10A119.6C11B—C10B—H10B119.5
C12A—C11A—C10A120.6 (3)C12B—C11B—C10B120.6 (3)
C12A—C11A—H11A119.7C12B—C11B—H11B119.7
C10A—C11A—H11A119.7C10B—C11B—H11B119.7
C11A—C12A—C13A121.4 (3)C11B—C12B—C13B121.2 (3)
C11A—C12A—H12A119.3C11B—C12B—H12B119.4
C13A—C12A—H12A119.3C13B—C12B—H12B119.4
C14A—C13A—C8A119.5 (3)C14B—C13B—C12B122.7 (3)
C14A—C13A—C12A122.6 (3)C14B—C13B—C8B119.4 (3)
C8A—C13A—C12A117.9 (3)C12B—C13B—C8B117.9 (3)
C1A—C14A—C13A121.1 (2)C13B—C14B—C1B121.0 (3)
C1A—C14A—C15A119.7 (3)C13B—C14B—C15B120.8 (3)
C13A—C14A—C15A119.3 (3)C1B—C14B—C15B118.2 (3)
O1A—C15A—C16A121.2 (3)O1B—C15B—C16B120.1 (3)
O1A—C15A—C14A119.9 (2)O1B—C15B—C14B119.9 (3)
C16A—C15A—C14A118.9 (2)C16B—C15B—C14B120.0 (3)
C17A—C16A—C15A122.4 (3)C17B—C16B—C15B124.0 (3)
C17A—C16A—H16A118.8C17B—C16B—H16B118.0
C15A—C16A—H16A118.8C15B—C16B—H16B118.0
C16A—C17A—C18A129.0 (3)C16B—C17B—C18B128.0 (3)
C16A—C17A—H17A115.5C16B—C17B—H17B116.0
C18A—C17A—H17A115.5C18B—C17B—H17B116.0
C23A—C18A—C19A117.8 (2)C23B—C18B—C19B117.5 (2)
C23A—C18A—C17A122.8 (2)C23B—C18B—C17B118.9 (2)
C19A—C18A—C17A119.4 (2)C19B—C18B—C17B123.6 (3)
C20A—C19A—C18A121.3 (3)C20B—C19B—C18B120.8 (3)
C20A—C19A—H19A119.3C20B—C19B—H19B119.6
C18A—C19A—H19A119.3C18B—C19B—H19B119.6
C19A—C20A—C21A120.0 (3)C19B—C20B—C21B120.5 (3)
C19A—C20A—H20A120.0C19B—C20B—H20B119.7
C21A—C20A—H20A120.0C21B—C20B—H20B119.7
C22A—C21A—C20A119.2 (2)C22B—C21B—C20B119.1 (2)
C22A—C21A—N1A120.2 (2)C22B—C21B—N1B120.9 (2)
C20A—C21A—N1A120.6 (2)C20B—C21B—N1B119.9 (2)
C23A—C22A—C21A120.6 (3)C23B—C22B—C21B120.1 (3)
C23A—C22A—H22A119.7C23B—C22B—H22B120.0
C21A—C22A—H22A119.7C21B—C22B—H22B120.0
C22A—C23A—C18A121.0 (2)C22B—C23B—C18B122.0 (3)
C22A—C23A—H23A119.5C22B—C23B—H23B119.0
C18A—C23A—H23A119.5C18B—C23B—H23B119.0
C25A—C24A—C29A121.8 (3)C25B—C24B—C29B121.4 (3)
C25A—C24A—N1A129.4 (2)C25B—C24B—N1B129.8 (3)
C29A—C24A—N1A108.9 (3)C29B—C24B—N1B108.7 (3)
C26A—C25A—C24A117.7 (3)C26B—C25B—C24B117.8 (3)
C26A—C25A—H25A121.2C26B—C25B—H25B121.1
C24A—C25A—H25A121.2C24B—C25B—H25B121.1
C25A—C26A—C27A121.7 (3)C25B—C26B—C27B121.6 (3)
C25A—C26A—H26A119.1C25B—C26B—H26B119.2
C27A—C26A—H26A119.1C27B—C26B—H26B119.2
C28A—C27A—C26A121.5 (3)C28B—C27B—C26B120.5 (3)
C28A—C27A—H27A119.3C28B—C27B—H27B119.8
C26A—C27A—H27A119.3C26B—C27B—H27B119.8
C27A—C28A—C29A118.3 (3)C27B—C28B—C29B119.1 (3)
C27A—C28A—H28A120.8C27B—C28B—H28B120.4
C29A—C28A—H28A120.8C29B—C28B—H28B120.4
C24A—C29A—C28A119.0 (3)C28B—C29B—C24B119.5 (3)
C24A—C29A—C30A107.0 (2)C28B—C29B—C30B133.2 (3)
C28A—C29A—C30A134.0 (3)C24B—C29B—C30B107.3 (3)
C31A—C30A—C35A118.6 (3)C31B—C30B—C35B119.1 (3)
C31A—C30A—C29A134.2 (3)C31B—C30B—C29B133.6 (3)
C35A—C30A—C29A107.3 (2)C35B—C30B—C29B107.2 (3)
C32A—C31A—C30A119.4 (3)C32B—C31B—C30B118.9 (3)
C32A—C31A—H31A120.3C32B—C31B—H31B120.6
C30A—C31A—H31A120.3C30B—C31B—H31B120.6
C31A—C32A—C33A121.4 (3)C31B—C32B—C33B121.5 (3)
C31A—C32A—H32A119.3C31B—C32B—H32B119.2
C33A—C32A—H32A119.3C33B—C32B—H32B119.2
C32A—C33A—C34A121.1 (3)C32B—C33B—C34B121.2 (3)
C32A—C33A—H33A119.4C32B—C33B—H33B119.4
C34A—C33A—H33A119.4C34B—C33B—H33B119.4
C35A—C34A—C33A116.5 (3)C33B—C34B—C35B117.1 (3)
C35A—C34A—H34A121.8C33B—C34B—H34B121.5
C33A—C34A—H34A121.8C35B—C34B—H34B121.5
C34A—C35A—N1A128.4 (3)C34B—C35B—C30B122.2 (3)
C34A—C35A—C30A122.9 (3)C34B—C35B—N1B129.1 (3)
N1A—C35A—C30A108.6 (3)C30B—C35B—N1B108.7 (3)
C14A—C1A—C2A—C3A179.8 (3)C14B—C1B—C2B—C3B178.8 (3)
C6A—C1A—C2A—C3A0.6 (4)C6B—C1B—C2B—C3B0.2 (5)
C1A—C2A—C3A—C4A1.3 (5)C1B—C2B—C3B—C4B1.8 (6)
C2A—C3A—C4A—C5A1.9 (6)C2B—C3B—C4B—C5B1.9 (7)
C3A—C4A—C5A—C6A0.6 (5)C3B—C4B—C5B—C6B0.2 (6)
C4A—C5A—C6A—C7A179.8 (3)C4B—C5B—C6B—C7B179.0 (3)
C4A—C5A—C6A—C1A1.2 (5)C4B—C5B—C6B—C1B1.4 (5)
C14A—C1A—C6A—C7A0.0 (4)C14B—C1B—C6B—C7B0.0 (4)
C2A—C1A—C6A—C7A179.2 (3)C2B—C1B—C6B—C7B179.0 (3)
C14A—C1A—C6A—C5A179.0 (3)C14B—C1B—C6B—C5B179.5 (3)
C2A—C1A—C6A—C5A1.8 (4)C2B—C1B—C6B—C5B1.4 (4)
C5A—C6A—C7A—C8A179.6 (3)C5B—C6B—C7B—C8B179.2 (3)
C1A—C6A—C7A—C8A0.6 (4)C1B—C6B—C7B—C8B0.3 (4)
C6A—C7A—C8A—C13A0.5 (4)C6B—C7B—C8B—C9B178.9 (3)
C6A—C7A—C8A—C9A179.5 (3)C6B—C7B—C8B—C13B0.6 (4)
C7A—C8A—C9A—C10A179.5 (3)C7B—C8B—C9B—C10B178.9 (3)
C13A—C8A—C9A—C10A1.5 (5)C13B—C8B—C9B—C10B0.6 (5)
C8A—C9A—C10A—C11A0.2 (6)C8B—C9B—C10B—C11B1.2 (6)
C9A—C10A—C11A—C12A1.4 (6)C9B—C10B—C11B—C12B0.3 (6)
C10A—C11A—C12A—C13A0.8 (5)C10B—C11B—C12B—C13B1.2 (5)
C7A—C8A—C13A—C14A0.2 (4)C11B—C12B—C13B—C14B178.0 (3)
C9A—C8A—C13A—C14A178.8 (3)C11B—C12B—C13B—C8B1.8 (4)
C7A—C8A—C13A—C12A179.0 (3)C7B—C8B—C13B—C14B0.6 (4)
C9A—C8A—C13A—C12A2.0 (4)C9B—C8B—C13B—C14B178.9 (3)
C11A—C12A—C13A—C14A179.9 (3)C7B—C8B—C13B—C12B179.6 (3)
C11A—C12A—C13A—C8A0.9 (4)C9B—C8B—C13B—C12B0.9 (4)
C2A—C1A—C14A—C13A178.4 (2)C12B—C13B—C14B—C1B179.9 (3)
C6A—C1A—C14A—C13A0.8 (4)C8B—C13B—C14B—C1B0.3 (4)
C2A—C1A—C14A—C15A1.6 (4)C12B—C13B—C14B—C15B2.0 (4)
C6A—C1A—C14A—C15A179.2 (2)C8B—C13B—C14B—C15B178.2 (2)
C8A—C13A—C14A—C1A0.9 (4)C2B—C1B—C14B—C13B178.9 (3)
C12A—C13A—C14A—C1A178.3 (2)C6B—C1B—C14B—C13B0.0 (4)
C8A—C13A—C14A—C15A179.1 (2)C2B—C1B—C14B—C15B1.0 (4)
C12A—C13A—C14A—C15A1.7 (4)C6B—C1B—C14B—C15B177.9 (2)
C1A—C14A—C15A—O1A95.2 (4)C13B—C14B—C15B—O1B104.3 (3)
C13A—C14A—C15A—O1A84.8 (4)C1B—C14B—C15B—O1B73.6 (4)
C1A—C14A—C15A—C16A84.8 (3)C13B—C14B—C15B—C16B75.7 (4)
C13A—C14A—C15A—C16A95.2 (3)C1B—C14B—C15B—C16B106.3 (3)
O1A—C15A—C16A—C17A4.4 (5)O1B—C15B—C16B—C17B172.6 (3)
C14A—C15A—C16A—C17A175.6 (3)C14B—C15B—C16B—C17B7.4 (5)
C15A—C16A—C17A—C18A179.7 (3)C15B—C16B—C17B—C18B173.5 (3)
C16A—C17A—C18A—C23A7.6 (4)C16B—C17B—C18B—C23B166.7 (3)
C16A—C17A—C18A—C19A171.2 (3)C16B—C17B—C18B—C19B11.4 (5)
C23A—C18A—C19A—C20A1.6 (4)C23B—C18B—C19B—C20B0.1 (4)
C17A—C18A—C19A—C20A177.4 (3)C17B—C18B—C19B—C20B178.0 (3)
C18A—C19A—C20A—C21A1.2 (4)C18B—C19B—C20B—C21B1.5 (5)
C19A—C20A—C21A—C22A0.1 (4)C19B—C20B—C21B—C22B1.8 (4)
C19A—C20A—C21A—N1A178.7 (3)C19B—C20B—C21B—N1B177.8 (3)
C35A—N1A—C21A—C22A57.7 (4)C24B—N1B—C21B—C22B133.4 (3)
C24A—N1A—C21A—C22A114.5 (3)C35B—N1B—C21B—C22B49.8 (4)
C35A—N1A—C21A—C20A123.8 (3)C24B—N1B—C21B—C20B46.2 (4)
C24A—N1A—C21A—C20A64.1 (4)C35B—N1B—C21B—C20B130.6 (3)
C20A—C21A—C22A—C23A0.6 (4)C20B—C21B—C22B—C23B0.9 (4)
N1A—C21A—C22A—C23A178.0 (2)N1B—C21B—C22B—C23B178.7 (3)
C21A—C22A—C23A—C18A0.2 (4)C21B—C22B—C23B—C18B0.5 (4)
C19A—C18A—C23A—C22A0.9 (4)C19B—C18B—C23B—C22B0.8 (4)
C17A—C18A—C23A—C22A178.0 (2)C17B—C18B—C23B—C22B179.1 (3)
C35A—N1A—C24A—C25A178.9 (3)C35B—N1B—C24B—C25B176.2 (3)
C21A—N1A—C24A—C25A5.6 (5)C21B—N1B—C24B—C25B6.4 (4)
C35A—N1A—C24A—C29A0.7 (3)C35B—N1B—C24B—C29B0.3 (3)
C21A—N1A—C24A—C29A174.0 (2)C21B—N1B—C24B—C29B177.1 (2)
C29A—C24A—C25A—C26A1.5 (4)C29B—C24B—C25B—C26B2.1 (4)
N1A—C24A—C25A—C26A178.9 (3)N1B—C24B—C25B—C26B178.2 (3)
C24A—C25A—C26A—C27A0.3 (5)C24B—C25B—C26B—C27B0.7 (4)
C25A—C26A—C27A—C28A0.9 (5)C25B—C26B—C27B—C28B0.9 (5)
C26A—C27A—C28A—C29A0.9 (5)C26B—C27B—C28B—C29B1.1 (5)
C25A—C24A—C29A—C28A1.5 (4)C27B—C28B—C29B—C24B0.4 (4)
N1A—C24A—C29A—C28A178.8 (2)C27B—C28B—C29B—C30B178.4 (3)
C25A—C24A—C29A—C30A178.4 (3)C25B—C24B—C29B—C28B2.0 (4)
N1A—C24A—C29A—C30A1.3 (3)N1B—C24B—C29B—C28B178.8 (2)
C27A—C28A—C29A—C24A0.2 (4)C25B—C24B—C29B—C30B177.0 (2)
C27A—C28A—C29A—C30A179.6 (3)N1B—C24B—C29B—C30B0.2 (3)
C24A—C29A—C30A—C31A179.3 (3)C28B—C29B—C30B—C31B3.8 (6)
C28A—C29A—C30A—C31A0.9 (6)C24B—C29B—C30B—C31B177.3 (3)
C24A—C29A—C30A—C35A1.4 (3)C28B—C29B—C30B—C35B178.3 (3)
C28A—C29A—C30A—C35A178.8 (3)C24B—C29B—C30B—C35B0.6 (3)
C35A—C30A—C31A—C32A0.3 (4)C35B—C30B—C31B—C32B0.4 (5)
C29A—C30A—C31A—C32A177.4 (3)C29B—C30B—C31B—C32B178.1 (3)
C30A—C31A—C32A—C33A1.5 (5)C30B—C31B—C32B—C33B0.5 (5)
C31A—C32A—C33A—C34A1.2 (5)C31B—C32B—C33B—C34B0.9 (5)
C32A—C33A—C34A—C35A1.0 (5)C32B—C33B—C34B—C35B0.3 (5)
C33A—C34A—C35A—N1A178.8 (3)C33B—C34B—C35B—C30B0.6 (4)
C33A—C34A—C35A—C30A2.9 (4)C33B—C34B—C35B—N1B177.6 (3)
C24A—N1A—C35A—C34A176.3 (3)C31B—C30B—C35B—C34B1.0 (4)
C21A—N1A—C35A—C34A10.5 (5)C29B—C30B—C35B—C34B179.2 (2)
C24A—N1A—C35A—C30A0.1 (3)C31B—C30B—C35B—N1B177.5 (2)
C21A—N1A—C35A—C30A173.1 (2)C29B—C30B—C35B—N1B0.7 (3)
C31A—C30A—C35A—C34A2.6 (4)C24B—N1B—C35B—C34B179.0 (3)
C29A—C30A—C35A—C34A175.7 (3)C21B—N1B—C35B—C34B1.7 (4)
C31A—C30A—C35A—N1A179.2 (2)C24B—N1B—C35B—C30B0.6 (3)
C29A—C30A—C35A—N1A0.9 (3)C21B—N1B—C35B—C30B176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12B—H12B···O1Bi0.932.513.266 (4)138
C5B—H5BA···Cg6ii0.932.793.585 (4)144
C27—H27B···Cg70.932.853.577 (4)136
C28—H28B···Cg80.932.703.382 (4)130
C11—H11A···Cg9iii0.932.853.742 (4)161
C7—H7BA···Cg10ii0.932.903.704 (3)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for research facilities. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

Funding information

Funding for this research was provided by: Malaysian Government and Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (FRGS) (No. 203/PFIZIK/6711606) and the Short Term Grant Scheme (No. 304/PFIZIK/6313336).

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218–240.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Ladato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  CrossRef Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Revision A.1. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKonkol, K. L., Schwiderski, R. L. & Rasmussen, S. C. (2016). Materials, 9, 404–420.  CrossRef Google Scholar
First citationLi, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574–10587.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochem. Photobiol. A, 324, 233–239.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.  Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armakoviće, S. J., Panicker, Y. & Alsenoy, C. V. (2017). J. Mol. Struct. 1128, 520–533.  CrossRef Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds