research communications
H-imidazol-3-ium-2-yl)methanolato]copper(II) chloride dimer: insertion of formaldehyde into a copper–carbene bond
of the [(1,3-dimesityl-1aWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
*Correspondence e-mail: christopher.dodds@strath.ac.uk
The μ-(1,3-dimesityl-1H-imidazol-3-ium-2-yl)methanolato-κ2O:O]bis[dichloridocopper(II)], [Cu2Cl4(C22H26N2O)2], is reported. The complex is assumed to have formed via the insertion of formaldehyde into the copper–carbon bond in an N-heterocyclic carbene complex of copper(I) chloride. The structure of the binuclear molecule possesses a crystallographically centrosymmetric Cu2O2 central core with the O atoms bridging between the CuII atoms and thus Z′ = 0.5. The copper centres are further ligated by two chloride ligands, resulting in the CuII atoms residing in a distorted square-planar environment. The Cu—O bond lengths are shorter than those previously reported in structures with the same central Cu2O2 motif. The complex displays C—H⋯Cl interactions involving the H atoms of the heterocycle backbone and the chloride ligands of a neighbouring molecule.
of bis[Keywords: crystal structure; copper; N-heterocyclic carbene; insertion; formaldehyde.
CCDC reference: 1863799
1. Chemical context
The chemistry of N-heterocyclic carbene (NHC) ligands is prominent within the landscape of inorganic and organometallic chemistry and now, more than 25 years on from Arduengo's land-mark paper (Arduengo et al., 1991), this prominence looks set to continue. One area that has proven fruitful is the chemistry of NHCs with the group 11 transition metal elements. In particular, the chemistry with copper has resulted in an abundance of complexes that have proven to be effective catalysts for a range of organic transformations, including conjugate addition and carboxylation (Egbert et al., 2013). The preparation of neutral mono-NHC complexes with the general formulae [Cu(NHC)Cl] is routine and straightforward with a variety of synthetic routes to such species available (McLean et al., 2010; Santoro et al., 2013; Gibard et al., 2013; Lake et al., 2012). One of the simplest routes is the reaction of imidazol(in)ium chloride with Cu2O under reflux conditions with no requirement for the exclusion of air and water. The species formed are stable when they are isolated in the solid state but solutions show signs of oxidation upon standing for prolonged periods, especially when they are prepared in coordinating solvents such as THF or acetonitrile. The tell-tale green colour, which indicates the formation of copper(II) species, is surely a common observation for chemists who work with copper(I)–NHC species, but surprisingly the literature offers little on the identification of these species and corresponding reaction pathways. This is most likely a consequence of the inherent difficulty in characterizing the paramagnetic copper(II) species formed. Our interest in this area has previously revolved around the modification of [Cu(NHC)Cl] complexes through the replacement of the chloride ligand with the thiocyanate ligand (Dodds & Kennedy, 2014). Herein we report the formation of the unusual (1,3-dimesityl-1H-imidazol-3-ium-2-yl) copper(II) chloride dimer, formed presumably from the insertion of formaldehyde into the Cu—NHC bond, upon prolonged standing of a THF solution containing [Cu(IMes)Cl] [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] and trace amounts of formaldehyde at 255 K. The presence of formaldehyde was a result of the preparation of the imidazolium chloride precursor, which utilises paraformaldehyde. Evidently trace amounts of paraformaldehyde have been present during the reflux of Cu2O with imidazolium chloride, with the resulting solution generating the reported complex upon prolonged standing. This is the first structurally characterized example of a species formed through the insertion of a small molecule into a copper—NHC bond. To date, all attempts to prepare the complex rationally have proven unsuccessful.
2. Structural commentary
The structure of the binuclear molecule (I) consists of a Cu2O2Cl4 central core, possessing a Cu2O2 four-membered ring with each copper centre further coordinated by two chloride ligands. Each dimer is sited around a crystallographic centre of symmetry and thus Z′ = 0.5. The structure of the with atom labels, is given in Fig. 1 and the dimeric unit is shown in Fig. 2. The copper centres reside in a distorted square-planar environment, as can be evidenced by the O—Cu—O and Cl—Cu—Cl bond angles [74.10 (11) and 97.58 (5)° respectively], which both deviate markedly from 90°. This distortion from ideal square planar geometry is further illustrated by the trans O—Cu—Cl bond angles [162.46 (10) and 162.36 (9)°], which also deviate noticeably from the expected 180 °. Similar Cu2O2Cl4 central cores have been observed previously by a number of groups (Schäfer et al., 1965; Sager et al., 1967; Watson & Johnson, 1971; Ivashevskaja et al., 2002) with a similar distortion around the CuII atom observed. The Cu—O and Cu—Cl bond lengths are 1.934 (3) and 1.944 (3) Å and 2.2326 (13) and 2.2395 (12) Å, respectively. The Cu—O bond lengths are shorter than those observed in these previous reports [1.979–2.106 Å] while the Cu—Cl bond distances compare well to the previously reported examples [2.205–2.243 Å]. Finally, with regards to the central core, the Cu⋯Cu and O⋯O internuclear distances are 3.0950 (12) and 2.337 (5) Å, respectively. The O⋯O distance is comparable to previous reports [2.366-2.591 Å] while the Cu⋯Cu distance is appreciably shorter when the comparison is made [3.190–3.245 Å]. The C—O bond length is 1.398 (4) Å, which is comparable with a structure previously reported by Hevia and co-workers (Uzelac et al., 2016) in which the zwitterion [ItBuCH2OGaR3] [where ItBu = 1,3-bis(tert-butyl)imidazol-2-ylidene; R = trimethylsilylmethyl] displays a C—O bond length of 1.384 (3) Å. The new C—C bond formed has a bond length of 1.497 (6) Å, which again compares well with the equivalent bond in the aforementioned zwitterion [1.505 (3) Å]. The imidazolium ring is positioned such that it forms a dihedral angle of 90° with the plane of the Cu2O2 ring, torsion angle O1—C1—C2—N1 = 0.2 (7)°. This syn arrangement results in the C5–C10 mesityl rings lying above and below the Cu2O2 ring, as shown in Fig. 2. The distance between the centroids of the Cu2O2 ring and the mesityl ring is 3.390 (2) Å.
3. Supramolecular features
The complex exhibits intermolecular C—H⋯Cl interactions, specifically two short interactions between the H atoms on the unsaturated backbone of the heterocycle and the chloride ligands of a neighbouring molecule at position −x − , y + , −z + . The intermolecular H⋯Cl distances measure 2.51 and 2.76 Å. These interactions combine to give a two-dimensional supramolecular motif than propagates parallel to the (01) plane. Fig. 3 illustrates the C—H⋯Cl intermolecular interactions and numerical details are given in Table 1.
4. Database survey
Outside the complex reported herein, there are eight structures reported in the Cambridge Structural Database (CSD, Version 5.39, update No. 2, February 2018; Groom et al., 2016) that contain a Cu2O2Cl4 core and in which there is no additional coordination to the CuII atoms. The majority of structures reported contain pyridine N-oxide ligands (Schäfer et al., 1965: refcodes CUCPYO, CUCPYO11 and CUCPYO13; Sager et al., 1967: refcodes QQQBWD, QQQBWG and QQQBWJ; Watson & Johnson, 1971: refcode PHPYOC). The lone example that does not include a pyridine N-oxide ligand instead contains the related quinoline N-oxide ligand (Ivashevskaja et al., 2002; refcode HULZOD). We are aware of no previous examples of ligands formed from NHC by an insertion reaction similar to the one reported herein.
5. Synthesis and crystallization
[Cu(IMes)Cl] was prepared according to literature procedures outlined by Abernethy and co-workers (McLean et al., 2010). After isolation of an initial crop of [Cu(IMes)Cl], the filtrate was placed in the freezer (255 K) and left standing for ∼6 months. After this time the pale-orange THF solution had changed to a deep green and a small amount of green crystalline solid had precipitated alongside some green powder. This solid was isolated by filtration, yielding 34 mg of solid. The crystalline material isolated was suitable for single crystal X-ray diffraction. Additionally the isolated product was characterized by elemental analysis and ATR FT–IR.
Analysis calculated for C44H52N4O2Cl4Cu2: C, 56.38; H, 5.55; N, 5.98%. Found: C, 57.26; H, 5.64; N, 5.13%. ATR FT–IR: ν = 1502 (CO) cm−1.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions and refined in riding modes. C—H distances were 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 groups, respectively. For CH3 groups Uiso(H) = 1.5Ueq(C) and for all other types, Uiso(H)i = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1863799
https://doi.org/10.1107/S205698901801201X/pj2057sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801201X/pj2057Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).[Cu2Cl4(C22H26N2O)2] | F(000) = 972 |
Mr = 937.77 | Dx = 1.387 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1962 (8) Å | Cell parameters from 2164 reflections |
b = 13.5321 (10) Å | θ = 3.0–28.7° |
c = 15.5615 (8) Å | µ = 1.23 mm−1 |
β = 107.705 (6)° | T = 123 K |
V = 2246.0 (3) Å3 | Prism, green |
Z = 2 | 0.10 × 0.08 × 0.05 mm |
Oxford Diffraction Xcalibur E diffractometer | 2814 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.049 |
ω scans | θmax = 28.7°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −14→14 |
Tmin = 0.993, Tmax = 1.000 | k = −18→16 |
10241 measured reflections | l = −19→19 |
4960 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3159P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4960 reflections | Δρmax = 0.43 e Å−3 |
259 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.06291 (5) | 0.59936 (4) | 0.96249 (3) | 0.03601 (19) | |
Cl1 | −0.20608 (13) | 0.68984 (10) | 1.00019 (8) | 0.0548 (4) | |
Cl2 | −0.03916 (12) | 0.69819 (10) | 0.85340 (7) | 0.0489 (4) | |
O1 | 0.0280 (3) | 0.4888 (2) | 0.93419 (16) | 0.0318 (7) | |
N1 | −0.1319 (3) | 0.3733 (3) | 0.7821 (2) | 0.0399 (10) | |
N2 | −0.0002 (4) | 0.3953 (3) | 0.7078 (2) | 0.0398 (10) | |
C1 | 0.0662 (4) | 0.4767 (4) | 0.8572 (2) | 0.0333 (11) | |
H1A | 0.1493 | 0.4442 | 0.8747 | 0.040* | |
H1B | 0.0754 | 0.5426 | 0.8324 | 0.040* | |
C2 | −0.0235 (4) | 0.4165 (3) | 0.7853 (3) | 0.0321 (11) | |
C3 | −0.1780 (5) | 0.3228 (4) | 0.7013 (3) | 0.0551 (15) | |
H3 | −0.2531 | 0.2852 | 0.6824 | 0.066* | |
C4 | −0.0958 (5) | 0.3371 (4) | 0.6549 (3) | 0.0585 (16) | |
H4 | −0.1024 | 0.3119 | 0.5967 | 0.070* | |
C5 | −0.1998 (4) | 0.3750 (4) | 0.8489 (3) | 0.0350 (11) | |
C6 | −0.1849 (4) | 0.2964 (4) | 0.9081 (3) | 0.0396 (12) | |
C7 | −0.2554 (5) | 0.2987 (4) | 0.9679 (3) | 0.0476 (13) | |
H7 | −0.2456 | 0.2469 | 1.0108 | 0.057* | |
C8 | −0.3382 (5) | 0.3731 (5) | 0.9669 (3) | 0.0604 (16) | |
C9 | −0.3530 (5) | 0.4476 (4) | 0.9046 (3) | 0.0582 (15) | |
H9 | −0.4104 | 0.4996 | 0.9038 | 0.070* | |
C10 | −0.2855 (5) | 0.4490 (4) | 0.8423 (3) | 0.0470 (13) | |
C11 | −0.1024 (5) | 0.2100 (4) | 0.9088 (3) | 0.0574 (15) | |
H11A | −0.0598 | 0.1905 | 0.9712 | 0.086* | |
H11B | −0.0399 | 0.2280 | 0.8790 | 0.086* | |
H11C | −0.1532 | 0.1548 | 0.8765 | 0.086* | |
C12 | −0.4118 (6) | 0.3732 (6) | 1.0350 (4) | 0.104 (3) | |
H12A | −0.3942 | 0.3123 | 1.0706 | 0.156* | |
H12B | −0.5018 | 0.3771 | 1.0028 | 0.156* | |
H12C | −0.3868 | 0.4303 | 1.0751 | 0.156* | |
C13 | −0.3075 (5) | 0.5289 (4) | 0.7712 (3) | 0.0633 (16) | |
H13A | −0.2279 | 0.5618 | 0.7755 | 0.095* | |
H13B | −0.3672 | 0.5773 | 0.7808 | 0.095* | |
H13C | −0.3415 | 0.4992 | 0.7113 | 0.095* | |
C14 | 0.1027 (4) | 0.4299 (4) | 0.6795 (3) | 0.0385 (12) | |
C15 | 0.2083 (5) | 0.3714 (4) | 0.6951 (3) | 0.0460 (13) | |
C16 | 0.3012 (5) | 0.4043 (4) | 0.6583 (3) | 0.0532 (14) | |
H16 | 0.3751 | 0.3659 | 0.6670 | 0.064* | |
C17 | 0.2875 (5) | 0.4917 (4) | 0.6093 (3) | 0.0492 (14) | |
C18 | 0.1831 (5) | 0.5488 (4) | 0.5989 (3) | 0.0433 (13) | |
H18 | 0.1762 | 0.6097 | 0.5674 | 0.052* | |
C19 | 0.0875 (4) | 0.5205 (4) | 0.6326 (3) | 0.0376 (12) | |
C20 | 0.2251 (6) | 0.2775 (4) | 0.7500 (4) | 0.0688 (18) | |
H20A | 0.2424 | 0.2941 | 0.8140 | 0.103* | |
H20B | 0.2955 | 0.2396 | 0.7419 | 0.103* | |
H20C | 0.1484 | 0.2378 | 0.7299 | 0.103* | |
C21 | 0.3850 (5) | 0.5198 (5) | 0.5650 (4) | 0.076 (2) | |
H21A | 0.3568 | 0.4996 | 0.5015 | 0.115* | |
H21B | 0.4643 | 0.4867 | 0.5959 | 0.115* | |
H21C | 0.3975 | 0.5916 | 0.5687 | 0.115* | |
C22 | −0.0275 (5) | 0.5833 (4) | 0.6182 (3) | 0.0524 (15) | |
H22A | −0.0312 | 0.6085 | 0.6764 | 0.079* | |
H22B | −0.1023 | 0.5435 | 0.5900 | 0.079* | |
H22C | −0.0240 | 0.6390 | 0.5787 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0437 (4) | 0.0389 (4) | 0.0313 (3) | 0.0073 (3) | 0.0201 (2) | 0.0036 (3) |
Cl1 | 0.0691 (9) | 0.0562 (9) | 0.0510 (7) | 0.0252 (8) | 0.0361 (7) | 0.0140 (7) |
Cl2 | 0.0570 (8) | 0.0511 (8) | 0.0478 (7) | 0.0139 (7) | 0.0297 (6) | 0.0161 (6) |
O1 | 0.0394 (18) | 0.0363 (18) | 0.0253 (14) | 0.0041 (15) | 0.0180 (13) | −0.0012 (14) |
N1 | 0.042 (2) | 0.053 (3) | 0.0291 (19) | −0.008 (2) | 0.0179 (17) | −0.0087 (19) |
N2 | 0.048 (2) | 0.047 (3) | 0.0303 (19) | −0.012 (2) | 0.0217 (17) | −0.0134 (19) |
C1 | 0.037 (3) | 0.041 (3) | 0.026 (2) | 0.004 (2) | 0.0169 (19) | −0.001 (2) |
C2 | 0.040 (3) | 0.032 (3) | 0.029 (2) | −0.002 (2) | 0.0169 (19) | −0.001 (2) |
C3 | 0.060 (4) | 0.070 (4) | 0.039 (3) | −0.030 (3) | 0.021 (2) | −0.018 (3) |
C4 | 0.073 (4) | 0.074 (4) | 0.037 (3) | −0.029 (3) | 0.029 (3) | −0.023 (3) |
C5 | 0.027 (2) | 0.044 (3) | 0.036 (2) | −0.004 (2) | 0.0137 (19) | −0.001 (2) |
C6 | 0.036 (3) | 0.045 (3) | 0.040 (3) | −0.007 (2) | 0.015 (2) | −0.005 (2) |
C7 | 0.050 (3) | 0.054 (4) | 0.046 (3) | 0.001 (3) | 0.025 (2) | 0.012 (3) |
C8 | 0.054 (4) | 0.081 (5) | 0.062 (3) | 0.009 (3) | 0.041 (3) | 0.013 (3) |
C9 | 0.050 (3) | 0.064 (4) | 0.072 (4) | 0.023 (3) | 0.035 (3) | 0.016 (3) |
C10 | 0.043 (3) | 0.059 (4) | 0.040 (3) | 0.001 (3) | 0.014 (2) | 0.011 (3) |
C11 | 0.061 (4) | 0.054 (4) | 0.064 (3) | 0.001 (3) | 0.028 (3) | −0.009 (3) |
C12 | 0.100 (5) | 0.136 (7) | 0.114 (5) | 0.040 (5) | 0.089 (5) | 0.037 (5) |
C13 | 0.070 (4) | 0.062 (4) | 0.057 (3) | 0.010 (3) | 0.018 (3) | 0.017 (3) |
C14 | 0.041 (3) | 0.053 (3) | 0.028 (2) | −0.012 (3) | 0.021 (2) | −0.012 (2) |
C15 | 0.061 (4) | 0.041 (3) | 0.042 (3) | 0.000 (3) | 0.026 (2) | −0.006 (2) |
C16 | 0.051 (3) | 0.063 (4) | 0.054 (3) | 0.011 (3) | 0.027 (3) | −0.014 (3) |
C17 | 0.052 (3) | 0.061 (4) | 0.043 (3) | −0.021 (3) | 0.027 (2) | −0.015 (3) |
C18 | 0.058 (3) | 0.046 (3) | 0.032 (2) | −0.011 (3) | 0.023 (2) | −0.010 (2) |
C19 | 0.045 (3) | 0.047 (3) | 0.024 (2) | −0.002 (3) | 0.014 (2) | −0.008 (2) |
C20 | 0.096 (5) | 0.054 (4) | 0.064 (3) | 0.028 (4) | 0.036 (3) | 0.004 (3) |
C21 | 0.072 (4) | 0.082 (5) | 0.097 (4) | −0.031 (4) | 0.058 (4) | −0.029 (4) |
C22 | 0.061 (4) | 0.062 (4) | 0.034 (3) | 0.003 (3) | 0.016 (2) | −0.006 (3) |
Cu1—O1 | 1.934 (3) | C11—H11A | 0.9800 |
Cu1—O1i | 1.944 (3) | C11—H11B | 0.9800 |
Cu1—Cl1 | 2.2326 (13) | C11—H11C | 0.9800 |
Cu1—Cl2 | 2.2395 (12) | C12—H12A | 0.9800 |
O1—C1 | 1.398 (4) | C12—H12B | 0.9800 |
O1—Cu1i | 1.944 (3) | C12—H12C | 0.9800 |
N1—C2 | 1.334 (5) | C13—H13A | 0.9800 |
N1—C3 | 1.386 (6) | C13—H13B | 0.9800 |
N1—C5 | 1.463 (5) | C13—H13C | 0.9800 |
N2—C2 | 1.341 (5) | C14—C15 | 1.381 (7) |
N2—C4 | 1.381 (6) | C14—C19 | 1.410 (7) |
N2—C14 | 1.432 (5) | C15—C16 | 1.404 (7) |
C1—C2 | 1.497 (6) | C15—C20 | 1.511 (7) |
C1—H1A | 0.9900 | C16—C17 | 1.390 (7) |
C1—H1B | 0.9900 | C16—H16 | 0.9500 |
C3—C4 | 1.345 (6) | C17—C18 | 1.369 (7) |
C3—H3 | 0.9500 | C17—C21 | 1.507 (6) |
C4—H4 | 0.9500 | C18—C19 | 1.383 (6) |
C5—C10 | 1.368 (6) | C18—H18 | 0.9500 |
C5—C6 | 1.383 (6) | C19—C22 | 1.502 (6) |
C6—C7 | 1.392 (6) | C20—H20A | 0.9800 |
C6—C11 | 1.488 (7) | C20—H20B | 0.9800 |
C7—C8 | 1.365 (7) | C20—H20C | 0.9800 |
C7—H7 | 0.9500 | C21—H21A | 0.9800 |
C8—C9 | 1.374 (7) | C21—H21B | 0.9800 |
C8—C12 | 1.528 (6) | C21—H21C | 0.9800 |
C9—C10 | 1.398 (6) | C22—H22A | 0.9800 |
C9—H9 | 0.9500 | C22—H22B | 0.9800 |
C10—C13 | 1.513 (7) | C22—H22C | 0.9800 |
O1—Cu1—O1i | 74.10 (11) | C6—C11—H11C | 109.5 |
O1—Cu1—Cl1 | 162.46 (10) | H11A—C11—H11C | 109.5 |
O1i—Cu1—Cl1 | 95.69 (9) | H11B—C11—H11C | 109.5 |
O1—Cu1—Cl2 | 95.60 (8) | C8—C12—H12A | 109.5 |
O1i—Cu1—Cl2 | 162.36 (9) | C8—C12—H12B | 109.5 |
Cl1—Cu1—Cl2 | 97.58 (5) | H12A—C12—H12B | 109.5 |
C1—O1—Cu1 | 127.2 (3) | C8—C12—H12C | 109.5 |
C1—O1—Cu1i | 126.8 (3) | H12A—C12—H12C | 109.5 |
Cu1—O1—Cu1i | 105.90 (11) | H12B—C12—H12C | 109.5 |
C2—N1—C3 | 109.5 (4) | C10—C13—H13A | 109.5 |
C2—N1—C5 | 129.0 (4) | C10—C13—H13B | 109.5 |
C3—N1—C5 | 121.5 (4) | H13A—C13—H13B | 109.5 |
C2—N2—C4 | 109.3 (4) | C10—C13—H13C | 109.5 |
C2—N2—C14 | 127.0 (4) | H13A—C13—H13C | 109.5 |
C4—N2—C14 | 123.6 (3) | H13B—C13—H13C | 109.5 |
O1—C1—C2 | 113.2 (3) | C15—C14—C19 | 123.5 (4) |
O1—C1—H1A | 108.9 | C15—C14—N2 | 119.0 (5) |
C2—C1—H1A | 108.9 | C19—C14—N2 | 117.5 (4) |
O1—C1—H1B | 108.9 | C14—C15—C16 | 116.6 (5) |
C2—C1—H1B | 108.9 | C14—C15—C20 | 122.3 (5) |
H1A—C1—H1B | 107.8 | C16—C15—C20 | 121.1 (5) |
N1—C2—N2 | 107.2 (4) | C17—C16—C15 | 121.4 (5) |
N1—C2—C1 | 131.5 (3) | C17—C16—H16 | 119.3 |
N2—C2—C1 | 121.3 (4) | C15—C16—H16 | 119.3 |
C4—C3—N1 | 106.8 (4) | C18—C17—C16 | 119.6 (5) |
C4—C3—H3 | 126.6 | C18—C17—C21 | 120.9 (5) |
N1—C3—H3 | 126.6 | C16—C17—C21 | 119.4 (5) |
C3—C4—N2 | 107.2 (4) | C17—C18—C19 | 122.0 (5) |
C3—C4—H4 | 126.4 | C17—C18—H18 | 119.0 |
N2—C4—H4 | 126.4 | C19—C18—H18 | 119.0 |
C10—C5—C6 | 123.5 (4) | C18—C19—C14 | 116.9 (5) |
C10—C5—N1 | 117.6 (4) | C18—C19—C22 | 120.9 (5) |
C6—C5—N1 | 118.5 (4) | C14—C19—C22 | 122.2 (4) |
C5—C6—C7 | 116.8 (5) | C15—C20—H20A | 109.5 |
C5—C6—C11 | 123.9 (4) | C15—C20—H20B | 109.5 |
C7—C6—C11 | 119.3 (5) | H20A—C20—H20B | 109.5 |
C8—C7—C6 | 121.9 (5) | C15—C20—H20C | 109.5 |
C8—C7—H7 | 119.0 | H20A—C20—H20C | 109.5 |
C6—C7—H7 | 119.0 | H20B—C20—H20C | 109.5 |
C7—C8—C9 | 119.1 (4) | C17—C21—H21A | 109.5 |
C7—C8—C12 | 120.0 (5) | C17—C21—H21B | 109.5 |
C9—C8—C12 | 120.9 (6) | H21A—C21—H21B | 109.5 |
C8—C9—C10 | 121.6 (5) | C17—C21—H21C | 109.5 |
C8—C9—H9 | 119.2 | H21A—C21—H21C | 109.5 |
C10—C9—H9 | 119.2 | H21B—C21—H21C | 109.5 |
C5—C10—C9 | 117.0 (5) | C19—C22—H22A | 109.5 |
C5—C10—C13 | 122.1 (4) | C19—C22—H22B | 109.5 |
C9—C10—C13 | 120.9 (5) | H22A—C22—H22B | 109.5 |
C6—C11—H11A | 109.5 | C19—C22—H22C | 109.5 |
C6—C11—H11B | 109.5 | H22A—C22—H22C | 109.5 |
H11A—C11—H11B | 109.5 | H22B—C22—H22C | 109.5 |
Cu1—O1—C1—C2 | −95.8 (4) | C7—C8—C9—C10 | 0.1 (9) |
Cu1i—O1—C1—C2 | 87.6 (4) | C12—C8—C9—C10 | 179.5 (6) |
C3—N1—C2—N2 | 0.6 (5) | C6—C5—C10—C9 | 5.5 (7) |
C5—N1—C2—N2 | −178.9 (4) | N1—C5—C10—C9 | 177.7 (5) |
C3—N1—C2—C1 | −178.0 (5) | C6—C5—C10—C13 | −174.4 (5) |
C5—N1—C2—C1 | 2.5 (8) | N1—C5—C10—C13 | −2.1 (7) |
C4—N2—C2—N1 | −0.3 (6) | C8—C9—C10—C5 | −2.9 (8) |
C14—N2—C2—N1 | 176.7 (5) | C8—C9—C10—C13 | 177.0 (5) |
C4—N2—C2—C1 | 178.5 (4) | C2—N2—C14—C15 | 95.2 (6) |
C14—N2—C2—C1 | −4.5 (7) | C4—N2—C14—C15 | −88.2 (6) |
O1—C1—C2—N1 | 0.2 (7) | C2—N2—C14—C19 | −88.1 (5) |
O1—C1—C2—N2 | −178.3 (4) | C4—N2—C14—C19 | 88.6 (6) |
C2—N1—C3—C4 | −0.7 (6) | C19—C14—C15—C16 | −2.6 (7) |
C5—N1—C3—C4 | 178.9 (5) | N2—C14—C15—C16 | 173.9 (4) |
N1—C3—C4—N2 | 0.5 (7) | C19—C14—C15—C20 | 176.5 (4) |
C2—N2—C4—C3 | −0.1 (7) | N2—C14—C15—C20 | −7.0 (7) |
C14—N2—C4—C3 | −177.3 (5) | C14—C15—C16—C17 | 0.5 (7) |
C2—N1—C5—C10 | 90.0 (6) | C20—C15—C16—C17 | −178.6 (5) |
C3—N1—C5—C10 | −89.4 (6) | C15—C16—C17—C18 | 2.0 (7) |
C2—N1—C5—C6 | −97.3 (6) | C15—C16—C17—C21 | −175.3 (4) |
C3—N1—C5—C6 | 83.2 (6) | C16—C17—C18—C19 | −2.6 (7) |
C10—C5—C6—C7 | −5.0 (7) | C21—C17—C18—C19 | 174.7 (4) |
N1—C5—C6—C7 | −177.2 (4) | C17—C18—C19—C14 | 0.6 (6) |
C10—C5—C6—C11 | 172.9 (5) | C17—C18—C19—C22 | −178.4 (4) |
N1—C5—C6—C11 | 0.7 (7) | C15—C14—C19—C18 | 2.1 (6) |
C5—C6—C7—C8 | 1.9 (8) | N2—C14—C19—C18 | −174.5 (4) |
C11—C6—C7—C8 | −176.1 (5) | C15—C14—C19—C22 | −178.9 (4) |
C6—C7—C8—C9 | 0.4 (9) | N2—C14—C19—C22 | 4.5 (6) |
C6—C7—C8—C12 | −179.0 (6) |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl1i | 0.99 | 2.59 | 3.216 (5) | 121 |
C1—H1B···Cl2 | 0.99 | 2.54 | 3.215 (5) | 126 |
C3—H3···Cl2ii | 0.95 | 2.51 | 3.458 (6) | 173 |
C4—H4···Cl1ii | 0.95 | 2.76 | 3.385 (5) | 124 |
C13—H13A···Cl2 | 0.98 | 2.79 | 3.684 (6) | 152 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x−1/2, y−1/2, −z+3/2. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363. CSD CrossRef CAS Web of Science Google Scholar
Dodds, C. A. & Kennedy, A. R. (2014). Z. Anorg. Allg. Chem. 640, 926–930. CrossRef Google Scholar
Egbert, J. D., Cazin, C. S. J. & Nolan, S. P. (2013). Catal. Sci. Technol. 3, 912–926. CrossRef Google Scholar
Gibard, C., Ibrahim, H., Gautier, A. & Cisnetti, F. (2013). Organometallics, 32, 4279–4283. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P. & Chernyshev, V. V. (2002). Acta Cryst. E58, m721–m723. Web of Science CrossRef IUCr Journals Google Scholar
Lake, B. R. M., Bullough, E. K., Williams, T. J., Whitwood, A. C., Little, M. A. & Willans, C. E. (2012). Chem. Commun. 48, 4887–4889. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McLean, A. P., Neuhardt, E. A., St , John, J. P., Findlater, M. & Abernethy, C. D. (2010). Transition Met. Chem. 35, 415–418. CrossRef Google Scholar
Sager, R. S., Williams, R. J. & Watson, W. H. (1967). Inorg. Chem. 6, 951–955. CSD CrossRef CAS Web of Science Google Scholar
Santoro, O., Collado, A., Slawin, A. M. Z., Nolan, S. P. & Cazin, C. S. J. (2013). Chem. Commun. 49, 10483–10485. Web of Science CSD CrossRef CAS Google Scholar
Schäfer, H. L., Morrow, J. C. & Smith, H. M. (1965). J. Chem. Phys. 42, 504–508. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Uzelac, M., Armstrong, D. R., Kennedy, A. R. & Hevia, E. (2016). Chem. Eur. J. 22, 15826–15833. CrossRef Google Scholar
Watson, W. H. & Johnson, D. R. (1971). J. Coord. Chem. 1, 145–153. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.